Структурные изменения эритроцитов у кошек. Микрофотографии колец Кебота

К элементам патологической регенерации относятся мегалобласты, мегалоциты, тельца Жолли, кольца Кебота, базофильная зернистость эритроцитов.

Тельца Жолли

Тельца Жолли - мелкие круглые фиолетово-красные включения размером 1-2 мкм, встречающиеся по два-три в одном эритроците. Они представляют собой остатки ядра мегалобласта, задерживающиеся в эритроците в связи с нарушением процесса освобождения мегалобласта от ядра в костном мозге. В нормальных условиях эти тельца можно обнаружить только у эмбриона и в крови новорожденных. В более позднем периоде тельца Жолли в периферической крови появляются при некоторых видах анемии, отравлениях гемолитическими ядами, а также после спленэктомии.

Кольца Кебота

Кольца Кебота представляют собой, по-видимому, остатки ядерной оболочки. Они имеют вид колечка, восьмерки или скрипичного ключа, окрашиваются в красный цвет. Встречаются только в условиях патологии, главным образом при B 12 - и фолиево-дефицитных анемиях.

Базофильная зернистость эритроцитов

Базофильная зернистость эритроцитов наблюдается при тяжелых формах анемий и токсических состояниях (например, отравлении свинцом). При окраске по Романовскому базофильная зернистость эритроцитов синего цвета. Она указывает на токсическое повреждение костного мозга и поэтому имеет неблагоприятное прогностическое значение. Базофильные гранулы, по-видимому, являются остатком базофильного вещества, аналогичного ре- тнкулоцитам.

Другие включения в эритроцитах

Из других включений в эритроцитах следует указать на зернистость, содержащую негемоглобинное, легко отщепляемое железо (гемосидерин, ферритин). Эритроциты с такими включениями названы сидероцитами и признаны предшественниками зрелых эритроцитов. Они включают ферритин в виде мелких гранул (0,5-1,5 мкм).

Количество их в периферической крови у здоровых людей составляет 0,5-0,8 %. Появление сидероцитов в большем количестве указывает на нарушение синтеза гемоглобина , что наблюдается при отравлении солями свинца, при некоторых гемолитических и гипохромной сидеробластической анемиях, реже при пернициозной анемии и талассемии. Иногда увеличенное количество сидероцитов появляется при многократных переливаниях крови или внутривенных введениях препаратов железа.

Если в периферической крови сидероциты обнаруживаются главным образом при патологических состояниях, то в костном мозге и в норме имеются сидеробласты - ядерные клетки эритроцитопоэза, в цитоплазме которых при специальной окраске выявляются гранулы железа. В норме количество сидеробластов в костном мозге составляет 20-40 % костномозговых эритробластов; при железо дефицитной анемии количество их уменьшается до 2- 5 %. Для выявления сидерофильных гранул в нормоцитах и эритроцитах применяются специальные методы окраски, при которых цитоплазма и ядро клеток окрашиваются в розовый цвет, а сидерофильные гранулы - в синий.

Иногда в эритроцитах можно обнаружить зернистость Шюффнера или пятнистость Маурера (при малярии), тельца Гейнца-Эрлиха (считаются первым признаком наступающего гемолиза и токсического поражения крови), ядерные пылинки Вейденрейха (признак глубокой дезинтеграции ядра), однако происхождение этих включений и их диагностическая ценность изучены еще недостаточно.

Калашникова О.В., ветеринарный врач-терапевт, Ветеринарная клиника неврологии, травматологии и интенсивной терапии, г. Санкт-Петербург.

Отравление луком и чесноком – нередкая причина гемолитической анемии собак и кошек. Домашним хищникам часто дают пищу со стола, консервы, предназначенные для людей, и детское мясное пюре, то есть продукты, содержащие лук и чеснок. Этим растениям приписывают множество целебных свойств, в кинологической литературе 20 века существуют рекомендации вводить эти продукты в рацион животных или использовать вместо противопаразитарных препаратов.

Отсутствие в русскоязычной ветеринарной литературе доступной информации по поводу токсичности продуктов питания для мелких домашних животных приводит к тому, что отравление луком и чесноком остается невыявленным, а развившаяся гемолитическая анемия считается идиопатической. В силу этих обстоятельств животное не получает антидота, осложняется течение заболевания и становится невозможной профилактика подобных отравлений в будущем.

Токсические вещества

С 1994 по 2008 год Veterinary Poisons Information Service (VPIS) было зарегистрировано 69 случаев отравления собак и 4 случая отравления кошек растениями рода Allium SPP3.
Для собак и кошек токсичны все без исключения растения рода Állium (лук), в состав их эфирных масел входят аллил пропил сульфид (H5C3S2C3H7) и дипропил дисульфид (H7C3S2C3H7). Это вещества-окислители, трансформирующие гемоглобин крови в метгемоглобин, неспособный переносить молекулы кислорода к тканям. Результатом такой трансформации становится гемолитическая анемия с образованием телец Хайнца1.
Вареный лук содержит натрий н-пропил тиосульфат, действующий сходным образом, поэтому термическая обработка и высушивание не делают луковые растения менее токсичными2.

Гемолитическая анемия при поедании растений рода Állium зафиксирована у многих видов животных: крупного рогатого скота, буйволов, лошадей и овец1. Но собаки и кошки наиболее чувствительны к отравлению луковыми растениями. Это связано с такими видовыми особенностями, как низкая антиоксидантная активность каталазы у собак и высокая восприимчивость к окислительному повреждению гемоглобина у кошек6.

Механизм действия

Содержащиеся в луке и чесноке соединения серы активно всасываются в кровь из желудочно-кишечного тракта и после того, как концентрация оксидантов превысит антиокислительную способность каталазы, вызывают окислительный гемолиз эритроцитов1.
Первые признаки анемии наблюдаются через сутки после поедания лука, но наиболее тяжелая анемия развивается через несколько дней после этого события.

Помимо основного токсического действия, возможны осложнения, связанные с наличием в луковых растениях других веществ. Например, аллицин и аллисатин – фармакологически активные вещества лука и чеснока – обладают сосудорасширяющим, антитромботическим и гипотензивным действием, а также являются мощными миорелаксантами сердечной и гладкой мускулатуры, что усиливает мышечную слабость и нарушение транспорта кислорода при анемии, а также может приводить к гипотензии1. Кроме того, едкие вещества лука и чеснока могут повреждать слизистую оболочку желудка и тонкого кишечника, вызывая боль и диарею1.

Токсичность

Поедание лука или чеснока в количестве 5 г/кг веса для кошек и 15–30 г/кг для собак приводит к клинически значимым изменениям гематологических показателей1,2. Токсикоз может развиться как при одномоментном употреблении лука, так и при накоплении ядовитого вещества вследствие неоднократного употребления лука или чеснока в количестве меньше токсической дозы.

Следует помнить о том, что опасен как свежий растительный материал, так и пища, содержащая лук или чеснок в вареном виде (котлеты, суповые пакетики с сублимированным материалом, специи). Зафиксированы случаи отравления кошек продуктами детского питания, содержащими лук в обезвоженной форме1.

Кстати, лук и чеснок могут входить в состав любого мясного продукта для детей раннего возраста, поскольку по федеральному закону «О безопасности продуктов детского питания» эти растения входят в число разрешенных добавок. А ведь мясное детское питание часто предлагается для стимуляции аппетита ослабленным болезнью животным.

Повышенная восприимчивость к токсическому воздействию лука и чеснока отмечена у собак японских пород, таких как сиба-ину и акита-ину1. Но в целом у кошек отравление луковыми растениями имеет более тяжелое течение, чем у собак. Лечение препаратами, усиливающими окислительные повреждения эритроцитов, ухудшает состояние животных с отравлением луком и чесноком. К таким препаратам относятся пропофол, метионин, сульфаниламиды, сульфапиридин, большие дозы менадиона (витамин К3, викасол), бензокаин, ацетаминофен (парацетамол)1.

Клинические признаки
Первые признаки возникают в течение суток после отравления и не являются специфическими – это рвота, диарея, боль в животе, анорексия и депрессия. В течение нескольких дней появляются признаки гемолитической анемии: бледность или желтушность слизистых оболочек (фото1), учащенное, поверхностное дыхание с заметным усилием, тахикардия, вялость, слабость, иногда атаксия, темный цвет мочи (красноватый или коричневый).


В качестве редких клинических проявлений отравления луковыми растениями, зафиксированных в профессиональной литературе, следует назвать кровотечение в грудную и брюшную полость у кота5 и гипертензию у собаки4.

Диагностика
В первые сутки после отравления гематологические показатели могут соответствовать норме. После развития гемолитической анемии наиболее показателен клинический анализ крови. В нем выявляется анемия с тельцами Хайнца, иногда сопровождаемая нейтрофилией и лимфопенией. В моче могут быть обнаружены гемоглобин и билирубин. Биохимический анализ крови отражает повышение уровня билирубина и снижение концентрации фосфора ниже 0,8.
УЗИ-диагностика может выявить спленомегалию и признаки острого нефрита с канальцевым некрозом почек (фото 2). Спленомегалия наблюдается практически во всех случаях анемии с тельцами Хайнца, поскольку в селезенке происходит фильтрация крови с удалением из кровотока старых и дефектных эритроцитов, а при окислительном повреждении количество таковых возрастает.

Острый нефрит с тубулярным некрозом при отравлении луком и чесноком встречается редко, он связан с выведением с мочой большого количества гемоглобина или метгемоглобина. УЗИ-признаки острого тубулярного некроза (повышение индекса резистентности выше 0,8) свидетельствуют о серьезных, иногда необратимых повреждениях ткани почек и ухудшают прогноз.

Дифференциальный диагноз

Для того чтобы признать рабочим диагнозом отравление луком и чесноком, недостаточно свидетельства о поедании животным данных продуктов, необходимо исключить инфекционные и системные причины окислительного гемолиза.
У собак это бабезиоз, эрлихиоз, анаплазмоз и лептоспироз1.
У кошек – цитозооноз и ВЛК. Также следует помнить о том, что чувствительные к окислению эритроциты кошек могут повреждаться при любом системном ацидозе, и при первичной диагностике исключать системные заболевания1, например сахарный диабет, особенно осложненный кетоацидозом, а также липидоз печени, гипертиреоз, лимфому и другие новообразования2.

У представителей обоих видов домашних хищников окислительный гемолиз может быть вызван дирофиляриозом и гемотропными микоплазмозами (гемобартонеллами). Следует помнить и о гемофагоцитарном синдроме, который может сопровождать любую сильную воспалительную реакцию организма и заключаться в уничтожении лейкоцитами организма собственных эритроцитов из-за наличия на их мембранах антител. Гемолитическая анемия с тельцами Хайнца может сопровождать васкулит (табл.1).
Отравление луком и чесноком следует дифференцировать от аутоиммунной гемолитической анемии. Для аутоиммунного гемолиза характерно повышение АЛТ, ЩФ, креатинкиназы, удлинение ПВ и АЧТВ, связанное с состоянием гиперкоагуляции, и нехарактерно наличие телец Хайнца. В сомнительных случаях рекомендованы проведение теста Кумбса и проверка на аутоагглютинацию.

Анемия с тельцами Хайнца может быть вызвана отравлением иными токсическими веществами: свинцом, цинком, метиленовым синим, ацетаминофеном (парацетамолом), бензокаином, витамином К3 (менадионом)1 или фенилгидразином (содержится в сточных водах промышленных предприятий по производству красителей).
К анемии с тельцами Хайнца приводит гипофосфатемия при уровне фосфора в крови менее 0,32 ммоль/л. Не следует забывать и о наследственных дефектах эритроцитов, таких как дефицит пируваткиназы или дефект фосфофруктокиназы.
Породная предрасположенность к дефициту пируваткиназы выявлена у абиссинских, сомалийских, бенгальских, сибирских, норвежских лесных кошек и мейн-кунов. Среди собак данную патологию регистрируют у лабрадоров, мопсов, биглей и басенджи. Спаниели, уиппеты и метисы этих пород могут страдать от дефекта фосфофруктокиназы. А сомалийские и абиссинские кошки могут демонстрировать гемолитическую анемию из-за врожденной повышенной хрупкости эритроцитов.

Лечение

Антидот отсутствует. В первые сутки применяются сорбенты для прекращения всасывания токсина из желудочно-кишечного тракта.
Аскорбиновая кислота используется в качестве слабой кислоты для запуска окислительно-восстановительной реакции в дозировке 30 мг/кг каждые 6–8 часов в течение суток1.
Ацетилцистеин (АЦЦ) 140 мг/кг - внутрь как максимальная первичная доза, затем по 70 мг/кг внутрь каждые 6 часов еще 7 раз1. Этот препарат менее эффективен, чем при отравлении парацетамолом, но может быть полезен, поскольку увеличивает синтез глутатиона и активирует процессы детоксикации, а также обладает противовоспалительными свойствами, обусловленными подавлением образования свободных радикалов и реактивных кислородных метаболитов.

В тяжелых случаях может потребоваться переливание крови и нахождение в кислородной камере для стабилизации1. В период выздоровления рекомендуется придерживаться диеты, свободной от потенциальных окислителей, таких как консервант пропиленгликоль, особенно это актуально для кошек2.
Эффективность лечения у кошек ниже, чем у собак2. Среди этих животных чаще наблюдается гибель от отравления луком и чесноком, поэтому профилактика данных отравлений имеет такое большое значение.

Литература:

  1. Salgado B. S., Monteiro L. N., Rocha N. S. Allium species poisoning in dogs and cats. The Journal of Venomous Animals and Toxins including Tropical Diseases, 2011.
  2. Toxicology Brief: Allium species poisoning in dogs and cats. By R. B. Cope, BSc, BVSc, PhD. Aug 01. Veterinary Medicine, 2005.
  3. Cristina Cortinovis, Francesca Caloni. Household food items toxic to dogs and cats. Department of Health, Animal Science and Food Safety, Universitá degli Studi di Milano, Milan, Italy. Front Vet Sci, 22 March, 2016.
  4. Kang M. H., Park H. M. Hypertension after ingestion of baked garlic (Allium sativum) in a dog. J Vet Med Sci, 2010; 72: 515–8.
  5. Sturgeon K., Campbell A. A comparison of Allium species poisoning in cats and dogs. Clin Toxicol, 2008.
  6. Knight A. P. A Guide to Poisonous House and Garden Plants. Jackson, ID: Teton NewMedia, 2007.

Тельца Гейнца - анализ крови, направленный на обнаружение в мазке крови специфических телец, которые могут появиться при наследственном дефиците фермента глюкозо-6-фосфатдегидрогеназы. Прием некоторых препаратов (сульфаниламидов) в сочетании с инфекциями, нарушением функции печени, почек при дефиците этого фермента может приводить к гемолизу (распаду) эритроцитов. Применяется для диагностики анемий.


Следует учитывать, что проба не является специфичной при дефиците глюкозо-6-фосфатдегидрогенгазы, поскольку эти тельца могут появляться при передозировке сульфаниламидов и отравлении анилиновыми красителями, а также дефиците других ферментов (глутатион-редуктазы и 6-фосфоглюконатдегидрогеназы). 1. Следует объяснить пациенту, что исследование позволит выявить причину анемии.






Референтные пределы - Отрицательные. Тельца Гейнца не обнаруживаются в нормальной крови за исключением небольшого количества клеток у некоторых новорожденных или больных после спленэктомии.
1. Недостаточное наполнение пробирки, неправильный выбор антикоагулянта, недостаточное перемешивание крови с антикоагулянтом или поздняя отправка крови в лабораторию.
2. Переливание крови незадолго до исследования.
3. Интерференция:
Повышение:
Окисляющие препараты в достаточной дозе могут вызывать образование телец Гейнца и гемолиз у здоровых людей. В их число входят: аминосалициловая кислота, анилин, хлораты, дапсон, гидроксиламин, нафталан, нитробензен, нитрофурантоин, фенацетин, производные фенола, фенилгидразин, фенилсемикарбазид, резорцин, салицилазосульфидин, сульфоксон натрия, сульфаметоксипиридин, сульфаниламиды, сульфоны.

Установление причин гемолитическойанемии.
Увеличение содержания:
При дефиците Г-6 - ФДГ и других ферментов гексозомонофосфатного шунта образование телец Гейнца и гемолиз могут вызывать низкие дозы окисляющих препаратов.
Заболевания с нестабильным Hb (врожденная анемия с тельцами Гейнца), после спленэктомии или при применении окисляющих препаратов.
Гомозиготная β- талассемия.

Тельца Гейнца - анализ крови , направленный на обнаружение в мазке крови специфических телец, которые могут появиться при наследственном дефиците фермента глюкозо-6-фосфатдегидрогеназы. Прием некоторых препаратов (сульфаниламидов) в сочетании с инфекциями, нарушением функции печени, почек при дефиците этого фермента может приводить к гемолизу (распаду) эритроцитов. Применяется для диагностики анемий.

Тельца Гейнца — это накапливающиеся на мембране эритроцита частицы нерастворимого Hb, выпавшего в осадок из цитоплазмы. Несмотря на то что тельца Гейнца удаляются из эритроцитов в селезенке, они нередко служат причиной гемолитической анемии. Тельца Гейнца можно обнаружить в цельной крови при помощи фазово-контрастной микроскопии или суправитальной окраски если они не образуются спонтанно, можно вызвать их формирование путем добавления к пробе различных окислителей.
Следует учитывать, что проба не является специфичной при дефиците глюкозо-6-фосфатдегидрогенгазы, поскольку эти тельца могут появляться при передозировке сульфаниламидов и отравлении анилиновыми красителями, а также дефиците других ферментов (глутатион-редуктазы и 6-фосфоглюконатдегидрогеназы).

1. Следует объяснить пациенту, что исследование позволит выявить причину анемии.
2. Следует предупредить его, что для исследования необходимо взять пробу крови, и сообщить, кто и когда будет брать кровь из вены.
3. Пациента предупреждают о возможных неприятных ощущениях во время наложения жгута на руку и пункции вены.
4. Лечащий врач и врач-лаборант должны знать о приеме пациентом препаратов, которые могут повлиять на результат исследования. При необходимости эти препараты отменяют.
5. Каких-либо ограничений в диете и режиме питания перед исследованием не требуется.

1. После пункции вены кровь набирают в 3- или 4,5-миллилитровую пробирку с ЭДТА.
2. При образовании гематомы назначают согревающий компресс. При больших размерах гематомы необходим контроль пульса дистальнее места пункции вены.
3. Место пункции прижимают ватным шариком до остановки кровотечения.
4. После взятия крови больной может возобновить прием препаратов, которые пришлось отменить.

Автор (ы): Корнюшенков Е.А., Гимельфарб А.И.
Организация(и): Клиника экспериментальной терапии НИИ клинической онкологии РОНЦ имени Н.Н. Блохина РАМН, Ветеринарная клиника «Биоконтроль» «Институт развития ветеринарной интенсивной терапии, анестезиологии и реаниматологии – ВИТАР» МГАВМиБ им. К.И. Скрябина
Журнал: №1 - 2011

Сокращения: АД ― артериальное давление; ДД/мин ― дыхательные движения в минуту; ОА ― общая анестезия; Уд/Мин ― удары в минуту, ЧДД ― частота дыхательных движений, ЧСС ― частота сердечных сокращений, SpO2 ― сатурация кислорода в гемоглобине, ИВЛ (искусственная вентиляция легких).

Введение

Общая характеристика пропофола. Пропофол -- внутривенный анестетик короткого действия, используемый как для индукции, так и для поддержания общей анестезии (ОА). Относится к фенолам и представляет собой 2,6-диизопропилфенол. Пропофол не растворим в воде, выпускается в виде 1%-й водно-масляной эмульсии белого цвета, рН нейтральный.

Препарат обеспечивает быструю индукцию в анестезию (60...90 с), которая, как правило, не сопровождается выраженной стадией возбуждения. Продолжительность анестезии после однократного болюсного введения составляет в среднем 5...10 мин. В более низких дозах пропофол вызывает седацию. Препарат не обладает анальгетическими свойствами, а повышает порог болевой чувствительности (т.е., уменьшает восприятие боли). Механизм действия пропофола до конца не изучен, однако доказано ингибирование ГАМК-медиаторной трансмиссии. Пропофол не обладает кумулятивными свойствами, поэтому пробуждение даже после длительной инфузии препарата наступает очень быстро как у человека, так и у животных большинства видов. При поступлении в организм пропофол в значительной степени (до 98 %) связывается с белками плазмы крови. Метаболизируется в печени и вне ее. Метаболиты выделяются в основном почками.

Короткая продолжительность клинического действия пропофола обусловлена как его перераспределением, так и быстрым метаболическим клиренсом. Концентрация препарата в плазме после струйного введения быстро снижается в основном за счет перераспределения пропофола из мозга и других хорошо васкуляризованных тканей в органы с менее интенсивным кровоснабжением.

Несмотря на то, что период полувыведения составляет (Т1/2 =40-50 мин.), пробуждение наступает быстро даже после продолжительной инфузии пропофола. Причина подобного противоречия заключается в большом объеме распределения пропофола в равновесном состоянии: он интенсивно перераспределяется в мышцы, жир и др. плохо васкуляризованные ткани.

Ожирение, умеренная дисфункция печени и почек не оказывает значительного влияния на продолжительность действия пропофола, несмотря на кумуляцию его метаболитов. Это дает основание предполагать, что метаболиты пропофола не обладают клинически значимым эффектом. Если скорость введения пропофола тщательно регулируется в зависимости от наблюдаемого эффекта, то снижается частота побочных эффектов (например, артериальной гипотонии) и ускоряется пробуждение после анестезии.

Методика, называемая тотальной внутривенной анестезией (ТТВА, Total ntravenous anesthetics - TIVA) получила свое широкое распространение именно при применении пропофола. В настоящее время этот метод является реальной альтернативой ингаляционной (газовой) анестезии. Так, при сравнении управляемости различных анестетиков (L.Smith, 1996, США), пропофол занял второе место (после дезфлюрана) по скорости пробуждения больных после наркоза, опередив изофлюран и севофлюран. Также важным аспектом использования пропофола является его противорвотный (антиэметический) эффект. N. R. Fahmu (1996, США) сообщает, что при использовании методик TIVA, включающих пропофол, синдром послеоперационной тошноты и рвоты отсутствовал, что весьма актуально, если животное было кормлено.

Особенности метаболизма кошек. Большинство липофильных веществ (за исключением ингаляционных анестетиков) подвергается в организме биотрансформации. Важнейшая роль в биотрансформации лекарственных веществ принадлежит микросомальным ферментам печени, благодаря которым липофильные соединения превращаются в гидрофильные и уже после этого экскретируются (как правило, с мочой). Если вещество не подвергается метаболизму, оно может накапливаться и вызывать токсические эффекты.

Печеночный метаболизм большинства препаратов состоит из двух фаз ― метаболической трансформации (первая) и конъюгации (вторая). В первую фазу за счет окисления, восстановления и гидролиза, вещества становятся более гидрофильными. Во вторую фазу к веществу или его метаболитам присоединяется ряд эндогенных веществ, таких как глюкуронид, глутатион, сульфаты, ацетил и др. Наиболее частой химической реакцией фазы конъюгации является глюкуронизация, которая катализируется ферментами, принадлежащими к семейству глюкуронил-трансфераз.

Было установлено, что у кошек значительно снижена активность некоторых глюкуронил-трансфераз, чем и объясняются особенности действия многих лекарственных средств на этот вид животных. В то время как у большинства животных фармакопрепараты быстро экскретируются из организма в виде конъюгатов глюкуроновой кислоты. У кошек клиренс понижен, а период полувыведения препаратов увеличен. Концентрация таких веществ у кошек повышается быстрее, и токсические эффекты более выражены (особенно ярко у этого вида животных проявляется токсичность ацетаминофена или парацетамола).

Однако, не все экзогенные вещества, метаболизм которых сопряжен с глюкуронизацией, токсичны для кошек. Во-первых, это зависит от того, какая именно глюкуронил-трансфераза требуется для метаболизма того или иного вещества и от выраженности дефицита данного фермента; во-вторых, от широты фармакологического действия вещества; в-третьих, от наличия альтернативных путей метаболизма. У кошек довольно хорошо развит путь конъюгации с сульфатами, который может компенсировать недостаточность глюкуронизации.

Пропофол ― фенольное соединение и метаболизируется, главным образом, в печени с образованием глюкуронидов и сульфатных конъюгатов. Дефицитом глюкуронизации, необходимой для метаболизма фенольных соединений, и объясняется феномен более длительного пробуждения, отмеченный многими исследователями после длительного введения пропофола кошкам.

Анемия с образованием телец Хайнца (Heinz body formation anaemia). Тельца Хайнца представляют собой скопления денатурированного, преципитированного гемоглобина в эритроцитах. Их образование связано с окислительным повреждением эритроцитов под воздействием активных метаболитов кислорода (О2, Н2О2, ОН-), а также с некоторыми другими механизмами. Окислительное повреждение способствует также переходу гемоглобина в метгемоглобин, который не способен присоединять кислород. В результате описанных процессов способность эритроцитов переносить кислород снижается.

У кошек тельца Хайнца обнаруживаются чаще, чем у животных других видов, что связано с более высокой интенсивностью их образования и более медленным удалением. Гемоглобин кошек содержит до 20 S-H-групп, в то время как у других видов животных и у человека их содержание не превышает 4. Повышенное содержание сульфгидрильных групп делает гемоглобин кошек более подверженным окислительному повреждению. Еще одним фактором, способствующим быстрому образованию телец Хайнца, считается легкий переход гемоглобина кошек из состояния тетрамера в состояние димера. Замедленное удаление из кровотока эритроцитов, содержащих тельца Хайнца, объясняется особенностями строения селезенки кошек. У здоровых кошек количество эритроцитов, содержащих тельца Хайнца, достигает 1...2%, хотя и при уровне в 10% кошки могут выглядеть клинически здоровыми.

К окислительным токсинам, вызывающим образование телец Хайнца у кошек, относятся метиленовый синий, ацетаминофен, фенацетин, пропилен-гликоль и др. Пропофол тоже является таким окислителям. Повреждение эритроцитов под действием некоторых перечисленных препаратов объясняется не только особенностями строения гемоглобина кошек, но также более медленным метаболизмом этих веществ. Повышение количества телец Хайнца отмечено при некоторых системных заболеваниях, таких, как жировая дистрофия печени, сахарный диабет, гипертиреоидизм и лимфома. Поскольку у кошек метаболизм пропофола в связи с дефицитом глюкуронизации замедлен, время воздействия препарата на эритроциты продлевается, что увеличивает возможность их окислительного повреждения.

Материалы и методы

На базе Клиники экспериментальной терапии НИИ клинической онкологии РОНЦ имени Н.Н. Блохина РАМН совместно с ветеринарной клиникой «Биоконтроль» были апробированы схемы общей анестезии на основе препарата пропофол. Исследование проводилось на 41-й собаке и 35-ти кошках, проходивших плановое хирургическое лечение в ветеринарной клинике «Биоконтроль». Возраст собак составлял от 6-ти месяцев до 19-ти лет. Возраст кошек составлял от 4-х до 12-ти лет.

За основу тотальной внутривенной анестезии был взят препарат пропофол. Мониторинг осуществлялся с помощью кардиомонитора Sensitec 1200. Исследовались следующие показатели гемодинамики: ЧСС, ЭКГ, ЧДД, НАД, SpO2, Т. Мы регистрировали следующие этапы временного интервала: во время вводной индукции, через 5 мин. после индукции, через 30 мин. после индукции и через 60 мин. после индукции.

Все данные о мониторинге регистрировались в протоколе анестезиологического отделения ветеринарной клиники «Биоконтроль». Степень анестезиологического риска у оперируемых больных соответствовала 2-4 классу по классификации ASA.

Все животные были распределены на пять групп

1-я группа(n=20): собаки в качестве индукции получали препараты пропофол в дозе 6-8 мг/кг МТ; кетамин 2,5 мг/кг МТ и ксилазин 1,25 мг/кг МТ. Далее, пропофол вводился в дозе 10 мг/кг/ МТ/час; кетамин 3,5 мг/кг/ МТ/час и ксилазин 1,5 мг/кг/ МТ/час. В качестве премедикации использовали атропин 0,025 мг/кг МТ; амоксицилин 12,5 мг/кг МТ п/к; тавегил 1,0 мл/10 кг МТ в/м.

2-я группа(n=13): собаки в качестве индукции получали пропофол в дозе 6 -8 мг/кг МТ и фентанил в дозе 5 мкг/кг МТ. Далее, пропофол в дозе 12 мкг/кг/ МТ/час и фентанил 10 мкг/кг/ МТ/час. В качестве премедикации использовали атропин 0,025 мг/кг МТ; амоксицилин 12,5 мг/кг МТ п/к; тавегил 1,0 мл/10 кг МТ в/м.

3-я группа(n=8): собаки в качестве индукции получали препарат пропофол в дозе 6-8 мг/кг МТ и золетил в дозе 4 мг/кг МТ. Далее, пропофол в дозе 12 мг/кг/ МТ/час и золетил в дозе 4 мг/кг МТ/час. В качестве премедикации использовали атропин 0,025 мг/кг МТ; амоксицилин 12,5 мг/кг МТ п/к; тавегил 1,0 мл/10 кг МТ в/м.

Вводную индукцию осуществляли болюсным введением препаратов, в дальнейшем индукцию проводили, используя одноканальные или двухканальные шприцевые дозаторы фирмы Sensitec.

Учитывая универсальность в применении пропофола, мы использовали его у пациентов, которым выполнялись операции разного профиля. В табл.1 приведены данные о характере оперативного вмешательства у собак.

Таблица 1. Распределение групп животных по характеру оперативного вмешательства у собак.

4-я группа: кошки(n=20), которым были назначены непродолжительные лечебные процедуры (лучевая терапия) под ОА препаратом пропофол. Продолжительность анестезии составляла 10 мин. Оценивали такие параметры, как наличие или отсутствие возбуждения (опистотонуса) при вводной анестезии, ЧСС, SpO2 (с помощью пульсоксиметра фирмы Dixion), время и характер пробуждения животных. В качестве премедикации использовали атропин 0,025 мг/кг МТ в/в и тавегил 0,3 мл/животное в/в, разбавленный физиологическим растворам в пропорции 1:5. Индукционная доза ― 6...8 мг/кг МТ препарата пропофола болюсно.

В 5-ю группу(n=15) входили животные, которым было назначено плановое хирургическое вмешательство в объеме унилатеральной мастэктомии. Премедикация: атропин 0,05 мг/кг МТ п/к; амоксицилин 12,5 мг/кг МТ п/к; тавегил 0,3 мл/животное в/м; буторфанол 0,4 мг/кг МТ в/м. В качестве компонентов ОА пациентам применяли пропофол в дозе 4...6 мг/кг МТ и золетил 2 мг/кг МТ. Оценивали такие критерии, как наличие или отсутствие возбуждения у животного при индукции, АД, ЧСС, ЧДД, SpО2 (используя кардиомонитор фирмы Mindrey).

Животным всех групп с целью профилактики гиповолемии проводили инфузионную терапию раствором Рингера со скоростью 10 мл/кг МТ/час.

Результаты исследования у собак

При вводной индукции пропофолом мы наблюдали у 3-х собак (две -- кане корсо, одна -- английский бульдог белого окраса) гиперемию слизистых оболочек ротовой полости и глаз, а также гиперемию кожи в области ушей и мошонки, без признаков зуда.

У 2-х собак при вводной анестезии пропофолом наблюдался опистотонус и «плавательные» движения конечностями.

У собак всех групп мы наблюдали незначительные изменения со стороны частоты сердечных сокращений (ЧСС). В 1-й и 2-й группе мы наблюдали снижение ЧСС (график 1). У двух животных 1-й группы и одного животного 3-й группы наблюдалось снижение ЧСС ниже 50 уд/мин. после чего им применяли холинолитические препараты (атропин 0,05 мг/кг в/в), что стабилизировало показатели гемодинамики. У остальных пациентов 3-й группы наблюдался незначительный подъем ЧСС после вводной индукции (график 1). Однако к моменту середины оперативного лечения ЧСС имела тенденцию к снижению.

При исследовании изменений АД мы наблюдали снижение АД по ходу операции у собак 1-й группы (график 2). У трех собак 1-й группы наблюдалось снижение АД ср. ниже 70 мм рт. ст., которое не стабилизировалась на фоне инфузионной терапии. Данным животным применяли вазоконстрикторы (допмин: 4 мкг/кг/ МТ/мин), что позволило стабилизировать показатели гемодинамики.

У собак 2-й группы наблюдалась тенденция к снижению АД после проведенной вводной индукции (график 2). У одного животного потребовалась стимуляция допмином. В дальнейшем мы наблюдали тенденцию к увеличению показателей артериального давления.

У животных 3-й группы мы наблюдали незначительное повышение АД ближе к концу оперативного лечения (график 2).

Снижение показателей сатурации относительно нормы (96-98%) наблюдалось у всех групп собак при вводной индукции (график 3). Наиболее низкой сатурация наблюдалась у пациентов 2-й группы (92,8%). Однако в дальнейшем показатели сатурации составляли нормальные значения во всех исследуемых группах.

Тенденция к снижению ЧДД наблюдалось у всех исследуемых групп (график 4). Тенденция к ослаблению спонтанного дыхания наблюдалась у четырех (14,2%) животных 1-й группы, у восьми (66,6%) животных 2-й группы и шести (75%) животных 3-й группы. Им проводилась респираторная поддержка аппаратом ИВЛ Graph в режиме PCV , f = 10 - 15 Peep 0 – 5 см. вод. ст.

Уменьшение температуры тела наблюдалось у всех групп животных (график 5). Снижение температуры тела ниже 35,0 наблюдалось у одного животного 1-й группы и одного 2-й группы. Используя подогреваемые подстилки, и вводя теплые растворы, данные изменения гемодинамики были нивелированы.

Восстановление сознания (забор языка в ротовую полость, двигательная активность, обострение внимания при произнесении клички животного) наблюдалось быстрее у пациентов 2-й группы. В среднем, время пробуждения составило 35-40 мин. после операции продолжительностью 60 мин. В группах, где использовались диссоциативные анестетики (кетамин, золетил), это время продлевалось на 20-30 мин. и составляло от 50 до 70 мин. после операции продолжительностью 60 мин.

У трех животных 3-й группы наблюдалось психомоторное возбуждение, проявляющееся лаем и галлюцинациями («ловлей мух») в послеоперационном периоде.

Результаты исследования у кошек

При вводной анестезии препаратом пропофол мы не наблюдали признаков возбуждения или опистотнуса у исследуемых животных 4-й и 5-й групп. У четырех животных (по две кошки из обеих групп) мы наблюдали признаки опистотонуса после анестезии, которые не сопровождались другими неврологическими расстройствами (судороги, атаксия) и самопроизвольно нивелировались через 5...10 мин.

Изменения со стороны сердечно-сосудистой системы регистрировались в 4-х из 5-ти исследовательских групп. В 4-й группе мы наблюдали плавное снижение ЧСС (до 130 уд/мин) по ходу анестезии. В дальнейшем, на 10-й мин ЧСС повысилась (до 135 уд/мин), что соответствовало фазе пробуждения животного и являлось физиологической нормой. В 5-й группе на всем протяжении анестезии мы наблюдали снижение ЧСС (до 122 уд/мин), что являлось физиологической нормой и не требовало фармакокоррекции (график 6). Дополнительным методом контроля сердечно-сосудистой системы у животных 5-й исследовательской группы было измерение АД (график 8). Мы наблюдали тенденцию к снижению АД (среднее значение в группе до 72 мм рт. ст.), что соответствовало норме и не требовало дополнительного введения вазоконстрикторов.

Изменения со стороны дыхательной системы регистрировали по данным частоты дыхательных движений и сатурации гемоглобина в кислороде. Мы наблюдали снижение процента кислорода в гемоглобине при вводной анестезии в 4-й и 5-й исследовательских группах (среднее значение до 94,5 %). Во время анестезии этот показатель увеличивался и к 10-й мин. мы регистрировали 96% кислорода, что соответствовало физиологической норме (график 7). При анализе сатурации за весь период наблюдения установлено, что содержание кислорода было выше в 5-й исследовательской группе (в среднем 97,6 %), что свидетельствовало о лучшей оксигенации пациентов. В обеих исследовательских группах не отмечено депрессии спонтанного дыхания, анестезия проходила без респираторной поддержки и признаков дыхательной недостаточности. Минимальное значение ЧДД (в среднем 16 ДД/мин) регистрировали у животных 5-й группы, что являлось физиологической нормой для этого вида (график 9).

Сознание и двигательная активность быстрее восстанавливались у животных 4-й группы. Это объясняется тем, что им вводили только индукционную дозу препарата пропофол в монорежиме. В среднем, время пробуждения составляло 5 мин. 45 сек., в 4-й группе и 29 мин. 15 сек., в 5-й группе.

Нарушений сердечного ритма, а также судорог, апноэ, цианоз не отмечены у исследуемых групп животных. Также мы не наблюдали клинических симптомов, соответствующих развитию болезни Хайнца.

Обсуждение

Наблюдаемая нами гиперемия слизистых оболочек ротовой полости и глаз, а также гиперемия кожи у трех собак объясняется в большей степени индивидуальной реакцией животных на составляющие ингредиенты пропофола, а именно, содержание соевого компонента, который в отдельных случаях может дать аллергическую реакцию по типу крапивницы. Как правило, такого рода реакция является единственным серьезным проявлением аллергии и не влечет за собой дополнительных последствий.

Опистотонус и «плавательные» движения при применении пропофола, вероятнее всего, происходят по тем же причинам, что и у других предшественников пропофола. Эти непроизвольные движения связаны с возникающей депрессией подкорковых структур, устраняющей ингибирующее влияние на кору. Как правило, данные осложнения возникают при вводной анестезии и являются неэпилептической миоклонией. В некоторых работах показано, что такие состояния у людей и собак не сопровождаются судорожной или эпилептиформной активностью на электроэнцефалограмме (Borgeat A., Wilder-Smith OHG, 1994). Доказано также, что пропофол вызывает феномены возбуждения (миоклонию, тремор, дистонию) реже, чем этомидат и тиопентал (Reddy R. V., Moorhy S.S., 1993). Миоклония легко снимается применением альфа- 2-агонистов, кетамином, золетилом или газовыми анестетиками.

Наблюдаемое снижение ЧСС при комбинации гипнотика пропофола и наркотического анальгетика, является предсказуемым осложнением, исходя из фармакодинамики обоих препаратов. Оба препарата снижают ЧСС, что в совокупности усиливает это действие и может вызвать стойкую брадикардию. Такой же эффект вызывает и комбинация пропофола с ксилазином. Эти изменения гемодинамики являются ожидаемыми и легко компенсируются применением атропина. Повышение ЧСС при использовании пропофола и золетила на начальных этапах индукции, вероятней всего, объясняется компенсаторным процессом, связанным со снижением ЧДД. Также повышение ЧСС при использовании золетила вероятно за счет симпатической стимуляции, которая приводит к синусовой тахикардии.

Артериальная гипотония при применении пропофола в качестве компонента внутривенной анестезии связана со снижением сердечного выброса и снижением сосудистого сопротивления. Этот факт является актуальным у декомпенсированных больных, для которых типична дегидратация и гиповолемия. Однако у исходно здорового животного этот факт может не иметь существенного клинического значения. Индукция анестезии пропофолом в сочетании с фентанилом иногда вызывает артериальную гипотонию, хотя на протяжении всего периода снижения АД на ЭКГ не будет зарегистрировано никаких признаков ишемии миокарда (Haessler R., Madler C., 1992). При индукции, сочетающей пропофол и золетил, возможен незначительный подъем артериального давления вследствие симпатической стимуляции. В случаях отрицательной динамики повышения АД за счет инфузионной терапии, назначаются вазоконстрикторы (допмин, добутамин, адреналин).

Депрессия дыхания при использовании высокодозной пропофоловой анестезии (10 и более мг/кг) будет считаться нормой. Операция может проходить и при спонтанном дыхании, однако обязательным условием будет проведение оксигенотерапии. Именно после перевода животных на искусственную вентиляцию легких (ИВЛ) мы наблюдали повышение показателей сатурации, что являлось объективным критерием респираторной поддержки. В комбинации пропофола и фентанила, а также пропофола и золетила более чем в 70% случаях понадобится респираторная поддержка у собак. При этом, при использовании для индукции шприцевых дозаторов, проведение ИВЛ будет малоинвазивным, что позволит животному сразу же после окончания операции начать дышать самостоятельно. В отношении кошек можно сказать, что эти животные хорошо переносит высокодозную пропофоловую анестезию, которая не проявляется угнетением для дыхательного центра, что дает возможность проведения анестезии при спонтанном дыхании.

Снижение температуры тела наблюдается при использовании всех видов анестезиологического пособия. В некоторых случаях это может оказать свои положительные свойства, например при нейрохирургических вмешательствах. Предрасполагающими факторами к развитию гипотермии являются: длительные хирургические вмешательства на открытых полостях; собаки карликовых пород; операции с массивной кровопотерей. Если же источником гипотермии послужила длительная анестезия, то данное состояние хорошо компенсируется применением электрических одеял и введением теплых растворов.

Выводы

1. Пропофол подходит для использования в качестве средства ОА у кошек и собак, как при кратковременных процедурах, так и при постоянно контролируемой инфузии.

2. Индукционная доза указанного препарата не должна превышать 8 мг/кг МТ.

3. При соблюдении предложенных схем ОА, индукция (в монорежиме 6...8 мг/кг МТ, при сочетании с анальгетиками 4...6 мг/кг МТ) и операция проходят при спонтанном дыхании у кошек. У собак при дозе более 10 мг/кг МТ может возникнуть депрессия дыхания, что потребует респираторной поддержки.

4. В период пробуждения животного возможны эпизоды опистотонуса, 11,4 % случаев, по собственным исследованиям, что самопроизвольно нивелируется через 5...10 мин.

5. Пропофол обладает хорошими реверсивными свойствами, что позволяет минимизировать количество времени пребывания животного в стационаре.

Литература

1. Кирк Р., Бонагура Д. «Современный курс ветеринарной медицины Кирка», М., Аквариум-Принт, 2005.

2. Уиллард М., Тведтен Г., Торнвальд Г. «Лабораторная диагностика в клинике мелких домашних животных», Под ред. д.б.н. В.В. Макарова; М., Аквариум Бук, 2004.

3. Харкевич Д.А. «Фармакология». Гэотар-Мед, 2004.

4. Andress J.L., Day T.K., Day D. The effects of consecutive day propofol anesthesia on feline red blood cells. Vet Surg, 1995.

5. Bley R., Roos M.,Price J., Ruess-Melzer K., Buchholz J., Poirier V., Kaser-Hotz B. Clinical assessment of repeated propofol-associated anesthesia in cats. Journal of the American Veterinary Medical Association, 2007.

6. Boothe D.M. Drug therapy in cats: mechanisms and avoidance of adverse drug reactions. J Am Vet Med Assoc, 1990.

7. Brearley J.C., Kellagher R.E.B., Hall L.W. Propofol Anaesthesia in Cats. Veterinary Anaesthesia and Analgesia, 1988.

8. Glen J.B. Animal Studies of the Anaesthetic Activity of ICI 35 868. British Journal of Anaesthesia, 1980.

9. Liehmann L. A comparison of cardiorespiratory variables during isoflurane–fentanyl and propofol–fentanyl anaesthesia for surgery in injured cats. Veterinary Anaesthesia and Analgesia, 2004.

10. Matthews N.S., Brown R.M., Barling K.S., Lovering S.L., Herrig B.W. Repetitive Propofol Administration in Dogs and Cats. Journal of the American Animal Hospital Association, 2004.

11. Mendes G.M., Selmi A.L. Use of a combination of propofol and fentanyl, alfentanil, or sufentanil for total intravenous anesthesia in cats. J Am Vet Med Assoc, 2003.

12. Morgan D.W., Legge K. Clinical evaluation of propofol as an intravenous anaesthetic agent in cats and dogs. Vet Rec, 1989.

13. Pascoe P.J., Ilkiw J.E., Frischmeyer K.J. The effect of the duration of propofol administration on recovery from anesthesia in cats. Vet Anaesth Analg, 2006.

14. Robertson S. What"s Different About Anesthetizing Cats? Proceeding of the SEVC Southern European Veterinary Conference, 2008,Barcelona, Spain.

15. Seymour C., Duke T. BSAVA Manual of Feline and Canine Anaesthesia and Analgesia. 2nd edition. 2007.

Тельца Хайнца (также известные как тельца Гейнца или Гейнца-Эрлиха) - это преципитаты окисленного гемоглобина в эритроците, при окрасках по Романовскому выглядящие как эозинофильные сферические включения, часто выступающие за границы эритроцита. Это достаточно распространенный маркер окислительного повреждения гемоглобина, часто, хотя и необязательно сопутствующий эксцентроцитам и метгемоглобинемии.

Наиболее часто тельца Хайнца можно увидеть у кошек, и это связано с некоторыми особенностями их физиологии. Во-первых, в отличие от большинства других видов, у кошек в молекуле гемоглобина есть шесть нестабильных сульфгидрильных групп, и их гемоглобин очень легко диссоциирует из тетрамера в димер. Во-вторых, их несинусоидальная селезенка крайне неэффективна в вопросах удаления включений с поверхности эритроцитов - поэтому, как и в случае с тельцами Хауэлла-Джолли, до 5% эритроцитов с тельцами Хайнца для кошки считается вариантом нормы. Ну и наконец, отсутствие некоторых ферментативных систем не позволяет им эффективно метаболизировать некоторые ксенобиотики, продукты промежуточного обмена которых часто и вызывают образование телец Хайнца.

В течение некоторого времени эритроцит может смещать образовавшееся тельце Хайнца к периферии по механизму, аналогичному выталкиванию телец Хауэлла-Джолли, и даже иногда избавляться от него, но чаще всего он не успевает это сделать. Тельце Хайнца само по себе изменяет реологические свойства эритроцита, он становится более хрупким, и в среднем продолжительность жизни эритроцитов резко сокращается. У кошек, поскольку селезенка тельца Хайнца не убирает, основным механизмом элиминации пораженных эритроцитов является гемолиз. В мазках часто можно наблюдать "призраки" эритроцитов - то есть, пустые мембраны без гемоглобина, - с ярко заметным тельцем Хайнца. На фотографии выше такие тоже есть.

К распространенным причинам окислительного повреждения эритроцитов относятся:
- применение парацетамола. К нему чувствительны опять же особенно кошки, но и у собак распространена гемолитическая реакция.
- отравление луком, чесноком. Это, конечно, касается преимущественно собак - заточить лука из-под шашлыков они всегда горазды, а вот кошек, трескающих подобные гадости, увидеть можно редко.
- пропиленгликоль у кошек. Раньше часто входил во влажные рационы, сейчас FDA не рекомендовала его применение в кошачьих кормах. Человек к пропиленгликолю чувствителен чуть менее чем никак, поэтому в человеческой еде его полно (любителям покормить со стола на заметку).
- любые системные заболевания, сопровождающиеся ацидозом. В моей личной тройке лидеров - диабет, особенно с кетоацидозом, септические плевриты, сопровождающиеся пиотораксом и дыхательной недостаточностью, и липидоз.
- отравление сильными окислителями (в основном тоже собачья тема): витамин К, антагонисты витамина К, цинк и многое другое.

Появление телец Хайнца далеко не всегда сопровождается клинически обнаружимой гемолитической анемией. При умеренной интенсивности поражения костный мозг обычно успевает ответить повышением эритропоэза, и в крови помимо них обнаруживается еще умеренная полихромазия.