Функции периферического отдела зрительного анализатора. Основные принципы строения зрительного анализатора

Зрительный анализатор включает:

периферический отдел: рецепторы сетчатки глаза;

проводниковый отдел: зрительный нерв;

центральный отдел: затылочная доля коры больших полушарий.

Функция зрительного анализатора : восприятие, проведение и расшифровка зрительных сигналов.

Строения глаза

Глаз состоит из глазного яблока и вспомогательного аппарата .

Вспомогательный аппарат глаза

брови - защита от пота;

ресницы - защита от пыли;

веки - механическая защита и поддержание влажности;

слезные железы - расположены у верхней части наружного края глазницы. Она выделяет слезную жидкость, увлажняющую, промывающую и дезинфицирующую глаз. Избыток слёзной жидкости удаляется в носовую полость через слёзный канал , расположенный во внутреннем углу глазницы.

Глазное яблоко

Глазное яблоко имеет примерно сферическую форму с диаметром около 2,5 см.

Оно расположено на жировой подушке в переднем отделе глазницы.

Глаз имеет три оболочки:

белочная оболочка (склера) с прозрачной роговицей - наружная очень плотная фиброзная оболочка глаза;

сосудистая оболочка с наружной радужной оболочкой и ресничным телом - пронизана кровеносными сосудами (питание глаза) и содержит пигмент, препятствующий рассеиванию света через склеру;

сетчатая оболочка (сетчатка ) - внутренняя оболочка глазного яблока - рецепторная часть зрительного анализатора; функция: непосредственное восприятие света и передача информации в центральную нервную систему.

Коньюктива - слизистая оболочка, соединяющая глазное яблоко с кожным покровами.

Белочная оболочка (склера) - внешняя прочная оболочка глаза; внутренняя часть склеры непроницаема для сетовых лучей. Функция: защита глаза от внешних воздействий и светоизоляция;

Роговица - передняя прозрачная часть склеры; является первой линзой на пути световых лучей. Функция: механическая защита глаза и пропускание световых лучей.

Хрусталик - двояковыпуклая линза, расположенная за роговицей. Функция хрусталика: фокусировка световых лучей. Хрусталик не имеет сосудов и нервов. В нем не развиваются воспалительные процессы. В нем много белков, которые иногда могут терять свою прозрачность, что приводит к заболеванию, называемому катаракта .

Сосудистая оболочка - средняя оболочка глаза, богатая сосудами и пигментом.

Радужная оболочка - передняя пигментированная часть сосудистой оболочки; содержит пигменты меланин и липофусцин, определяющие цвет глаз.

Зрачок - круглое отверстие в радужной оболочке. Функция: регуляция светового потока, поступающего в глаз. Диаметр зрачка непроизвольно меняется с помощью гладких мышц радужной оболочки при изменении освещенности.

Передняя и задняя камеры - пространство спереди и сзади радужной оболочки, заполненное прозрачной жидкостью (водянистой влагой ).

Ресничное (цилиарное) тело - часть средней (сосудистой) оболочки глаза; функция: фиксация хрусталика, обеспечение процесса аккомодации (изменение кривизны) хрусталика; продуцирование водянистой влаги камер глаза, терморегуляция.

Стекловидное тело - полость глаза между хрусталиком и глазным дном, заполненная прозрачным вязким гелем, поддерживающим форму глаза.

Сетчатка (ретина) - рецепторный аппарат глаза.

Строение сетчатки

Сетчатка образована разветвлениями окончаний зрительного нерва, который, подойдя к глазному яблоку, проходит через белочную оболочку, причем оболочка нерва сливается с белочной оболочкой глаза. Внутри глаза волокна нерва распределяются в виде тонкой сетчатой оболочки, которая выстилает задние 2/3 внутренней поверхности глазного яблока.

Сетчатка состоит из опорных клеток, образующих сетчатую структуру, откуда и произошло ее название. Световые лучи воспринимает только ее задняя часть. Сетчатая оболочка по своему развитию и по функции представляет собой часть нервной системы. Все же остальные части глазного яблока играют вспомогательную роль для восприятия сетчаткой зрительных раздражений.

Сетчатая оболочка - это часть мозга, выдвинутая наружу, ближе к поверхности тела, и сохраняющая с ним связь с помощью пары зрительных нервов.

Нервные клетки образуют в сетчатке цепи, состоящие из трех нейронов (см. рис. ниже):

первые нейроны имеют дендриты в виде палочек и колбочек; эти нейроны являются конечными клетками зрительного нерва, они воспринимают зрительные раздражения и представляют собой световые рецепторы.

вторые - биполярные нейроны;

третьи - мультиполярные нейроны (ганглиозные клетки ); от них отходят аксоны, которые тянутся по дну глаза и образуют зрительный нерв.

Светочувствительные элементы сетчатки:

палочки - воспринимают яркость;

колбочки - воспринимают цвет.

Колбочки медленно возбуждаются и только ярким светом. Они способны воспринимать цвет. В сетчатке находится три вида колбочек. Первые воспринимают красный цвет, вторые - зеленый, третьи - синий. В зависимости от степени возбуждения колбочек и сочетания раздражений, глаз воспринимает различные цвета и оттенки.

Палочки и колбочки в сетчатой оболочке глаза перемешаны между собой, но в некоторых местах они расположены очень густо, в других же редко или отсутствуют совсем. На каждое нервное волокно приходится примерно 8 колбочек и около 130 палочек.

В области желтого пятна на сетчатке нет палочек - только колбочки, здесь глаз обладает наибольшей остротой зрения и наилучшим восприятием цвета. По-этому глазное яблоко находится в непрерывном движении, так чтобы рассматриваемая часть объекта приходилась на желтое пятно. По мере удаления от желтого пятна плотность палочек увеличивается, но потом уменьшается.

При низкой освещенности в процессе видения участвуют только палочки (сумеречное видение), и глаз не различает цвета, зрение оказывается ахроматическим (бесцветным).

От палочек и колбочек отходят нервные волокна, которые, соединяясь, образуют зрительный нерв. Место выхода из сетчатки зрительного нерва называетсядиском зрительного нерва . В области диска зрительного нерва светочувствительных элементов нет. Поэтому это место не дает зрительного ощущения и называется слепым пятном .

Мышцы глаза

глазодвигательные мышцы - три пары поперечно-полосатых скелетных мышц, которые прикрепляются к коньюктиве; осуществляют движение глазного яблока;

мышцы зрачка - гладкие мышцы радужки (круговая и радиальная), меняющие диаметр зрачка;
Круговая мышца (сжиматель) зрачка иннервируется парасимпатическими волокнами из глазодвигательного нерва, а радиальная мышца (расширитель) зрачка - волокнами симпатического нерва. Радужная оболочка, таким образом, регулирует количество света, поступающего в глаз; при сильном, ярком свете зрачок суживается и ограничивает поступление лучей, а при слабом - расширяется, давая возможность проникнуть большему количеству лучей. На диаметр зрачка влияет гормон адреналин. Когда человек находится в возбужденном состоянии (при испуге, гневе и т. д.), количество адреналина в крови увеличивается, и это вызывает расширение зрачка.
Движения мышц обоих зрачков управляются из одного центра и происходят синхронно. Поэтому оба зрачка всегда одинаково расширяются или суживаются. Даже если подействовать ярким светом на один только глаз, зрачок другого глаза тоже суживается.

мышцы хрусталика (цилиарные мышцы) - гладкие мышцы, изменяющие кривизну хрусталика (аккомодация --фокусировка изображения на сетчатке).

Проводниковый отдел

Зрительный нерв является проводником световых раздражений от глаза к зрительному центру и содержит чувствительные волокна.

Отойдя от заднего полюса глазного яблока, зрительный нерв выходит из глазницы и, войдя в полость черепа, через зрительный канал, вместе с таким же нервом другой стороны, образует перекрест (хиазму ). После перекреста зрительные нервы продолжаются в зрительных трактах . Зрительный нерв связан с ядрами промежуточного мозга, а через них - с корой больших полушарий.

Каждый зрительный нерв содержит совокупность всех отростков нервных клеток сетчатки одного глаза. В области хиазмы происходит неполный перекрест волокон, и в составе каждого зрительного тракта оказывается около 50% волокон противоположной стороны и столько же волокон своей стороны.

Центральный отдел

Центральный отдел зрительного анализатора расположен в затылочной доле коры больших полушарий.

Импульсы от световых раздражений по зрительному нерву проходят к мозговой коре затылочной доли, где расположен зрительный центр.

Рассматривая предмет, находящийся прямо перед глазами, мы видим его отчетливо. Это происходит потому, что лучи света попадают на желтое пятно. Если же изображение предмета, находящегося на небольшом рас стоянии (около 12 см), попадает на слепое пятно, то мы его не видим, так как там нет светочувствительных рецепторов.

Зрачок, хрусталик и стекловидное тело служат для проведения и фокусировки световых лучей. Глазодвигательные мышцы изменяют положение глазного яблока таким образом, чтобы изображение предмета проецировалось именно на сетчатку, а не впереди или позади ее.

Зрение имеет большое значение в жизни человека. С помощью зрения человек познает окружающий мир, письменную речь обогащающую его мыслями и опытом других людей.

Зрительный анализатор контролирует двигательную и трудовую деятельность человека, помогает ориентироваться в окружающем пространстве. С помощью зрения артист балета оценивает расстояние и направление движения, взаимное расположение партнеров в дуэтном танце и массовых сценах. Зрительно он «держит точку» при вращении.

При дефектах зрения — близорукости и дальнозоркости — затрудняется разучивание новых движений и снижается техника выполнения уже заученных движений, Поэтому необходимо следить за правильной позой во время чтения и письма, не читать лежа или в движущемся транспорте, так как это может вызвать близорукость.

«Анатомия и физиология человека», М.С.Миловзорова

Периферической частью зрительного анализатора является сетчатка. Проводящая часть — это зрительный нерв, центральная — зрительная зона коры полушарий. Анализ освещенности, цвета, формы и деталей строения предмета начинается в сетчатке. В определении расстояния до предмета и между предметами, направления движения и изменения движеня предметов вместе со зрительным участвует и двигательный анализатор. Вся эта информация передается в…

Во внутреннем ухе, кроме улитки, находится вестибулярный аппарат — орган равновесия. Он состоит из преддверия и трех полукружных каналов. Полукружные каналы располагаются в трех взаимно перпендикулярных плоскостях и сообщаются с преддверием. В нем имеются две полости с волосковыми чувствительными клетками. Это и есть рецепторы. Над рецепторными клетками находится студенистая масса, в которой имеются отолиты — кристаллики…

Его периферический отдел находится в коже. Это болевые, осязательные и температурные рецепторы. Болевых рецепторов около миллиона. Возбуждаясь, они создают ощущение боли, что вызывает защитную реакцию организма. Осязательные рецепторы вызывают ощущение давления и соприкосновения. Эти рецепторы играют существенную роль в познании окружающего мира. С помощью осязания мы определяем не только, гладкая или шероховатая поверхность у предметов,…

Вкусовой анализатор Вкусовые ощущения способствуют поддержанию постоянства химического состава организма человека. От вкуса, как и от запаха, зависит, будет съедена пища или нет. Периферический отдел вкусового анализатора находится на поверхности языка. Здесь расположены вкусовые сосочки, содержащие рецепторы, анализирующие вкусовые раздражители. Вкусовые рецепторы возбуждаются только растворимыми в воде химическими веществами. Нерастворимые в воде вещества не создают…

Двигательный анализатор является древнейшим. В процессе исторического развития животного мира нервные и мышечные клетки образовались почти одновременно. Впоследствии у животных развились нервная и мышечная системы, функционально связанные друг с другом. Строение двигательного анализатора Периферической частью двигательного анализатора служат внутренние рецепторы органов движения — мышц, суставов и сухожилий. Они получают раздражения во время движения этих органов и, посылая импульсы в кору…

Возрастная анатомия и физиология сенсорных систем организма человека.

Классификация анализаторов, их строение и функции

По определению И.П. Павлова, анализаторы – это сложные нервные аппараты, воспринимающие и анализирующие раздражения, которые поступают из внешней и внутренней сред организма.

Анализатор включает:

Рецептор – периферический отдел, проводниковый отрезок, центральный – мозговой, или, точнее, корковый, отдел анализатора, в котором рождается ощущение.

Все звенья анализатора действуют как единое целое. При повреждении любого из трех звеньев происходит нарушение работы анализатора.

Анализаторы организма человека: зрительный, обонятельный, слуховой, мышечный, вестибулярный, кожный, вкусовой.

Периферическим отделом зрительной сенсорной системой является глаз, который расположен в углублении черепа – глазнице.

Сзади и с боков он защищен от внешних воздействий костными стенками глазницы, а спереди – веками. Он состоит из глазного яблока и вспомогательных структур: слезных желез, ресничной мышцы, кровеносных сосудов и нервов. Слезная железа выделяет жидкость, предохраняющую глаз от высыхания. Равномерному распределению слезной жидкости по поверхности глаза способствует мигание век.

Глазное яблоко ограниченно тремя оболочками – наружной, средней и внутренней. Наружная оболочка глаза – склера, или белочная оболочка. Это плотная непрозрачная ткань белого цвета, толщиной около 1 мм, в передней части она переходит в прозрачную роговицу.

Под склерой расположена сосудистая оболочка глаза, толщина которой не превышает 0,2–0,4 мм. В ней содержится большое количество кровеносных сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное (цилиарное) тело и радужную оболочку (радужку).

В центре радужки располагается зрачок, его диаметр изменяется, от чего в глаз может попадать большее или меньшее количество света. Просвет зрачка регулируется мышцей, находящейся в радужке.

В радужной оболочке содержится особое красящее вещество – меланин. От количества этого пигмента цвет радужки может колебаться от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз. Если пигмент отсутствует (таких людей называют альбиносами), лучи света могут проникать в глаз не только через зрачок, но и через ткань радужки. У альбиносов глаза имеют красноватый оттенок, зрение понижено.

В ресничном теле расположена мышца, связанная с хрусталиком и регулирующая его кривизну.

Хрусталик – прозрачное, эластичное образование, имеет форму двояковыпуклой линзы. Он покрыт прозрачной сумкой, по всему его краю к ресничному телу тянутся тонкие, но очень упругие волокна. Они сильно натянуты и держат хрусталик в растянутом состоянии.



В передней и задней камере глаза находиться прозрачная жидкость, которая снабжает питательными веществами роговицу и хрусталик. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой – стекловидным телом . Оптическая система глаза представлена роговицей, камерами глаза, хрусталиком и стекловидным телом. Каждая из этих сред имеет свой показатель оптической силы.

Оптическая сила выражается в диоптриях . Одна диоптрия (дптр) – это оптическая сила линзы с фокусным расстоянием 1 м. Оптическая сила системы глаза в целом – 59 дптр при рассматривании далеких предметов и 70,5 дптр при рассматривании близких предметов.

Глаз – чрезвычайно сложная оптическая система, которую можно сравнить с фотоаппаратом, в котором объективом выступают все части глаза, а фотопленкой – сетчатка. На сетчатке фокусируются лучи света, давая уменьшенное и перевернутое изображение. Фокусировка происходит за счет изменение кривизны хрусталика: при рассматривании близкого предмета он становится выпуклым, а при рассматривании удаленного – более плоским.

Световоспринимающий аппарат глаза. Внутренняя поверхность глаза выстлана тонкой (0,2–0,3 мм), весьма сложной по строению оболочкой – сетчаткой, или ретиной, на которой находятся светочувствительные клетки – палочки и колбочки, или рецепторы (рис. 5.5).

Колбочки сосредоточены в основном в центральной области сетчатки – в желтом пятне. По мере удаления от центра число колбочек уменьшается, а палочек – возрастает. На периферии сетчатки имеются только палочки. У взрослого человека насчитывается 6–7 млн. палочек, которые обеспечивают восприятие дневного и сумеречного света. Колбочки являются рецепторами цветного зрения, палочки – черно-белого.

Местом наилучшего видения является желтое пятно, и особенно его центральная ямка. Такое зрение называют центральным. Остальные части сетчатки принимают участие в боковом, или периферическом, зрении. Центральное зрение обеспечивает возможность рассматривать мелкие детали предметов, а периферическое позволяет ориентироваться в пространстве.

В палочках содержится особое вещество пурпурного цвета – зрительный пурпур, или родопсин, в колбочках – вещество фиолетового цвета – йодопсин, который, в отличие от родопсина, в красном свете выцветает.

Возбуждение палочек и колбочек вызывает появление нервных импульсов в связанных с ними волокнах зрительного нерва. Колбочки менее возбудимы, поэтому, если слабый свет попадает в центральную ямку, где находятся колбочки, а палочек нет, мы его видим очень плохо или не видим вовсе. Зато слабый свет хорошо виден, когда он попадает на боковые поверхности сетчатки. Таким образом, при ярком освещении функционируют в основном колбочки, при слабом освещении – палочки.

В сумерках при слабом освещении мы видим за счет зрительного пурпура. Распад зрительного пурпура под действием света вызывает возникновение импульсов возбуждения в окончаниях зрительного нерва и является начальным моментом зрительной афферентации.

Зрительный пурпур на свету распадается на белок опсин и пигмент ретинен – производное витамина А. В темноте витамин А превращается в ретинен, который соединяется с опсином и образует родопсин, т. е. зрительный пурпур восстанавливается. В темноте сетчатка содержит мало витамина А, а на свету обнаруживается значительное его количество. Следовательно, витамин А – источник зрительного пурпура.

Недостаток в пище витамина А сильно нарушает образование зрительного пурпура, что вызывает резкое ухудшение сумеречного зрения, так называемую куриную слепоту (гемералопию).

Рецепторы сетчатки передают сигналы по волокнам зрительного нерва, в котором насчитывают до 1 млн. нервных волокон, только один раз, в момент появления нового предмета. Затем добавляются сигналы о наступающих изменениях в изображении предмета по сравнению с его прежним изображением и о его исчезновении. Зрительные ощущения возникают только в момент фиксации взгляда в ряде последовательных точек предмета.

Проводниковый отдел зрительной сенсорной системы – это зрительный нерв, ядра верхних бугров четверохолмия среднего мозга, ядра наружного коленчатого тела промежуточного мозга.

Центральный отдел зрительного анализатора расположен в затылочной доле.

Возрастные особенности. Элементы сетчатки начинают развиваться на 6–10-й неделе внутриутробного развития, но окончательное ее морфологическое созревание происходит лишь к 10–12-ти годам. В процессе развития существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, обеспечивающие черно-белое зрение. Колбочки, ответственные за цветовое зрение, еще не зрелые, и их количество невелико. И хотя функции цветоощущения у новорожденных есть, но полноценное включение колбочек в работу происходит только к концу 3-го года жизни. По мере созревания колбочек дети начинают различать сначала желтый, потом зеленый, а затем красный цвета (уже с 3-х месяцев удавалось выработать условные рефлексы на эти цвета); распознавание цветов в более раннем возрасте зависит от яркости, а не от спектральной характеристики цвета. Полностью различать цвета дети начинают с конца 3-го года жизни. В школьном возрасте различительная цветовая чувствительность глаза повышается. Максимального развития ощущение цвета достигает к 30-ти годам и затем постепенно снижается. Важное значение для формирования этой способности имеет тренировка.

Миелинизация проводящих путей начинается лишь на 8–9-м месяце внутриутробного развития, и заканчивается лишь к 3–4-му году жизни.

Корковый отдел зрительного анализатора в основном формируется на 6–7-м месяце внутриутробной жизни, но окончательно зрительная кора созревает к 7-летнему возрасту.

Что касается дорецепторных структур, то у новорожденного глазное яблоко составляет 16 мм, а его масса 3,0 г. Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые 5 лет жизни, менее интенсивно – до 9–12-ти лет. У взрослых диаметр глазного яблока составляет около 24 мм, а вес 8,0 г.

У новорожденных форма глазного яблока более шаровидная, чем у взрослых, в результате в 80–94% случаев у них отмечается дальнозоркая рефракция (см. рис. 5.6, с. 128). Повышенная растяжимость и эластичность склеры у детей способствует легкой деформации глазного яблока, что важно в формировании рефракции глаза. Так, если ребенок играет, рисует или читает, низко наклонив голову, в силу давления жидкости на переднюю стенку, глазное яблоко удлиняется и развивается близорукость (рис. 5.6).

В первые годы жизни радужка содержит мало пигментов и имеет голубовато-сероватый оттенок, а окончательное формирование ее окраски завершается только к 10–12-ти годам.

Зрачок у новорожденных узкий. В возрасте 6–8-ми лет зрачки широкие из-за преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки, что повышает риск солнечных ожогов сетчатки. В 8–10 лет зрачок вновь становится узким, а к 12–13-ти годам быстрота и интенсивность зрачковой реакции на свет такие же, как и у взрослого.

У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, и его преломляющая способность выше. Это делает возможным четкое видение предмета при большем приближении его к глазу, чем у взрослого. В свою очередь, привычка рассматривать предметы на малом расстоянии может приводить к развитию косоглазия.

Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет, или, образно говоря, «механизм точной настройки», формируется в возрасте от 5-ти дней до 3–5-ти месяцев. Функциональное созревание зрительных зон коры головного мозга, по некоторым данным, происходит уже к рождению ребенка, по другим – несколько позже.

Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и в последнюю очередь – цвет.

Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение.

Стереоскопическое зрение к 17–22-м годам достигает своего оптимального уровня, причем с 6-ти лет у девочек острота стереоскопического зрения выше, чем у мальчиков.

В 7–8 лет глазомер у детей значительно лучше, чем у дошкольников, но хуже, чем у взрослых; половых различий не имеет. В дальнейшем у мальчиков линейный глазомер становиться лучше, чем у девочек.

Интенсивно увеличивается и поле зрение у детей, к 7-ми годам его размер составляет приблизительно 80% от размера поля зрения взрослого человека. В развитии поля зрения наблюдаются половые особенности.

Нарушения зрения. Коррекция зрения. Важное значение в процессе обучения и воспитания детей с дефектами органов чувств имеет высокая пластичность нервной системы, позволяющая компенсировать выпавшие функции за счет оставшихся. Известно, что у слепоглухих детей повышена чувствительность вкусового и обонятельного анализаторов. С помощью обоняния они могут хорошо ориентироваться на местности и узнавать родственников и знакомых. Чем более выражена степень поражения органов чувств ребенка, тем более трудной становится и учебно-воспитательная работа с ним.

Подавляющая часть всей информации из окружающего мира (примерно 90%) поступает в наш мозг через зрительные и слуховые каналы, поэтому для нормального физического и психического развития детей и подростков особое значение имеют органы зрения и слуха.

Среди дефектов зрения наиболее часто встречаются различные формы нарушения рефракции оптической системы глаза или нарушения нормальной длины глазного яблока. В результате лучи, идущие от предмета, преломляются не на сетчатке. При слабой рефракции глаза вследствие нарушения функций хрусталика – его уплощения, или при укорочении глазного яблока, изображение предмета оказывается за сетчаткой. Люди с такими нарушениями зрения плохо видят близкие предметы; такой дефект называют дальнозоркостью.

При усилении физической рефракции глаза, например, из-за повышения кривизны хрусталика, или удлинении глазного яблока, изображение предмета фокусируется впереди сетчатки, что нарушает восприятия удаленных предметов. Этот дефект зрения называют близорукостью.

При развитии близорукости школьник плохо видит написанное на классной доске, просит пересадить его на первые парты. При чтении он приближает книгу к глазам, сильно склоняет голову во время письма, в кино или в театре стремится занять место поближе к экрану или сцене. При рассматривании предмета ребенок прищуривает глаза. Что бы сделать изображение на сетчатке более четким, он чрезмерно приближает рассматриваемый предмет к глазам, что вызывает значительную нагрузку на мышечный аппарат глаза. Нередко мышцы не справляются с такой работой, и один глаз отклоняется в сторону виска – возникает косоглазие. Близорукость может развиваться при таких заболеваниях, как рахит, туберкулез, ревматизм.

Частичное нарушение цветового зрения получило название дальтонизма (по имени английского химика Дальтона, у которого впервые был обнаружен этот дефект). Дальтоники обычно не различают красный и зеленый цвета (они им кажутся серыми разных оттенков). Около 4–5% всех мужчин страдают дальтонизмом. У женщин он встречается реже (до 0,5%). Для обнаружения дальтонизма пользуются специальными цветовыми таблицами.

Профилактика нарушений зрения основывается на создании оптимальных условий для работы органа зрения. Зрительное утомление приводит к резкому снижению работоспособности детей, что отражается на их общем состоянии. Своевременная смена видов деятельности, изменение обстановки, в которой проводятся учебные занятия, способствуют повышению работоспособности.

Большое значение имеет правильный режим труда и отдыха, школьная мебель, отвечающая физиологическим особенностям учащихся, достаточное освещение рабочего места и др. во время чтения каждые 40-60 мин необходимо делать перерыв на 10-15 мин, чтобы дать отдохнуть глазам; для снятия напряжения аппарата аккомодации детям рекомендуют посмотреть вдаль.

Кроме того, важная роль в охране зрения и его функции принадлежит защитному аппарату глаза (веки, ресницы), который требуют бережного ухода, соблюдения гигиенических требований и своевременного лечения. Неправильное использование косметических средств может привести к конъюнктивитам, блефаритам и другим заболеваниям органов зрения.

Особое внимание следует обратить на организацию работы с компьютерами, а также просмотр телевизионных передач. При подозрении на нарушение зрения необходима консультация врача – офтальмолога.

До 5-ти лет у детей преобладает гиперметропия (дальнозоркость). При данном дефекте помогают очки с собирательными двояковыпуклыми стеклами (придающими проходящим через них лучам сходящееся направление), которые улучшают остроту зрения и снижают излишнее напряжение аккомодации.

В дальнейшем в связи с нагрузкой при обучении частота гиперметрии снижается, а частота эмметропии (нормальной рефракции) и миопии (близорукости) увеличивается. К окончанию школы по сравнению с начальными классами распространенность близорукости возрастает в 5 раз.

Формированию и прогрессированию близорукости способствует дефицит света. В условиях Заполярья, при постоянном искусственном освещении в период полярной ночи, в тех школах, где уровень освещенности на рабочих местах был в 5–10 раз ниже гигиенических нормативов, у детей и подростков близорукость развивалась чаще.

Острота зрения и устойчивость ясного видения у учащихся существенно снижаются к окончанию уроков, и это снижение тем резче, чем ниже уровень освещенности. С повышением уровня освещенности у детей и подростков увеличивается быстрота различения зрительных стимулов, возрастает скорость чтения, улучшается качество работы. При освещенности рабочих мест 400 лк без ошибок было выполнено 74% работ, при освещенности 100 лк и 50 лк – соответственно 47 и 37%.

При хорошем освещении у нормально слышащих детей у подростков обостряется острота слуха, что также благоприятствует работоспособности, положительно сказывается на качестве работы. Так, если диктанты проводились при уровне освещенности 150 лк, число пропущенных или написанных с ошибками слов было на 47% меньше, чем в аналогичных диктантах, проведенных при освещенности 35 лк.

На развитие близорукости оказывает влияние учебная нагрузка, непосредственно связанная с необходимостью рассматривать объекты на близком расстоянии, ее продолжительность в течение дня.

Следует также знать, что у учащихся, мало бывающих или совсем не бывающих на воздухе в околополуденное время, когда интенсивность ультрафиолетовой радиации максимальна, нарушается фосфорно-кальциевый обмен. Это приводит к уменьшению тонуса глазных мышц, что при высокой зрительной нагрузке и недостаточной освещенности способствует развитию близорукости и ее прогрессированию.

Больными считаются дети, у которых миопическая рефракция составляет 3,25 дптр и выше, а острота зрения с коррекцией – 0,5–0,9. Таким учащимся рекомендованы занятия физической культурой только по специальной программе. Им также противопоказано выполнение тяжелой физической работы, длительное пребывание в согнутом положении с наклоненной головой.

С целью профилактики близорукости необходимы ежегодные медицинские осмотры учащихся врачом – окулистом. При миотопии слабой и средней степени, гиперметропии, астигматизме учащиеся осматриваются окулистом один раз в год, а в случаях высокой степени миопии (более 6,0 дптр) – два раза в год.

При близорукости назначают очки с рассеивающими двояковогнутыми стеклами, которые превращают параллельные лучи в расходящиеся. Близорукость в большинстве случаев врожденная, но она может увеличиваться в школьном возрасте от младших классов к старшим. В тяжелых случаях близорукость сопровождается изменениями сетчатки, что ведет к падению зрения и даже отслойке сетчатки. Поэтому детям, страдающим близорукостью, необходимо строго выполнять предписания окулиста. Своевременное ношение очков школьниками является обязательным.

Строение и функции слухового анализатора

Периферический отдел слуховой сенсорной системы состоит из трех частей: наружного, среднего и внутреннего уха.

Наружное ухо включает ушную раковину и наружный слуховой проход.

Ушная раковина предназначена для улавливания звуковых колебаний, которые далее передаются по наружному слуховому проходу к барабанной перепонке. Наружный слуховой проход имеет длину около 24 мм, он выстлан кожей, снабженной тонкими волосками и особыми потовыми железами, которые выделяют ушную серу. Ушная сера состоит из жировых клеток, содержащих пигмент. Волоски и ушная сера выполняют защитную роль.

Барабанная перепонка находится на границе между наружным и средним ухом. Она очень тонкая (около 0,1 мм), снаружи покрыта эпителием, а изнутри – слизистой оболочкой. Барабанная перепонка расположена наклонно и при воздействии на нее звуковых волн начинает колебаться. И так как барабанная перепонка не имеет собственного периода колебаний, то она колеблется при всяком звуке соответственно его частоте и амплитуде.

Среднее ухо представлено барабанной полостью неправильной формы в виде маленького плоского барабана, на который туго натянута колеблющаяся перепонка, и слуховой, или евстахиевой, трубой.

В полости среднего уха расположены сочленяющиеся между собой слуховые косточки – молоточек, наковальня, стремечко. Среднее ухо отделено от внутреннего перепонкой овального окна.

Рукоятка молоточка одним концом соединена с барабанной перепонкой, другим с наковальней, которая в свою очередь с помощью сустава подвижно соединена со стремечком. К стремечку прикреплена стременная мышца, удерживающая его у перепонки овального окна преддверия. Звук, пройдя наружное ухо, действует на барабанную перепонку, с которой соединен молоточек. Система этих трех косточек увеличивает давление звуковой волны в 30–40 раз и передает ее на перепонку овального окна преддверия, где она трансформируется в колебания жидкости – эндолимфы .

Посредствам слуховой трубы барабанная полость соединена с носоглоткой. Функция евстахиевой трубы заключается в выравнивании давления на барабанную перепонку изнутри и снаружи, что создает наиболее благоприятные условия для ее колебания. Поступление воздуха в барабанную полость происходит во время глотания или зевания, когда просвет трубы открывается, и давление в глотке и барабанной полости выравнивается.

Внутреннее ухо представляет собой костный лабиринт, внутри которого находится перепончатый лабиринт из соединительной ткани. Между костным и перепончатым лабиринтом имеется жидкость – перилимфа, а внутри перепончатого лабиринта – эндолимфа.

В центре костного лабиринта находится преддверие, спереди от него улитка, а сзади – полукружные каналы. Костная улитка – спирально извитой канал, образующий 2,5 оборота вокруг стержня конической формы. Диаметр костного канала у основания улитки 0,04 мм, а на вершине – 0,5 мм. От стержня отходит костная спиральная пластинка, которая делит полость канала на две части, или лестницы.

В улитковом ходе, внутри среднего канала улитки, находится звуковоспринимающий аппарат – спиральный, или кортиев, орган. Он имеет базальную (основную) пластину, которая состоит из 24 тыс. тонких фибриозных волоконец различной длины, очень упругих и слабо связанных друг с другом. Вдоль нее в 5 рядов располагаются опорные и волосковые чувствительные клетки, которые являются собственно слуховыми рецепторами.

Рецепторные клетки имеют удлиненную форму. Каждая волосковая клетка несет 60–70 мельчайших волосков (длиной 4–5 мкм), которые омываются эндолимфой и контактируют с покровной пластиной. Слуховой анализатор воспринимает звук различных тонов. Основной характеристикой каждого звукового тона является длина звуковой волны.

Длина звуковой волны определяется расстоянием, которое проходит звук за 1 сек., деленным на число полных колебаний, совершаемых звучащим телом за это же время. Чем больше число колебаний, тем меньше длина волны. У высоких звуков волна короткая, измеряемая в миллиметрах, у низких – длинная, измеряемая в метрах.

Высота звука определяется его частотой, или числом колебаний за 1 сек. Частота измеряется в герцах (Гц). Чем больше частота звука, тем звук выше. Сила звука пропорциональна амплитуде колебаний звуковой волны и измеряется в белах (чаще применяется децибел, дБ).

Звук улавливается ушной раковиной, направляется по наружному слуховому проходу к барабанной перепонке. Колебания барабанной перепонки передаются через среднее ухо, в котором имеются три слуховые косточки. Через систему рычага они усиливают звуковые колебания и передают их жидкости, находящейся между костным и перепончатым лабиринтом улитки. Волны, достигая основания улитки, вызывают смещение основной мембраны, с которой соприкасаются волосковые клетки. Клетки начинают колебаться, вследствие чего возникает рецепторный потенциал, возбуждающий окончания нервных волокон. Эластичность основной мембраны на разных участках не одинакова. Вблизи овального окна мембрана уже и жестче, далее – шире и эластичнее. Волосковые клетки в узких отрезках воспринимают звуки высокими частотами, а в более широких – с низкими частотами.

Различение звуков происходит на уровне рецепторов. Сила звука кодируется числом возбужденных нейронов и частотой их импульсации. Внутренние волосковые клетки возбуждаются при большой силе звука, наружные при меньшей.

Проводниковый отдел . Волосковые клетки охватываются нервными волокнами улитковой ветви слухового нерва, который несет нервный импульс в продолговатый мозг, далее, перекрещиваясь со вторым нейроном слухового пути, он направляется к задним буграм четверохолмия и ядрам внутренних коленчатых тел промежуточного мозга, а от них – в височную область коры, где располагается центральная часть слухового анализатора.

Центральный отдел слухового анализатора расположен в височной доле. Первичная слуховая кора занимает верхний край верхней височной извилины, она окружена вторичной корой. Смысл услышанного интерпретируется в ассоциативных зонах. У человека в центральном ядре слухового анализатора особое значение имеет зона Вернике, расположенная в задней части верхней височной извилины. Эта зона ответственна за понимание смысла слов, она является центром сенсорной речи. При длительном действии сильных звуков возбудимость звукового анализатора понижается, а при длительном пребывании в тишине возрастает. Это адаптация наблюдается в зоне более высоких звуков.

Возрастные особенности . Закладка периферического отдела слуховой сенсорной системы начинается на 4-й неделе эмбрионального развития. У 5-месячного плода улитка уже имеет форму и размеры, характерные для взрослого человека. К 6-му месяцу пренатального развития заканчивается дифференциация рецепторов.

Миелинизация проводникового отдела идет медленными темпами, и заканчивается лишь к 4-м годам.

Слуховая зона копы выделяется на 6-м месяце внутриутробной жизни, но особенно интенсивно первичная сенсорная кора развивается на протяжении второго года жизни, развитие продолжается до 7-ми лет.

Несмотря на незрелость сенсорной системы уже в 8–9 месяцев пренатального развития ребенок воспринимает звуки и реагирует на них движениями.

У новорожденных орган слуха не волне развит, и нередко считают, что ребенок рождается глухим. В действительности имеет место относительная глухота, которая связана с особенностями строения уха. Наружный слуховой проход у новорожденных короткий и узкий и поначалу расположен вертикально. До 1 года он представлен хрящевой тканью, которая в дальнейшем окостеневает, этот процесс длится до 10–12-ти лет. Барабанная перепонка расположена почти горизонтально, она намного толще, чем у взрослых. Полость среднего уха заполнена амниотической жидкостью, что затрудняет колебания слуховых косточек. С возрастом эта жидкость рассасывается, и полость заполняется воздухом. Слуховая (евстахиева) труба у детей шире и короче, чем у взрослых, и через нее в полость среднего уха могут попадать микробы, жидкости при насморке, рвоте и др. Этим объясняется довольно частое у детей воспаление среднего уха (отит).

С первых дней после рождения ребенок реагирует на громкие звуки вздрагиванием, изменением дыхания, прекращением плача. На 2-м месяце ребенок дифференцирует качественно разные звуки, в 3–4 месяца различает высоту звуков в пределах от 1-ой до 4-х октав, в 4–5 месяцев звуки становятся условнорефлекторными раздражителями. К 1–2-м годам дети дифференцируют звуки, разница между которыми составляет 1–2, а к 4–5-ти годам – даже ¾ и ½ музыкального тона.

Порог слышимости также изменяется с возрастом. У детей 6–9-ти лет он составляет 17–24 дБ, у 10–12-летних – 14–19 дБ. Наибольшая острота слуха достигается к среднему и старшему школьному возрасту (14–19 лет). У взрослого порог слышимости лежит в пределах 10–12 дБ.

Чувствительность слухового анализатора к различным частотам неодинакова в разном возрасте. Дети лучше воспринимают низкие частоты, чем высокие. У взрослых до 40 лет наибольший порог слышимости отмечается при частоте 3000 Гц, в 40–50 лет – 2000 Гц, после 50 лет – 1000 Гц, причем с этого возраста понижается верхняя граница воспринимаемых звуковых колебаний.

Функциональное состояние слухового анализатора зависит от действия многих факторов окружающей среды. Специальной тренировкой можно добиться повышения его чувствительности. Например, занятия музыкой, танцами, фигурным катанием, спортивной и художественной гимнастикой вырабатывают тонкий слух. С другой стороны, физическое и умственное утомление, высокий уровень шумов, резкие колебания температуры и давления значительно снижают чувствительность органов слуха.

У большинства людей понятие «зрение» ассоциируется с глазами. На самом деле глаза – это только часть сложного органа, именуемого в медицине зрительный анализатор. Глаза являются лишь проводником информации извне к нервным окончаниям. А сама способность видеть, различать цвета, размеры, формы, расстояние и движение обеспечивается именно зрительным анализатором – системой сложной структуры, которая включает несколько отделов, взаимосвязанных между собой.

Знание анатомии зрительного анализатора человека позволяет правильно диагностировать различные заболевания, определять их причину, выбирать правильную тактику лечения, проводить сложные хирургические операции. У каждого из отделов зрительного анализатора есть свои функции, но между собой они тесно взаимосвязаны. Если хоть какая-то из функций органа зрения нарушается, это неизменно сказывается на качестве восприятия действительности. Восстановить его можно, только зная, где скрыта проблема. Вот почему так важно знание и понимание физиологии глаза человека.

Строение и отделы

Строение зрительного анализатора сложное, но именно благодаря этому мы можем воспринимать окружающий мир настолько ярко и полно. Состоит он из таких частей:

  • Периферический отдел – здесь расположены рецепторы сетчатки глаза.
  • Проводниковая часть – это зрительный нерв.
  • Центральный отдел – центр зрительного анализатора локализован в затылочной части головы человека.

Работу зрительного анализатора по своей сути можно сравнить с системой телевидения: антенной, проводами и телевизором

Основные функции зрительного анализатора – это восприятие, проведение и обработка зрительной информации. Анализатор глаза не работает в первую очередь без глазного яблока – это и есть его периферическая часть, на которую приходятся основные зрительные функции.

Схема строения непосредственного глазного яблока включает 10 элементов:

  • склера – это наружная оболочка глазного яблока, сравнительно плотная и непрозрачная, в ней есть сосуды и нервные окончания, она соединяется в передней части с роговицей, а в задней – с сетчаткой;
  • сосудистая оболочка – обеспечивает провод питательных веществ вместе с кровью к сетчатке глаза;
  • сетчатка – этот элемент, состоящий из клеток фото-рецепторов, обеспечивает чувствительность глазного яблока к свету. Фоторецепторы бывают двух видов – палочки и колбочки. Палочки отвечают за периферическое зрение, они отличаются высокой светочувствительностью. Благодаря клеткам-палочкам, человек способен видеть в сумерках. Функциональная особенность колбочек совершенно другая. Они позволяют глазу воспринимать различные цвета и мелкие детали. Колбочки отвечают за центральное зрение. Оба вида клеток вырабатывают родопсин – вещество, которое преобразует световую энергию в электрическую. Именно ее способен воспринимать и расшифровывать корковый отдел головного мозга;
  • роговица – это прозрачная часть в переднем отделе глазного яблока, здесь происходит преломление света. Особенность роговицы состоит в том, что в ней совсем нет кровеносных сосудов;
  • радужная оболочка – оптически это самая яркая часть глазного яблока, здесь сосредоточен пигмент, отвечающий за цвет глаз человека. Чем его больше и чем ближе он к поверхности радужки, тем темнее будет цвет глаз. Структурно радужная оболочка представляет собой мышечные волокна, которые отвечают за сокращение зрачка, который, в свою очередь, регулирует количество света, передающегося к сетчатке;
  • ресничная мышца – иногда ее называют ресничным пояском, главная характеристика этого элемента – регулировка хрусталика, благодаря чему взгляд человека может быстро сфокусироваться на одном предмете;
  • хрусталик – это прозрачная линза глаза, главная его задача – фокусировка на одном предмете. Хрусталик эластичен, это свойство усиливается окружающими его мышцами, благодаря чему человек может отчетливо видеть и вблизи, и вдали;
  • стекловидное тело – это прозрачная гелеобразная субстанция, заполняющая глазное яблоко. Именно оно формирует его округлую, устойчивую форму, а также пропускает свет от хрусталика к сетчатке;
  • зрительный нерв – это основная часть проводящего пути информации от глазного яблока в области коры головного мозга, обрабатывающие ее;
  • желтое пятно – это участок максимальной остроты зрения, он расположен напротив зрачка над местом входа зрительного нерва. Свое название пятно получило за большое содержание пигмента желтого цвета. Примечательно, что некоторые хищные птицы, отличающиеся острым зрением, имеют целых три желтых пятна на глазном яблоке.

Периферия собирает максимум зрительной информации, которая затем через проводниковый отдел зрительного анализатора передается к клеткам коры головного мозга для дальнейшей обработки.


Вот так схематично выглядит строение глазного яблока в разрезе

Вспомогательные элементы глазного яблока

Глаз человека подвижен, что позволяет улавливать большое количество информации со всех направлений и быстро реагировать на раздражители. Подвижность обеспечивается мышцами, охватывающими глазное яблоко. Всего их три пары:

  • Пара, обеспечивающая движение глаза вверх и вниз.
  • Пара, отвечающая за движение влево и вправо.
  • Пара, благодаря которой глазное яблоко может вращаться относительно оптической оси.

Этого достаточно, чтобы человек мог смотреть в самых разных направлениях, не поворачивая головы, и быстро реагировать на зрительные раздражители. Движение мышц обеспечивается глазодвигательными нервами.

Также к вспомогательным элементам зрительного аппарата относятся:

  • веки и ресницы;
  • конъюнктива;
  • слезный аппарат.

Веки и ресницы выполняют защитную функцию, образуя физическую преграду для проникновения инородных тел и веществ, воздействия слишком яркого света. Веки представляют собой эластичные пластины из соединительной ткани, покрытые снаружи кожей, а изнутри – конъюнктивой. Конъюнктива – это слизистая оболочка, выстилающая сам глаз и веко изнутри. Ее функция тоже защитная, но обеспечивается она за счет выработки специального секрета, увлажняющего глазное яблоко и образующая невидимую естественную пленку.


Зрительная система человека устроена сложно, но вполне логично, каждый элемент несет определенную функцию и тесно связан с другими

Слезный аппарат – это слезные железы, от которых по протокам слезная жидкость выводится в конъюнктивальный мешок. Железы парные, расположены они в уголках глаз. Также во внутреннем уголке глаза находится слезное озерцо, куда стекает слеза после того, как омыла наружную часть глазного яблока. Оттуда слезная жидкость переходит в слезно-носовой проток и стекает в нижние отделы носовых проходов.

Это естественный и постоянный процесс, никак не ощущаемый человеком. Но когда слезной жидкости вырабатывается слишком много, слезно-носовой проток не в состоянии ее принять и переместить всю одновременно. Жидкость переливается через край слезного озерца – образуются слезы. Если же, наоборот, по каким-то причинам слезной жидкости вырабатывается слишком мало или же она не может продвигаться через слезные протоки по причине их закупорки, возникает сухость глаза. Человек ощущает сильный дискомфорт, боль и резь в глазах.

Как происходит восприятие и передача зрительной информации

Чтобы понять, как же работает зрительный анализатор, стоит представить себе телевизор и антенну. Антенна – это глазное яблоко. Оно реагирует на раздражитель, воспринимает его, преобразует в электрическую волну и передает к головному мозгу. Осуществляется это посредством проводникового отдела зрительного анализатора, состоящего из нервных волокон. Их можно сравнить с телевизионным кабелем. Корковый отдел – это телевизор, он обрабатывает волну и расшифровывает ее. В результате получается привычная для нашего восприятия зрительная картинка.


Зрение человека – это намного сложнее и больше, чем просто глаза. Это сложный многоступенчатый процесс, осуществляемый, благодаря слаженной работе группы различных органов и элементов

Подробнее стоит рассмотреть проводниковый отдел. Он состоит из перекрещенных нервных окончаний, то есть информация от правого глаза идет к левому полушарию, а от левого – к правому. Почему именно так? Все просто и логично. Дело в том, что для оптимальной расшифровки сигнала от глазного яблока к корковому отделу его путь должен быть максимально коротким. Участок в правом полушарии мозга, ответственный за расшифровку сигнала, расположен ближе к левому глазу, чем к правому. И наоборот. Вот почему сигналы передаются по перекрещенным путям.

Перекрещенные нервы далее образуют так называемый зрительный тракт. Здесь информация от разных частей глаза передается для расшифровки к разным частям головного мозга, чтобы сформировалась четкая зрительная картинка. Мозг уже может определить яркость, степень освещенности, цветовую гамму.

Что происходит дальше? Уже почти окончательно обработанный зрительный сигнал поступает в корковый отдел, осталось только извлечь из него информацию. В этом и заключаются основные функции зрительного анализатора. Здесь осуществляются:

  • восприятие сложных зрительных объектов, например, печатного текста в книге;
  • оценка размеров, формы, удаленности предметов;
  • формирование восприятия перспективы;
  • различие между плоскими и объемными предметами;
  • объединение всей полученной информации в целостную картинку.

Итак, благодаря слаженной работе всех отделов и элементов зрительного анализатора, человек способен не только видеть, но и понимать увиденное. Те 90% информации, которую мы получаем из окружающего мира через глаза, поступает к нам именно таким многоступенчатым путем.

Как изменяется зрительный анализатор с возрастом

Возрастные особенности зрительного анализатора неодинаковы: у новорожденного он еще не сформирован до конца, младенцы не могут фокусировать взгляд, быстро реагировать на раздражители, в полной мере обрабатывать полученную информацию, чтобы воспринимать цвет, размер, форму, удаленность предметов.


Новорожденные дети воспринимают мир в перевернутом виде и в черно-белом цвете, так как формирование зрительного анализатора у них еще полностью не завершено

К 1 году зрение ребенка становится почти таким же острым, как у взрослого человека, что можно проверить по специальным таблицам. Но полное завершение формирования зрительного анализатора наступает только к 10–11 годам. До 60 лет в среднем, при условии соблюдения гигиены органов зрения и профилактики патологий, зрительный аппарат работает исправно. Затем начинается ослабление функций, что обусловлено естественным износом мышечных волокон, сосудов и нервных окончаний.

Получать трехмерное изображение мы можем, благодаря тому, что у нас есть два глаза. Выше уже говорилось о том, что правый глаз передает волну к левому полушарию, а левый наоборот, к правому. Далее обе волны соединяются, направляются к нужным отделам для расшифровки. При этом каждый глаз видит свою «картинку», и только при правильном сопоставлении они дают четкое и яркое изображение. Если же на каком-то из этапов происходит сбой, происходит нарушение бинокулярного зрения. Человек видит сразу две картинки, причем они различные.


Сбой на любом этапе передачи и обработки информации в зрительном анализаторе приводит к различным нарушениям зрения

Зрительный анализатор не напрасно сравнивают с телевизором. Изображение предметов, после того как они пройдут преломление на сетчатке, поступает к головному мозгу в перевернутом виде. И только в соответствующих отделах преобразуется в более удобную для восприятия человека форму, то есть возвращается «с головы на ноги».

Есть версия, что новорожденные дети видят именно так – в перевернутом виде. К сожалению, рассказать об этом сами они не могут, а проверить теорию с помощью специальной аппаратуры пока что невозможно. Скорее всего они воспринимают зрительные раздражители так же, как и взрослые люди, но поскольку зрительный анализатор сформирован еще не до конца, полученная информация не обрабатывается и адаптируется полностью для восприятия. Малыш просто не справится с такими объемными нагрузками.

Таким образом, строение глаза сложное, но продуманное и почти совершенное. Сначала свет попадает на периферическую часть глазного яблока, проходит через зрачок к сетчатке, преломляется в хрусталике, затем преобразуется в электрическую волну и проходит по перекрещенным нервным волокнам к коре головного мозга. Здесь происходит расшифровка и оценка полученной информации, а затем ее декодирование в понятную для нашего восприятия зрительную картинку. Это, действительно, схоже с антенной, кабелем и телевизором. Но намного филигранней, логичней и удивительней, ведь это создала сама природа, и под этим сложным процессом на самом деле подразумевается то, что мы называем зрением.

Зрительный анализатор является важнейшим среди других, потому что дает человеку более 80% всей информации об окружающей среде.

Зрительная сенсорная система состоит из трех частей:

Проводниковой, состоящий из чувствительного правого и левого зрительного нерва, частичного перекреста нервных зрительных путей правого и левого глаза (хиазма), зрительного тракта, вносят много переключений, когда проходит через зрительные бугорки чотиригорбикового тела среднего мозга и таламус (латеральные коленчатые тела) промежуточного мозга и далее продолжается до коры головного мозга;

Центральной, находящийся в затылочных областях коры головного мозга и где именно расположены высшие зрительные центры.

Благодаря хиазмам зрительных путей от правого и левого глаза достигается эффект надежности зрительного анализатора, так как воспринимаемая глазами зрительная информация делится примерно поровну таким образом, что от правых половин обоих глаз она собирается в один зрительный тракт, который направляется в центр зрения левого полушария коры головного мозга, а от левых половин обоих глаз — в центр зрения правого полушария коры головного мозга.

Функцией зрительного анализатора является зрение , то бы то способность воспринимать свет, величину, взаимное расположение и расстояние между предметами с помощью органов зрения, каким является пара глаз.

Каждый глаз содержится в углублении (глазнице) черепа и имеет вспомогательный аппарат глаза и глазное яблоко.

Вспомогательный аппарат глаза обеспечивает защиту и движения глаз и включает: брови, верхние и нижние веки с ресницами, слезная железы и двигательные мышцы. Глазное яблоко сзади окружено жировой клетчаткой, которая играет роль мягкой эластичной подушки. Над верхним краем глазниц размещены брови, волосы которых защищает глаза от жидкости (пота, воды), что может течь по лбу.

Спереди глазное яблоко покрыто верхняя и нижняя веки, защищающие глаз спереди и способствуют его увлажнению. Вдоль переднего края век растут волосы, что образует ресницы, раздражение которых вызывает защитный рефлекс смыкания век (закрывание глаз). Внутренняя поверхность век и передняя часть глазного яблока, за исключением роговицы, покрыта кон ‘юнктивою (слизистой оболочкой). В верхнем латеральном (внешнем) края каждой глазницы расположена слезная железа, которая выделяет жидкость, охраняющий глаз от высыхания и обеспечивает чистоту склеры и прозрачность роговицы. Равномерному распределению слезной жидкости на поверхности глаза способствует мигание век. Каждое глазное яблоко приводят в движение шесть мышц, из которых четыре называются прямыми, а два косыми. В систему защиты глаза также принадлежат роговичный (прикосновение к роговице или попадания в глаз соринки) и зрачковый запирающие рефлексы.

Глаз или глазное яблоко, имеет шаровидную форму с диаметром до 24 мм и массой до 7-8 г.

Стенки глазного яблока образованы тремя оболочками: наружной (фиброзной), средней (сосудистой) и внутренней (сетчаткой).

Внешняя белая оболочка, или склера образована прочной непрозрачной соединительной тканью белого цвета, которая обеспечивает определенную форму глаза и защищает его внутренние образования. Передняя часть склеры переходит в прозрачную роговицу, которая защищает от повреждения внутренность глаза и пропускает в его середину свет. Роговица не содержит кровеносных сосудов, питается за счет межклеточной жидкости и имеет форму выпуклой линзы.

Под склерой находится средняя или сосудистая оболочка «имеющая толщину 0,2-0,4 мм и плотно пронизана большим количеством кровеносных сосудов. Функция сосудистой оболочки состоит в обеспечении питанием других оболочек и образований глаза. Эта оболочка в передней части переходит в радужку, имеющий центральный округлое отверстие (зрачок) и радужную оболочку, богатую пигмент меланин, от количества которого цвет радужки может быть от голубого до черного. В переднем отделе глазного яблока сосудистая оболочка переходит в вийчасте тело, содержащее ресничных мышц, который н вязаный с хрусталиком и регулирующая его кривизну. Диаметр зрачка может изменяться в зависимости от освещенности. Если вокруг больше света, то зрачок сужается, а когда меньше — она ​​расширяется и становится максимально расширенной в полной темноте. Диаметр зрачка изменяется рефлекторно (зрачковый рефлекс) благодаря сокращение не исполосованных мышц радужки, одни из которых иннервируются симпатичной (расширяют), а другие — парасимпатической (сужают) нервной системой.

Внутренняя оболочка глаза представлена ​​сетчаткой, толщина которой 0,1-0,2 мм. Эта оболочка состоит из многих (до 12) слоев различных по форме нервных клеток, которые, соединяясь между собой своими отростками, сплетают ажурную сетку (отсюда ее название). Различают следующие основные слои сетчатки:

Внешний пигментный слой (1), что образованный эпителием и содержит пигмент фуксин. Этот пигмент поглощает свет, проникающий в глаз и тем препятствует его отражению и рассеянию, а это способствует четкости зрительного восприятия. Отростки пигментных клеток также окружают фоторецепторы глаза, участвуя в их обмене веществ и в синтезе зрительных пигментов;

С физиологической точки зрения сетчатка является периферической частью зрительного анализатора, рецепторы которого (палочки и колбочки) именно и воспринимают световые образы.

Основная масса колбочек находится в центральной части сетчатки, образуя так называемую желтое пятно. Желтое пятно является местом наилучшего видение при дневном освещении и обеспечивает центральный зрение, а также восприятие световых волн разной длины, что является основой выделения (распознавания) цветов. Остальные сетчатки в основном представлена ​​палочками и способна воспринимать только черно-белые образы (в том числе в темноте), а также обусловливает периферическое зрение. С удалением от центра глаза количество колбочек уменьшается, а палочек возрастает. Место, где от сетчатки отходит зрительный нерв не содержит фоторецепторов, а потому и не воспринимает света и называется слепым пятном.

Ощущение света является процессом формирования субъективных образов, возникающих в результате воздействия электромагнитных световых волн длиной от 390 до 760 нм (1 нм, где нм — наномет составляет 10-9 метра) на рецепторные структуры зрительного анализатора. Из этого следует, что первым этапом в формировании светоощущение является трансформация энергии раздражителя в процесс нервного возбуждения. Это и происходит в сетчатой ​​оболочке глаза.

Каждый фоторецептор состоит из двух сегментов: внешнего, содержащей светочувствительные (светло-реактивный) пигмент, и внутреннего, где расположены органеллы клетки. В палочках содержится пигмент пурпурного цвета (родопсин), а в колбочках пигмент фиолетового цвета (йодопсин). Зрительные пигменты представляют собой высокомолекулярные соединения, состоящие из окисленного витамина А (ретиналя) и белка опсина. В темноте оба пигменты находятся в неактивной форме. Под действием квантов света пигменты мгновенно распадаются («выцветают») и переходят в активную ионную форму: ретиналь отщепляется от опсина. Результате фотохимических процессов в фоторецепторах глаза при воздействии света возникает рецепторный потенциал, основанный на гиперполяризации мембраны рецептора. Это отличительная особенность зрительных рецепторов, так как активация рецепторов других органов чувств чаще всего выражается в виде деполяризации их мембраны. Амплитуда зрительного рецепторного потенциала увеличивается при увеличении интенсивности светового стимула. Так, при действии красных цветов рецепторный потенция п больше выражен у фоторецепторах центральной части сетчатки, а синего — в периферической. Синаптические окончания фоторецепторов конвертируют на биполярные нейроны сетчатки, которые являются первыми нейронами проводникового отдела зрительного анализатора. Аксоны биполярных клеток в свою очередь конвертируют на ганглиозные нейроны (второй нейрон). В результате на каждую ганглиозные клетки могут конвертировать около 140 палочек и 6 колбочек, При этом, чем ближе к желтого пятна, тем меньше фоторецепторов конвертирует на одну ганглиозных клеток. В области желтого пятна конвергенция почти не осуществляется и количество колбочек фактически равно количеству биполярных и ганглиозных нейронов. Именно это объясняет высокую остроту зрения в центральных отделах сетчатки.

Периферия сетчатки отличается большой чувствительностью к недостаточному света. Это, скорее всего, обусловлено тем, что до 600 палочек здесь конвертируют через биполярные нейроны на одну и ту же ганглиозных клеток. В результате сигналы от огромного количества палочек суммируются и вызывают более интенсивную стимуляцию биполярных нейронов.

В сетчатке, кроме вертикальных, существуют также латеральные нейронные связи. Латеральная взаимодействие рецепторов осуществляется горизонтальными клетками. Биполярные и ганглиозные нейроны взаимодействуют между собой за счет связей, образованных коллатералям дендритов и аксонов самих этих клеток, а также с помощью амакринових клеток.

Горизонтальные клетки сетчатки обеспечивают регуляцию передачи импульсов между фоторецепторами и биполярными нейронами, регулируя этим восприятие цветов, а также адаптацию глаза к различной степени освещенности. По характеру восприятия световых раздражений горизонтальные клетки делятся на два типа: 1 — тип, в котором потенциал возникает при действии любой волны спектра света, который воспринимает глаз, 2 -! тип (цветовой), в котором знак потенциала зависит от длины волны (например, красный свет дает деполяризацию, а синее — гиперполяризацию).

В темноте молекулы родопсина восстанавливаются сообщением витамина А с белком опсинов. Недостаток витамина Л нарушает образование родопсина и обуславливает резкое ухудшение сумеречного зрения (возникает куриная слепота) тогда как днем ​​зрение может оставаться нормальным. Колбочковых и палочковой светло-воспринимающие системы глаза обладают неодинаковой и спектральную чувствительность. Колбочки глаза, например, наиболее чувствительные к излучению с длиной волны 554 нм, а палочки — 513 нм. Это проявляется в изменении чувствительности глаза в дневное и сумеречное или ночное время. Например, в день в саду яркими кажутся плоды, имеющие желтое, оранжевое или красное окрашивание, тогда как ночью более различаются зеленые плоды.

По теории цветового зрения, которую впервые предложил М. В. Ломоносов (1756), в сетчатке глаза содержится 3виды колбочек, в каждой из которых есть особое вещество, чувствительное к волнам световых лучей определенной довжини1: одним из них присуща чувствительность к красному цвету, другим к зеленому, третьим — до фиолетового. В зрительном нерве являются соответственно 3 особые группы нервных волокон, каждые из которых проводят афферентные импульсы от одной из указанных групп колбочек. В обычных условиях лучи действуют не на одну группу колбочек, а одновременно на 2 или Из группы, при этом волны различной длины возбуждают их в разной степени, что обуславливает восприятие цветовых оттенков. Первичное различение цветов происходит в сетчатке, но окончательно ощущение воспринятого цвета формируется в высших зрительных центрах и, в определенной мере, является результатом предварительного обучения.

Иногда у человека частично или полностью нарушается восприятие цвета, что обуславливает цветовую слепоту. При полной цветовой слепоте человек видит все предметы окрашенными в серый цвет. Частичное нарушение цветового зрения получило название дальтонизма по имени английского химика Джон Дальтон, вернее Джон Долгой (1766-1844), который имел такое функциональное отклонения в состоянии своего зрения и первый его описал. Дальтоники, как правило, не различают красные и зеленые цвета. Дальтонизм является наследственной болезнью и чаще нарушения цветового зрения наблюдается у мужчин (6-8%), тогда как среди женщин это бывает всего в 0,4-0,5% случаев.

В состав внутреннего ядра глазного яблока входят: передняя камера глаза, задняя камера глаза, хрусталик, водянистая влага передней и задней камер глазного яблока и склисте тело.

Хрусталик прозрачен эластичным образованием, которое имеет форму двояковыпуклой линзы причем задняя поверхность более выпуклая, чем передняя. Хрусталик образован прозрачной бесцветной веществом, которое не имеет ни сосудов, ни нервов, а его питание происходит благодаря водянистой влаге камер глаза, 3 всех сторон хрусталик охвачен бесструктурной капсулой, своей экваториальной поверхностью образует реснитчатый поясок.

Реснитчатый поясок в свою очередь соединяется с реснитчатым телом с помощью тонких соединительнотканных волокон (циннова связь), фиксирующих хрусталик и своим внутренним концом вплетаются в капсулу хрусталика, а внешним — в вийчасте тело.

Важнейшей функцией хрусталика является преломление лучей света с целью их четкого фокусирования на поверхность сетчатки. Эта его способность связана с изменением кривизны (выпуклости) хрусталика, происходит вследствие работы ресничных (цилиарного) мышц. При сокращении этих мышц реснитчатый поясок расслабляется, выпуклость хрусталика увеличивается, соответственно увеличивается его заломлювальна сила, что нужно при рассматривании близко расположенных предметов. Когда ресничные мышцы расслабляются, что бывает при рассматривании далеко расположенных предметов, реснитчатый поясок натягивается, кривизна хрусталика уменьшается, он становится более уплощенным. Заломлювальна способность хрусталика способствует тому, что изображение предметов (около или далеко расположенных) падает точно на сетчатку. Это явление называется аккомодацией. С возрастом у человека аккомодация ослабляется из-за потери хрусталиком эластичности и способности менять свою форму. Снижение аккомодации называется пресбиопии и наблюдается после 40-45 лет.

Склисте тело занимает большую часть полости глазного яблока. Оно покрыто сверху тонкой прозрачной стекловидного перепонкой. Склисте тело состоит из белковой жидкости и нежных, переплетенных между собой волоконец. Передняя его поверхность вогнутая Й обращена к задней поверхности хрусталика, имеет форму ямки, в которой лежит задний полюс хрусталика. Большая же часть хрусталика прилегает к сетчатке глазного яблока и имеет выпуклую форму.

Передняя и задняя камеры глаза заполнены водянистой влагой, выделяемой ресничных отростков и радужки. Водянистая влага имеет незначительные заломлювальни свойства и основное ее назначение состоит в обеспечении роговицы и хрусталика кислородом, глюкозой и белками. Передняя камера глаза большая и находится между роговицей и радужкой, а задняя — между радужкой и хрусталиком.

Для выразительного видение предметов необходимо, чтобы лучи от всех точек объектов, рассматриваемых попадали на поверхность сетчатки, то есть были на ней сфокусированы. Совершенно очевидно, что для обеспечения такого фокусировки требуется определенная оптическая система, которая в каждом глазу представлена ​​следующими элементами: роговица — зрачок — передняя и задняя камеры глаза (заполнены водянистой влагой) — хрусталик — склисте тело. Каждое из указанных сред имеет свой показатель оптической силы относительно преломления лучей света, которая выражается в диоптриях. Одна диоптрия (Д) является оптической силой линзы с фокусным расстоянием 1 м. За счет постоянной оптической силы роговицы и переменной оптической силы хрусталика общая оптическая сила глаза может колебаться от 59 Д (при рассматривании далеких предметов) до 70,5 Д (при рассматривании близких предметов). При этом заломлювальна сила роговицы составляет 43,05 Д, а хрусталика — от 19,11 Д (при взгляде в даль) до 33,6 Д (для близкого видения).

Оптическая система функционально нормального глаза должна обеспечивать четкое изображение любого предмета , который проецируется на сетчатку глаза. После преломления световых лучей в хрусталике на сетчатке образуется зменшене1 и обратное изображение предмета. Ребенок в первые дни по рождению весь мир видит в перевернутом виде, стремится брать предметы по ту сторону, что противоположная нужной и только через несколько месяцев у него вырабатывается способность прямого видения, как и у взрослых. Это достигается с одной стороны за счет образования соответствующих условных рефлексов, а с другой-за счет свидетельства других анализаторов и постоянной проверки зрительных ощущений ежедневной практикой.

Для нормального глаза дальняя точка ясного видения лежит в неизмеримости. Далекие предметы здоровый глаз рассматривает без напряжения аккомодации, т.е. без сокращения реснитчатого мышцы. Ближайшая точка ясного видения у взрослого) ‘человека находится на расстоянии примерно 10 см от глаза. Это значит, что предметы, которые расположены ближе 10 см нельзя четко увидеть даже при максимальном сокращении реснитчатого мышцы. Ближайшая точка ясного видения значительно меняется с возрастом: у и 0 лет она находится на расстоянии менее 7 см от глаза, в 20 лет — 8,3 см, в 30 лет — 11 см, в 40 лет — 17 см, в 50-60 лет — 50 см, в 60-70 лет — 80 см.

Способность глаза при покое аккомодации, то есть когда хрусталик максимально уплощен, называется рефракцией ‘. Различают 3 вида рефракции глаза: нормальная (пропорциональная), дальнозоркие (80-90% новорожденных детей имеют дальнозоркие рефракцию) и близорукая. В глазу с нормальной рефракцией параллельные лучи, идущие от предметов, пересекаются на сетчатке, что обеспечивает четкое видение предмета.