Химический состав углеводов, глюкозы, фруктозы, сахарозы. Химический состав клетки

Углеводы являются основным повседневным источником энергии человека и наибольшей по массе составной частью пищевого рациона человека.

Углеводы являются органическими соединениями, включающими в себя углерод, водород и кислород.


Углеводы подразделяются на две основные категории - простые и сложные. Простые углеводы – моносахариды - это различные сахара, состоящие из одной молекулы. Сюда относятся глюкоза, фруктоза и галактоза. Сложные углеводы в свою очередь подразделяются на дисахариды и полисахариды. Дисахариды – это сахароза, мальтоза, лактоза. Полисахариды включают в себя крахмал, гликоген, целлюлозу, гемицеллюлозу и клетчатку.

Моносахариды

Глюкоза используется организмом для энергетических нужд, для питания мозга, работающих мышц, в том числе сердечной мышцы, эритроцитов, для обеспечения работы центральной нервной системы. Глюкоза обеспечивает поддержание необходимого уровня сахара крови и создания запасов гликогена печени. Если получаемое с пищей количество углеводов недостаточно, необходимая концентрация глюкозы в крови может поддерживаться некоторое время за счет расщепления гликогена печенью.

Глюкоза входит в состав важнейших для человека дисахаридов - сахарозы, лактозы, мальтозы, является структурной единицей (мономером), на основе которой построены важнейшие полисахариды - гликоген, крахмал и целлюлоза (клетчатка).


Глюкоза быстро всасывается в желудочно-кишечном тракте и поступает в кровь, а затем в клетки органов и тканей, где вовлекается в процессы окисления. Окисление глюкозы сопряжено с образованием АТФ (аденозинтрифосфорная кислоты).


Глюкоза является непосредственным предшественником гликогена и при избыточном поступлении глюкозы в организм легко превращается в гликоген.

Глюкоза легко превращается в организме человека в триглицериды, причем, этот процесс особенно усиливается при избыточном поступлении глюкозы с пищей.


Фруктоза обладает теми же свойствами, что и глюкоза, но она медленнее усваивается в кишечнике и, поступая в кровь, быстро покидает кровяное русло. Фруктоза в значительном количестве (до 70-80%) задерживается в печени, не вызывает перенасыщения крови сахаром, легко вовлекается в обменные процессы. Отличается от других сахаров фруктоза и тем, что обладает сравнительно невысокой стойкость - при продолжительном кипячении фруктоза начинает частично изменяться.

Фруктоза в 3 раза слаще глюкозы и в 2 раза слаще сахарозы, усваивается лучше сахарозы.


Галактоза в природе в чистом виде не встречается, получается путём расщепления молочного сахара (лактозы). Большая часть ее превращается в печени человека в глюкозу и участвует в построении гемицеллюлоз.

Дисахариды

Сахароза - получается при соединении глюкозы и фруктозы. Обычный сахар, применяемый повседневно.


Мальтоза – образуется при соединении двух молекул глюкозы. Получается, в частности, при расщеплении крахмала.


Лактоза – молочный сахар, содержится только в молоке. Получается при соединении глюкозы и галактозы.

Полисахариды

Полисахариды характеризуются плохой растворимостью в воде.

Крахмал состоит из большого числа молекул (до 1000) моносахаридов. Человек может усваивать крахмал Обладает свойством только коллоидальной растворимости.


Сложность строения молекул полисахаридов является причиной их нерастворимости. Крахмал обладает свойством только коллоидальной растворимости. Превращения крахмала в организме в основном направлено на удовлетворение потребности в сахаре. Превращение в глюкозу происходит через ряд промежуточных образований.


Гликоген используется в организме как источник энергии для питания работающих мышц, органов и систем. Также является первичным источником глюкозы и энергии. Мышечный гликоген используется напрямую в качестве энергии. Гликоген из печени может преобразовываться в глюкозу и переноситься кровью к различным тканям по мере необходимости.


В печени гликоген содержится в значительном количестве (до 20% в пересчете на сырую массу). Восстановление гликогена происходит путем peсинтеза гликогена за счет глюкозы крови.


Целлюлоза - состоит из множества молекул глюкозы и является базовым элементом растений. По химической струк¬туре весьма близка к полисахаридам. Является разновидностью клетчатки. Человек не может усваивать целлюлозу.


Гемицеллюлоза включает в себя пектин и агар-агар. Гемицеллюлоза обладает способностью впитывать воду, образуя гель. Человек не усваивает гемицеллюлозу.


Пектиновые вещества по своей химической структуре могут быть отнесены к коллоидным полисахаридам, или глюкополисахаридам. Различают два основных вида пектиновых веществ - протопектин и пектин.

Протопектин представляет собой соединение пектина с целлюлозой. В связи с этим прoтопектин при расщеплении на свои составные части может служить источником пектина. Протопектины нерастворимы в воде. Содержатся в клеточных стенках плодов, образуя межклеточную прослойку в их тканях и являясь связывающим и скрепляющим материалом между отдельными клетками.

Пектины являются растворимыми веществами, хорошо усваивающимся в организме. Пектин подвергается гидролизу под действием фермента пектиназы, при этом образуются пектиновая кислота и метиловый спирт. Необходимо отметить, что метиловый спирт (и пектиновая кислота) присутствуют в перезрелых и испорченных плодах и ягодах, a, также, в плодовых и виноградных винах. Основным свойством пектиновых веществ, определившим их использование в пищевой промышленности, является способность преобразовываться в водном растворе в присутствии кислоты н сахара в желеобразную, коллоидную массу. И чем выше содержание в пектине метилового спирта, нем лучше его желирующие свойства.


Клетчатка не усваивается человеком, содержится только в растительной пище. Существует два вида клетчатки – растворимая и нерастворимая. Оба этих вида необходимо важно употреблять каждый день. Под действием фермента целлюлазы, выделяемой бактериями, клетчатка расщепляется c образованием растворимых соединений, которые частично всасываются. Клетчатка играет важную роль в стимулировании перистальтики кишечника. Наряду с этим, клетчатка растительной пищи адсорбирует стерины и препятствует обратному их всасы¬ванию. Благодаря этому улучшается выведение холестерина из организма.

Функции Значение углеводов

Значение углеводов в питании человека чрезвычайно велико.

Углеводы служат важнейшим источником энергии, обеспечивая до 50-70 % общей энергетической ценности рациона. Большая часть глюкозы используется для сиюминутных потребностей клеток в энергии (1 г глюкозы обеспечивает выделение 4,1 ккал энергии). При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал и утилизируются в основном для различных пластических нужд. Если после усвоения глюкозы, вся она не расходуется, то оставшаяся часть запасается в виде гликогена в печени (преимущественно) и мышечных тканях как энергетический резерв (правда, небольшой емкости).


Если после окончания процесса накопления гликогена организм еще продолжает получать глюкозу, то она преобразуется в жирные кислоты и запасается в виде жировых тканей.


Углеводы играют важную роль в реализации пластических функций организма. Глюкоза, фруктоза, галактоза аминосахара и др. являются обязательными составными частями гликопротеидов. К их числу принадлежит большинство белков плазмы крови, включая иммуноглобулины и трансферрин, ряд гормонов, ферментов, факторов свертывания крови и др. Гликопротеиды и гликолипиды, наряду с белками и фосфолипидами, являются необходимыми компонентами клеточных мембран, играют важную роль в межклеточном взаимодействии и росте клеток, их дифференцировке и решении задач иммунитета.

Углеводы пищи являются предшественниками гликогена и триглицеридов, входят в состав заменимых аминокислот, участвуют в построении коферментов, нуклеиновых кислот, АТФ и других биологически важных соединений.


Углеводы необходимы для регуляции нервных тканей, в частности, центральная нервная система расходует около 140 г глюкозы за сутки, для обеспечения функционирования кровеносной системы - эритроциты крови расходуют до 40 г, и являются единственным источником энергии для мозга.


В организме человека все углеводы расщепляются ферментами слюны, поджелудочного и кишечного сока до простейших сахаров и всасываются в виде глюкозы через стенку кишок в кровь. Из воротной вены глюкоза поступает в печень, где часть ее превращается в гликоген и жир, а другая часть переходит, не задерживаясь в печени, в большой круг кровообращения и распределяется по всем органам. В значительном количестве глюкоза используется скелетными мышцами, где она окисляется непосредственно или откладывается в виде гликогена, а также мышцами сердца и мозговой тканью, но значительного накопления глюкозы здесь не происходит. Во всех этих случаях запасы гликогена идут на удовлетворение собственных потребностей тканей, и только гликоген печени, превращаясь в глюкозу, используется для нужд всего организма и поддерживает определенный уровень сахара в крови.

Приветствую Вас, дорогие читательницы!

Интересная вещь, каждая уважающая себя женщина считает, что она хорошо разбирается в вопросах питания и здорового образа жизни, однако на вопрос: «Что такое углеводы, зачем они организму и в каких продуктах они содержатся?» она нередко тушуется и старается увильнуть от ответа.

Поэтому я решила провести сегодня ликбез на тему этих сложных и простых компонентов, чтобы вы могли блеснуть своими безупречными знаниями в очередной беседе с подружками за чашкой ароматного экспрессо, тем самым утвердив свой непоколебимый авторитет в сфере здорового питания.

Нутриенты — что это такое?!

Для начала хочу сказать, что мы живем благодаря регулярному, а у некоторых не особо, поступлению основных питательных нутриентов, из которых состоит любой продукт. А именно:

  • белки
  • углеводы

Из этих веществ, и не только, строится и функционирует весь наш организм. У каждого нутриента имеется своя роль. Сегодня мы поговорим об углеводах, а следующие статьи будут посвящены белкам и жирам. Еще позже я буду рассказывать о других биологически значимых нутриентах, но эти три составляющие — основа нашей жизни. Так что , как только они будут опубликованы.

Углеводы

Углеводы — это русскоязычное обозначение от слова carbohydrates (лат. carbo — уголь, греч. hydоr — вода). Другими словами это органическое вещество, состоящее из атомов углерода, водорода и кислорода, а по сути это соединение углерода и воды. Углеводы являются важнейшим компонентом в строении всего живого на Земле. В растительном мире доля углеводов составляет до 80 % от сухой массы растения, в животном — всего лишь 2-3 %. Именно поэтому углеводы чаще встречаются в растительной пище и практически незаметны в животной.

Этот класс биологических веществ очень разнообразен, но мы привыкли называть углеводами что-то, что входит или не входит в состав определенного продукта и указан на этикетке. Углеводы могут выполнять множество разнообразных функций и я об этом остановлюсь подробнее, но чуть позже.

Какие бывают углеводы?

По своему биохимическому строению углеводы могут быть:

  • простыми
  • сложными

Есть еще понятие медленных и быстрых углеводов, но оно уже относится к скорости всасывания или усвоения, а не строению. Такое разделение я буду рассматривать в статье про гликемический индекс, которая скоро будет опубликована. Сразу оговорюсь, что сложные углеводы могут быть как медленными, так и быстрыми. Заинтриговала? Ждите следующую статью.

Простые углеводы

Углеводы состоят из отдельных единиц, которые называют сахаридами. Самым простым и распространенным углеводом является глюкоза. Глюкоза — это моносахарид, т. е. состоит из одной молекулы и в природе встречается в свободном виде. Соединяясь еще с одной такой же молекулой или другим видом моносахарида образуется дисахарид, а при присоединении еще одной — трисахарид и т.д.

Когда цепочка углевода состоит из множества соединенных между собой моносахаридов, то ее называют полисахарид и это уже сложный углевод, о котором я буду говорить ниже.

К простым сахарам относят не только глюкозу. Моносахаридов очень много в природе, но они редко встречаются в свободном виде, а чаще в составе ди- или полисахаридов, гликопротеинов, нуклеиновых кислот. Широко известными и часто встречающимися являются:

фруктоза
манноза
галактоза
ксилоза
рибоза

Дисахаридов тоже великое множество, я перечислю только наиболее значимые:

лактоза (молочный сахар) состоит из глюкозы и галактозы
сахароза (обычный сахар) состоит из глюкозы и фруктозы
мальтоза (солодовый сахар) состоит из двух молекул глюкозы

Все эти дисахариды вы встречаете в повседневной жизни и они сладкие на вкус, однако бывают углеводы не имеющие сладкий вкус.

Разновидностью простых углеводов являются олигосахариды (от греч. олигос — немногий). Обычно они состоят из 3-10 остатков моносахаридов. Самый известный олигосахарид — рафиноза, состоящая из трех остатков (глюкоза, галактоза и фруктоза). Этот углевод содержится в сахарной свекле. Вероятно поэтому наш кусковой сахар называют рафинадом, потому как весь сахар в России производят именно из сахарной свеклы.

Простые углеводы находятся в тех продуктах питания, которые имеют сладкий вкус. Например, все конфеты и шоколад, сладкая выпечка, варенье, мед, обычный сахарный песок, фрукты и ягоды.

Сложные углеводы

К сложным углеводам относят полисахариды, имеющие в своем составе десятки, сотни и даже тысячи моносахаридов, соединенные между собой разными связями. Полисахаридами являются следующие вещества и вы их отлично знаете:

крахмал (резервный углевод, синтезирующийся в растениях при фотосинтезе и распадающийся на молекулы глюкозы)

инулин (резервный углевод растений, распадающийся на молекулы фруктозы)

гликоген (резервный углевод, синтезирующийся в печени и мышцах высших животных и человека и распадающийся на молекулы глюкозы)

целлюлоза или клетчатка (структурный углевод в растительном мире, оказывает опорную функцию, входит в состав клеточной стенки)

пектин (структурный углевод растений, обеспечивает тургор и засухоустойчивость)

хитин (структурный углевод в составе оболочки членистоногих, беспозвоночных и некоторых грибов и бактерий)

В контексте питания сложными углеводами называют те продукты, которые имеют несладкий вкус. Например, крупы и зерновые, овощи, имеющие много клетчатки и крахмала, макаронные и хлебобулочные изделия, бобовые и пр.

Сложные углеводы являются одним из основных, но не единственным, источником энергии растений, животных и человека, которая образуется в процессе их . Все сложные углеводы, попадая в организм расщепляются до простейших моносахаридов. Только в таком виде из моносахаридов образуется энергия. При окислении 1 г углеводов образуется 4 Ккал энергии. Помимо энергетической функции полисахариды выполняют много других функций, таких как:

  • Опорная и строительная функция. Клетчатка структурный компонент клеточной стенки растений, а хитин защищает внутренние органы членистоногих и входит в состав клеточной стенки грибов.
  • Участвуют во внутренней жизни клетки, участвуют в построении носителей генетической информации (ДНК и РНК).
  • Регулируют осмотическое давление крови, которое зависит от концентрации глюкозы крови.
  • Входят в состав множества рецепторов, чтобы принимать и передавать сигналы клетке от других клеток и молекул.
  • У растений оказывают защитную роль. Шипы и колючки — это отмершие и высохшие клетки, а точнее их клеточные стенки.
  • Участие в работе иммунной системы. Клетчатка и другие полисахариды являются источником питания для флоры кишечника, участвующей в непосредственном иммунном ответе.
  • Резервные энергетические запасы углеводов создаются в виде гликогена у животных и человека, а в растительном мире это крахмал и инулин.

.

В человеческом организме углеводы выполняют в основном роль энергетического субстрата, для синтеза АТФ — вещества, которое и является той самой мерой энергии, которое используется для всех процессов происходящих в организме. Однако, углеводы не единственные.

Другими словами, без АТФ ничего не синтезируется и не распадается в организме. Также небольшое количество углеводов входит в состав сложных молекул, например, гликопротеинов, нуклеиновых кислот, в состав рецепторов клеток. А клетчатка помогает хорошему пищеварению и работе иммунной системы.

И напоследок супер полезное видео от Константина Монастырского об углеводах.

На этом я хочу закончить свою статью. Теперь вы знаете, что такое углеводы с биохимической точки зрения и для чего они нужны. В своей следующей статье я хочу поговорить о том, почему же простые углеводы такие вредные и чем полезны сложные? Поделитесь статьей с подругами через кнопки соц. сетей, вам пустяк, а мне приятно)

Углеводы являются основным источником энергии нашего организма. Спим мы или нет, работаем мы или отдыхаем, болеем или здоровы — наш организм продолжает функционировать.

Львиная доля энергии, необходимой для его работы, поступает к нам из углеводов (50-60%). Энергообмен мозга почти исключительно осуществляется глюкозой (виноградный сахар). Причем именно углеводы способствуют наиболее полному окислению жиров в процессе пищеварения.

Усвоившиеся углеводы поддерживают постоянный уровень глюкозы в крови. Глюкоза откладывается в виде гликогена (животный крахмал) в клетках печени и мышц.

Гликоген (животный крахмал) — основной запасной углевод, содержащийся в клетках организма человека. Этот резервный запас углеводов расходуется организмом по мере необходимости. Гликоген обеспечивает нормальную работу печени, а глюкоза, вырабатывающаяся при его расщеплении, поступает в кровь и расходуется тканями организма.

Химический состав углеводов

Если вспомнить курс химии, то можно дать определение углеводам: это органические соединения углерода, водорода и кислорода. Делятся они на полисахариды, дисахариды и моносахариды. Дисахариды и моносахариды имеют сладкий вкус и растворяются в воде.

Моносахаридами являются:

  • фруктоза;
  • глюкоза — виноградный сахар (или декстроза);
  • галактоза;
  • манноза.

Две молекулы моносахаридов образуют дисахариды:

  • лактоза — соединение глюкозы и галактозы, содержится в молоке и молочных продуктах;
  • сахароза — соединение фруктозы и глюкозы, содержится в свекле или сахарном тростнике;
  • мальтоза — солодовый сахар, вырабатывается в проросшем зерне.

Полисахариды, в отличие от моносахаридов и дисахаридов, не растворяется в воде. Это:

  • крахмал, состоящий из сложных цепочек молекул глюкозы, содержится в крупах, хлебе, макаронах, картофеле, бобовых;
  • гликоген, откладывающийся в живых клетках печени и мышц животных;
  • клетчатка или целлюлоза, усиливающая желчеотделение и секреторную деятельность кишечных желез, стимулирует выведение холестерина из организма, активизирует двигательную активность кишок и способствует быстрому опорожнению желудка. При расщеплении клетки кишечными бактериями вырабатываются вещества, нейтрализующие гнилостные процессы, неизбежно возникающие при употреблении белков. Содержится в капусте, хлебе из муки грубого помола, свекле, редиске, пшеничной и овсяной крупе, редьке, бобовых, отрубях;
  • пектиновые вещества, выполняющие в организме защитную функцию. Благодаря их желеобразной консистенции, они обволакивают стенки кишечника и препятствуют их механическому и химическому повреждению, а также связывают гнилостную микрофлору и вредные химические соединения, попавшие в кишечник (соли различных металлов, свинец, мышьяк) и выводят все это из организма. Содержатся в свекле, яблоках, крыжовнике;
  • инулин, образованный из цепочек молекул фруктозы. Используется как заменитель сахара при диабете.

Для чего нужны углеводы нашему организму

Если человек получает достаточное количество углеводов с пищей, он чувствует себя бодрым и энергичным. Помимо того, что все углеводы — это главный источник энергии для организма, они используются для синтеза нуклеиновых кислот, липидов (холестерина) и других важных органических соединений.
Особенно необходимы углеводы детям. В детском возрасте питание ребенка должно содержать достаточное количество углеводов, чтобы у малыша была энергия для активных игр.

Необходимо учитывать, что в организме процессы обмена углеводов, жиров и белков взаимосвязаны, и могут преобразовываться в определенных границах.

При недостаточном потреблении углеводов с пищей организм использует свои энергетические резервы: жиры, а затем и белки. Если в пище мало клетчатки, затрудняется выведение отходов пищеварения, возникают запоры, что приводит к самоотравлению организма. При резко выраженном дефиците углеводов усиливается расход белка, затрудняется жировой обмен, появляются кетоновые тела — недоокисленные продукты жирового обмена (ведь углеводы способствуют полному окислению жиров), может развиться ацидоз.

При избыточном потреблении углеводов, особенно легкоусвояемых моносахаридов и дисахаридов, неиспользованные запасы энергии превращаются в жир. Увеличивается синтез холестерина, из-за перенапряжения выходит из строя механизм выработки гормона инсулина, нарушается обмен веществ. Нарушается работа сердечно-сосудистой системы. Развиваются ожирение, диабет, атеросклероз и другие заболевания.

ХИМИЧЕСКИЙ СОСТАВ УГЛЕВОДОВУГЛЕВОДЫ – это класс органических веществ, в состав которых входят атомы углерода (С),
водорода (Н) и кислорода в соотношении 1: 2: 1.
Общая формула углеводов – Сn H2n On или (CH2O)n, где n = 3-9 атомов углерода
Согласно Международной классификации, углеводы называются ГЛИЦИДАМИ
В состав отдельных углеводов могут входить другие химические элементы: N, S, P.
По химическому строению углеводы являются АЛЬДЕГИДОСПИРТАМИ (альдозы) или
КЕТОСПИРТАМИ (кетозы)
АЛЬДОЗЫ содержат одну функциональную группу
при первом углеродном атоме и
несколько гидроксильных групп (-ОН) при других атомах углерода.
КЕТОЗЫ содержат одну кетогруппу
при втором углеродном атоме и гидроксильные
группы. Примером альдолаз является глюкоза, а кетоз – фруктоза.
Содержание углеводов в организме человека относительно небольшое до 2-3% общей массы тела.
Углеводы откладываются в печени в виде гликогена (от 5 до 10% общей массы), скелетных мышцах
(1-3%), сердце (до 0,5%).
Запасы гликогена в организме взрослого человека с массой тела 70 кг составляют в среднем 500 г.
Свободная глюкоза содержится в крови (4,5-5г)
В углеводах запасаются около 2000 ккал энергии, за счет которой организм может физически
работать в течение 30 минут – 1 часа.
В организме человека углеводы синтезируются в незначительном количестве в процессе
ГЛЮКОНЕОГЕНЕЗА. Основное их количество поступает в организм с продуктами питания.
Углеводы находятся преимущественно в продуктах растительного происхождения, так как их
первичный синтез осуществляется в зеленых растениях в процессе фотосинтеза.
Суточная потребность человека в углеводах – 300-400 г, а спортсменов – 400-700 г.

СХЕМА ФОТОСИНТЕЗА

БИОЛОГИЧЕСКИЕ ФУНКЦИИ УГЛЕВОДОВ

ЭНЕРГЕТИЧЕСКАЯ – при распаде углеводов высвобождаемая энергия рассеивается в виде тепла
или накапливается в молекулах АТФ. Углеводы обеспечивают около 50-60% суточного
энергопотребления организма, а при мышечной деятельности на выносливость – до 70%. При
окислении 1 г углеводов выделяется 17 кДж энергии (4,1 ккал). В качестве основного
энергетического источника в организме используется свободная глюкоза или запасенные
углеводы в виде гликогена.
ПЛАСТИЧЕСКАЯ – углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и
других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов.
Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты
превращения глюкозы (глюкуроновая кислота, глюкозамин) входят в состав полисахаридов и
сложных белков хрящевой и других тканей.
ЗАПАС ПИТАТЕЛЬНЫХ ВЕЩЕСТВ – углеводы накапливаются в скелетных мышцах, печени и других
тканях в виде гликогена. Запасы гликогена зависят от массы тела, функционального состояния
организма, характера питания. Систематическая мышечная деятельность приводит к
увеличению запасов гликогена, что повышает энергетические возможности организма.
СПЕЦИФИЧЕСКАЯ – отдельные углеводы участвуют в обеспечении специфичности групп крови,
выполняют роль антикоагулянтов, являются рецепторами ряда гормонов или
фармакологических веществ, оказывают противоопухолевое действие.
ЗАЩИТНАЯ – сложные углеводы входят в состав компонентов иммунной системы;
мукополисахариды находятся в слизистых веществах, которые покрывают поверхность
сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от
проникновения бактерий и вирусов, а также от механических повреждений.
РЕГУЛЯТОРНАЯ – клетчатка пищи не расщепляется в кишечнике, но активирует перистальтику
кишечника, ферменты пищеварительного тракта, улучшают пищеварение, усвоение
питательных веществ.

КЛАССЫ УГЛЕВОДОВ

МОНОСАХАРИДЫ

МОНОСАХАРИДЫ – это простые углеводы, которые при гидролизе не распадаются на более
простые молекулы. В зависимости от числа атомов углерода в молекуле моносахариды
делятся на ТРИОЗЫ (С3Н6О3), ТЕТРОЗЫ (С4Н8О4), ПЕНТОЗЫ (С5Н10О5), ГЕКСОЗЫ (С6Н12О6),
ГЕПТОЗЫ (С7Н14О7). Другие моносахариды в природе не встречаются, но могут быть получены
синтетически.
Наиболее важную роль в организме человека выполняют представители гексоз – глюкоза и
фруктоза, пентоз – рибоза и дезоксирибоза, триоз – глицериновый альдегид и диоксиацетон.
ГЛЮКОЗА и ФРУКТОЗА – это основные энергетические субстраты организма человека. Они имеют
одинаковый молекулярный состав (С6Н12О6), но разную структуру молекулы, так как
различаются наличием функциональных групп. Глюкоза содержит альдегидную группу, а
фруктоза – кетогруппу, т.е. они являются изомерами по положению карбонильной группы (С=0)
Для моносахаридов характерна также пространственная изомерия или стереоизомерия, т.к. они
содержат асимметричные атомы углерода (отмечены *), которые связаны с 4 различными
атомами. Выделяют D-форму и L-форму глюкозы и других моносахаридов. В них
гидроксильная группа при 4 атоме углерода занимает разное пространственное положение.

Организм человека может усваивать только D-форму моносахаридов, в то время как
аминокислоты используются организмом только в виде L-изомеров. Внутритканевые
ферменты способны различать оптические изомеры веществ. Стереоизомерами глюкозы
являются ГАЛАКТОЗА и МАННОЗА:
ГАЛАКТОЗА входит в состав ЛАКТОЗЫ – основного дисахарида молока. В печени под
действием ферментов может превращаться в глюкозу.
В водной среде ГЛЮКОЗА и ФРУКТОЗА находится в основном в циклической форме.
Циклизация молекулы происходит за счет внутримолекулярного взаимодействия альдегидной
группы в молекуле глюкозы или кетогруппой в молекуле фруктозы с одной гидроксильной
группой этого же моносахарида:

Циклические формы моносахаридов приобретают биологически реактивную гидроксильную
группу при С1 – или С2 – атоме углерода, которая называется ГЛИКОЗИДНЫМ ГИДРОКСИЛОМ.
Она играет важную роль в химических превращениях этих моносахаридов, в частности
участвует в образовании ди- и полисахаридов, фосфорных эфиров. Например: глюкоза
участвует в обмене веществ и энергии в виде фосфорного эфира глюкозо-1-фосфат,
запускающего процесс распада глюкозы и синтеза полисахаридов. Для моносахаридов
характерно образование и других фосфорных эфиров: глюкозо-6-фосфат, фруктозо-6-фосфат,
фруктозо-1,6-дифосфат.
Фосфорилированные формы глюкозы и фруктозы в процессе их метаболизма способны
взаимопревращаться, а также распадаться до триоз – фосфоглицеринового альдегида и
фосфодиоксиацетона:

Из моносахаридов при замещении гидроксильных групп на аминогруппу (- NH2) образуются
аминосахара. В организме человека наиболее важными аминосахарами являются
ГЛЮКОЗАМИН и ГАЛАКТОЗАМИН:
ГЛЮКОЗАМИН и Галактозамин входят в состав сложных углеводов мукополисахаридов,
которые выполняют защитную и специфические функции, характерные для слизей,
стекловидного тела глаз, синовиальной жидкости суставов, системы свертывания крови и др.
Из глюкозы в процессе ее восстановления или окисления образуются многие функционально
важные вещества: аскорбиновая кислота (витамин С), спирт сорбит, глюконовая, глюкуроновая,
сиаловые и другие кислоты.

10.

РИБОЗА и ДЕЗОКСИРИБОЗА – это углеводы, которые в свободном виде встречаются редко.
Чаще они входят в состав сложных веществ, т.е. используются в организме в пластических
процессах. РИБОЗА участвует в биосинтезе нуклеотидов (АТФ, АДФ, АМФ и др.) и РНК, а также
многих коферментов (НАД, НАДФ, ФАД, ФМН, КоА). Дезоксирибоза участвует в биосинтезе
дезоксирибонуклеотидов, которые являются структурным компонентом ДНК. Спирт рибитол,
производное рибозы, входит в состав витамина В12 и некоторых дыхательных ферментов.
Рибоза и дезоксирибоза являются альдозами. В молекуле дезоксирибозы отсутствует атом О2
при втором атоме углерода. Изомером положения функциональной карбонильной группы в
рибозе является рибулоза:
В организме рибоза и другие пентозы находятся также в циклической D-форме:
Рибоза и рибулоза синтезируются в тканях организма при окислении глюкозы в пентозном
цикле. Дезоксирибоза образуется из рибозы при ее дезоксигенировании.

11.

ГЛИЦЕРИНОВЫЙ АЛЬДЕГИД и ДИОКСИАЦЕТОН – образуются в тканях организма в процессе
катаболизма глюкозы и фруктозы. Являясь изомерами они способны к взаимопревращению:
В тканях организма в процессе метаболизма углеводов и жиров образуются фосфорные эфиры
глицеринового альдегида и фосфодиоксиацетона. Фосфоглицериновый альдегид является
высоэнергетическим субстратом биологического окисления. В процессе его окисления
образуется молекула АТФ и продукты окисления – пировиноградная кислота (ПВК) и молочная
кислота:

12. ПРОИЗВОДНЫЕ МОНОСАХАРИДОВ

Большую группу производных моносахаридов составляют фосфорные эфиры, которые
образуются в ходе превращений углеводов в тканях. Пример:
В природе широко распространены 2 аминопроизводных моносахаридов – глюкозамин и
галактозамин:
В состав полисахаридов входит глюкуроновая кислота:

13. РЕАКЦИИ МОНОСАХАРИДОВ

Присутствие гидроксильных, альдегидных и кетонных групп позволяет
моносахаридам вступать в реакции, характерные для спиртов, альдегидов и
кетонов.
МУТАРОТАЦИЯ – взаимопревращение аномерных форм моносахаридов. а – и бета
– формы аномеров находятся в растворе в состоянии равновесия. При
достижении этого равновесия происходит мутаротация – размыкание и замыкание
пиранового кольца и изменение положения Н- и ОН-групп при 1 углероде
моносахарида.
ОБРАЗОВАНИЕ ГЛИКОЗИДОВ – при образовании гликозидной связи аномерная ОНгруппа одного моносахарида взаимодействует с ОН-группой другого моносахарида
или спирта. При этом происходят отщепление молекулы воды и образование Огликозидной связи.
ЭТЕРИФИКАЦИЯ – Это реакция образования эфирной связи между ОН-группами
моносахаридов и различными кислотами.
ОКИСЛЕНИЕ И ВОССТАНОВЛЕНИЕ – при окислении концевых групп глюкозы –СНО
и -СН2ОН образуются три разных производных. При окислении группы – СНО
образуется глюконовая кислота. При окислении – СН2ОН образуется глюкуроновая
кислота. Если окисляются обе концевые группы, то образуется сахарная кислота.

14. РЕАКЦИИ МОНОСАХАРИДОВ

15. ОЛИГОСАХАРИДЫ

Наиболее распространенными в природе олигосахаридами являются ДИСАХАРИДЫ
ДИСАХАРИДЫ – это группа, состоящая из небольшого (от 2 до 10) моносахаридов. В
дисахаридах 2 остатка моносахаридов соединены между собой 1,4- или 1,2-гликозидными
связями.
Основные дисахариды – САХАРОЗА, МАЛЬТОЗА, ЛАКТОЗА.
Молекулярная формула – С12Н22О11.
САХАРОЗА
Сахароза состоит из остатка глюкозы и фруктозы, соединенных между собой 1,2-гликозидной
связью, которая образуется при взаимодействии гидроксильной группы в 1 атоме углерода
глюкозы и гидроксильной группы при 2 атоме углерода фруктозы:
Сахароза является основным компонентом пищевого сахара. В процессе пищеварения под
воздействием фермента сахарозы она распадается на глюкозу и фруктозу
МАЛЬТОЗА
Мальтоза состоит из двух остатков глюкозы, соединенных между собой 1,4-гликозидной связью:
Мальтоза образуется в ЖКТ в процессе гидролиза крахмала или гликогена пищи. При пищеварении
она расщепляется на молекулы глюкозы под воздействием фермента мальтазы. Много
мальтозы содержится в солодовых экстрактах злаковых, проросших зернах.

16.

ЛАКТОЗА (молочный сахар) состоит из остатков глюкозы и галактозы, которые соединены
между собой 1,4-гликозидной связью:
Лактоза синтезируется в молочных железах в период лактации. В коровьем молоке содержание
ее составляет 5%, в женском молоке – 6%. В системе пищеварения человека лактоза
расщепляется под воздействием фермента лактазы на глюкозу и галактозу. Поступление
лактозы в организм с пищей способствует развитию молочнокислых бактерий, подавляющих в
кишечнике развитие гнилостных процессов. Однако у людей, имеющих низкую активность
фермента лактазы, развивается интолерантность к молоку.
Сахароза (пищевой сахар), имеет сладкий вкус и высокую питательную ценность. Поэтому они
не рекомендуются для питания людей, страдающих ожирением и диабетом. Их заменяют
искусственными веществами, например сахарином, которые имеют сладкий вкус, но не
усваиваются организмом.

17. ПОЛИСАХАРИДЫ

ПОЛИСАХАРИДЫ – это сложные углеводы, состоящие из многих сотен или тысяч
связанных между собой остатков моносахаридов, в основном остатков глюкозы.
Основные гомополисахариды, выполняющие важную биологическую роль и
состоящие из молекул глюкозы являются: крахмал и клетчатка растений, гликоген
человека и животных.
Эти полисахариды не обладают сладким вкусом, плохо растворяются в воде, образуя
коллоиды. Они имеют общую молекулярную формулу (С6Н10О5)n, однако
различаются количественным составом и строением молекул.
НЕЙТРАЛЬНЫЕ
КРАХМАЛ – резервный полисахарид растений, состоящий из большого числа остатков
D-глюкозы (до 300). Является основным полисахаридом пищи, поставщиком
глюкозы в организм человека. Молекулярная масса крахмала – 50000 до 300000. По
строению не однороден и представляет смесь спиралевидных цепей амилозы (1020%) и разветвленных цепей амилопектина (80-90%). Остатки глюкозы в амилозе
связаны между собой 1,4-гликозидной связью, а в точках ветвления амилопектина
– 1,6-гликозидными связями. Коллоидные частицы (мицеллы) амилозы дают с
иодом синее окрашивание. АМИЛОЗА хорошо растворяется в воде, тогда как
амилопектин не растворяется и образует коллоидный раствор – клейстер. При
частичном разрушении структуры крахмала образуются соединения с меньшей
молекулярной массой (декстрины), которые также хорошо растворяются в воде.
Основные ферменты, расщепляющие крахмал пищи – амилазы слюны и сока
поджелудочной железы. АМИЛОПЕКТИН – разветвленный полисахарид с mm 1 млн.
Через 12 моносахаридных звеньев у него имеются точки ветвления, образованные
а-(1 6) – гликозидными связями. Пектин – природный сорбент

18.

АМИЛОЗА
Спиралевидная конформация молекулы амилозы
АМИЛОПЕКТИН

19. Схема строения цепей крахмала –амилозы (а), амилопектина (б) и участка молекулы гликогена (в)

20. ГЛИКОГЕН

ГЛИКОГЕН – главный резервный полисахарид всех тканей человека и животных.
Встречается гликоген в небольших количествах у бактерий и растений. Имеет
большую молекулярную массу – 1-20 х 10 7, отличается большой
разветвленностью цепей по сравнению с амилопектином. Гликоген состоит из
большого количества молекул глюкозы (до 30000), соединенных между собой
гликозидными связями. Благодаря такой структуре гликоген способен
растворяться в воде. Накапливается (депонируется) гликоген в печени (около 100
г) и скелетных мышцах (около 400 г), создавая запас глюкозы в организме.
Концентрация гликогена в тканях зависит от:
1.
Состава пищи
2.
Характера мышечной деятельности
3.
Факторов окружающей среды (жара, гипоксии).
При недостаточном поступлении углеводов с пищей или интенсивной мышечной
деятельности запасы гликогена снижаются
При избыточном поступлении глюкозы с пищей запасы гликогена восстанавливаются.
Гликоген печени используется для поддержания уровня глюкозы в крови в периоды
между приемом пищи или интенсивности ее окисления, а гликоген скелетных
мышц – для энергообеспечения самих мышц.

21.

В молекуле гликогена выделяют внутренние и наружные ветви, а также цепи А, В и С.
Цепь А – наружная, не несет других ветвей, она присоединяется к цепям В, образующим
внутренние ветви. Цепь С – стержневая, содержащая единственный восстанавливающий
остаток глюкозы.

22. ИСПОЛЬЗОВАНИЕ ГЛИКОГЕНА ПЕЧЕНИ И СКЕЛЕТНЫХ МЫШЦ

23.

ЦЕЛЛЮЛОЗА – структурный гомополисахарид растений, придающий им прочность и
эластичность mm 5х 104 – 5 х 105. Он имеет линейное строение, но отличается от альфаамилозы типом гликозидной связи. Это неразветвленный полимер, состоящий из большого
числа остатков глюкозы. Целлюлоза образует вторичную стенку растительных клеток в
виде микрофибрилл, которые цементируются другими полисахаридами или лигнином
(аморфный ароматический полимер). Это позволяет растительной стенке выдерживать
внутреннее давление 2 х 10 3 кПа (20 атм). В организме человека целлюлоза не
расщепляется, но она необходима для регуляции перистальтики и активности ферментов
тонкого кишечника. Расщепляет целлюлозу специальный фермент – целлюлаза, который
отсутствует в ЖКТ человека.
КИСЛЫЕ ГЕТЕРОПОЛИСАХАРИДЫ или МУКОПОЛИСАХАРИДЫ
От лат.mucos – слизь. Мукополисахариды – это большая группа полисахаридов разного
химического строения и состава, которые содержатся в коже, сухожилиях хрящах, оболочках
клеток, межклеточной и синовиальной жидкости – сильно гидратированные, желеподобные,
липкие вещества, имеющие значительный отрицательный заряд. Все они находятся в
межклеточном веществе, но не в свободном виде, а связаны с белками.
1.
Гиалуроновая кислота
2.
Хондроитинсульфаты
3.
Дерматансульфат
4.
Кератансульфат
5.
Гепарин и гепарансульфат

24. ГИАЛУРОНОВАЯ КИСЛОТА

Гиалуроновая кислота – несульфатированный гетерополисахарид с линейной структурой и самой
большой молекулярной массой из всех гетерополисахаридов. Она служит биологическим
цементом, заполняя пространства между клетками. Сетка гиалуроновой кислоты в виде геля
является биологическим фильтром, задерживая микробные и иные крупные молекулы,
попадающие в организм. Она участвует в связывании воды в организме, придает
внутрисуставной жидкости смазочные свойства, уменьшает трение при сгибании суставов.
Разрыв гликозидных связей в цепях гиалуроновой кислоты вызывает ее деполимеризацию. В
результате фильтрующая система нарушается, между клетками проникают различные
молекулы, скапливается межклеточная вода (наступает отек). В клетках организма имеется
специальный фермент – гиалуронидаза, который, выделяясь в межклеточное пространство,
может повышать межклеточную проницаемость. Поэтому гиалуронидазу называют фактором
проницаемости. При оплодотворении яйцеклетки выделяемая сперматозоидом гиалуронидаза
способствует проникновению его внутрь клетки. Стекловидное тело и пуповина
новорожденных также богаты гиалуроновой кислотой.
В структурном отношении молекула представляет собой линейный полисахарид, образованный
дисахаридными повторяющимися звеньями, состоящими из остатков D-глюкуроновой
кислоты и N-ацетил-D-глюкозамина, соединенных бета-1,3-гликозидной связью.
Повторяющиеся дисахаридные звенья гиалуроновой кислоты связаны между собой бета-1,4связью:

25.

ХОНДРОИТИНСУЛЬФАТЫ - Наиболее распространенные кислые гетерополисахариды в тканях
человека и животных. Mm 6 х 104. В комплексе с белком коллагеном входят в состав хрящей,
костей, сердечных клапанов, стенок кровеносных сосудов, кожи, сухожилий, роговицы глаз.
Повторяющееся дисахаридное звено в хондроитинсульфате из глюкуроновой кислоты и Nацетитилгалактозаминосульфата; звенья соединены друг с другом бета-1,3- и бета- 1,4 –
гликозидными связями, подобно связям в гиалуроновой кислоте:
ГЕПАРИН - в отличие от других гетерополисахаридов не являются структурными
компонентами межклеточного вещества. Они вырабатываются тучными клетками
соединительной ткани и выделяются при их распаде (цитолизе) в межклеточную среду и
кровяное русло. В крови гепарин нековалентно связан со специфическими белками. Комплекс
гепарина с гликопротеидом плазмы проявляет противосвертывающую активность, а комплекс
с ферментом липопротеидлипазой расщепляет липиды, находящихся в крови в виде
хиломикронов. Гепарин содержится в крови, печени, легких, селезенке, щитовидной железе и в
других тканях и органах. Молекула гепарина состоит из глюкуроновой кислоты и альфаглюкозамина в виде двойного сульфопроизводного, соединенных между собой а-1,4гликозидными связями.

26. БИОЛОГИЧЕСКИЕ ФУНКЦИИ ПОЛИСАХАРИДОВ

ЭНЕРГЕТИЧЕСКАЯ – крахмал и гликоген
являются «депо» углеводов в клетке и при
необходимости быстро расщепляются на
легкоусваиваемый источник энергии – глюкозу.
ОПОРНАЯ – хондроитинсульфат выполняет
опорную функцию в костной ткани.
СТРУКТУРНАЯ – гиалуроновая кислота,
хондроитинсульфат и гепарин являются
структурными межклеточными веществами.
ГИДРООСМОТИЧЕСКАЯ и ИОНРЕГУЛИРУЮЩАЯ –
гиалуроновая кислота благодаря высокой
гидрофильности и отрицательному заряду
связывает межклеточную воду и катионы,
регулируя осмотическое давление.
ЗАЩИТНАЯ – участие в свертывании крови.

В данном материале нам предстоит полностью разобраться с такой информацией, как:

  • Что же такое углеводы?
  • Какие источники углеводов «правильные» и как их включать в свой рацион?
  • Что такое гликемический индекс?
  • Каким образом происходит расщепление углеводов?
  • Действительно ли они после переработки превращаются в жировую прослойку на теле?

Начинаем с теории

Углеводы (их еще называют сахаридами) представляют собой органические соединения природного происхождения, которые в большинстве своем встречаются в мире растительном. Образуются они в растениях в процессе фотосинтеза и встречаются практически в любой растительной пище. В состав углеводов входит углерод, кислород и водород. В человеческий организм углеводы поступают в основном с пищей (содержатся в крупах, фруктах, овощах, бобовых и прочих продуктах), также вырабатываются из некоторых кислот и жиров.

Углеводы являются не только главным источником энергии человека, но выполняют и ряд других функций:

Конечно, если рассматривать углеводы исключительно с точки зрения наращивания мышечной массы, то они выступают в качестве доступного источника энергии. В целом же, в организме энергетический запас содержится в жировых депо (порядка 80%), в белковых - 18%, а на углеводы приходится только 2%.

Важно : углеводы накапливаются в организме человека в соединении с водой (1г углеводов требует 4г воды). А вот жировым отложениям вода не требуется, поэтому накапливать их проще, а после - использовать в качестве резервного источника энергии.

Все углеводы можно разделить на два вида (см. изображение): простые (моносахариды и дисахариды) и сложные (олигосахариды, полисахариды, клетчатка).

Моносахариды (простые углеводы)

В них содержится одна сахарная группа, например: глюкоза, фруктора, галактоза. А теперь о каждой более подробно.

Глюкоза - является основным «топливом» человеческого организма и поставляет энергию к головному мозгу. Также она принимает участие в процессе образования гликогена, а для нормального функционирования эритроцитов необходимо порядка 40г глюкозы в сутки. Вместе с пищей человек потребляет около 18г, а суточная доза составляет 140г (необходимо для правильной работы центральной нервной системы).

Возникает закономерный вопрос, откуда тогда организм черпает необходимое количество глюкозы для своей работы? Обо всем по порядку. В человеческом организме все продумано до мелочей, а запасы глюкозы хранятся в виде соединений гликогена. И как только тело требует «дозаправки», часть молекул расщепляется и используется.

Уровень глюкозы в крови - величина относительно постоянная и регулируется специальным гормоном (инсулином). Как только человек потребляет много углеводов, а уровень глюкозы резко возрастает, принимает за работу инсулин, который понижает количество до необходимого уровня. И можете не переживать о порции съеденных углеводов, в кровь будет поступать ровно столько, сколько требует организм (за счет работы инсулина).

Богаты глюкозой такие продукты, как:

  • Виноград - 7.8%;
  • Вишня и черешня - 5.5%;
  • Малина - 3.9%;
  • Тыква - 2.6%;
  • Морковь - 2.5%.

Важно : сладость глюкозы достигает отметки в 74 единицы, а сахарозы - 100 единиц.

Фруктоза представляет собой сахар природного происхождения, который содержится в овощах и фруктах. Но важно помнить, что употребление фруктозы в больших количествах не только не приносит пользы, но также наносит вред. Огромные порции фруктозы попадают в кишечник и вызывают повышенную секрецию инсулина. А если сейчас вы не занимаетесь активными физическими нагрузками, то вся глюкоза сохраняется в виде жировых отложений. Главными источниками фруктозы являются такие продукты, как:

  • Виноград и яблоки;
  • Дыни и груши;

Фруктоза намного слаще глюкозы (в 2.5 раза), но несмотря на это, она не разрушает зубы и не вызывает кариес. Галактоза в свободном виде практически нигде не встречается, а чаще всего является компонентом молочного сахара, именуемого лактозой.

Дисахариды (простые углеводы)

В состав дисахаридов всегда входят простые сахара (в количестве 2х молекул) и одна молекула глюкозы (сахароза, мальтоза, лактоза). Давайте рассмотрим более подробно каждую из них.

Сахароза состоит из молекул фруктозы и глюкозы. Чаще всего она встречается в быту в виде обычного сахара, который мы используем во время готовки и просто кладем в чай. Так вот именно этот сахар и откладывается в прослойку подкожного жира, поэтому не стоит увлекаться с потребляемым количеством, даже в чае. Основными источниками сахарозы является сахар и свекла, сливы и варенье, мороженое и мед.

Мальтоза представляет собой соединение 2х молекул глюкозы, которые в большом количестве содержатся в таких продуктах, как: пиво, молод, мед, патока, любые кондитерские изделия. Лактоза же в основном содержится в продуктах молочных, а в кишечнике расщепляется и превращается в галактозу и глюкозу. Больше всего лактозы содержится в молоке, твороге, кефире.

Вот мы и разобрались с простыми углеводами, самое время переходить к сложным.

Сложные углеводы

Все сложные углеводы можно разделить на две категории:

  • Те, что усваиваются (крахмал);
  • Те, что не усваиваются (клетчатка).

Крахмал представляет собой основной источник углеводов, что лежит в основе пирамиды питания. Больше всего его содержится в зерновых культурах, в бобовых и картофеле. Главные источники крахмала - это гречневая, овсяная, перловая крупа, а также чечевица и горох.

Важно : используйте в своем рационе запеченный картофель, в котором содержится большое количество калия и других минералов. Это особенно важно, поскольку во время варки молекулы крахмала разбухают и уменьшают полезную ценность продукта. То есть вначале продукт может содержать 70%, а после варки может и 20% не остаться.

Клетчатка играет очень важную роль в работе человеческого организма. С ее помощью нормализируется работа кишечника и всего желудочно-кишечного тракта в целом. Также она создает необходимую питательную среду для развития важных микроорганизмов в кишечнике. Организм практически не переваривает клетчатку, зато обеспечивает ощущение быстрого насыщения. Овощи, фрукты и хлеб грубого помола (в которых большое содержание клетчатки) используются для профилактики ожирения (поскольку быстро вызывают чувство сытости).

А теперь перейдем к другим процессам, связанным с углеводами.

Как организм накапливает углеводы

Запасы углеводов в человеческом организме расположены в мышцах (находится 2/3 от общего количества), а остальное - в печени. Всего запаса хватает всего на 12-18 часов. И если не пополнить запасы, то организм начинает испытывать нехватку, и синтезирует необходимые ему вещества из белков и промежуточных продуктов обмена. В результате запасы гликогена в печени могут существенно истощиться, что станет причиной отложения жиров в ее клетках.

По ошибке многие худеющие для более «эффективного» результата существенно урезают количество потребляемых углеводов, надеясь, что организм будет расходовать запасы жира. На самом же деле, первыми «в расход» идут белки, и только потом жировые отложения. Важно помнить о том, что большое количество углеводов приведет к быстрому набору массы только в том случае, если они поступают в организм большими порциями (а также они должны быть быстро усваиваемыми).

Метаболизм углеводов

Метаболизм углеводов зависит от того, сколько глюкозы находится в кровеносной системе и делится на три типа процессов:

  • Гликолиз - расщепляется глюкоза, а также другие сахара, после чего вырабатывается необходимое количество энергии;
  • Гликогенез - синтезируется гликоген и глюкоза;
  • Гликонеогенез - в процесс расщепления глицерина, аминокислот и молочной кислоты в печени и почках образуется необходимая глюкоза.

Раним утром (после пробуждения) запасы глюкозы в крови резко падают по простой причине - отсутствие подпитки в виде фруктов, овощей и прочих продуктов, что содержат глюкозу. Организм подпитывается и собственными силами, 75% которых осуществляется в процессе гликолиза, а 25% приходится на гликонеогенез. То есть получается, что утреннее время считается оптимальным для того, чтобы использовать в качестве источника энергии имеющиеся запасы жира. А еще прибавить к этому легкие кардионагрузки, то можно избавиться от нескольких лишних килограммов.

Теперь мы наконец-то переходим к практической части вопроса, а именно: какие углеводы полезны для атлетов, а также в каких оптимальных количествах их нужно потреблять.

Углеводы и бодибилдинг: кто, что, сколько

Пару слов о гликемическом индексе

Если вести речь об углеводах, нельзя не упомянуть такой термин, как «гликемический индекс» - то есть скорость, с которой усваиваются углеводы. Он является показателем того, с какой скоростью тот или иной продукт способен увеличить количество глюкозы в крови. Самый большой гликемический индекс равен 100 и относится к самой глюкозе. Организм же после потребления пищи с большим гликемическим индексом, начинает запасать калории и откладывает жировые отложения под кожей. Так что все продукты с высокими показателями ГИ - верные спутники того, чтобы стремительно набирать лишние килограммы.

Продукты же с низким показателем ГИ - источник углеводов, который длительное время, постоянно и равномерно подпитывает организм и обеспечивает планомерное поступление глюкозы в кровь. С их помощью можно максимально правильно настроить организм на длительное ощущение сытости, а также подготовить тело к активным физическим нагрузкам в зале. Существуют даже специальные таблицы для продуктов питания, в которых указан гликемический индекс (см. изображение).

Потребность организма в углеводах и правильные источники

Вот и наступил момент, когда мы разберемся, сколько же углеводов нужно потреблять в граммах. Логично предположить, что занятия бодибилдингом - весьма затратный в плане энергии процесс. Поэтому если вы хотите, чтобы качество тренировок не страдало, нужно обеспечивать свой организм достаточным количеством «медленных» углеводов (порядка 60-65%).

  • Продолжительности тренировки;
  • Интенсивности нагрузки;
  • Скорости метаболизма в организме.

Важно помнить, что опускаться ниже планки в 100г в сутки не нужно, а также иметь еще в запасе 25-30г, которые приходятся на клетчатку.

Помните и о том, что обычный человек в сутки потребляет порядка 250-300г углеводов. Для тех же, кто занимается в зале с отягощениями, суточная норма увеличивается и доходит до 450-550г. Но их еще нужно правильно употребить, да и в нужное время (в первой половине дня). Почему нужно делать именно так? Схема проста: в первой половине дня (после сна) организм накапливает углеводы для того, чтобы «подпитать» ими свое тело (что нужно для мышечного гликогена). Оставшееся время (после 12 часов) углеводы спокойно откладываются в виде жировой прослойки. Так что придерживайтесь правила: утром больше, вечером - меньше. После тренировок важно придерживаться правил белково-углеводного окна.

Важно : белково-углеводное окно - непродолжительный отрезок времени, в течение которого человеческий организм становится способным усвоить повышенное количество нутриентов (расходуются на восстановление запасов энергии и мышц).

Уже стало понятно, что организму необходимо постоянно получать подпитку в виде «правильных» углеводов. А чтобы разобраться с количественными значениями, рассмотрим приведенную ниже таблицу.

В понятие «правильных» углеводов входят те вещества, что имеют высокую биологическую ценность (количество углеводов/100 гр. продукта) и низкий гликемический индекс. В их число входят такие продукты, как:

  • Печеный или отварной в кожуре картофель;
  • Разные каши (овсяная, перловая, гречневая, пшеничная);
  • Хлебобулочные изделия из муки грубого помола и с отрубями;
  • Макаронные изделия (из твердых сортов пшеницы);
  • Фрукты, у которых низкое содержание фруктозы и глюкозы (грейпфруты, яблоки, помело);
  • Овощи волокнистые и крахмалистые (репа и морковь, тыква и кабачки).

Именно такие продукты должны в обязательном порядке присутствовать в вашем рационе.

Идеальное время, чтобы потреблять углеводы

Самое подходящее время, чтобы употребить дозу углеводов является:

  • Время после утреннего сна;
  • До тренировки;
  • После тренировки;
  • Во время тренировки.

Причем, каждый из периодов важен и среди них нет более или менее подходящего. Также утром, кроме полезных и медленных углеводов можно съесть что-нибудь сладкое (небольшое количество быстрых углеводов).

Перед тем, как отправиться на тренировку (за 2-3 часа), нужно подпитать организм углеводами со средними показателями гликемического индекса. Например, съесть макароны или кукурузную/рисовую кашу. Это обеспечит необходимый запас энергии для мышц и мозга.

Во время занятий в зале можно использовать промежуточное питание, то есть употреблять напитки с содержанием углеводов (каждый 20 минут по 200мл). От этого будет двойная польза:

  • Восполнение запасов жидкости в организме;
  • Пополнение мышечного депо гликогена.

После тренировки лучше всего принять насыщенный белково-углеводный коктейль, а спустя 1-1.5 часа после завершения тренинга плотно поесть. Лучше всего для этого подойдет гречневая или перловая каша или же картофель.

Теперь самое время поговорить о том, какую роль играют углеводы в процессе наращивания мышечной массы.

Помогают ли углеводы наращивать мышцы?

Принято считать, что только белки являются строительным материалом для мышц и лишь их нужно потреблять для того, чтобы наращивать мышечную массу. На самом же деле, это не совсем так. Более того, углеводы не только помогают в наращивании мышц, они могут помочь в борьбе с лишними килограммами. Но все это возможно только в том случае, если их правильно потреблять.

Важно : для того, чтобы в теле появилось 0.5 кг мышц, нужно сжечь 2500 калорий. Естественно, что белки такого количества обеспечить не могут, поэтому на помощь как раз и приходят углеводы. Они предоставляют необходимую энергию организму и защищают белки от разрушений, позволяя им выступать в качестве строительного материала для мышц. Также углеводы способствуют быстрому сжиганию жира. Получается это за счет того, что достаточное количество углеводов способствует расходу жировых клеток, которые постоянно сжигаются в процессе нагрузки.

Нужно помнить и о том, что в зависимости от уровня натренированности атлета, его мышцы могут хранить больший запас гликогена. Чтобы наращивать мышечную массу, нужно принимать по 7г углеводов на каждый килограмм тела. Не забывайте и о том, если вы стали принимать большее количество углеводов, то интенсивность нагрузки нужно также увеличивать.

Чтобы вы уже полностью разобрались со всеми характеристиками нутриентов и поняли, чего и сколько нужно потреблять (в зависимости от возраста, физической активности и пола), внимательно изучите приведенную ниже таблицу.

  • Группа 1 - преимущественно умственная/сидячая работа.
  • Группа 2 - сфера обслуживания/активная сидячая работа.
  • Группа 3 - работа средней тяжести - слесари, станочники.
  • Группа 4 - тяжелая работа - строители, нефтяники, металлурги.
  • Группа 5 - очень тяжелая работа - шахтеры, сталевары, грузчики, спортсмены в соревновательный период.

А теперь итоги

Чтобы эффективность тренировок всегда была на высоте, а у вас было много сил и энергии для этого, важно придерживаться определенных правил:

  • Рацион на 65-70% должен состоять из углеводов, причем они должны быть «правильными» с низким показателем гликемического индекса;
  • Перед тренировкой нужно потреблять продукты со средними показателями ГИ, после занятий - с низким ГИ;
  • Завтрак должен быть максимально плотным, а в первой половине дня нужно съедать большую часть суточной дозы углеводов;
  • Покупая продукты, сверяйтесь с таблицей гликемического индекса и выбирайте те, что имеют средние и низкие показатели ГИ;
  • Если хочется съесть продукты с высокими показателями ГИ (мед, варенье, сахар), лучше это делать утром;
  • Включите в свой рацион больше каш и регулярно их употребляйте;
  • Запомните, углеводы - помощники белков в процессе наращивания мышечной массы, поэтому если ощутимого результата долго нет, то нужно пересматривать свой рацион и количество потребляемых углеводов;
  • Ешьте не сладкие фрукты и клетчатку;
  • Помните о хлебе из муки грубого помола, а также о запеченном в кожуре картофеле;
  • Постоянно пополняйте запас знаний о здоровье и бодибилдинге.

Если придерживаться этих простых правил, то энергии у вас заметно прибавится, а результативность тренировок возрастет.

Вместо заключения

В качестве итога хочется сказать, что подходить к тренировкам нужно осмысленно и со знанием дела. То есть нужно запоминать не только, какие упражнения, как их делать и по сколько подходов. Но также уделять внимание питанию, помнить о белках, жирах, углеводах и воде. Ведь именно совокупность правильных тренировок и качественное питание позволит быстрее достичь намеченной цели - красивое атлетичное тело. Продукты должны быть не просто набором, а средством достижения необходимого результата. Так что думайте не только в зале, но и во время питания.

Понравилось? - Расскажи друзьям!