Чем связаны генные мутации. Как происходит мутация генов

Ожидание рождения ребенка - самое прекрасное время для родителей, но также и самое страшное. Многие волнуются, что малыш может родиться с какими-либо недостатками, физическими или умственными отклонениями.

Наука не стоит на месте, есть возможность проверить на маленьких сроках беременности малыша на наличие отклонений в развитии. Практически все эти анализы могут показать, все ли нормально с ребенком.

Почему так происходит, что у одних и тех же родителей могут появиться на свет абсолютно разные дети - здоровый ребенок и ребенок с отклонениями? Это определяют гены. В рождении недоразвитого малыша или ребенка с физическими недостатками влияют генные мутации, связанные с изменением структуры ДНК. Поговорим об этом подробнее. Рассмотрим, как это происходит, какие генные мутации бывают, и их причины.

Что такое мутации?

Мутации - это физиологическое и биологическое изменение клеток в структуре ДНК. Причиной может стать облучение (при беременности нельзя делать снимки рентгеновские, на наличие травм и переломов), ультрафиолетовые лучи (долгое нахождение на солнце во время беременности или нахождение в комнате с включенными лампами ультрафиолетового света). Также такие мутации могут передаться и по наследству от предков. Все они распределяются на типы.

Генные мутации с изменением структуры хромосом или их количества

Это мутации, при которых строение и число хромосом изменены. Хромосомные участки могут выпадать или удваиваться, перемещаться в зону негомологическую, поворачиваться от нормы на сто восемьдесят градусов.

Причины появления такой мутации - это нарушение при кроссенговере.

Генные мутации связаны с изменением структуры хромосом или их количества, являются причиной серьезных расстройств и болезней у малыша. Такие заболевания неизлечимы.

Виды хромосомных мутаций

Всего различаются два вида основных хромосомных мутаций: численные и структурные. Анэуплоидии - это виды по количеству хромосом, то есть когда генные мутации связаны с изменением числа хромосом. Это возникновение дополнительной или нескольких последних, потеря какой-либо из них.

Генные мутации связаны с изменением структуры в том случае, когда хромосомы разрываются, а в дальнейшем воссоединяются, нарушив нормальную конфигурацию.

Виды численных хромосом

По числу хромосом мутации разделяют на анэуплоидии, то есть виды. Рассмотрим основные, выясним разницу.

  • трисомии

Трисомия - это возникновение в кариотипе лишней хромосомы. Самое распространенное явление - это появление двадцать первой хромосомы. Она становится причиной синдрома Дауна, или, как еще называют это заболевание - трисомия двадцать первой хромосомы.

Синдром Патау выявляется по тринадцатой, а по восемнадцатой хромосоме диагностируют Это все аутосомные трисомии. Прочие трисомии не являются жизнеспособными, они погибают в утробе и теряются при самопроизвольных абортах. Те индивидуумы, у которых возникают дополнительные половые хромосомы (X, Y), - жизнеспособны. Клиническое проявление таких мутаций весьма незначительно.

Генные мутации, связанные с изменением числа, возникают по определенным причинам. Трисомии чаще всего могут возникнуть при расхождении в анафазе (мейоз 1). Результатом такого расхождения является то, что обе хромосомы попадают только в одну из двух дочерних клеток, вторая остается пустой.

Реже может возникнуть нерасхождение хромосом. Это явление называют нарушением в расхождении сестринских хроматид. Возникает в мейозе 2. Это именно тот случай, когда две совершенно одинаковые хромосомы селятся в одной гамете, вызывая трисомную зиготу. Нерасхождение происходит в ранние стадии процесса дробления яйцеклетки, которая была оплодотворена. Таким образом, возникает клон клеток-мутантов, который может охватить большую или меньшую часть тканей. Иногда проявляется клинически.

Многие связывают двадцать первую хромосому с возрастом беременной женщины, но этот фактор до сегодняшнего дня не имеет однозначного подтверждения. Причины, по которым не расходятся хромосомы, остаются неизвестными.

  • моносомии

Моносомией называют отсутствие любой из аутосом. Если такое происходит, то в большинстве случаев плод невозможно выносить, случаются преждевременные роды на ранних сроках. Исключение - моносомия по причине двадцать первой хромосомы. Причиной, по которой возникает моносомия, может стать и нерасхождение хромосом, и потеря хромосомы во время ее пути в анафазе к клетке.

По половым хромосомам моносомия приводит к образованию плода, у которого кариотип ХО. Клиническое проявление такого кариотипа - синдром Тернера. В восьмидесяти процентах случаев из ста появление моносомии по Х-хромосоме происходит из-за нарушения мейоза папы ребенка. Это связано с нерасхождением Х и Y хромосом. В основном плод с кариотипом ХО погибает в утробе матери.

По половым хромосомам трисомия разделяется на три вида: 47 XXY, 47 XXX, 47 XYY. является трисомией 47 XXY. С таким кариотипом шансы выносить ребенка делятся пятьдесят на пятьдесят. Причиной такого синдрома может стать нерасхождение хромосом Х или нерасхождение Х и Y сперматогенеза. Второй и третий кариотипы могут возникнуть только у одной из тысячи беременных женщин, они практически не проявляются и в большинстве случаев обнаруживаются специалистами совершенно случайно.

  • полиплоидия

Это генные мутации, связанные с изменением гаплоидного набора хромосом. Эти наборы могут быть утроенными и учетверенными. Триплоидия чаще всего диагностируется уже только тогда, когда произошел спонтанный аборт. Было несколько случаев, когда матери удавалось выносить такого малыша, но все они погибали, не достигнув и месячного возраста. Механизмы генных мутаций в случае триплодии обуславливают полным расхождением и нерасхождением всех хромосомных наборов либо женских, либо мужских половых клеток. Также механизмом может послужить двойное оплодотворение одной яйцеклетки. В этом случае происходит перерождение плаценты. Такое перерождение называют пузырным заносом. Как правило, такие изменения ведут к развитию у малыша умственных и физиологических нарушений, прерыванию беременности.

Какие генные мутации связаны с изменением структуры хромосом

Структурные изменения хромосом являются следствием разрыва (разрушения) хромосомы. В результате эти хромосомы соединяются, нарушив прежний свой вид. Эти видоизменения могут быть несбалансированными и сбалансированными. Сбалансированные не имеют излишка или недостатка материала, поэтому не проявляются. Проявиться они могут только в тех случаях, если на месте разрушения хромосомы был ген, который является функционально важным. У сбалансированного набора могут появиться гаметы несбалансированные. В следствии оплодотворение яйцеклетки такой гаметой может стать причиной появления плода с несбалансированным хромосомным набором. При таком наборе у плода возникает целый ряд пороков развития, появляются тяжелые виды патологии.

Типы структурных видоизменений

Генные мутации происходят на уровне образования гаметы. Предотвратить этот процесс нельзя, равно как нельзя заведомо узнать, могут произойти. Структурных видоизменений есть несколько видов.

  • делеции

Это изменение связано с потерей части хромосомы. После такого разрыва хромосома становится более короткой, а ее оторванная часть теряется при дальнейшем делении клетки. Интерстициальные делеции - это тот случай, когда одна хромосома разрывается сразу в нескольких местах. Такие хромосомы обычно создают нежизнеспособный плод. Но есть и случаи, когда малыши выживали, но у них из-за такого набора хромосом был синдром Вольфа-Хиршхорна, "кошачий крик".

  • дупликации

Эти генные мутации происходят на уровне организации сдвоенных участков ДНК. В основном дупликация не может стать причиной таких патологий, которые вызывают делеции.

  • транслокации

Транслокация возникает из-за переноса генетического материала с одной хромосомы на другие. Если же происходит разрыв одновременно в нескольких хромосомах и они обмениваются сегментами, то это становится причиной возникновения реципроктной транслокации. Кариотип такой транслокации имеет всего сорок шесть хромосом. Сама же транслокация выявляется только при детальном анализе и изучении хромосомы.

Изменение последовательности нуклеотидов

Генные мутации связаны с изменением последовательности нуклеотидов, когда выражаются в видоизменении структур некоторых участков ДНК. По последствиям такие мутации делятся на два типа - без сдвига рамки считывания и со сдвигом. Чтобы точно знать причины изменения участков ДНК, нужно рассмотреть каждый тип отдельно.

Мутация без сдвига рамки

Эти генные мутации связаны с изменением и заменой нуклеотидных пар в структуре ДНК. При таких заменах не теряется длина ДНК, но возможна потеря и замена аминокислот. Есть вероятность того, что структура белка сохранится, этим послужит Рассмотрим детально оба варианта развития: с заменой и без замены аминокислот.

Мутация с заменой аминокислот

Замена остатка аминокислоты в составе полипептидов называют миссенс-мутациями. В гемоглобиновой молекуле человека есть четыре цепи - две "а" (она размещена в шестнадцатой хромосоме) и две "b" (кодировка в одиннадцатой хромосоме). Если "b" - цепь нормальная, и в ее составе есть сто сорок шесть остатков аминокислот, а шестым является глутаминовая, то гемоглобин будет нормальным. В этом случае кислота глутаминовая должна быть закодирована триплетом ГАА. Если за счет мутации ГАА заменен на ГТА, то вместо глутаминовой кислоты в молекуле гемоглобина образуется валин. Таким образом, вместо нормального гемоглобина HbA появится другой гемоглобин HbS. Таким образом, замена одной аминокислоты и одного нуклеотида станет причиной серьезного тяжелого заболевания - анемии серповидноклеточной.

Эта болезнь проявляется тем, что эритроциты становятся по форме, как серп. В таком виде они не способны нормально доставлять кислород. Если на клеточном уровне гомозиготы имеют формулу HbS/HbS, то это ведет к смерти ребенка в самом раннем детстве. Если формула HbA/HbS, то эритроциты имеют слабую форму изменения. Такое слабое изменение имеет полезное качество - устойчивость организма к малярии. В тех странах, где есть опасность заразиться малярией такая же, как в Сибири простудой, это изменение несет полезное качество.

Мутация без замены аминокислот

Замены нуклеотидов без обмена аминокислотами называются сеймсенс-мутациями. Если в участке ДНК, кодирующем "b"- цепь произойдет замена ГАА на ГАГ, то из-за того, что окажется в избытке, замены глутаминовой кислоты не может произойти. Структура цепи не будет изменена, в эритроцитах не будет видоизменений.

Мутации со сдвигом рамки

Такие генные мутации связаны с изменением длины ДНК. Длина может стать меньше или больше, в зависимости от потери или прибавления нуклеотидных пар. Таким образом, будет изменена полностью вся структура белка.

Может произойти внутригенная супрессия. Это явление происходит, когда есть место двум мутациям, компенсирующим друг друга. Это момент присоединения нуклеотидной пары после того, как одна была утеряна, и наоборот.

Нонсенс-мутации

Это особая группа мутаций. Она происходит редко, в ее случае происходит появление стоп-кодонов. Это может случиться как при утрате пар нуклеотидов, так и при их присоединении. Когда появляются стоп-кодоны, синтез полипептидов полностью останавливается. Так могут образоваться нуль-аллели. Этому не будет соответствовать ни один из белков.

Есть такое понятие, как межгенная супрессия. Это такое явление, когда мутация одних генов подавляет мутации в других.

Выявляются ли изменения при беременности?

Генные мутации, связанные с изменением числа хромосом, в большинстве случаев можно определить. Чтобы узнать, есть ли у плода пороки в развитии и патологии, на первых неделях беременности (с десяти до тринадцати недель) назначают скрининг. Это ряд простых обследований: забор на анализы крови из пальца и вены, УЗИ. На ультразвуковом исследовании плод рассматривают в соответствии с параметрами всех конечностей, носа и головы. Эти параметры при сильном несоответствии нормам указывают на то, что у малыша есть пороки в развитии. Подтверждается или опровергается этот диагноз на основании результатов анализа крови.

Также под пристальным наблюдением медиков оказываются будущие мамы, у малышей которых могут возникнуть мутации на генном уровне, передающиеся по наследству. То есть это те женщины, в родне которых были случаи рождения ребенка с умственными или физическими отклонениями, выявленными синдромами Дауна, Патау и прочими генетическими заболеваниями.

Мутации на генном уровне являются молекулярными, не видимыми в световом микроскопе структурными изменениями ДНК. К ним относят любые трансформации дезоксирибонуклеиновой кислоты, вне зависимости от их влияния на жизнеспособность и локализации. Некоторые виды генных мутаций не оказывают никакого воздействия на функции и структуру соответствующего полипептида (белка). Однако большая часть таких трансформаций провоцирует синтез дефектного соединения, утратившего способность выполнять свои задачи. Далее рассмотрим генные и хромосомные мутации более подробно.

Характеристика трансформаций

Наиболее распространенными патологиями, которые провоцируют генные мутации человека, являются нейрофиброматоз, адрено-генитальный синдром, муковисцидоз, фенилкетонурия. В этот список можно также включить гемохроматоз, миопатии Дюшенна-Беккера и прочие. Это далеко не все примеры генных мутаций. Их клиническими признаками выступают обычно нарушения метаболизма (обменного процесса). Генные мутации могут состоять в:

  • Замене в кодоне основания. Такое явление именуют миссенс-мутацией. При этом в кодирующей части происходит замена нуклеотида, что, в свою очередь, приводит к смене аминокислоты в белке.
  • Изменении кодона таким образом, что приостанавливается считывание информации. Этот процесс называют нонсенсмутацией. При замене нуклеотида в данном случае происходит формирование стоп-кодона и прекращение трансляции.
  • Нарушении считывания, сдвиге рамки. Этот процесс именуют "фреймшифтом". При молекулярном изменении ДНК трансформируются триплеты в ходе трансляции полипептидной цепочки.

Классификация

В соответствии с типом молекулярной трансформации существуют следующие генные мутации:

  • Дупликация. В этом случае происходит повторное дублирование либо удвоение фрагмента ДНК от 1 нуклеотида до генов.
  • Делеция. В этом случае имеет место утрата фрагмента ДНК от нуклеотида до гена.
  • Инверсия. В этом случае отмечается поворот на 180 град. участка ДНК. Его размер может быть как в два нуклеотида, так и в целый фрагмент, состоящий из нескольких генов.
  • Инсерция. В этом случае происходит вставка участков ДНК от нуклеотида до гена.

Молекулярные трансформации, захватывающие от 1 до нескольких звеньев, рассматриваются как точечные изменения.

Отличительные черты

Генные мутации имеют ряд особенностей. В первую очередь следует отметить их способность переходить по наследству. Кроме того, мутации могут спровоцировать трансформацию генетических сведений. Некоторые из изменений могут быть отнесены к так называемым нейтральным. Такие генные мутации не провоцируют каких-либо нарушений в фенотипе. Так, благодаря врожденности кода одна и та же аминокислота может кодироваться двумя триплетами, имеющими отличия только по 1 основанию. Вместе с тем определенный ген может мутировать (трансформироваться) в несколько разных состояний. Именно такого рода изменения провоцируют большую часть наследственных патологий. Если приводить примеры генных мутаций, то можно обратиться к группам крови. Так, у элемента, контролирующего их системы АВ0, присутствует три аллеля: В, А и 0. Их сочетание определяют группы крови. Относящаяся к системе АВ0 считается классическим проявлением трансформации нормальных признаков у людей.

Геномные трансформации

Эти трансформации имеют свою классификацию. В категорию геномных мутаций относят изменения в плоидности не измененных структурно хромосом и анеуплоидии. Такие трансформации определяются специальными методами. Анеуплоидия представляет собой изменение (увеличение - трисомию, уменьшение - моносомию) количества хромосом диплоидного набора, некратное гаплоидному. При кратном увеличении числа говорят о полиплоидии. Они и большая часть анеуплоидий у людей считаются летальными изменениями. Среди наиболее распространенных геномных мутаций выделяют:

  • Моносомию. В этом случае присутствует только одна из 2 гомологичных хромосом. На фоне такой трансформации здоровое эмбриональное развитие невозможно по любой из аутосом. В качестве единственной совместимой с жизнью выступает моносомия по хромосоме Х. Она провоцирует синдром Шерешевского-Тернера.
  • Трисомия. В данном случае в кариотипе выявляется три гомологичных элемента. Примеры таких генных мутаций: синдромы Дауна, Эдвардса, Патау.

Провоцирующий фактор

Причиной, по которой развивается анеуплоидия, считается нерасхождение хромосом в процессе клеточного деления на фоне формирования половых клеток либо утрата элементов вследствие анафазного отставания, в то время как при движении к полюсу гомологичное звено может отстать от негомологичного. Понятие "нерасхождение" указывает на отсутствие разделения хроматид либо хромосом в митозе либо мейозе. Это нарушение может привести к мозаицизму. В этом случае одна клеточная линия будет нормальной, а другая - моносомной.

Нерасхождение при мейозе

Такое явление считается наиболее частым. Те хромосомы, которые должны в норме делиться при мейозе, остаются соединенными. В анафазе они отходят к одному клеточному полюсу. В результате формируется 2 гаметы. В одной из них присутствует добавочная хромосома, а в другой не достает элемента. В процессе оплодотворения нормальной клетки с лишним звеном развивается трисомия, гаметы с недостающим компонентом - моносомия. При формировании моносомной зиготы по какому-нибудь аутосомному элементу развитие прекращается на начальных этапах.

Хромосомные мутации

Эти трансформации представляют собой структурные изменения элементов. Как правило, они визуализируются в световой микроскоп. В хромосомные мутации обычно вовлекается от десятков до сотен генов. Это провоцирует изменения в нормальном диплоидном наборе. Как правило, такие аберрации не вызывают трансформации последовательности в ДНК. Однако при изменении количества генных копий развивается генетический дисбаланс из-за недостатка либо переизбытка материала. Существует две большие категории данных трансформаций. В частности, выделяют внутри- и межхромосомные мутации.

Влияние среды

Люди эволюционировали в качестве групп изолированных популяций. Они достаточно долго проживали в одинаковых условиях среды. Речь, в частности, идет о характере питания, климатогеографических характеристиках, культурных традициях, возбудителях патологий и прочем. Все это привело к закреплению специфических для каждой популяции сочетаний аллелей, являвшихся наиболее соответствующими для условий проживания. Однако вследствие интенсивного расширения ареала, миграций, переселения стали возникать ситуации, когда бывшие в одной среде полезные сочетания определенных генов в другой перестали обеспечивать нормальное функционирование ряда систем организма. В связи с этим часть наследственной изменчивости обуславливается неблагоприятным комплексом непатологических элементов. Таким образом, в качестве причины генных мутаций в данном случае выступают изменения внешней среды, условий проживания. Это, в свою очередь, стало основой для развития ряда наследственных заболеваний.

Естественный отбор

С течением времени эволюция протекала в более специфичных видах. Это также способствовало расширению наследственного разнообразия. Так, сохранялись те признаки, которые могли исчезать у животных, и наоборот, отметалось то, что оставалось у зверей. В ходе естественного отбора люди приобретали также и нежелательные признаки, которые имели прямое отношение к болезням. К примеру, у человека в процессе развития появились гены, способные определять чувствительность к полиомиелиту либо дифтерийному токсину. Став Homo sapiens, биологический вид людей в некотором роде "заплатил за свою разумность" накоплением и патологических трансформаций. Данное положение считается основой одной из базовых концепций учения о генных мутациях.

Генные мутации происходят на мо­лекулярном уровне и затрагивают, как правило, один или несколько нуклеотидов внутри отдельного гена. Этот тип мутаций можно разделить на две большие группы. Первую из них обуславливает сдвиг рамки счи­тывания. Ко второй группе относят генные мутации, связанные с заменой пар оснований. Последние составля­ют не более 20% спонтанных мутаций, остальные 80% мутаций происходят в результате различных делеций и вста­вок.

Мутации со сдвигом рамки считы­вания представляют собой вставки или выпадения одной или нескольких пар нуклеотидов. В зависи­мости от места нарушения изменяется то или иное количество кодонов. Соот­ветственно в белке могут появиться дополнительные аминокислоты или измениться их последовательность. Большая часть мутаций этого типа об­наружена в молекулах ДНК, состоя­щих из одинаковых оснований.

Типы замены осно­ ваний :

    Транзиции заключаются в замене одного пуринового на пуриновое осно­вание или одного пиримидинового на пиримидиновое основание

    Трансверсии , при которых пури­новое основание меняется на пирими­диновое или наоборот.

Значимость генных мутаций для жизнеспособности организма неоди­накова. Различные изменения в нуклеотидной последовательности ДНК по-разному проявляются в фенотипе. Не­которые «молчащие мутации» не ока­зывают влияния на структуру и функ­цию белка. Примером такой мутации может служить замена нуклеотидов, не приводящая к замене аминокислот.

По функциональному значению выделяют генные мутации:

    ведущие к полной потере функ­ции;

    в результате которых происходят количественные изменения мРНК и первичных белковых продуктов;

    доминантно-негативные, изменя­ющие свойства белковых молекул та­ким образом, что они оказывают по­вреждающее действие на жизнедея­тельность клеток.

Наибольшим повреждающим дейст­вием обладают так называемые нон сенс-мутации , связанные с появлени­ем кодонов-терминаторов, вызываю­щих остановку синтеза белка. Причем, чем ближе мутации к 5"-концу гена (к началу транскрипции), тем короче бу­дут белковые молекулы. Делеции или инсерции (вставки), некратные трем нуклеотидам и, следовательно, вызы­вающие сдвиг рамки считывания, мо­гут также приводить к преждевремен­ному окончанию синтеза белка или к образованию бессмысленного белка, который быстро деградирует.

Миссенс-мутации связаны с заме­ной нуклеотидов в кодирующей части гена. Фенотипически проявляется в виде замены аминокислоты в белке. В зависимости от природы аминокислот и функциональной значимости нару­шенного участка, наблюдается полная или частичная потеря функциональ­ной активности белка.

Сплайсинговые мутации затрагива­ют сайты на стыке экзонов и интронов и сопровождаются либо вырезанием экзона и образованием делегированно­го белка, либо вырезанием интронной области и трансляцией бессмысленно­го измененного белка. Как правило, та­кие мутации обусловливают тяжелое течение болезни.

Регуляторные мутации связаны с количественным нарушением в регуляторных областях гена. Они не при­водят к изменениям структуры и функции белков. Фенотипическое проявление таких мутаций определя­ется пороговым уровнем концентра­ции белка, при котором еще сохраня­ется его функция.

Динамические мутации или мутации экспансии представляют собой патоло­гическое увеличение числа тринуклеотидных повторов, локализованных в ко­дирующих и регуляторных частях гена. Многие тринуклеотидные последова­тельности характеризуются высоким уровнем популяционной изменчивости. Фенотипическое нарушение проявля­ется в случае превышения определенно­го критического уровня по числу повто­ров.

Хромосомные мутации

Этот тип мутаций объединяет хромо­сомные нарушения, связанные с изме­нением структур хромосом (хромосомные аберрации).

Хромосомные аберрации можно классифицировать, используя различ­ные подходы. В зависимости от того, в какой момент клеточного цикла - до или после репликации хромосом возникли перестройки - выделяют аберра­ции хромосомного ихроматидного ти­пов. Аберрации хромосомного типа воз­никают на предсинтетической стадии - G 1 фазе, когда хромосома представлена однонитевой структурой. Аберрации хроматидного типа возникают после репликации хромосом в фазах S и G 2 и затрагивают структуру одной из хрома-тид. В результате хромосома на стадии метафазы содержит одну измененную и одну нормальную хроматиды.

Если же перестройка произошла после реплика­ции и затронула обе хроматиды, появ­ляется изохроматидная аберрация. Морфологически она неотличима от аберраций хромосомного типа, хотя по происхождению относятся к хроматидному типу. Среди аберраций хромосом­ного и хроматидного типов выделяют простые и обменные аберрации. В их основе лежат нарушения одной или не­скольких хромосом. Простые аберра­ции - фрагменты (делеции) - возника­ют в результате простого разрыва хро­мосомы. В каждом случае при этом об­разуется 2 типа фрагментов - центри­ческие и ацентрические. Различают тер­минальные (концевые) и интерстициальные (средних участков хромосом) делеции или фрагменты.

Обменные аберрации очень разно­образны. В их основе лежит обмен уча­стками хромосом (или хроматид) меж­ду разными хромосомами (межхромосомный обмен) или внутри одной хро­мосомы (внутрихромосомный обмен) при перераспределении генетического материала. Обменные перестройки бывают двух типов: симметричные и асимметричные. Асимметричные об­мены приводят к образованию поли­центрических хромосом и ацентричес­ких фрагментов. При симметричных же обменах происходит соединение ацентрических фрагментов с центрическими, в результате чего хромосомы, вовлеченные в обменную аберрацию, остаются моноцентрическими.

Внутрихромосомные обмены могут происходить как внутри одного (внутриплечевой обмен), так и между обо­ими плечами хромосомы (межплечевой обмен). Кроме того, обмены могут быть простыми и сложными, когда в процесс вовлечены несколько хромо­сом. В результате могут образоваться необычные и достаточно сложные кон­фигурации хромосом. Любой обмен (симметричный и асимметричный, межхромосомный и внутрихромосомный) может быть полным (реципрок ным) или неполным (нереципрок ным) . При полном обмене происходит соединение всех поврежденных участ­ков, а при неполном обмене часть из них может остаться с открытым по­врежденным участком.

Геномные мутации

Геномные мутации изменяют число хромосом. Такие изменения возника­ют обычно при нарушении распреде­ления хромосом по дочерним клет­кам.

Различают два основных типа ге­номных мутаций:

    Полиплоидия и моноплоидия.

    Анеуплодия.

При полиплоидии число наборов негомологичных хромосом в кариотипе отличается от двух (Зn; 4n и т.д.). Это результат нарушений в митотическом цикле, когда удвоение хромосом происходит без последующего деления ядра и клетки. Одной из причин по­добного феномена может быть эндомитоз, при котором происходит блоки­рование ахроматического аппарата в клетке и сохранение ядерной мембра­ны в течение всего митотического цик­ла. Разновидностью эндомитоза явля­ется эндоредупликация - редуплика­ция хромосом, происходящая вне кле­точного деления. При эндоредуплика-ции как бы повторяются два следую­щих друг за другом S периода митоти­ческого цикла. В результате этого в по­следующем митозе будет наблюдаться двойной (тетраплоидный) набор хро­мосом. Такие мутации чаще всего при­водят к гибели плода еще в эмбриоге­незе. Триплоидия обнаруживается в 4%, а тетраплоидия приблизительно в 1% всех выкидышей. Для индивидуу­мов с такими кариотипами характерны многочисленные пороки развития, в том числе асимметричное телосложе­ние, слабоумие, гермафродитизм. Тетраплоидные эмбрионы погибают на ранних сроках беременности, эмбрио­ны же с триплоидными клетками из­редка выживают, но только если одно­временно с триплоидными содержат клетки с нормальным кариотипом. Впервые синдром триплоидии (69, XXY) был обнаружен у человека в 60-хх гг. XX в. В литературе описано око­ло 60 случаев триплоидии у детей. Максимальная продолжительность их жизни составила 7 дней.

Анеуплоидия - некратное гаплоид­ному уменьшение или увеличение чис­ла хромосом (2n+1; 2n+2; 2n-1 и т.д.) - возникает в результате ненормального поведения гомологических хромосом в мейозе или сестринских хроматид в митозе.

При нерасхождении хромосом на одной из стадий гаметогенеза в поло­вых клетках могут оказаться лишние хромосомы. В результате при последу­ющем слиянии с нормальными гапло­идными гаметами образуются зиготы 2n +1 - или трисомии по какой-либо из хромосом. Если же в гамете оказывает­ся на одну хромосому меньше, то при последующем оплодотворении образу­ется зигота 2 n - 1, или моносомик по одной из хромосом. Нерасхождение может затронуть не одну, а несколько пар хромосом, что ведет к трисомии или моносомии по нескольким хромо­сомам. Часто лишние хромосомы обус­ловливают депрессию развития или гибель особи, их несущей.

Т Е М А № 6 Типы наследования у человека

Менделирующие признаки

Всем эукариотическим организмам присущи открытые Г.Менделем общие закономерности наследования призна­ков. Для их изучения необходимо вспомнить основные термины и поня­тия, используемые в генетике. Глав­ный постулат Менделя, который он доказал в своих известных экспери­ментах на горохе огородном, состоит в том, что каждый признак определяется парой наследственных задатков, позже получивших название аллельных ге­нов. С развитием хромосомной теории наследственности выяснилось, что аллельные гены находятся в одинаковых локусах гомологичных хромосом и ко­дируют один и тот же признак. Пара аллельных генов может быть одинако­ва (АА) или (аа), тогда говорят, что особь гомозиготна по данному призна­ку. Если же аллельные гены в паре раз­ные (Аа), то особь по данному призна­ку гетерозиготна. Совокупность генов данного организма называется геноти­пом. Правда часто под генотипом по­нимают одну или несколько пар ал­лельных генов, которые отвечают за один и тот же признак. Совокупность признаков данного организма называ­ют фенотипом, фенотип формируется в результате взаимодействия генотипа с внешней средой.

Г. Мендель ввел понятия доминант­ных и рецессивных генов. Аллель, ко­торый определяет фенотип гетерозиготы, он назвал доминантным. Напри­мер, ген А в гетерозиготе Аа. Другой аллель, не проявляющий себя в гетеро­зиготном состоянии, назван им рецес­сивным. В нашем случае это ген а.

Основные закономерности наследования признаков по Менделю (закон единообразия гибридов первого поколения, расщепление на фенотипические классы гибридов второго поколения и независимого комбинирования генов) реализуются благодаря существованию закона чистоты гамет. Суть последнего состоит в том, что пара аллельных генов, определяющая тот или иной признак: а) никогда не смешивается; б) в процессе гаметогенеза расходится в разные гаметы, то есть в каждую из них попадает один ген из аллельной пары. Цитологически это обеспечивается мейозом: аллельные гены лежат в гомологичных хромосомах, которые в анафазе мейоза расходятся к разным полюсам и попадают в разные гаметы.

Генетика человека опирается на общие принципы, полученные первоначально в исследованиях на растениях и животных. Как и у них, у человека имеются менделирующие, т.е. наследуемые по законам, установленным Г. Meнделем, признаки. Для человека, как и для других эукариот, характерны все типы наследования: аутосомно-доминантный, аутосомно-рецессивный, наследование признаков, сцепленных с поло­выми хромосомами, и за счет взаимо­действия неаллельных генов. Разрабо­тал Г.Мендель и основной метод гене­тики - гибридологический. Он осно­ван на скрещивании особей одного ви­да, обладающих альтернативными при­знаками, и количественном анализе по­лученных фенотипических классов. Естественно, этот метод не может ис­пользоваться в генетике человека.

Первое описание аутосомно-доминантного наследования аномалий у человека дано в 1905 г. Фараби. Ро­дословная была составлена для се­мьи с короткопалостью (брахидактилией). У больных укорочены и час­тично редуцированы фаланги паль­цев рук и ног, кроме того, в результа­те укорочения конечностей, для них характерен низкий рост. Признак пере­дается от одного из родителей при­мерно половине детей, независимо от пола. Анализ родословных других се­мей свидетельствует, что брахидактилия отсутствует среди потомства ро­дителей, не являющихся носителями данного гена. Поскольку признак не может существовать в скрытом виде, следовательно, он является доминант­ным. А его проявления, независимо от пола, позволяют заключить, что он не сцеплен с полом. На основании изло­женного, можно сделать вывод, что брахидактилия определяется геном, находящимся в аутосомах, и является доминантной патологией.

Использование генеалогического метода позволило выявить доминант­ные, не сцепленные с полом признаки у человека. Это - темный цвет глаз, вьющиеся волосы, переносица с гор­бинкой, прямой нос (кончик носа смо­трит прямо), ямочка на подбородке, раннее облысение у мужчин, праворукость, способность свертывать язык в трубочку, белый локон надо лбом, «габ­сбургская губа» - нижняя челюсть уз­кая, выступающая вперед, нижняя гу­ба отвислая и полуоткрытый рот. По аутосомно-доминантному типу насле­дуются также некоторые патологичес­кие признаки человека: полидактилия или многопалость (когда на руке или ноге имеется от 6 до 9 пальцев), син­дактилия (сращение мягких или кост­ных тканей фаланг двух и более паль­цев), брахидактилия (недоразвитость дистальных фаланг пальцев, приводя­щая к короткопалости), арахнодактилия (сильно удлиненные "паучьи" пальцы, один из симптомов синдрома Марфана), некоторые формы близору­кости. Большинство носителей аутосомно-доминантной аномалии явля­ются гетерозиготами. Иногда случает­ся, что два носителя одной и той же до­минантной аномалии вступают в брак и имеют детей. Тогда четверть из них будут гомозиготами по мутантному доминантному аллелю (АА). Многие случаи из медицинской практики ука­зывают на то, что гомозиготы по доми­нантным аномалиям поражены тяже­лее, чем гетерозиготы. Например, в браке между двумя носителями брахидактилии родился ребенок, у которого не только не доставало пальцев на ру­ках и ногах, но и имелись множествен­ные уродства скелета. Он умер в возра­сте одного года. Другой ребенок в этой семье был гетерозиготным и имел обычные симптомы брахидактилии.

Аутосомно-рецессивные менделирующие признаки у человека опреде­ляются генами, локализованными в аутосомах, и могут проявиться у по­томства в браке двух гетерозигот, двух рецессивных гомозигот или гетерози­готы и рецессивной гомозиготы. Ис­следования показывают, что большин­ство браков, среди потомков которых наблюдаются рецессивные заболева­ния, происходит между фенотипически нормальными гетерозиготами (Аа х Аа). В потомстве такого брака геноти­пы АА, Аа и аа будут представлены в соотношении 1:2:1, и вероятность того, что ребенок окажется пораженным, со­ставит 25%. По аутосомно-рецессивному типу наследуются мягкие прямые волосы, курносый нос, светлые глаза, тонкая кожа и резус-отрицательная первая группы крови, многие болезни обмена веществ: фенилкетонурия, галактоземия, гистидинимия и др., а так­же пигментная ксеродерма.

Пигментная ксеродерма - одно из рецессивных заболеваний - относи­тельно недавно привлекла внимание молекулярных биологов. Эта патоло­гия обусловлена неспособностью кле­ток кожи больного репарировать по­вреждения ДНК, вызванные ультра­фиолетовым излучением. В результате развивается воспаление кожи, особен­но на лице, с последующей атрофией. Наконец, развивается рак кожи, при­водящий в отсутствие лечения к ле­тальному исходу. У больных редким рецессивным заболеванием степень кровного родст­ва между родителями обычно значи­тельно выше среднего уровня в попу­ляции. Как правило, родители насле­дуют этот ген от общего предка и явля­ются гетерозиготами. Подавляющее большинство больных аутосомно-рецессивными заболеваниями - это дети двух гетерозигот.

Помимо аутосомно-доминантного и аутосомно-рецессивного типов насле­дования у человека выявляются также неполное доминирование, кодоминированиеи сверхдоминирование.

Неполное доминирование связано с промежуточным проявлением призна­ка при гетерозиготном состоянии ал­лелей (Аа). Например, большой нос определяется двумя аллелями АА, ма­ленький нос - аллелями аа, нормаль­ный нос средних размеров - Аа. По типу неполного доминирования у че­ловека наследуются выпуклость губ и размеры рта и глаз, расстояние между глазами.

Кодоминирование - это такое взаи­модействие аллельных генов, при ко­тором в гетерозиготном состоянии оказываются и работают вместе два доминантных гена одновременно, то есть каждый аллель детерминирует свой признак. Наиболее удобно рас­смотреть кодоминирование на приме­ре наследования групп крови.

Группы крови системы АВ0 опреде­ляются тремя аллелями: А, В и 0. При­чем аллели А и В являются доминант­ными, а аллель 0 - рецессивным. Попарное сочетание этих трех аллелей в генотипе дает четыре группы крови. Аллельные гены, определяющие груп­пы крови, находятся в девятой паре хромосом человека и обозначаются со­ответственно: I A , I в и I°. Первая группа крови определяется наличием в генотипе двух рецессивных аллелей I° I°. Фенотипически это проявляется нали­чием в сыворотке крови антител альфа и бетта. Вторая группа крови может определяться двумя доминантными аллеля­ми I A I A , если человек гомозиготен, или аллелями I A I°, если он гетерозиготен. Фенотипически вторая группа крови проявляется наличием на поверхности эритроцитов антигенов группы А и присутствием в сыворотке крови анти­тел бетта. Третья группа определяется функционированием аллеля В. И в этом случае генотип может быть гете­розиготен (I в I°) или гомозиготен (I в I в). Фенотипически у людей с треть­ей группой крови на поверхности эри­троцитов выявляются антигены В, а фракции белков крови содержат анти­тела альфа. Люди с четвертой группой кро­ви сочетают в генотипе два доминант­ных аллеля АВ (I A I в), причем оба они функционируют: поверхность эритро­цитов несет оба антигена (А и В), а сы­воротка крови во избежание агглюти­нации соответствующих сывороточ­ных белков альфа и бетта не содержит. Таким образом, люди с четвертой группой крови являют примеры кодоминирования, поскольку у них одновременно работают два доминантных аллельных гена.

Явление сверхдоминирования свя­зано с тем, что в ряде случаев доми­нантные гены в гетерозиготном состо­янии проявляются сильнее, чем в го­мозиготном. Это понятие коррелирует с эффектом гетерозиса и связано с та­кими сложными признаками, как жиз­неспособность, общая продолжитель­ность жизни и др.

Таким образом, у человека, как и у остальных эукариот, известны все ти­пы взаимодействия аллельных генов и большое количество менделирующих признаков, определяемых этими взаи­модействиями. Используя менделевские законы наследования, можно рас­считать вероятность рождения детей с теми или иным моделирующими при­знаками.

Наиболее удобным методическим подходом к анализу наследования признаков в нескольких поколениях является генеалогический метод, осно­ванный на построении родословных.

Взаимодействие генов

До сих пор мы рассматривали толь­ко признаки, контролируемые моногенно. Однако на фенотипическое про­явление одного гена обычно влияют другие гены. Зачастую признаки фор­мируются при участии нескольких ге­нов, взаимодействие между которыми отражается в фенотипе.

Примером сложного взаимодейст­вия генов могут служить закономерно­сти наследования системы резус-фак­тор: резус плюс (Rh +) и резус минус (Rh-). В 1939 г. при исследовании сы­воротки крови женщины, родившей мертвый плод и имевшей в анамнезе переливание совместимой по АВ0 группе крови мужа, были обнаружены особые антитела, сходные с получаемыми при иммунизации эксперимен­тальных животных эритроцитами макаки-резус. Выявленные у больной ан­титела получили название резус-анти­тел, а ее группа крови - резус-отрица­тельной. Группа крови резус-положи­тельная определяется присутствием на поверхности эритроцитов особой группы антигенов, кодируемых струк­турными генами, несущими информа­цию о мембранных полипептидах. Ге­ны, определяющие резус-фактор, на­ходятся в первой паре хромосом чело­века. Резус-положительная группа крови является доминантной, резус-отрицательная - рецессивной. Резус-положительные люди могу быть гете­розиготными (Rh + /Rh-) или гомози­готными (Rh + /Rh +). Резус-отрица­тельные - только гомозиготными (Rh-/Rh-).

Позже выяснилось, что антигены и антитела резус фактора имеют слож­ную структуру и состоят из трех ком­понентов. Условно антигены резус-фактора обозначают буквами латин­ского алфавита С, D, Е. На основе ана­лиза генетических данных о наследова­нии резус-фактора в семьях и популя­циях была сформулирована гипотеза о том, что каждый компонент резус-фак­тора определяется своим геном, что эти гены сцеплены вместе в один локус и имеют общий оператор или промотор, который регулирует их количествен­ную экспрессию. Поскольку антигены обозначаются буквами С, D, Е, то таки­ми же строчными буквами обозначают гены, отвечающие за синтез соответст­вующего компонента.

Генетические исследования в семьях показывают возможность кроссинговера между тремя генами в локусе ре­зус-фактора у гетерозигот. Популяционные исследования выявили разно­образные фенотипы: CDE, CDe, cDE, cDe, CdE, Cde, cdE, cde. Взаимодейст­вия между генами, определяющими резус-фактор, сложные. По всей види­мости, главным фактором, определяю­щим резус-антиген, является антиген D. Он обладает гораздо большей иммуногенностью, чем антигены С и Е. Отрица­тельный резус-фактор выявляется у людей с генотипом d/d, положитель­ный - у людей с генотипом DD и D/d. У гетерозигот CDe/Cde и Cde/cDe с сочетанием генов Cde в резус-локусе экспрессия фактора D изменяется, в результате чего формируется фенотип D u со слабой реакцией в ответ на вве­дение резус-положительных антиге­нов. Следовательно, работа генов в ре­зус локусе может регулироваться количественно, и фенотипическое прояв­ление резус-фактора у резус-положи­тельных людей бывает различным: большим или меньшим.

Несовместимость по резус-фактору плода и матери способна стать причи­ной развития патологии у плода или самопроизвольного выкидыша на ран­них сроках беременности. С помощью специальных чувствительных методов удалось выявить, что во время родов около 1 мл крови плода может попа­дать в кровоток матери. Если мать - резус-отрицательная, а плод - резус-положительный, то после первых ро­дов мать будет сенсибилизирована к резус-положительным антигенам. При последующих беременностях резус-несовместимым плодом титр анти-Rh-антител в ее крови может резко возра­сти, и под влиянием их разрушающего действия у плода возникает характер­ная клиническая картина гемолитиче­ской патологии, выражающейся в ане­мии, желтухе или водянке.

В классической генетике наиболее изученными являются три типа взаи­модействия неаллельных генов: эпистаз, комплементарность и полимерия. Они определяют многие наследуемые признаки человека.

Эпистаз - это такой тип взаимодей­ствия неаллельных генов, при котором одна пара аллельных генов подавляет действие другой пары. Различают эпи­стаз доминантный и рецессивный. До­минантный эпистаз проявляется в том, что доминантный аллель в гомозигот­ном (АА) или гетерозиготном (Аа) со­стоянии подавляет проявление другой пары аллелей. При рецессивном эпистазе ингибирующий ген в рецессив­ном гомозиготном состоянии (аа) не дает возможность проявиться эпистатируемому гену. Подавляющий ген на­зывают супрессором или ингибитором, а подавляемый - гипостатическим. Этот тип взаимодействия наибо­лее характерен для генов, участвую­щих в регуляции онтогенеза и иммун­ных систем человека.

Примером рецессивного эпистаза у человека может служить «бомбейский феномен». В Индии была описана се­мья, в которой родители имели вторую (А0) и первую (00) группу крови, а их дети - четвертую (АВ) и первую (00). Чтобы ребенок в такой семье имел группу крови АВ, мать должна иметь группу крови В, но ни­как ни 0. Позже было выяснено, что в системе групп крови АВ0 имеются ре­цессивные гены-модификаторы, кото­рые в гомозиготном состоянии подав­ляют экспрессию антигенов на поверх­ности эритроцитов. Например, чело­век с третьей группой крови должен иметь на поверхности эритроцитов ан­тиген группы В, но эпистатирующий ген-супрессор в рецессивном гомози­готном состоянии (h/h) подавляет действие гена В, так что соответствую­щие антигены не образуются, и фенотипически проявляется группа крови 0. Описанный локус гена-супрессора не сцеплен с локусом АВ0. Гены-супрессоры наследуются независимо от генов, определяющих группы крови АВ0. Бомбейский феномен имеет час­тоту 1 на 13 000 среди индусов, говоря­щих на языке махарати и живущих в окрестностях Бомбея. Он распростра­нен также в изоляте на острове Реюнь­он. По-видимому, признак детермини­рован нарушением одного из фермен­тов, участвующих в синтезе антигена.

Комплементарность - это такой тип взаимодействия, при котором за признак отвечают несколько неаллельных генов, причем разное сочетание доминантных и рецессивных аллелей в их парах изменяет фенотипическое проявление признака. Но во всех слу­чаях, когда гены расположены в раз­ных парах хромосом, в основе расщеп­лений лежат цифровые законы, уста­новленные Менделем.

Так, чтобы человек имел нор­мальный слух, необходима согласо­ванная деятельность нескольких пар генов, каждый из которых может быть представлен доминантными или ре­цессивными аллелями. Нормальный слух развивается только в том случае, если каждый из этих генов имеет хотя бы один доминантный аллель в дипло­идном наборе хромосом. Если хотя бы одна пара аллелей представлена рецес­сивной гомозиготой, то человек будет глухим. Поясним сказанное простым примером. Предположим, что нор­мальный слух формирует пара генов. В этом случае людям с нормальным слухом присущи генотипы ААВВ, ААВb, АаВВ, АаВb. Наследственная глухота определяется генотипами: ааbb, Ааbb, ААbb, ааВb, ааВВ. Исполь­зуя законы Менделя для дигибридного скрещивания, легко рассчитать, что глухие родители (ааВВ х ААbb) могут иметь детей с нормальным слухом (АаВb), а нормально слышащие роди­тели при соответствующем сочетании генотипов АаВb х АаВb с высокой долей вероятности (более 40%) - глу­хих детей.

Полимерия - обусловленность оп­ределенного признака несколькими парами неаллельных генов, обладаю­щих одинаковым действием. Такие ге­ны называются полимерными. Если число доминантных аллелей влияет на степень выраженности признака, по­лимерия именуется кумулятивной. Чем больше доминантных аллелей, тем более интенсивно выражен при­знак. По типу кумулятивной полиме­рии обычно наследуются признаки, которые можно выразить количест­венно: цвет кожи, цвет волос, рост.

Цвет кожи и волос человека, а также цвет радужной оболочки глаз обеспе­чивает пигмент меланин. Формируя окраску покровов, он предохраняет ор­ганизм от воздействия ультрафиолето­вых лучей. Существует два типа мела­нинов: эумеланин (черный и темно-ко­ричневый) и феумеланин (желтый и рыжий). Меланин синтезируется в клетках из аминокислоты тирозина в несколько этапов. Регуляция синтеза осуществляется многими путями и за­висит, в частности, от скорости деле­ния клеток. При ускорении митозов клеток в основании волоса образуется феумеланин, а при замедлении - эу­меланин. Описаны некоторые формы злокачественного перерождения кле­ток кожного эпителия, сопровождаю­щиеся накоплением меланина (меланомы).

Все цвета волос, за исключением рыжих, составляют непрерывный ряд от темного до светлого (соответствен­но уменьшению концентрации мела­нина) и наследуются полигенно по ти­пу кумулятивной полимерии. Счита­ется, что эти различия обусловлены чисто количественными изменениями в содержании эумеланина. Цвет рыжих волос зависит от наличия феумеланина. Окраска волос обычно меняется с возрастом и стабилизируется с наступлением половой зрелости.

Цвет радужной оболочки глаз определяют несколько факторов. С одной стороны, он зависит от присутствия гранул меланина, а с другой - от характера отражения света. Черный и коричневый цвета обусловлены много­численными пигментными клетками в переднем слое радужной оболочки. В светлых глазах содержание пигмента значительно меньше. Преобладание голубого цвета в свете, отраженном от переднего слоя радужной оболочки, не содержащей пигмента, объясняется оп­тическим эффектом. Различное содер­жание пигмента, определяет весь диа­пазон цвета глаз.

По типу кумулятивной полимерии наследуется также пигментация кожи человека. На основе генетических ис­следований семей, члены которых имеют разную интенсивность кожной пигментации, предполагается, что цвет кожи человека определяют три или четыре пары генов.

Признание принципа взаимодейст­вия генов наводит на мысль о том, что все гены так или иначе взаимосвязаны в своем действии. Если один ген ока­зывает влияние на работу других ге­нов, то он может влиять на проявление не только одного, но и нескольких при­знаков. Такое множественное действие гена называют плейотропией . Наибо­лее ярким примером плейотропного действия гена у человека является синдром Марфана, уже упоминавшая­ся аутосомно-доминантная патология. Арахнодактилия ("паучьи" пальцы) - один из симптомов синдрома Марфа­на. Другими симптомами являются высокий рост из-за сильного удлине­ния конечностей, гиперподвижность суставов, ведущий к близорукости, подвывих хрусталика и аневризм аор­ты. Синдром с одинаковой частотой встречается у мужчин и женщин. В ос­нове указанных симптомов лежит де­фект развития соединительной ткани, возникающий на ранних этапах онто­генеза и приводящий к множествен­ным фенотипическим проявлениям.

Плейотропным действием обладают многие наледственные патологии. Оп­ределенные этапы метаболизма обес­печивают гены. Продукты метаболиче­ских реакций, в свою очередь регули­руют, а возможно, и контролируют другие метаболические реакции. По­этому нарушения метаболизма на од­ном этапе отразятся на последующих этапах, так что нарушение экспрессии одного гена окажет влияние на не­сколько элементарных признаков.

Наследственность и среда

Фенотипическое проявление при­знака определяется генами, отвечаю­щими за этот признак, взаимодействи­ем детерминирующих с другими гена­ми и условиями внешней среды. Сле­довательно, степень фенотипической выраженности детерминированного признака (экспрессивность ) может изменяться: усиливаться или ослаб­ляться. Для многих доминантных признаков характерно, что ген прояв­ляется у всех гетерозигот, но в разной степени. Многие доминантные заболе­вания обнаруживают значительную индивидуальную изменчивость и по возрасту начала, и по тяжести прояв­ления, и внутри одной семьи, и в раз­ных семьях.

В ряде случаев признак может вооб­ще не выражаться фенотипически, не­смотря на генотипическую предопре­деленность. Частота фенотипического проявления данного гена среди его но­сителей называется пенетрантностью и выражается в процентах. Пенетрантность бывает полной, если признак проявляется у всех носителей данного гена (100%), и неполной, если признак проявляется только у части носите­лей. В случае неполной пенетрантности иногда при передаче признака одно поколение пропускается, хотя лишен­ный его индивид, судя по родослов­ной, должен быть гетерозиготным. Пе-нетрантность - это статистическое понятие. Оценка ее величины часто зависит от применяемых методов об­следования.

Генетика пола

Из 46 хромосом (23 пары) в кариотипе человека 22 пары одинаковы у муж­чин и женщин (аутосомы), а одна пара, называемая половой, у разных полов отличается: у женщин - XX, у муж­чин - XY. Половые хро­мосомы представлены в каждой сома­тической клетке индивида. При образо­вании гамет во время мейоза гомоло­гичные половые хромосомы расходятся в разные половые клетки. Следователь­но, каждая яйцеклетка помимо 22 аутосом несет одну половую хромосому X. Все сперматозоиды также имеют гаплоидный набор хромосом, из кото­рых 22 - аутосомы, а одна - половая. Половина сперматозоидов содержит X, другая половина - Y хромосому.

Поскольку женские половые хромо­сомы одинаковы и все яйцеклетки несут Х-хромосому, то женский пол у че­ловека называют гомогаметным. Муж­ской же пол из-за различия половых хромосом (X или Y) в сперматозоидах именуют гетерогаметным.

Пол человека определяется в мо­мент оплодотворения. Женщина имеет один тип гамет - X, мужчина - два ти­па гамет: X и Y, причем, согласно зако­нам мейоза, образуются они в равной пропорции. При оплодотворении хро­мосомные наборы гамет объединяют­ся. Напомним, что зигота содержит 22 пары аутосом и одну пару половых хромосом. Если яйцеклетку оплодо­творил сперматозоид с Х-хромосомой, то в зиготе пара половых хромосом бу­дет XX, из нее разовьется девочка. Ес­ли же оплодотворение произвел спер­матозоид с Y-хромосомой, то набор по­ловых хромосом в зиготе - XY. Такая зигота даст начало мужскому организ­му. Таким образом, пол будущего ре­бенка определяет гетерогаметный по половым хромосомам мужчина. Соот­ношение полов при рождении, по дан­ным статистики, соответствует при­мерно 1:1.

Хромосомное определение пола - не единственный уровень половой дифференцировки. Большую роль в этом процессе у человека играет гор­мональная регуляция, происходящая с помощью половых гормонов, которые синтезируются половыми железами.

Закладка половых органов человека начинается у пятинедельного эмбрио­на. В зачатки гонад из желточного мешка мигрируют первичные клетки зародышевого пути, которые, размно­жаясь митозом, дифференцируются в гонии и становятся предшественника­ми гамет. У зародышей обоих полов миграция проходит одинаково. Если же в клетках зачатков гонад присутст­вует Y-хромосома, то начинают развиваться семенники, причем начало диф­ференцировки связано с функциони­рованием эухроматинового района Y-хромосомы. Если же Y-хромосома от­сутствует, то развиваются яичники, что соответствует женскому типу.

Человек по своей природе бисексуа­лен. Зачатки половой системы одина­ковы у зародышей обоих полов. Если активность Y - хромосомы подавлена, то зачатки половых органов развива­ются по женскому типу. При полном отсутствии всех элементов становле­ния мужского пола формируются жен­ские половые органы.

Тип вторичных половых признаков обусловлен дифференцировкой гонад. Половые органы формируются из мюллеровых и вольфовых каналов. У женщин мюллеровы протоки развива­ются в фаллопиевы трубы и матку, а вольфовы атрофируются. У мужчин вольфовы каналы развиваются в се­менные протоки и семенные пузырьки. Под влиянием хорионического гонадотропина матери лежащие в эмбрио­нальных семенниках клетки Лейдига синтезируют стероидные гормоны (те­стостерон), которые участвуют в регу­ляции развития особи по мужскому типу. Одновременно в семенниках в клетках Сертоли синтезируется гор­мон, ингибирующий дифференциров­ку мюллеровых протоков. Нормаль­ные особи мужского пола развиваются только в случае, если все гормоны, действующие на зачатки внешних и внутренних половых органов, «сраба­тывают» в определенное время в задан­ном месте.

В настоящее время описано около 20 разнообразных дефектов генов, ко­торые при нормальном (XY) кариотипе по половым хромосомам приводят к нарушению дифференцировки внеш­них и внутренних половых признаков, (гермафродитизму). Эти мутации свя­заны с нарушением: а) синтеза поло­вых гормонов; б) восприимчивости ре­цепторов к ним; в) работы ферментов, участвующих в синтезе регулирующих факторов и т.д.

Наследование признаков, сцепленных с полом

Х- и Y-хромосомы гомологичны, по­скольку обладают общими гомологич­ными участками, где локализованы аллельные гены. Однако, несмотря на го­мологию отдельных локусов, эти хро­мосомы различаются по морфологии. Ведь, помимо общих участков, они несут большой набор раз­личающихся генов. В Х-хромосоме ле­жат гены, которых нет в Y-хромосоме, а ряд генов Y-хромосомы отсутствуют в Х-хромосоме. Таким образом, у мужчин в половых хромосомах некоторые гены не имеют второго аллеля в гомологич­ной хромосоме. В таком случае признак определяется не парой аллельных ге­нов, как обычный менделирующий признак, а только одним аллелем. По­добное состояние гена называется гемизиготным, а признаки, раз­витие которых обусловлено одиноч­ным аллелем, расположенным в одной из альтернативных половых хромосом, получили название сцепленных с по­лом. Она преимущественно развивают­ся у одного из двух полов и по-разному наследуются у мужчин и женщин.

Признаки, сцепленные с Х-хромосомой, могут быть рецессивными и до­минантными. К рецессивным относят­ся: гемофилия, дальтонизм (неспособ­ность различать красный и зеленый цвета), атрофия зрительного нерва и миопатия Дюшена. К доминантным - рахит, не поддающийся лечению вита­мином Д, и темная эмаль зубов.

Рассмотрим наследование, сцеплен­ное с Х-хромосомой, на примере ре­цессивного гена гемофилии. У мужчи­ны ген гемофилии, локализованный в Х-хромосоме, не имеет аллеля в Y-xpoмосоме, то есть находится в гемизиготном состоянии. Следовательно, несмо­тря на то, что признак рецессивный, у мужчин он проявляется:

N - ген нормальной свертываемос­ти крови,

h - ген гемофилии;

X h Y - мужчина с гемофилией;

X N Y - мужчина здоров.

У женщин признак определяется парой аллельных генов в половых хро­мосомах XX, следовательно, гемофи­лия может проявиться только в гомо­зиготном состоянии:

X N X N - женщина здорова.

X N X h - гетерозиготная женщина, но­сительница гена гемофилии, здорова,

X h X h - женщина с гемофилией.

Законы передачи признаков, сцеп­ленных с Х-хромосомами, были впер­вые изучены Т. Морганом.

Помимо Х-сцепленных, у мужчин имеются Y-сцепленные признаки. Они называются голандрическими. Опре­деляющие их гены локализованы в тех районах Y-хромосом, которые не име­ют аналогов в Х-хромосомах. Голандрические признаки также опре­деляются только одним аллелем, а по­скольку их гены находятся только в Y-хромосоме, то выявляются они у муж­чин и передаются от отца к сыну, вер­нее - ко всем сыновьям. К голандрическим признакам относятся: волоса­тость ушей, перепонки между пальца­ми ног, ихтиоз (кожа имеет глубокую исчерченность и напоминает рыбью чешую).

Гомологичные районы Х- и Y-хро­мосом содержат аллельные гены, с рав­ной вероятностью встречающиеся у лиц мужского и женского пола.

К числу определяемых ими призна­кам относятся общая цветовая слепота (отсутствие цветового зрения) и пиг­ментная ксеродерма. Оба эти признака являются рецес­сивными. Признаки, связанные с аллельными генами, находящимися в X- и Y-хромосомах, наследуются по клас­сическим менделевским законам.

Наследование, ограниченное и контролируемое полом

Признаки человека, наследование которых каким-то образом связано с полом, подразделяются на несколько категорий.

Одна из категорий - признаки, ог­ раниченные полом . Их развитие обус­ловлено генами, расположенными в аутосомах обоих полов, но проявляющимися только у одного пола. Напри­мер, гены, определяющие ширину таза женщины, локализованы в аутосомах, наследуются и от отца и от матери, но проявляются только у женщин. То же касается возраста полового созревания девочек. Среди мужских признаков, ограниченных полом, можно назвать количество и распределение волосяно­го покрова на теле.

К иной категории относятся призна­ ки, контролируемые полом , или зави­симые от пола. Развитие соматических признаков обусловлено генами, распо­ложенными в аутосомах, проявляются они у мужчин и женщин, но по-разно­му. Например, у мужчин раннее облы­сение - признак доминантный, он проявляется как у доминантных гомо­зигот (Аа) так и у гетерозигот (Аа). У женщин этот признак рецессивный, он проявляется только у рецессивных го­мозигот (аа). Поэтому лысых мужчин гораздо больше, чем женщин. Другим примером может служить подагра, у мужчин ее пенетрантность выше: 80% против 12% у женщин. Значит, чаще подагрой болеют мужчины. Экспрес­сивность признаков, контролируемых полом, обусловлена половыми гормо­нами. Например, тип певческого голо­са (бас, баритон, тенор, сопрано, мец­цо-сопрано и альт) контролируется по­ловой конституцией. Начиная с перио­да полового созревания, признак нахо­дится под влиянием половых гормо­нов.

Сцепление генов и карты хромосом

Хромосомная теория наследствен­ности была сформулирована и экспе­риментально доказана Т. Морганом и его сотрудниками. Согласно этой тео­рии, гены находятся в хромосомах и расположены в них линейно. Гены, ло­кализованные в одной хромосоме, называются сцепленными, наследуются вместе и образуют группу сцепления. Количество групп сцепления соответ­ствует числу пар гомологичных хромо­сом. У человека 46 хромосом: 22 пары аутосом и одна пара половых хромо­сом (XX или XY), следовательно, у женщин 23 группы сцепления, а у мужчин - 24, так как половые хромо­сомы мужчины (XY) не полностью го­мологичны друг другу. Каждая из по­ловых хромосом мужчины имеет гены, характерные только для Х- и только для Y-хромосомы, которым соответст­вуют группы сцепления Х- и Y-хромо­сомы.

Гены, локализованные в одной хро­мосоме и образующие группу сцепле­ния, сцеплены не абсолютно. В зиготене профазы первого мейотического де­ления гомологичные хромосомы сли­ваются вместе с образованием бива­лентов, затем в пахитене происходит кроссинговер-обмен участками между хроматидами гомологичных хромосом. Кроссинговер - обязательный про­цесс. Он осуществляется в каждой па­ре гомологичных хромосом. Чем даль­ше друг от друга расположены гены в хромосоме, тем чаще между ними про­исходит кроссинговер. Благодаря это­му процессу, возрастает разнообразие сочетания генов в гаметах. Например, пара гомологичных хромосом содер­жит сцепленные гены АВ и ab. В про­фазе мейоза гомологичные хромосомы конъюгируют и образуют бивалент: АВ ab

Если кроссинговер между генами А и В не произойдет, то в результате мей­оза образуется два типа некроссоверных гамет: АВ и ab. Если же кроссин­говер состоится, то получатся кроссоверные гаметы: Ab иаВ, то есть группы сцепления изменятся. Чем более удалены друг от друга гены А и В, тем больше возрастает вероятность обра­зования и, соответственно число кроссоверных гамет.

Если гены в большой хромосоме расположены на достаточном расстоя­нии друг от друга и между ними в мейозе происходят многочисленные пере­кресты, то они могут наследоваться не­зависимо.

Открытие кроссинговера позволило Т. Моргану и сотрудникам его школы в первые два десятилетия XX века раз­работать принцип построения генети­ческих карт хромосом. Явление сцеп­ления было использовано ими для вы­яснения локализации генов, располо­женных в одной хромосоме, и созда­ния генных карт плодовой мушки Drosophila melanogaster. На генетичес­ких картах гены располагаются линей­но друг за другом на определенном расстоянии. Расстояние между генами определяется в процентах кроссинго­вера, или в морганидах (1 % кроссин­говера равен одной морганиде).

Для построения генетических карт у растений и животных проводят анали­зирующие скрещивания, в которых до­статочно просто рассчитать процент особей, образовавшихся в результате кроссинговера, и построить генетичес­кую карту по трем сцепленным генам. У человека анализ сцепления генов классическими методами невозможен, поскольку невозможны эксперимен­тальные браки. Поэтому для изучения групп сцепления и составления карт хромосом человека используют другие методы, в первую очередь генеалогиче­ский, основанный на анализе родо­словных.

Т Е М А № 7 Наследственные заболевания человека

Проблема здоровья людей и генети­ка тесно взаимосвязаны. Ученые-гене­тики пытаются ответить на вопрос, по­чему одни люди подвержены различ­ным заболеваниям, в то время как дру­гие в этих или даже худших условиях остаются здоровы. В основном это свя­зано с наследственностью каждого че­ловека, т.е. свойствами его генов, за­ключенных в хромосомах.

В последние годы отмечаются быст­рые темпы развития генетики челове­ка и медицинской генетики. Это объ­ясняется многими причинами и, преж­де всего резким увеличением доли на­следственной патологии в структуре заболеваемости и смертности населе­ния. Статистика показывает, что из 1000 новорожденных у 35-40 выявля­ются различные типы наследственных болезней, а в смертности детей в возра­сте до 5 лет хромосомные болезни со­ставляют 2-3%, генные - 8-10%, мультифакториальные - 35-40%. Ежегодно в нашей стране рождается 180 тыс. де­тей с наследственными заболевания­ми. Более половины из них имеют врожденные пороки, около 35тыс. - хромосомные болезни и свыше 35 тыс. - генные болезни. Следует отме­тить, что число наследственных болез­ней у человека с каждым годом растет, отмечаются новые формы наследст­венной патологии. В 1956 г. было изве­стно 700 форм наследственных заболе­ваний, а к 1986 году число их увеличи­лось до 2000. В 1992 количество изве­стных наследственных болезней и признаков возросло до 5710.

Все наследственные болезни делят­ся на три группы:

    Генные (моногенные - в основе патологии одна пара аллельных генов)

    Хромосомные

    Болезни с наследственным пред­расположением (мультифакториальные).

Генные болезни человека

Генные болезни - это большая груп­па заболеваний, возникающих в резуль­тате повреждения ДНК на уровне гена.

Общая частота генных болезней в популяции составляет 1-2%. Условно частоту генных болезней считают вы­сокой, если она встречается с частотой 1 случай на 10.000 новорожденных, средней - 1 на 10.000-40.000 и далее - низкой.

Моногенные формы генных заболе­ваний наследуются в соответствии с законами Г. Менделя. По типу насле­дования они делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х- или Y-хромосомами.

Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов - белков. Любая мутация гена ведет к изменению структуры или количества белка.

Начало любой генной болезни свя­зано с первичным эффектом мутантного аллеля. Основная схема генных болезней включает ряд звеньев:

    мутантный аллель;

    измененный пер­вичный продукт;

    цепь последующих биохимических процессов клетки;

  1. организм.

В результате мутации гена на моле­кулярном уровне возможны следую­щие варианты:

    синтез аномального белка;

    выработка избыточного количе­ства генного продукта;

    отсутствие выработки первично­го продукта;

    выработка уменьшенного коли­чества нормального первичного про­дукта.

Не заканчиваясь на молекулярном уровне в первичных звеньях, патогенез генных болезней продолжается на кле­точном уровне. При различных болез­нях точкой приложения действия мутантного гена могут быть как отдель­ные структуры клетки - лизосомы, мембраны, митохондрии, так и органы человека. Клиничес­кие проявления генных болезней, тя­жесть и скорость их развития зависят от особенностей генотипа организма (гены-модификаторы, доза генов, вре­мя действия мутантного гена, гомо- и гетерозиготность и др.), возраста боль­ного, условий внешней среды (пита­ние, охлаждение, стрессы, переутомле­ние) и других факторов.

Особенностью генных (как и вооб­ще всех наследственных) болезней яв­ляется их гетерогенность. Это означа­ет, что одно и то же фенотипическое проявление болезни может быть обус­ловлено мутациями в разных генах или разными мутациями внутри одно­го гена.

К генным болезням у человека отно­сятся многочисленные болезни обмена веществ. Они могут быть связаны с на­рушением обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов и др. Пока еще нет единой классификации наследст­венных болезней обмена веществ. На­учной группой ВОЗ предложена сле­дующая классификация:

1) болезни аминокислотного обмена (фенилкетонурия, алкаптонурия и др.);

    наследственные нарушения обме­на углеводов (галаюгоземия, гликогеновая

болезнь и др.);

    болезни, связанные с нарушением липидного обмена (болезнь Ниманна-

Пика, болезнь Гоше и др.);

    наследственные нарушения обме­на стероидов;

    наследственные болезни пуринового и пиримидинового обмена (пода­гра,

синдром Леша-Найяна и др.);

6) болезни нарушения обмена со­единительной ткани (болезнь Марфана,

мукополисахаридозы и др.);

7) наследственные нарушения гема- и порфирина (гемоглобинопатии и др.);

    болезни, связанные с нарушением обмена в эритроцитах (гемолитичес­кие

анемии и др.);

    наследственные нарушения обме­на билирубина;

    наследственные болезни обмена металлов (болезнь Коновалова-Виль­сона

    наследственные синдромы нару­шения всасывания в пищеваритель­ном

тракте (муковисцидоз, неперено­симость лактозы и др.).

Рассмотрим наиболее часто встреча­ющиеся и генетически наиболее изу­ченные в настоящее время генные бо­лезни.

Мутации, возникающие под влиянием специальных воздействий - ионизирующей радиации, химических веществ, температурных факторов и т. п. - называются индуцированными, В свою очередь спонтанными называют мутации» возникшие без преднамеренного воздействия, под влиянием факторов внешней среды или вследствие биохимических и физиологических изменений в организме.

Термин «мутация» был введен в 1901 г. Г. де Фризом, описавшим спонтанные мутации у одного из видов растений» Различные гены у одного вида мутируют с разной частотой, неодинакова частота мутирования и сходных генов в разных генотипах. Частота споитаавото. мутирования генов невелика и исчисляется обычно единицами, реже десятками и совсем редка сотнями случаев на 1 млн. гамет (у кукурузы частота спонтанного мутирования разных генов составляет от 0 до 492 на 10 6 гамет).

Классификация мутаций. В зависимости от характера изменений, возникающих в генетическом аппарате организма, мутации делятся на генные (точечные), хромосомные и геномные.

Генные мутации. Генные мутации составляют наиболее важную и большую по объему долю мутаций. Они представляют собой стойкие изменения отдельных генов и возникают в результате замены одного или нескольких азотистых оснований в структуре ДНК на другие, выпадения иле добавления новых оснований, что ведет к нарушению порядка считывания информации, В итоге происходит изменение в синтезе белков, что в свою очередь обусловливает появление новых или измененных признаков. Генные мутации вызывают изменение признака в разных направлениях, приводя к сильным или слабым изменениям морфологических, биохимических и физиологических свойств.

У бактерий, например, генные мутации чаще всего затрагивают такие признаки, как форму и. цвет колоний, темп их деления, способность сбраживать различные сахара, устойчивость к антибиотикам, сульфаниламидам и другим лекарственным препаратам, реакцию на температурные воздействия, восприимчивость к заражению бактериофагами, ряд биохимических признаков.

Одной из разновидностей, генных мутаций является множественный аллелизм, при котором возникают не две формы одного гена (доминантная и рецессивная), а целая серия мутаций этого гена, вызывающая разные изменения контролируемого данным геном признака. Например, у дрозофилы известна серии из 12 аллелей, возникающих при мутации одного и того же гена, обусловливающего окраску глаз. Серией множественных аллелей представлены гены, определяющие окраску шерсти у кроликов, различие групп крови у человека и др.

Хромосомные мутации. Мутации этого типа, называемые также хромосомными перестройками, или аберрациями, возникают в результате значительных изменений в структуре хромосом. Механизмом возникновения хромосомных перестроек являются образовавшиеся при мутагенном воздействии разрывы хромосом, последующая утрата некоторых фрагментов и воссоединение оставшихся частей хромосомы в ином порядке по сравнению с нормальной хромосомой. Хромосомные перестройки могут быть обнаружены с помощью светового микроскопа. Главные из них: нехватки, делении, дупликации, инверсии, транслокации и транспозиции.

Нехватками называют перестройки хромосом за счет утери концевого фрагмента. Хромосома при этом становится укороченной» лишается части генов, заключенных в утраченном фрагменте. Потерянный участок хромосомы удаляется за пределы ядра в ходе мейоза,

Делеция - тоже потеря участка хромосомы, но не концевого фрагмента, а средней ее части. Если утерянный участок очень мал и не несёт генов, сильно влияющих на жизнеспособность организма, делеция вызовет лишь изменение фенотипа, в ряде случаев она может обусловить летальный исход или серьезную наследственную патологию. Делеции легко обнаруживаются при микроскопическом исследовании, поскольку в мейозе при конъюгации участок нормальной хромосомы, лишенный гомологичного участка в хромосоме с делецией, образует характерную петлю (рис. 89).

При дупликации происходит удвоение какого-нибудь участка хромосомы. Обозначив условно последовательность каких-либо участков хромосомы как ABC , при дупликации мы можем наблюдать такое расположение этих участков: AA ВС, АВВС или АВСС. При дупликации всего выбранного нами участка он будет выглядеть как АВСАВС, т. е. дуплицируется целый блок генов. Возможно многократное повторение одного участка (АВВВС или АВСАВСАВС), дупликацияне только в соседних, но и более удаленных частях одной итой же хромосомы. У дрозофилы, например, описано, восьмикратное повторение одного из участков хромосом. Добавление лишних генов влияет на организм меньше, чем их утрата, поэтому дупликации влияют на фенотип в меньшей степени, чем нехватки и делеции.

При инверсии изменяется порядок расположения генов в хромосоме. Инверсии возникают в результате двух разрывов хромосомы, при этом образовавшийся

фрагмент, встраивается на свое прежнее место, предварительно перевернувшись на 180°. Схематически инверсию можно представить так. В участке хромосомы, несущем геном ABCDEFG , происходят разрывы между генами А и В, Е и F ; образовавшийся фрагмент BCDE переворачивается и встраивается на свое прежнее место. В итоге рассматриваемый участок будет иметь структуру AEDCBFG . Число генов при инверсиях не меняется, поэтому они мало влияют на фенотип организма. Цитологически инверсии легко обнаруживаются по характерному расположению их в мейозе в момент конъюгации гомологичных хромосом.

Транслокации связаны с обменом участками между негомологичными хромосомами или прикреплением участка одной хромосомы к хромосоме негомологичной пары. Обнаруживаются транслокации по генетическим последствиям, которые они вызывают.

Транспозицией называют открытое в последнее время явление вставки небольшого фрагмента хромосомы, несущего несколько генов в какой-нибудь другой участок хромосомы, т. е. перенесение части генов в другое место генома. Механизм возникновения транспозиций еще мало изучен, но есть данные, что он отличается от механизма остальных хромосомных перестроек.

Геномные мутации. Полиплоидия. Каждому из существующих видов живых организмов присущ характерный набор хромосом. Он постоянен по числу, все хромосомы набора различны и представлены один раз. Такой основной гаплоидный набор хромосом организма, содержащийся в его половых клетках, обозначают символом х ; соматические клетки в норме содержат два гаплоидных набора (2х) и являются диплоидными. Если хромосомы диплоидного организма, удвоившиеся в числе в ходе митоза, не, расходятся в две дочерние клетки и остаются в том же ядре, происходит явление кратного увеличения числа хромосом, называемое полиплоидией.

Аутополиплоидия. Полиплоидные формы могут иметь 3 основных набора хромосом (триплоид), 4 (тетраплоид), 5 (пентаплоид), 6 (гексаплоид) и более хромосомных наборов. Полиплоиды с многократным повторением одного и того же основного набора хромосом называются аутополиплоидными. Возникают аутополиплоиды либо как результат деления хромосом без последующего деления клетки, либо за счет участия в оплодотворении половых клеток с нередуцированным числом хромосом, либо при слиянии соматических клеток или их ядер. В эксперименте эффект полиплоидизации достигается действием температурных шоков (высокая или низкая температура) или воздействием ряда химических веществ, среди которых наиболее эффективны алкалоид колхицин, аценафтен, наркотики. В обоих случаях происходит блокада митотического веретена и, как результат,- нерасхождение удвоившихся в ходе митоза хромосом в две новые клетки и объединение их в одном ядре.

Полиплоидные ряды. Основное число хромосом х у разных родов растений разное, но в пределах одного рода виды часто имеют число хромосом, кратное х, образуют так называемые полиплоидные ряды. У пшеницы, например, где х = 7, известны виды, имеющие 2х, 4х и 6х число хромосом. У розы, где основное число также равно 7, существует полиплоидный ряд, разные виды которого содержат 2х, 3 x , 4 x , 5х, 6х, 8х. Полиплоидный ряд картофеля представлен видами с 12, 24, 36, 48, 60, 72, 96, 108 и 144 хромосомами (х = 12).

Аутополиплоидия распространена в основном у растений, поскольку у животных она вызывает нарушение механизма хромосомного определения пола.

Распространение в природе. Вследствие присущей им более широкой нормы реакции полиплоидные растения легче приспосабливаются к неблагоприятным условиям среды, легче переносят колебания температуры и засуху, что дает преимущества в заселении высокогорных и северных районов. Так, в северных широтах они составляют до 80 % всех распространенных там видов. Резко изменяется число полиплоидных видов при переходе от высокогорных районов Памира с его исключительно суровым климатом к более благоприятным условиям Алтая и альпийских Лугов Кавказа. Среди исследованных злаков доля полиплоидных видов на Памире составляет 90%, на Алтае - 72%, на Кавказе - только 50 %.

Особенности биологии и генетики. Для полиплоидных растений характерно увеличение размеров клеток, в результате чего все их органы - листья, стебли, цветки, плоды, корнеплоды имеют более крупные размеры. В силу специфики механизма расхождения хромосом у полиплоидов при скрещивании расщепление по фенотипу в F 2 составляет 35: 1.

В результате отдаленной гибридизации и последующего удвоения числа хромосом у гибридов возникают полиплоидные формы, содержащие два или более повторения разных наборов хромосом и называемые аллополиплоидами.

В ряде случаев полиплоидные растения имеют сниженную плодовитость, что связано с их происхождением и особенностями мейоза. У полиплоидов с четным числом геномов гомологичные хромосомы в ходе мейоза конъюгируют чаще парами, либо по нескольку пар вместе, не нарушая хода мейоза. Если одна или несколько хромосом не находят себе пары в мейозе и не принимают участия в конъюгации, образуются гаметы с несбалансированным числом хромосом, что ведет к их гибели и резкому снижению плодовитости полиплоидов. Еще большие нарушения возникают в мейозе у полиплоидов с нечетным числом наборов. У аллополиплоидов, возникших при гибридизации двух видов и имеющих по два родительских генома, при конъюгации каждая хромосома находит себе партнера среди хромосом своего вида, Полиплоидия играет большую роль в эволюции растений и находит применение в селекционной практике.

Под мутацией понимают изменение количества и структуры ДНК в клетке или у организма. Другими словами, мутация - это изменение генотипа . Особенностью изменения генотипа является то, что это изменение в результате митоза или мейоза может быть передано следующим поколениям клеток.

Чаще всего под мутациями понимают небольшое изменение в последовательности нуклеотидов ДНК (изменения в одном гене). Это так называемые . Однако кроме них существуют и , когда изменения затрагивают крупные участки ДНК, или меняется количество хромосом.

В результате мутации у организма внезапно может появиться новый признак.

Мысль, что именно мутация является причиной появления новых передающихся через поколения признаков, была впервые высказана Гуго де Фризом в 1901 году. Позже мутации у дрозофилы были изучены Т. Морганом и сотрудниками его школы.

Мутация - вред или польза?

Мутации, происходящие в «незначащих» («молчащих») участках ДНК, не изменяют признаки организма и могут спокойно передаваться из поколения в поколение (на них не будет действовать естественный отбор). Такие мутации можно считать нейтральными. Также нейтральными являются мутации, когда участок гена заменяется на синонимичный. При этом, хотя последовательность нуклеотидов в определенном участке и будет отличаться, но синтезироваться будет такой же белок (с той же последовательностью аминокислот).

Однако мутирование может затронуть значащий ген, изменить аминокислотную последовательность синтезируемого белка, а, следовательно, вызвать изменение признаков организма. В последствии, если концентрация мутации в популяции достигнет определенного уровня, то это приведет к изменению характерного признака всей популяции.

В живой природе мутации возникают как ошибки в ДНК, поэтому все они априори вредны. Большинство мутаций понижают жизнеспособность организма, вызывают различные заболевания. Мутации, возникающие в соматических клетках, не передаются следующему поколению, но в результате митоза образуются дочерние клетки, составляющие ту или иную ткань. Нередко соматические мутации приводят к образованию различных опухолей и других заболеваний.

Мутации, возникающие в половых клетках, могут быть переданы следующему поколению. В стабильных условиях внешней среды почти все изменения генотипа оказываются вредными. Но если условия среды изменились, то может оказаться, что ранее вредная мутации станет полезной.

Например, мутация, вызывающая образование коротких крыльев у какого-нибудь насекомого, скорее всего будет вредна в популяции, живущей в местах, где нет сильного ветра. Данная мутация будет сродни уродству, заболеванию. Обладающие ею насекомые с трудом будут находить партнеров для спаривания. Но если на местности начнут дуть более сильные ветры (например, в результате пожара участок леса был уничтожен), то насекомых с длинными крыльями будет сносить ветром, им будет тяжелее перемещаться. В таких условиях преимущество могут получить короткокрылые особи. Они чаще длиннокрылых будут находить партнеров и пищу. Через некоторое время в популяции окажется больше короткокрылых мутантов. Таким образом, мутация закрепится и превратится в норму.

Мутации лежат в основе естественного отбора и в этом их основная польза. Для организма же подавляющее число мутаций - это вред.

Почему возникают мутации?

В природе мутации возникают случайно и спонтанно. То есть любой ген в любой момент времени может мутировать. Однако частота мутаций у разных организмов и клеток различна. Например, она связана с продолжительностью жизненного цикла: чем он короче, тем мутации возникают чаще. Так у бактерий мутации возникают намного чаще, чем у организмов-эукариот.

Кроме спонтанных мутаций (случающихся в естественных условиях) бывают индуцированные (человеком в лабораторных условиях или неблагоприятными условиями среды) мутации .

В основном мутации возникаю в результате ошибок при репликации (удвоении), репарации (восстановлении) ДНК, при неравном кроссинговере, неправильном расхождении хромосом в мейозе и др.

Так в клетках постоянно происходит восстановление (репарация) поврежденных участков ДНК. Однако если в следствие различных причин механизмы репарации нарушаются, то ошибки в ДНК будут оставаться и накапливаться.

Результатом ошибки при репликации становится замена одного нуклеотида в цепочке ДНК на другой.

Что вызывает мутации?

Повышенный уровень мутаций вызывает рентгеновское излучение, ультрафиолетовые и гамма-лучи. Также к мутагенам относятся α- и β-частицы, нейтроны, космическое излучение (все это частицы, обладающие высокой энергией).

Мутаген - это то, что способно вызывать мутацию.

Кроме различных излучений, мутагенным действием обладают многие химические вещества: формальдегид, колхицин, компоненты табака, пестициды, консерванты, некоторые лекарственные препараты и др.