Причины эпилепсии. Нарушения обмена тирозина

Последствия нарушения общего синтеза белка

Длительное и значительное понижение синтеза белка приводит к развитию дистрофических и атрофических нарушений в различных органах и тканях вследствие недостаточного обновления структурных белков. Замедляются процессы регенерации. В детском возрасте тормозятся рост, физическое и умственное разви-

тие. Снижается синтез различных ферментов и гормонов (СТГ, антидиуретический и тиреоидный гормоны, инсулин и др.), что приводит к эндокринопатиям, нарушению других видов обмена (углеводного, водно-солевого, основного). Понижается содержание белков в сыворотке крови в связи со снижением их синтеза в гепатоцитах. Вследствие этого в крови уменьшается онкотическое давление, что способствует развитию отеков. Уменьшается продукция антител и других защитных белков и, как следствие, снижается иммунологическая реактивность организма. В наиболее выраженной степени эти расстройства возникают в результате длительного нарушения усвоения белков пищи при различных хронических заболеваниях органов пищеварения, а также при длительном белковом голодании, особенно если оно сочетается с дефицитом жиров и углеводов. В последнем случае повышается использование белка в качестве источника энергии.

Причины и механизм нарушения синтеза отдельных белков. В большинстве случаев эти нарушения имеют наследственную природу. В основе их лежит отсутствие в клетках информационной РНК (иРНК), специфической матрицы для синтеза какого-либо определенного белка, или нарушение ее структуры вследствие изменения структуры гена, на котором она синтезируется. Генетические нарушения, например замена или потеря одного нуклеотида в структурном гене, приводят к синтезу измененного белка, нередко лишенного биологической активности.

К образованию аномальных белков могут привести отклонения от нормы в структуре иРНК, мутации транспортной РНК (тРНК), вследствие чего к ней присоединяется несоответствующая аминокислота, которая и будет включаться в полипептидную цепь при ее сборке (например, при образовании гемоглобина).

Процесс трансляции является сложным, совершающимся при участии ряда ферментов, и нарушение функции какого-либо из них может привести к тому, что та или другая иРНК не передаст закодированную в ней информацию.

Нарушение синтеза отдельных белков-ферментов или структурных белков лежит в основе различных наследственных болезней (гемоглобинозы, альбинизм, фенилкетонурия, галактоземия, гемофилия и многие другие - см. раздел 5.1). Нарушение какой-либо ферментативной функции чаще всего связано не с отсутствием соответствующего белка - фермента, а с образованием патологически измененного неактивного продукта.

Причины, механизм и последствия повышенного распада тканевых белков. Наряду с синтезом в клетках организма постоянно происходит деградация белков под действием протеиназ. Обновление белков за сутки у взрослого человека составляет 1-2% общего количества белка в организме и связано преимущественно с деградацией мышечных белков, при этом 75-80% освободившихся аминокислот вновь используется для синтеза.

Азотистый баланс - интегральный показатель общего уровня белкового обмена, это суточная разница между поступающим и выделяющимся из организма азотом,

У здорового взрослого человека процессы распада и синтеза белка уравновешены, т.е. имеется азотистое равновесие. При этом суточная деградация белка составляет 30-40 г.

Азотистый баланс может быть положительным или отрицательным.

Положительный азотистый баланс: поступление в организм азота превышает его выведение, т.е. синтез белка преобладает над его распадом. Отмечается при регенерации тканей, в период выздоровления после тяжелых болезней, при беременности, в детском возрасте, при гиперпродукции СТГ, при полицитемии.

При патологии распад белка может превалировать над синтезом и азота поступает в организм меньше, чем выделяется (отрицательный азотистый баланс).

Причинами отрицательного азотистого баланса являются: инфекционная лихорадка; обширные травмы, ожоги и воспалительные процессы; прогрессирующий злокачественный опухолевый рост, эндокринные заболевания (сахарный диабет, гипертиреоз, гиперкортицизм); тяжелый эмоциональный стресс; обезвоживание, белковое голодание, лучевая болезнь; гиповитаминозы А, С, В 1 , В 2 , В 6 , РР, дефицит фолиевой кислоты. В механизме усиленного распада белков при многих из перечисленных состояний лежит повышенная продукция катаболических гормонов.

Следствием отрицательного азотистого баланса являются дистрофические изменения в органах, похудание, в детском возрасте - задержка роста и умственного развития.

Эпилепсия относится к неврологическим расстройствам, у которой множество причин. Все, что нарушает нормальное функционирование нейронов головного мозга — заболевания, травмы ЦНС и аномалии развития мозга — может вызвать появление судорожного синдрома.

Эпилепсия может возникнуть из-за нарушений проводимости нервных импульсов в головном мозге, дисбаланса нейротрасмиттеров в ЦНС, а также в результате сочетания указанных факторов. Исследователи считают, что у некоторых пациентов с эпилепсией имеется чрезмерно высокий уровень возбуждающих нейротрансмиттеров, которые усиливают нейронную активность, в то время как у других пациентов, наоборот, отмечается низкий уровень ингибирующих нейротрансмиттеров, которые подавляют нейронную активность в мозге. В обоих случаях возникает чрезмерно высокая нейронная активность, которая приводит к эпилепсии.

В некоторых случаях при травме головного мозга или после инсульта либо другой неврологической патологии ткань мозга восстанавливается таким образом, что образуется очаг патологической импульсации — возникает эпилепсия. Кроме того, врожденные аномалии также могут сопровождаться нарушением проводимости нервных импульсов в мозге, что является причиной эпилепсии.

В некоторых случаях причиной эпилепсии могут быть изменения в так называемой глиальной ткани мозга. Эти клетки регулируют концентрацию химических веществ в мозге, что влияет на проведение нервных импульсов.

Примерно в половине случаев судорог их причина остается неизвестной. Однако, в других случаях судороги могут быть связаны с инфекцией, травмой ЦНС или другими определенными причинами.

Генетические факторы

Исследователи считают, что генетические нарушения могут быть одним из важных факторов риска эпилепсии. Некоторые типы эпилепсии связаны с аномалиями некоторых специфичных генов. Многие другие типы эпилепсии имеют семейную предрасположенность, что предполагает генетическое влияние на появление эпилепсии. Однако, очевидно, что для многих форм эпилепсии генетические аномалии играют лишь частичную роль, возможно, повышая чувствительность пациента к судорогам, которые запускаются экзогенными факторами.

Некоторые типы эпилепсии сегодня связаны с дефективными генами, отвечающими за функционирование ионных каналов - «ворот», которые регулируют входящий и исходящий поток ионов из клеток, и регулируют импульсацию в нейронах. Другой ген, который отсутствует у пациентов с прогрессивной миоклонической эпилепсией, отвечает за синтез белка цистатина В. Другой ген, который поражен при такой тяжелой форме эпилепсии, как болезнь ЛаФора, связан с геном, который помогает разрушать углеводы.

Хотя аномальные гены иногда могут приводить к эпилепсии, они также могут влиять на течение заболевания и по другому. Например, в одном исследовании было показано, что у многих пациентов с эпилепсией имеется аномально активный ген, который повышает устойчивость к лекарствам. Это объясняет почему у некоторых пациентов противосудорожная терапия неэффективна.

Аномалия генов, отвечающих за нейронную миграцию — критически важный этап в развитии ЦНС — может привести к появлению анормальных скоплений нейронов в мозге, что становится причиной эпилепсии, даже у людей, не имевших родственников с этой болезнью.

Другие заболевания

Во многих случаях эпилепсия возникает как результат поражения мозга другими заболеваниями. Например, опухоли головного мозга, алкоголизм, болезнь Альцгеймера часто ведут к появлению эпилепсии, так как при этом может нарушаться нормальная работа мозга. Инсульты, инфаркт миокарда и другие состояния, связанные с нарушением кровоснабжения мозга, могут в некоторых случаях способствовать появлению эпилепсии. Примерно 32% всех случаев заболевания эпилепсией у пожилых людей связано с цереброваскулярными заболеваниями, при которых нарушается кровоснабжение мозга. Менингит, СПИД, вирусный энцефалит и другие инфекционные заболевания, а также такое состояние, как гидроцефалия, при котором имеет место нарушение циркуляции цереброспинальной жидкости в мозге, могут стать причиной эпилепсии.

Эпилепсия также может быть связана с разными расстройствами развития и метаболизма, включая церебральный паралич, нейрофиброматоз, нарушения метаболизма пирувата, туберозный склероз, синдром Ландау-Клеффнера и аутизм. Обычно, эпилепсия является одни из симптомов указанных заболеваний.

Травмы головы

В некоторых случаях травмы головы могут привести к появлению эпилепсии. Фактически, примерно 5% всех случаев эпилепсии являются следствием травмы головы. Тяжелая травма головы ведет к появлению эпилепсии примерно у 15% взрослых и у 30% детей. Травмы с проникновением в вещество мозга, например, пулевые ранения, приводят к эпилепсии в 25-50%. Посттравматические судороги могут появиться через 20 лет после травмы головы.

Родовые травмы и нарушения развития

Развитие головного мозга весьма чувствительно к разным поражающим факторам. Инфекция матери, плохое питание, гипоксия — одни из факторов, которые влияют на развитие головного мозга ребенка. Эти состояния могут привести к церебральному параличу, который часто сопровождается эпилепсией. Примерно 20% судорог у детей являются следствием церебрального паралича или других неврологических нарушений. Аномалия генов, отвечающих за развитие мозга, также может способствовать эпилепсии.

Отравления

Судороги могут быть в результате отравления свинцом, угарным газом и другими токсическими веществами. Также они могут быть вследствие употребления наркотиков и передозировки антидепрессантов.

Судороги могут быть спровоцированы недостатком сна, приемом алкоголя, стрессом и гормональными изменениями во время менструального цикла. Эти факторы не приводят к эпилепсии, но могут вызвать первые приступы судорог. Недостаток сна — один из важных триггеров судорог при эпилепсии. У некоторых пациентов вспышки света также могут привести к приступу судорог. Также к триггерам судорог относятся курение, так как никотин влияет на рецепторы нейтротрансмиттеров в головном мозге.

Белки являются теми химическими соединениями, деятельность которых ведет к формированию нормальных признаков здорового организма. Прекращение синтеза того или иного белка или изменение его структуры ведет к формированию патологических признаков и развитию болезней. Назовем несколько заболеваний, обусловленных нарушением структуры или интенсивности синтеза белков.


  1. Классическая гемофилия обусловлена отсутствием в плазме крови одного из белков, участвующих в свертывании крови; у больных людей наблюдается повышенная кровоточивость

  2. Серповидноклеточная анемия обусловлена изменением первичной структуры гемоглобина: у больных людей эритроциты имеют серповидную форму, число эритроцитов уменьшено в результате ускоренного процесса их разрушения; гемоглобин связывает и переносит меньшее, чем в норме, количество кислорода.

  3. Гигантизм обусловлен повышенным количеством гормона роста; больные имеют чрезмерно высокий рост.

  4. Дальтонизм обусловлен отсутствием пигмента колбочек сетчатки, участвующем в формировании восприятия цвета; дальтоники не различают некоторые цвета.

  5. Диабет связан с так называемой недостаточностью гормона инсулина, которая может быть обусловлена разными причинами: уменьшением количества или изменением строения выделяемого инсулина, уменьшением количества или изменением структуры рецептора инсулина. У больных людей наблюдается повышенное количество глюкозы в крови и развиваются сопутствующие этому патологические признаки.

  6. Злокачественная холестеринемия обусловлена отсутствием в цитоплазматической мембране клеток нормального рецепторного белка, узнающего транспортный белок, переносящий молекулы холестерина; в организме больных нужный клеткам холестерин не проникает в клетки, а в больших количествах скапливается в крови, откладывается в стенке кровеносных сосудов, что ведет к их сужению и быстрому развитию гипертонии в раннем возрасте.
Прогрессирующая ксеродерма обусловлена нарушением работы ферментов, которые в норме осуществляют восстановление в клетках кожи участков ДНК, повреждающихся УФ-лучами; больные не могут находиться на свету, так как в этих условиях у них возникают многочисленные кожные язвы и воспаление.

8. Муковисцидоз обусловлен изменением первичной структуры белка, формирующего в наружной плазматической мембране канал для ионов СГ; у больных в воздухоносных путях скапливается большое количество слизи, что ведет к развитию заболеваний органов дыхания.

2. Протеомика

Ушедший XX век характеризовался возникновением и бурным развитием научных дисциплин, которые расчленяли биологическое явление на составляющие его компоненты и стремились объяснить явления жизни через описание свойств молекул, в первую очередь биополимеров, входящих в состав живых организмов. Этими науками были биохимия, биофизика, молекулярная биология, молекулярная генетика, вирусология, клеточная биология, биоорганическая химия. В настоящее время развиваются научные направления, которые пытаются, исходя из свойств составляющих, дать целостную картину всего биологического явления. Для этой новой, интегративной стратегии познания жизни требуется громадный объем дополнительной информации. Науки нового века - геномика, протеомика и биоинформатика уже начали поставлять для нее исходный материал.

Геномика биологическая дисциплина, изучающая структуру и механизм

функционирования генома в живых системах. Геном - совокупность всех генов и межгенных участков любого организма. Структурная геномика изучает строение генов и межгенных участков, играющих большое значение в регуляции активности генов. Функциональная геномика изучает функции генов, функции их белковых продуктов. Предметом изучения сравнительной геномики являются геномы разных организмов, сравнение которых позволит понять механизмы эволюции организмов, неизвестные функции генов. Геномика возникла в начале 90-х годов XX века вместе с проектом "Геном человека". Задача этого проекта состояла в том, чтобы определить последовательность всех нуклеотидов в геноме человека с точностью до 0,01%. К концу 1999 года полностью раскрыто строение генома многих десятков видов бактерий, дрожжей, круглого червя, дрозофилы, растения арабидопсиса. В 2003 году расшифрован геном человека. Геном человека содержит около 30 тысяч белок-кодирующих генов. Только для 42% из них известна их молекулярная функция. Оказалось, что с дефектами генов и хромосом связано лишь 2% всех наследственных заболеваний; 98% заболеваний связаны с нарушением регуляции нормального гена. Гены проявляют свою активность в синтезируемых белках, выполняющих в клетке и организме различные функции.

В каждой конкретной клетке в определенный момент времени функционирует определенный набор белков - протеом. Протеомика - наука, изучающая совокупность белков в клетках при разных физиологических состояниях и в разные периоды развития, а так же функции этих белков. Между геномикой и протеомикой есть существенная разница - геном стабилен для данного вида, тогда как протеом индивидуален не только для разных клеток одного организма, но и для одной клетки в зависимости от ее состояния (деление, покой, дифференцировка т.д.). Множество протеомов, свойственное многоклеточным организмам, создает огромную трудность их изучения. Пока даже неизвестно точное число белков в человеческом организме. По некоторым оценкам их сотни тысяч; лишь несколько тысяч белков уже выделены, еще меньшая их часть подробно изучена. Идентификация и описание белков - это чрезвычайно сложный технически процесс, требующий комбинации биологических и компьютерных методов анализа. Однако разрабатываемые в последние годы методы выявления продуктов активности генов – молекул иРНК и белков - позволяют надеяться на быстрый прогресс в этой области. Уже сейчас созданы методы, позволяющие одновременно выявлять сотни клеточных белков одновременно и сравнивать белковые наборы в разных клетках и тканях в норме и при разных патологиях. Одним из таких методов является использование биологических чипов, позволяющих обнаруживать в изучаемом объекте сразу тысячи разных веществ: нуклеиновых кислот и белков. Открываются большие возможности для практической медицины: имея протеомную карту, подробный атлас всего комплекса белков, врачи наконец получат долгожданную возможность лечить само заболевание, а не симптомы.

Геномика и протеомика оперирует с такими огромными массивами информации, что возникла острая потребность в биоинформатике - науке, которая собирает, сортирует, описывает, анализирует и перерабатывает новую информацию о генах и белках. Используя математические методы и вычислительную технику, ученые строят генные сети, моделируют биохимические и иные клеточные процессы. Через 10-15 лет геномика и протеомика достигнут такого уровня, что станет возможным изучать метаболом - комплексную схему взаимодействий всех белков в живой клетке. Эксперименты на клетках и организме будут заменены на опыты с компьютерными моделями. Появится возможность создания и применения индивидуальных лекарственных средств, разработки индивидуальных профилактических мероприятий. Особенно сильное влияние новые знания окажут на биологию развития. Станет возможным получать целостное и вместе с тем достаточно детализированное представление об индивидуальных клетках, начиная от яйцеклетки и сперматозоида и вплоть до дифференцированных клеток. Это позволит впервые на количественной основе следить за взаимодействием индивидуальных клеток на разных стадиях эмбриогенеза, что всегда было заветной мечтой ученых, изучающих биологию развития. Открываются новые горизонты в решении таких проблем как канцерогенез и старение. Достижения геномики, протеомики и биоинформатики окажут решающее влияние на теорию эволюции и систематику организмов.
3. Белковая инженерия
Физические и химические свойства природных белков часто не удовлетворяют условиям, в которых эти белки будут использоваться человеком. Требуется изменение его первичной структуры, которое обеспечит формирование белка с иной, чем прежде, пространственной структурой и новыми физико-химическими свойствами, позволяющими и в иных условиях выполнять присущие природному белку функции. Конструированием белков занимается белковая инженерия. Для получения измененного белка используют методы комбинаторной химии и осуществляют направленный мутагенез - внесение специфических изменений в кодирующие последовательности ДНК, приводящие к определенным изменениям в аминокислотных последовательностях. Для эффективного конструирования белка с заданными свойствами необходимо знать закономерности формирования пространственной структуры белка, от которой зависят его физико-химические свойства и функции, то есть необходимо знать как первичная структура белка, каждый его аминокислотный остаток влияет на свойства и функции белка. К сожалению, для большинства белков неизвестна третичная структура, не всегда бывает известно, какую именно аминокислоту или последовательность аминокислот нужно изменить, чтобы получить белок с нужными свойствами. Уже сейчас ученые с помощью компьютерного анализа могут предсказывать свойства многих белков, исходя из последовательности их аминокислотных остатков. Подобный анализ значительно упростит процедуру создания нужных белков. Пока же для того, чтобы получить измененный белок с нужными свойствами, идут в основном иным путем: получают несколько мутантных генов и находят тот белковый продукт одного из них, который обладает нужными свойствами.

Для направленного мутагенеза используют разные экспериментальные подходы. Получив измененный ген, его встраивают в генетическую конструкцию и вводят ее в прокариотические или эукариотические клетки, осуществляющие синтез белка, кодируемого этой генетической конструкцией. Потенциальные возможности белковой инженерии заключаются в следующем.


  1. Изменив прочность связывания преобразуемого вещества - субстрата - с ферментом, можно повысить общую каталитическую эффективность ферментативной реакции.

  2. Повысив стабильность белка в широком диапазоне температур и кислотности среды, можно использовать его в условиях, при которых исходный белок денатурирует и теряет свою активность.

  3. Создав белки, способные функционировать в безводных растворителях, можно осуществлять каталитические реакции в нефизиологических условиях.
4.Изменив каталитический центр фермента, можно повысить его специфичность и уменьшить число нежелательных побочных реакций

5.Повысив устойчивость белка к расщепляющим его ферментам, можно упростить процедуру его очистки.

б.Изменив белок таким образом, чтобы он мог функционировать без обычного для него неаминокислотного компонента (витамина, атома металла и т.п.), можно использовать его в некоторых непрерывных технологических процессах.

7.Изменив структуру регуляторных участков фермента, можно уменьшить степень его торможения продуктом ферментативной реакции по типу отрицательной обратной связи и тем самым увеличить выход продукта.

8.Можно создать гибридный белок, обладающий функциями двух и более белков. 9.Можно создать гибридный белок, один из участков которого облегчает выход гибридного белка из культивируемой клетки или извлечение его из смеси.

Познакомимся с некоторыми достижениями генной инженерии белков.

1.Заменив несколько аминокислотных остатков лизоцима бактериофага Т4 на цистеин получен фермент с большим числом дисульфидных связей, благодаря чему этот фермент сохранил свою активность при более высокой температуре.

2.Замена остатка цистеина на остаток серина в молекуле р-интерферона человека, синтезируемого кишечной палочкой, предотвращала образование межмолекулярных комплексов, при котором примерно в 10 раз уменьшалась противовирусная активность этого лекарственного средства.

3.Замена остатка треонина в положении 51 на остаток пролина в молекуле фермента тирозил-тРНК-синтетазы повысило каталитическую активность этого фермента в десятки раз: он стал быстрее присоединять тирозин к тРНК, переносящей эту аминокислоту в рибосому в ходе трансляции.

4.Субтилизины - богатые серином ферменты, расщепляющие белки. Они секретируются многими бактериями и широко используются человеком для биодеградации. Они прочно связывают атомы кальция, повышающие их стабильность. Однако в промышленных процессах присутствуют химические соединения, которые связывают кальций, после чего субтилизины теряют свою активность. Изменив ген, ученые удалили из фермента аминокислоты, участвующие в связывании кальция, и заменили одну аминокислоту на другую с целью повышения стабильности субтилизина. Измененный фермент оказался стабильным и функционально активным в условиях, близких к промышленным.

5.Была показана возможность создания фермента, функционирующего по типу рестриктаз, расщепляющих ДНК в строго определенных местах. Ученые создали гибридный белок, один фрагмент которого узнавал определенную последовательность нуклеотидных остатков в молекуле ДНК, а другой расщеплял ДНК в этом участке.

6.Активатор тканевого плазминогена - фермент, который используют в клинике для растворения сгустков крови. К сожалению, он быстро выводится из системы кровообращения и его приходится вводить повторно или в больших дозах, что приводит к побочным эффектам. Внеся три направленные мутации в ген этого фермента, получили долгоживущий фермент, обладающий повышенным сродством к разрушаемому фибрину и с такой же фибринолитической активностью, как у исходного фермента.

7.Произведя замену одной аминокислоты в молекуле инсулина, ученые добились того, что при подкожном введении этого гормона больным, страдающим диабетом, изменение концентрации этого гормона в крови было близко к физиологическому, возникающему после приема пищи.

8.Существует три класса интерферонов, обладающих противовирусной и противораковой активностью, но проявляющих разную специфичность. Заманчиво было создать гибридный интерферон, обладающий свойствами интерферонов трех типов. Были созданы гибридные гены, включающие в себя фрагменты природных генов интерферонов нескольких типов. Часть этих генов, будучи встроенными в бактериальные клетки, обеспечивали синтез гибридных интерферонов с большей, чем у родительских молекул, противораковой активностью.

9.Природный гормон роста человека связывается не только с рецептором этого гормона, но и с рецептором другого гормона - пролактина. Для того, чтобы избежать нежелательных побочных эффектов в процессе лечения, ученые решили устранить возможность присоединения гормона роста к пролактиновому рецептору. Они добились этого, заменив некоторые аминокислоты в первичной структуре гормона роста с помощью генетической инженерии.

10. Разрабатывая средства против ВИЧ-инфекции, ученые получили гибридный белок, один фрагмент которого обеспечивал специфическое связывание этого белка только с пораженными вирусом лимфоцитами, другой фрагмент осуществлял проникновение гибридного белка внутрь пораженной клетки, а еще один фрагмент нарушал синтез белка в пораженной клетке, что приводило к ее гибели.

Таким образом, мы убедились в том, что, изменяя специфические участки белковой молекулы, можно придавать новые свойства уже существующим белкам и создавать уникальные ферменты.

Белки являются основной мишенью для лекарственных средств. Сейчас известно около 500 мишеней для действия лекарств. В ближайшие годы их число возрастет до 10 000, что позволит создать новые, более эффективные и безопасные лекарства. В последнее время разрабатываются принципиально новые подходы поиска лекарственных средств: в качестве мишеней рассматриваются не одиночные белки, а их комплексы, белок-белковые взаимодействия и фолдинг белков.

(учебно-методическое пособие для самостоятельной работыстудентов)

координационным методическим Советом Казанского государственного медицинского университета

ПАТОЛОГИЯ БЕЛКОВОГО ОБМЕНА (учебно-методическое пособие для самостоятельной работы студентов). Казань 2006. - 20 с.

Составители: проф. М.М.Миннебаев, Ф.И.Мухутдинова, проф. Бойчук СВ., доц. Л.Д.Зубаирова, доц. А.Ю.Теплов.

Рецензенты: проф. А.П.Цибулькин проф. Л.Н.Иванов

В связи с многообразием функций белков, их своеобразной «вездесущностью» белковый обмен является достаточно ранимым звеном в обмене веществ. Соответственно, при многих патологических процессах первичные и вторичные нарушения в различных звеньях белкового обмена занимают существенное место в их патогенезе и в конечном итоге определяют степень реализации защитно-приспособительных реакций и адаптивных механизмов.

Методпособие составлено с учетом соответствующего раздела программы патологической физиологии.

Введение

Все белки находятся в состоянии непрерывного активного метаболизма - распада и синтеза. Обменом белка обеспечивается вся пластическая сторона жизнедеятельности организма. В зависимости от возраста имеет место положительный и отрицательный азотистый баланс. В молодом возрасте преобладает положительный азотистый баланс (усиленный рост), а в зрелом и пожилом возрастах - состояние динамического азотистого равновесия, то есть стабилизирующий синтез, поддерживающий морфологическую целостность организма. В более пожилом возрасте - преобладание катаболических процессов. Регенерационный синтез, встречающийся в патологии, тоже является примером положительного азотистого баланса. За недельный период времени в печени обновляется до 50% азота, а в скелетной мускулатуре за это же время обновляется лишь 2,5%.

Патология белкового обмена - это патология соответствия процессов синтеза и распада белков. Основная патология белкового обмена - общая белковая недостаточность, которая характеризуется отрицательным азотистым балансом. Наряду с возможностью развития этой общей формы нарушения белкового обмена, такое же нарушение может иметь место и в отношении отдельных видов белков (нарушение синтеза какого-либо вида белка в целом организме или в каком-нибудь органе).

Межуточное звено в белковом обмене - нарушение обмена аминокислот. К патологии белкового обмена относится также нарушение образования и выведения конечных продуктов в белковом обмене (то есть патология собственно азотистого обмена).

Общая белковая недостаточность

Она может иметь алиментарное происхождение, или вследствие нарушения нейроэндокринных механизмов синтеза и распада, или клеточных механизмов синтеза и распада. Возникновение алиментарной общей белковой недостаточности объясняется:

1. Запасные формы белков в организме отсутствуют (как это имеет место в углеводном и жировом обменах);

    Азот животной клеткой усваивается лишь в форме аминогрупп, аминокислот;

    Углеродные скелеты независимых аминокислот имеют отличительную структуру и не могут быть синтезированы в организме. Отсюда белковый обмен зависит от поступления аминокислот извне с пищей. Обмен аминокислот взаимосвязан с обменом энергетических веществ. Продукты аминокислот также могут быть использованы как энергетический материал - это глюкогенные и кетогенные аминокислоты. С другой стороны, синтез белков всегда сопряжен с использованием энергии.

Если поступление энергетических материалов не обеспечивает потребность организма, то на энергетические нужды используются белки. Так, при поступлении лишь 25% всего необходимого энергетического материала (глюкозы, жиров), весь поступивший с пищей белок используется как энергетический материал. В этом случае анаболическая ценность белков равна нулю. Отсюда, недостаточное поступление жиров, углеводов приводит к нарушению обмена белков. Витамины В 6 , В 12 , С, А являются коферментами ферментов, осуществляющие биосинтетические процессы. Отсюда - витаминная недостаточность тоже вызывает нарушения в обмене белков.

При недостаточности поступления белков или переключение их на энергетические рельсы (как результат недостаточного поступления жиров или углеводов) происходят следующие явления:

1. Резко ограничивается интенсивность анаболических процессов активного метаболизма белковых структур и уменьшается количество выделяющегося азота;

2. Перераспределение эндогенного азота в организме. Это факторы приспособления к недостатку белка.

Избирательная белковая недостаточность (белковое голодание) - в этих условиях на первый план выступает ограничение выведения азота и перераспределение его в организме. При этом выявляется неоднородность нарушений в белковом обмене в разных органах: активность ферментов ЖКТ

резко ограничивается, а синтез катаболических процессов не нарушается. При этом белки сердечной мышцы все же страдают меньше. Активность ферментов дезаминирования падает, а ферменты трансаминирования свою активность сохраняют значительно дольше. Образование эритроцитов в костном мозгу длительное время сохраняется, а образование глобина в структуре гемоглобина нарушается очень рано. В эндокринных железах - развиваются атрофические изменения. В клинике в основном встречается неполное белковое голодание.

Причинами неполного белкового голодания (частичной недостаточности) являются: а) нарушение усвоения белков; б) непроходимость ЖКТ; в) хронические заболевания с понижением аппетита. При этом белковый обмен нарушается как в результате недостаточного их поступления, так и использования белков как энергетического материала. На этом фоне приспособительные процессы в какой-то мере компенсирует белковый дефицит, поэтому белкового истощения долго не развивается и азотистый баланс длительное время сохраняется (безусловно, хотя и на низком уровне). В результате снижения метаболизма белков, структура и функция многих органов нарушается (происходит потеря белка структур печени, кожи, скелетной мускулатуры). Следует отметить, что при этом имеет место относительное сохранение синтеза одних белков при нарушении синтеза других видов белков. Ограничивается синтез плазменных белков, антител, ферментов (в том числе пищеварительного тракта, что ведет к вторичному нарушению усвоения белков). Как результат нарушения синтеза ферментов углеводного и жирового обменов нарушаются метаболические процессы в обмене жиров и углеводов. Приспособление к неполному белковому голоданию лишь относительное (в особенности у растущих организмов). У молодых организмов приспособительное снижение

интенсивности белкового обмена (замедления метаболизма) менее совершенно, чем у взрослых. В условиях регенерации и реконвалесценции длительное время не наблюдается полного восстановления структуры и, длительно не заживают раны. Таким образом, при длительном неполном голодании может наступить выраженное белковое истощение и гибель. Неполное белковое голодание встречается часто с нарушением усвоения

белков, что имеет место при любых комбинациях изменений скорости гидролиза, продвижения пищевых масс и всасывания этих продуктов - чаще всего при различных формах нарушения секреторной функции ЖКТ, деятельности поджелудочной железы и при патологии стенки тонкого кишечника. Функция желудка в гидролизе белков заключается:

1. Эндопептидаза - пепсин - разрывает внутренние пептидные связи, в результате чего образуются полипептиды.

2. Резервирующая роль и порционное поступление пищевой массы в нижележащие отделы ЖКТ (этот процесс нарушается при ускорении перистальтики). Эти две функции желудка нарушаются при ахилических состояниях, при снижении активности пепсина (или мало секретируется пепсиногена): уменьшается набухание пищевых белков, и пепсиноген плохо активируется. В конечном итоге возникает относительная недостаточность гидролиза белков.

Нарушение усвоения белков в верхних отделах ЖКТ может быть: при недостатке панкреатического сока (панкреатит). Причем, нарушение активности трипсина может быть первичное или вторичное. Может иметь место недостаточная активность и недостаточное количество кишечного сока, так как в нем содержится энтерокиназа, активирующая превращение трипсиногена в трипсин, химотрипсиногена в химотрипсин. Недостаточная активность или количество трипсина в свою очередь приводит к нарушению действия и кишечных протеолитических ферментов - экзопептидаз кишечного сока: аминополипептидаз и дипептидаз, которые отщепляют отдельные аминокислот.

При энтероколитах, сопровождающихся снижением сокоотделения, ускоренной моторикой и нарушением всасывания слизистой тонкого кишечника, развивается комплексная недостаточность усвоения белка. Особое значение имеет ускоренная перистальтика, так как нарушается контакт химуса и кишечной стенки (этим самым нарушается пристеночное пищеварение, которое важно для отщепления аминокислот и последующего всасывания). Процесс всасывания в кишечнике активный процесс: 1. Адсорбция аминокислот на поверхности слизистой кишечника; мембрана эпителиальных клеток содержит

много липидов, что снижает отрицательный заряд слизистой. 2. Ферменты, участвующие в транспорте аминокислот (фосфоамидаза, возможно также и трансфераза) через эпителий кишечника, вероятно, имеет групповую принадлежность (то есть для разных групп аминокислот существуют разные транспортные системы, так как между аминокислотами при всасывании создаются конкурентные взаимоотношения). При энтероколитах отечное состояние слизистой, ускорение моторики и ослабление энергетического обеспечения процесса всасывания нарушают всасывание в кишечнике. Таким образом, нарушается качественная сбалансированность поступающих аминокислот (неравномерное во времени всасывание отдельных аминокислот, нарушение соотношения аминокислот в крови - дисбаланс). Развитие дисбаланса между отдельными аминокислотами при патологии усвоения возникает потому, что всасывание отдельных аминокислот идет в разное время в процессе пищеварения по мере отщепления аминокислот. Скажем, тирозин и триптофан отщепляются уже в желудке. Весь переход в аминокислоты пищевых белков осуществляется за 2 часа (за это время они уже в крови появляются), а при патологии этот период удлиняется. Из крови аминокислоты попадают в клетки, где или используются для синтеза или же дезаминируются. А для прохождения синтеза нужно, чтобы все партнеры аминокислот были одновременно вместе и в определенных соотношениях. При нарушении процессов же всасывания нарушается это соотношение и аминокислоты идут не на синтез белков, а по пути дезаминирования и деградируют. Наступает аминокислотный дисбаланс. Такое явление наступает и при питании только одним видом пищевого белка (однообразное питание). Состояние дисбаланса и нарушение синтеза может проявиться в развитии интоксикации (при перегрузке организма какими-либо отдельными видами аминокислот, они оказывают токсический эффект, или в результате избыточного дезаминирования). Отдельные аминокислоты при распаде образуют токсические продукты. В конце концов, возникает общий дефицит белка как результат недостаточного поступления его или нарушения переваривания и всасывания и т.д. Другой стороной дисбаланса является нарушение белкового обмена при избирательной

недостаточности отдельных аминокислот (имеется в виду, незаменимых) и тут преимущественно нарушается синтез белка, в составе которого данная аминокислота преобладает. Это аминокислотная недостаточность. Итак, алиментарные нарушения белкового обмена могут быть связаны с количественным недостатком, качественным однообразием, количественным дефицитом отдельных аминокислот, с количественным преобладанием отдельных аминокислот - все они объединяются в понятии дисбаланс.

Нарушения нейрогуморальных процессов также могут лежать в основе нарушения процессов синтеза и распада белка. У высокоразвитых животных регуляция синтеза белка осуществляется нервной системой и гормонами. Нервная регуляция идет двумя путями: 1. Прямого воздействия (трофическая). 2. Через опосредованные воздействия - через гормоны (изменение функции эндокринных желез, гормоны которых имеют непосредственное отношение к обмену белка).

Классификация видов белкового синтеза и гормональная

Ученые обнаружили, что повышение выработки белка, который задействован в механизме формирования долгосрочной памяти, предотвращает приступы эпилепсии. В ходе исследования ученым удалось с помощью генной инженерии значительно увеличить синтез белка eEF2 у лабораторных мышей. Связь между действием этого белка и эпилепсией не была известна ранее, что дает надежду на развитие новых возможностей в лечении заболевания.

Исследование проводилось в Хайфском университете (Израиль) совместно с учеными Миланского и ряда других европейских университетов. Профессор Коби Розенблюм, научный руководитель исследования, говорит: «С помощью изменения генетического кода нам удалось предотвратить развитие эпилепсии у мышей, которые должны были родиться с этим заболеванием, а также вылечить мышей, которые уже страдали этим заболеванием».

Эпилепсия — неврологическое заболевание, при котором происходит внезапная и неконтролируемая активность в нервных клетках коры головного мозга, что выражается в эпилептических припадках разной частоты и мощности. Применяемые сегодня препараты для терапии эпилепсии позволяют устранить или сократить количество приступов болезни только у части пациентов. В некоторых случаях для прибегают к мини-инвазивным нейрохирургическим операциям, которые дают хорошие результаты. Однако они тоже могут быть использованы не для всех пациентов.

Интересно, что изначально израильские ученые планировали провести исследование по изучению механизмов, которые влияют на процесс образования долгосрочной памяти. Целью ученых было изучить молекулярные механизмы, которые способствуют формированию долгосрочной памяти и находятся в гипоталамусе (участке головного мозга). Для этого они сосредоточились на изучении белка eEF2 , который принимает участие в процессах формирования памяти и образования новых клеток нервной системы. С помощью методов генной инженерии ученым удалось достичь усиленной выработки белка, что привело к изменению деятельности нервных клеток, ответственных за образование эпилептических приступов.

Для того чтобы проверить, как влияет выработка данного белка на развитие приступов эпилепсии, мышей поделили на две группы. Первая группа имела генную мутацию и, соответственно, усиленно вырабатывала белок eEF2 , а вторая контрольная группа мышей была без каких-либо генетических изменений. Мышам обеих групп ученые ввели раствор, который вызывает эпилептические приступы. Это привело к эпилептическим припадкам у мышей из контрольной группы, а мыши с генетической мутацией не развили признаков эпилепсии.

Однако ученые на этом не остановились и решили проверить влияние мутации при наследственной эпилепсии. Для этого они скрестили мышей с мутацией гена eEF2 с мышами, который имели ген, ответственный за развитие эпилепсии. По результатам эксперимента, у мышей, имеющих мутацию белка, не наблюдались приступы эпилепсии. На протяжении всего исследования мыши проходили различные тексты, определяющие моторные, когнитивные и поведенческие функции. Все они сохранялись в норме у мышей, которые имели мутацию данного белка.

«Результаты исследования дают нам больше понимания о процессах возбуждения и торможения в гипоталамусе, нарушение которых связано с различными патологиями нервной системы, — говорит профессор Розенблюм, — мы продолжаем исследования в этом направлении, чтобы лучше понять причину развития эпилептических припадков. Это позволит в будущем создать новые методы лечения болезни».