Строение клетки живой клетки человек. Неклеточные формы жизни

Клетка является основной элементарной единицей всего живого, поэтому ей присущи все свойства живых организмов: высокоупорядоченное строение, получение энергии извне и ее использование для выполнения работы и поддержания упорядоченности, обмен веществ, активная реакция на раздражения, рост, развитие, размножение, удвоение и передача биологической информации потомкам, регенерация (восстановление поврежденных структур), адаптация к окружающей среде.

Немецкий ученый Т. Шванн в середине XIX века создал клеточную теорию, основные положения которой свидетельствовали о том, что все ткани и органы состоят из клеток; клетки растений и животных принципиально сходны между собой, все они возникают одинаково; деятельность организмов - сумма жизнедеятельности отдельных клеток. Большое влияние на дальнейшее развитие клеточной теории и вообще на учение о клетке оказал великий немецкий ученый Р. Вирхов. Он не только свел воедино все многочисленные разрозненные факты, но и убедительно показал, что клетки являются постоянной структурой и возникают только путем размножения.

Клеточная теория в современной интерпретации включает в себя следующие главные положения: клетка является универсальной элементарной единицей живого; клетки всех организмов принципиально сходны по своему строению, функции и химическому составу; клетки размножаются только путем деления исходной клетки; многоклеточные организмы являются сложными клеточными ансамблями, образующими целостные системы.

Благодаря современным методам исследования были выявлены два основных типа клеток : более сложно организованные, высокодифференцированные эукариотические клетки (растения, животные и некоторые простейшие, водоросли, грибы и лишайники) и менее сложно организованные прокариотические клетки (сине-зеленые водоросли, актиномицеты, бактерии, спирохеты, микоплазмы, риккетсии, хламидии).

В отличие от прокариотической эукариотическая клетка имеет ядро, ограниченное двойной ядерной мембраной, и большое количество мембранных органелл.

ВНИМАНИЕ!

Клетка является основной структурной и функциональной единицей живых организмов, осуществляющей рост, развитие, обмен веществ и энергии, хранящей, перерабатывающей и реализующей генетическую информацию. С точки зрения морфологии клетка представляет собой сложную систему биополимеров, отделенную от внешней среды плазматической мембраной (плазмолеммой) и состоящую из ядра и цитоплазмы, в которой располагаются органеллы и включения (гранулы).

Какие бывают клетки?

Клетки разнообразны по своей форме, строению, химическому составу и характеру обмена веществ.

Все клетки гомологичны, т.е. имеют ряд общих структурных признаков, от которых зависит выполнение основных функций. Клеткам присуще единство строения, метаболизма (обмена веществ) и химического состава.

Вместе с тем различные клетки имеют и специфические структуры. Это связано с выполнением ими специальных функций.

Строение клетки

Ультрамикроскопическое строение клетки:


1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома клеточный центр (цитоцентр); 4 - гиалоплазма; 5 - эндоплазматическая сеть: а - мембрана зернистой сети; б - рибосомы; 6 - связь перинуклеарного пространства с полостями эндоплазматической сети; 7 - ядро; 8 - ядерные поры; 9 - незернистая (гладкая) эндоплазматическая сеть; 10 - ядрышко; 11 - внутренний сетчатый аппарат (комплекс Гольджи); 12 - секреторные вакуоли; 13 - митохондрия; 14 - липосомы; 15 - три последовательные стадии фагоцитоза; 16 - связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети.

Химический состав клетки

В состав клетки входит более 100 химических элементов, на долю четырех из них приходится около 98% массы, это органогены: кислород (65–75%), углерод (15–18%), водород (8–10%) и азот (1,5–3,0%). Остальные элементы подразделяются на три группы: макроэлементы - их содержание в организме превышает 0,01%); микроэлементы (0,00001–0,01%) и ультрамикроэлементы (менее 0,00001).

К макроэлементам относятся сера, фосфор, хлор, калий, натрий, магний, кальций.

К микроэлемен-там - железо, цинк, медь, йод, фтор, алюминий, медь, марганец, кобальт и др.

К ультрамикроэлементам - селен, ванадий, кремний, никель, литий, серебро и до. Несмотря на очень малое содержание, микроэлементы и ультрамикроэлементы играют очень важную роль. Они влияют, главным образом, на обмен веществ. Без них невозможна нормальная жизнедеятельность каждой клетки и организма как целого.

Клетка состоит из неорганических и органических веществ. Среди неорганических наибольшее количество воды. Относительное количество воды в клетке составляет от 70 до 80%. Вода - универсальный растворитель, в ней происходит все биохимические реакции в клетке. При участии воды осуществляется теплорегуляция. Вещества, растворяющиеся в воде (соли, основания, кислоты, белки, углеводы, спирты и др.), называются гидрофильными. Гидрофобные вещества (жиры и жироподобные) не растворяются в воде. Другие неорганические вещества (соли, кислоты, основания, положительные и отрицательные ионы) составляют от 1,0 до 1,5%.

Среди органических веществ преобладают белки (10–20%), жиры, или липиды (1–5%), углеводы (0,2–2,0%), нуклеиновые кислоты (1–2%). Содержание низкомолекулярных веществ не превышает 0,5%.

Молекула белка является полимером, который состоит из большого количества повторяющихся единиц мономеров. Мономеры белка аминокислоты (их 20) соединены между собой пептидными связями, образуя полипептидную цепь (первичную структуру белка). Она закручивается в спираль, образуя, в свою очередь, вторичную структуру белка. Благодаря определенной пространственной ориентации полипептидной цепи возникает третичная структура белка, которая определяет специфичность и биологическую активность молекулы белка. Несколько третичных структур, объединяясь между собой, образуют четвертичную структуру.

Белки выполняют важнейшие функции. Ферменты - биологические катализаторы, увеличивающие скорость химических реакций в клетке в сотни тысяч миллионы раз, являются белками. Белки, входя в состав всех клеточных структур, выполняют пластическую (строительную) функцию. Движения клеток также осуществляют белки. Они обеспечивают транспорт веществ в клетку, из клетки и внутри клетки. Важной является защитная функция белков (антитела). Белки являются одним из источников энергии.Углеводы подразделяются на моносахариды и полисахариды. Последние построены из моносахаридов, являющихся, подобно аминокислотам, мономерами. Среди моносахаридов в клетке наиболее важны глюкоза, фруктоза (содержит шесть атомов углерода) и пентоза (пять атомов углерода). Пентозы входят в состав нуклеиновых кислот. Моносахариды хорошо растворяются в воде. Полисахариды плохо растворяются в воде (в животных клетках гликоген, в растительных - крахмал и целлюлоза. Углеводы являются источником энергии, сложные углеводы, соединенные с белками (гликопротеиды), жирами (гликолипиды), участвуют в образовании клеточных поверхностей и взаимодействиях клеток.

К липидам относятся жиры и жироподобные вещества. Молекулы жиров построены из глицерина и жирных кислот. К жироподобным веществам относятся холестерин, некоторые гормоны, лецитин. Липиды, являющиеся основным компонентом клеточных мембран, выполняют тем самым строительную функцию. Липиды - важнейшие источники энергии. Так, если при полном окислении 1 г белка или углеводов освобождается 17,6 кДж энергии, то при полном окислении 1 г жира - 38,9 кДж. Липиды осуществляют терморегуляцию, защищают органы (жировые капсулы).

ДНК и РНК

Нуклеиновые кислоты являются полимерными молекулами, образованными мономерами нуклеотидами. Нуклеотид состоит из пуринового или пиримидинового основания, сахара (пентозы) и остатка фосфорной кислоты. Во всех клетках существует два типа нуклеиновых кислот: дезоксирибонулеиновая (ДНК) и рибонуклеиновая (РНК), которые отличаются по составу оснований и сахаров.

Пространственная структура нуклеиновых кислот:


(по Б. Албертсу и соавт., с изм.).I - РНК; II - ДНК; ленты - сахарофосфатные остовы; A, C, G, T, U - азотистые основания, решетки между ними - водородные связи.

Молекула ДНК

Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в виде двойной спирали. Азотистые основания обеих цепей соединены между собой комплементарно водородными связями. Аденин соединяется только с тимином, а цитозин - с гуанином (А - Т, Г - Ц). В ДНК записана генетическая информация, которая определяет специфичность синтезируемых клеткой белков, т. е. последовательность аминокислот в полипептидной цепи. ДНК передает по наследству все свойства клетки. ДНК содержится в ядре и митохондриях.

Молекула РНК

Молекула РНК образована одной полинуклеотидной цепью. В клетках существует три типа РНК. Информационная, или мессенджер РНК тРНК (от англ. messenger - «посредник»), которая переносит информацию о нуклеотидной последовательности ДНК в рибосомы (см. ниже). Транспортная РНК (тРНК), которая переносит аминокислоты в рибосомы. Рибосомальная РНК (рРНК), которая участвует в образовании рибосом. РНК содержится в ядре, рибосомах, цитоплазме, митохондриях, хлоропластах.

Состав нуклеиновых кислот:

В основе практически всех живых организмов лежит простейшая единица - клетка. Фото этой крошечной биосистемы, а также ответы на самые интересные вопросы вы сможете найти в этой статье. Какова структура и размеры клетки? Какие функции в организме она выполняет?

Клетка - это...

Ученым неизвестно определенное время возникновения первых живых клеток на нашей планете. В Австралии были найдены их остатки возрастом 3,5 миллиарда лет. Однако точно установить их биогенность так и не удалось.

Клетка - это простейшая единица в строении почти всех живых организмов. Исключением являются лишь вирусы и вироиды, которые относятся к неклеточным формам жизни.

Клетка - это структура, которая способна существовать автономно и самовоспроизводиться. Её размеры могут быть разными - от 0,1 до 100 мкм и более. Однако стоит отметить, что неоплодотворенные яйца пернатых тоже можно считать клетками. Таким образом, самой крупной по размеру клеткой на Земле можно считать страусиное яйцо. В диаметре оно может достигать 15 сантиметров.

Наука, изучающая особенности жизнедеятельности и структуру клетки организма, называется цитологией (или клеточной биологией).

Открытие и исследование клетки

Роберт Гук - английский ученый, который известен всем нам из школьного курса физики (именно он открыл закон о деформации упругих тел, который был назван его именем). Помимо этого, именно он первым увидел живые клетки, рассматривая через свой микроскоп срезы пробкового дерева. Они напомнили ему пчелиные соты, поэтому он назвал их cell, что в переводе с английского означает "ячейка".

Клеточная структура растений была подтверждена позже (в конце XVII столетия) многими исследователями. А вот на организмы животных клеточная теория была распространена лишь в начале XIX века. Примерно тогда же ученые всерьез заинтересовались содержимым (структурой) клеток.

Детально рассмотреть клетку и её структуру позволили мощные световые микроскопы. Они до сих пор остаются основным инструментом в исследовании этих систем. А появление в прошлом столетии электронных микроскопов дало возможность биологам изучать и ультраструктуру клеток. Среди методов их исследования также можно выделить биохимические, аналитические и препаративные. Также вы можете узнать, как выглядит живая клетка, - фото приведено в статье.

Химическая структура клетки

В состав клетки входит множество различных веществ:

  • органогены;
  • макроэлементы;
  • микро- и ультрамикроэлементы;
  • вода.

Около 98% химического состава клетки составляют так называемые органогены (углерод, кислород, водород и азот), еще 2% - макроэлементы (магний, железо, кальций и другие). Микро- и ультрамикроэлементы (цинк, марганец, уран, йод и т. д.) - не более 0,01% всей клетки.

Прокариоты и эукариоты: основные отличия

Исходя из особенностей структуры клетки, все живые организмы на Земле делятся на два надцарства:

  • прокариоты - более примитивные организмы, которые сформировались эволюционным путем;
  • эукариоты - организмы, клеточное ядро которых является полностью оформленным (организм человека также относится к эукариотам).

Основные отличия клетки эукариотов от прокариотов:

  • более крупные размеры (10-100 мкм);
  • способ деления (мейоз или митоз);
  • тип рибосом (80S-рибосомы);
  • тип жгутиков (в клетках организмов эукариотов жгутики состоят из микротрубочек, которые окружены мембраной).

Строение клетки эукариота

В структуру эукариотической клетки входят следующие органоиды:

  • ядро;
  • цитоплазма;
  • аппарат Гольджи;
  • лизосомы;
  • центриоли;
  • митохондрии;
  • рибосомы;
  • везикулы.

Ядро - это главный структурный элемент клетки эукариота. Именно в нем хранится вся генетическая информация о конкретном организме (в молекулах ДНК).

Цитоплазма - особое вещество, в котором содержится ядро и все остальные органоиды. Благодаря специальной сети микротрубочек, она обеспечивает перемещение веществ внутри клетки.

Аппарат Гольджи - это система плоских цистерн, в которых постоянно созревают белки.

Лизосомы - маленькие тельца с одиночной мембраной, основная функция которых - расщеплять отдельные органоиды клетки.

Рибосомы - универсальные ультрамикроскопические органоиды, предназначением которых является синтез белков.

Митохондрии - это своеобразные "легкие" клетки, а также её главный источник энергии.

Основные функции клетки

Клетка живого организма призвана выполнять несколько важнейших функций, обеспечивающих жизнедеятельность этого самого организма.

Важнейшей функцией клетки является обмен веществ. Так, именно она расщепляет сложные вещества, превращая их в простые, а также синтезирует более сложные соединения.

Кроме этого, все клетки способны реагировать на воздействие внешних раздражающих факторов (температура, свет и так далее). Большинство из них также имеют способность к регенерации (самовосстановлению) при помощи деления.

Нервные клетки также могут реагировать на внешние раздражители посредством образования биоэлектрических импульсов.

Все вышеназванные функции клетки обеспечивают жизнедеятельность организма.

Заключение

Итак, клетка - это наименьшая элементарная живая система, которая является основной единицей в строении любого организма (животного, растения, бактерии). В её строении выделяют ядро и цитоплазму, в которой содержатся все органоиды (клеточные структуры). Каждый из них выполняет свои определенные функции.

Размер клетки колеблется в широких пределах - от 0,1 до 100 микрометров. Особенности строения и жизнедеятельности клеток изучает специальная наука - цитология.

Клетки делятся на прокариотические и эукариотические. Первые - это водоросли и бактерии, которые содержат генетическую информацию в одной единственной органелле, - хромосоме, а эукариотические клетки, составляющие более сложные организмы, такие как человеческое тело, имеют четко дифференцированное ядро, в котором находится несколько хромосом с генетическим материалом.

Эукариотическая клетка

Прокариотическая клетка

Строение

Клеточная или цитоплазматическая мембрана

Цитоплазматическая мембрана (оболочка) - это тонкая структура, которая отделяет содержимое клетки от окружающей среды. Она состоит из двойного слоя липидов с белковыми молекулами толщиной примерно 75 ангстрем.

Клеточная мембрана сплошная, но у нее имеются многочисленные складки, извилины, и поры, что позволяет регулировать прохождение через нее веществ.

Клетки, ткани, органы, системы и аппараты

Клетки , Человеческий организм - слагаемое элементов, которые слаженно действуют, чтобы эффективно выполнять все жизненные функции.

Ткань - это клетки одинаковой формы и строения, специализированные на выполнении одной и той же функции. Различные ткани объединяются и образуют органы, каждый из которых выполняет конкретную функцию в живом организме. Кроме того, органы также группируются в систему для выполнения определенной функции.

Ткани:

Эпителиальная - защищает и покрывает поверхность тела и внутренние поверхности органов.

Соединительная - жировая, хрящевая и костная. Выполняет различные функции.

Мышечная - гладкая мышечная ткань, поперечнополосатая мышечная ткань. Сокращает и расслабляет мышцы.

Нервная - нейроны. Вырабатывает и передает и принимает импульсы.

Размер клеток

Величина клеток очень разная, хотя в основном она колеблется от 5 до 6 микронов (1 микрон = 0,001 мм). Этим объясняется тот факт, что многие клетки не могли рассмотреть до изобретения электронного микроскопа, разрешающая способность которого составляет от 2 до 2000 ангстрем (1 ангстрем = 0,000 000 1 мм).Размер некоторых микроорганизмов меньше 5 микрон, но есть и клетки-гиганты. Из наиболее известных - это желток птичьих яиц, яйцеклетка размером около 20 мм.

Есть еще более поразительные примеры: клетка ацетабулярии, морской одноклеточной водоросли, достигает 100 мм, а рами, травянистого растения, - 220 мм - больше ладони.

От родителей к детям благодаря хромосомам

Ядро клетки претерпевает различные изменения, когда клетка начинает делиться: исчезают оболочка и ядрышки; в это время хроматин становится более плотным, образуя в итоге толстые нити - хромосомы. Хромосома состоит из двух половин - хроматид, соединенных в месте сужения (центрометр).

Наши клетки, так же как и все клетки животных и растений, подчиняются так называемому закону численного постоянства, согласно которому число хромосом определенного вида постоянно.

Кроме того, хромосомы распределяются парами, идентичными между собой.

В каждой клетке нашего тела имеется 23 пары хромосом, представляющих собой несколько удлиненных молекул ДНК. Молекула ДНК принимает форму двойной спирали, состоящей из двух групп сахарофосфата, откуда в виде ступенек винтовой лестницы выступают азотистые основы (пурины и пирамидины).

Вдоль каждой хромосомы располагаются гены, ответственные за наследственность, передачу генных признаков от родителей к детям. Именно они определяют цвет глаз, кожи, форму носа и т. д.

Митохондрии

Митохондрии - это органеллы округлой или удлиненной формы, распределенные по всей цитоплазме, содержащие водянистый раствор ферментов, способные осуществлять многочисленные химические реакции, например клеточное дыхание.

С помощью этого процесса высвобождается энергия, которая необходима клетке для выполнения ее жизненных функций. Митохондрии находятся в основном в наиболее активных клетках живых организмов: клетках поджелудочной железы и печени.

Ядро клетки

Ядро, одно в каждой человеческой клетке, является ее основным компонентом, так как это организм, управляющий функциями клетки, и носитель наследственных признаков, что доказывает его важность в размножении и передаче биологической наследственности.

В ядре, размер которого колеблется от 5 до 30 микрон, можно различить следующие элементы:

  • Ядерная оболочка. Она двойная и позволяет веществам проходить между ядром и цитоплазмой благодаря своей пористой структуре.
  • Ядерная плазма. Светлая, вязкая жидкость, в которую погружены остальные ядерные структуры.
  • Ядрышко. Сферическое тельце, изолированное или в группах, участвующее в образовании рибосом.
  • Хроматин. Вещество, которое может принимать различную окраску, состоящее из длинных нитей ДНК (дезоксирибонуклеиновой кислоты). Нити представляют собой частицы, гены, каждый из которых содержит информацию об определенной функции клетки.

Ядро типичной клетки

Клетки кожи живут в среднем одну неделю. Эритроциты живут 4 месяца, а костные клетки - от 10 до 30 лет.

Центросома

Центросома обычно находится рядом с ядром и играет важнейшую роль в митозе, или клеточном делении.

Она состоит из 3 элементов:

  • Диплосома. Состоит из двух центриол - цилиндрических структур, расположенных перпендикулярно.
  • Центросфера. Полупрозрачное вещество, в которое погружена диплосома.
  • Астер. Лучистое образование из нитей, выходящих из центросферы, имеющее важное значение для митоза.

Комплекс Гольджи, лизосомы

Комплекс Гольджи состоит из 5-10 плоских дисков (пластин), в котором различают основной элемент - цистерну и несколько диктиосом, или скопление цистерн. Эти диктиосомы разъединяются и распределяются равномерно во время митоза, или деления клетки.

Лизосомы, «желудок» клетки, образуются из пузырьков комплекса Гольджи: они содержат пищеварительные ферменты, которые позволяют им переваривать пишу, поступающую в цитоплазму. Их внутренняя часть, или микус, выстлана толстым слоем полисахаридов, которые препятствуют тому, чтобы эти ферменты разрушили собственный клеточный материал.

Рибосомы

Рибосомы - это клеточные органеллы диаметром около 150 ангстрем, которые прикреплены к оболочкам эндоплазматического ретикулума или свободно размещаются в цитоплазме.

Они состоят из двух подъединиц:

  • большая подъединица состоит из 45 молекул белка и 3 РНК (рибонуклеиновой кислоты);
  • меньшая подъединица состоит из 33 молекул белка и 1 РНК.

Рибосомы объединяются в полисомы с помощью молекулы РНК и синтезируют белки из молекул аминокислот.

Цитоплазма

Цитоплазма - это органическая масса, расположенная между цитоплазматической мембраной и оболочкой ядра. Содержит внутреннюю среду - гиалоплазму - вязкую жидкость, состоящую из большого количества воды и содержащую белки, моносахариды и жиры в растворенном виде.

Она является частью клетки, наделенной жизненной активностью, потому что внутри нее двигаются различные клеточные органеллы и происходят биохимические реакции. Органеллы выполняют в клетке ту же роль, что и органы в человеческом теле: производят жизненно важные вещества, генерируют энергию, выполняют функции пищеварения и выведения органических веществ и т. д.

Примерно треть цитоплазмы составляет вода.

Кроме того, в цитоплазме содержится 30% органических веществ (углеводов, жиров, белков) и 2-3% неорганических веществ.

Эндоплазматический ретикулум

Эндоплазматический ретикулум - это структура в виде сети, образованная заворачиванием цитоплазматической оболочки в саму себя.

Считается, что этот процесс, известный как инвагинация, привел к появлению более сложных существ с большими потребностями в белках.

В зависимости от наличия или отсутствия рибосом в оболочках различают два типа сетей:

1. Эндоплазматический ретикулум складчатый. Совокупность плоских структур, соединенных между собой и сообщающихся с ядерной мембраной. К ней прикреплено большое количество рибосом, поэтому ее функция заключается в накоплении и выделении белков, синтезированных в рибосомах.

2. Эндоплазматический ретикулум гладкий. Сеть из плоских и трубчатых элементов, которая сообщается со складчатым эндоплазматическим ретикулумом. Синтезирует, выделяет и переносит жиры по всей клетке, вместе с белками складчатого ретикулума.

Хотите читать всё самое интересное о красоте и здоровье, подпишитесь на рассылку !

Клетка - это структурно-функциональная единица живого организма, способная к делению и обмену с окружающей средой. Она осуществляет передачу генетической информации путем самовоспро-изведения.

Клетки очень разнообразны по строению, функции, форме, размерам (рис. 1). Последние колеблются от 5 до 200 мкм. Самыми крупными в организме человека являются яйцеклетка и нервная клетка, а самыми маленькими - лимфоциты крови. По форме клетки бывают шаровидные, веретеновидные, плоские, кубические, призматические и др. Некоторые клетки вместе с отростками достигают длины до 1,5 м и более (например, нейроны).

1 - нервная; 2 - эпителиальная; 3 - соединителытотканная; 4 - гладкая мышечная; 5- эритроцит; 6- сперматозоид; 7-яйцеклетка

Каждая клетка имеет сложное строение и представляет собой систему биополимеров, содержит ядро, цитоплазму и находящиеся в ней органеллы (рис. 2). От внешней среды клетка отграничивается клеточной оболочкой - плазма-леммой (толщина 9-10 мм), которая осуществляет транспорт необходимых веществ в клетку, и наоборот, взаимодействует с соседними клетками и межклеточным веществом. Внутри клетки находится ядро, в котором происходит синтез белка, оно хранит генетическую информацию в виде ДНК (дезоксирибонуклеиновая кислота). Ядро может иметь округлую или овоидную форму, но в плоских клетках оно несколько сплющенное, а в лейкоцитах палочковидное или бобовидное. В эритроцитах и тромбоцитах оно отсутствует. Сверху ядро покрыто ядерной оболочкой, которая представлена внешней и внутренней мембраной. В ядре находится нуклеошазма, которая представляет собой гелеобразное вещество и содержит хроматин и ядрыш-ко.

(по М. Р. Сапину, Г. Л. Билич, 1989):

1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома (клеточный центр, цитоцентр); 4 - гиалоплазма; 5 - эн-доплазматическая сеть (о - мембраны эндоплазматической сети, б - ри-босомы); 6- ядро; 7- связь перинуклеарного пространства с полостями эндоплазматической сети; 8 - ядерные поры; 9 - ядрышко; 10 - внутриклеточный сетчатый аппарат (комплекс Гольджи); 77-^ секреторные вакуоли; 12- митохондрии; 7J - лизосомы; 74-три последовательные стадии фагоцитоза; 75 - связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети

Ядро окружает цитоплазма, в состав которой входят ги-алоплазма, органеллы и включения.

Гиалоплазма - это основное вещество цитоплазмы, она участвует в обменных процессах клетки, содержит белки, полисахариды, нуклеиновую кислоту и др.

Постоянные части клетки, которые имеют определенную структуру и вы-полняют биохимические функции, называются органеллами. К ним относятся клеточный центр, митохондрии, комплекс Гольджи, эндоплазматическая (ци-топлазматическая) сеть.

Клеточный центр обычно находится около ядра или комплекса Гольджи, состоит из двух плотных образований - центриолей, которые входят в состав веретена движущейся клетки и образуют реснички и жгутики.

Митохондрии имеют форму зерен, нитей, палочек, формируются из двух мембран - внутренней и внешней. Длина митохондрии колеблется от 1 до 15 мкм, диаметр - от 0,2 до 1,0 мкм. Внутренняя мембрана образует складки (кри-сты), в которых располагаются ферменты. В митохондриях происходят расщепление глюкозы, аминокислот, окислении жирных кислот, образование АТФ (аденозинтрифосфорнай кислота) - основного энергетического материала.

Комплекс Гольджи (внутриклеточный сетчатый аппарат) имеет вид пузырьков, пластинок, трубочек, расположенных вокруг ядра. Его функция состоит в транспорте веществ, химической их обработке и выведении за пределы клетки продуктов ее жизнедеятельности.

Эндоплазматическая (цитоплазматическая) сеть формируется из агранулярной (гладкой) и гранулярной (зернистой) сети. Агранулярная Эндоплазматическая сеть образуется преимущественно мелкими цистернами и трубочками диаметром 50-100 нм, которые участвуют в обмене липи-дов и полисахаридов. Гранулярная Эндоплазматическая сеть состоит из пластинок, трубочек, цистерн, к стенкам которых прилегают мелкие образования - рибосомы, синтезирующие белки.

Цитоплазма также имеет постоянные скопления отдельных веществ, которые называются включениями цитоплазмы и имеют белковую, жировую и пигментную природу.

Клетка как часть многоклеточного организма выполняет основные функции: усвоение поступающих веществ и расщепление их с образованием энергии, необходимой для поддержания жизнедеятельности организма. Клетки обладают также раздражимостью (двигательные реакции) и способны размножаться делением. Деление клеток бывает непрямое (митоз) и редукционное (мейоз).

Митоз - самая распространенная форма клеточного деления. Он состоит из нескольких этапов - профазы, метафазы, анафазы и телофазы. Простое (или прямое) деление клеток - амитоз - встречается редко, в тех случаях, когда клетка делится на равные или неравные части. Мейоз - форма ядерного деления, при котором количество хромосом в оплодотворенной клетке уменьшается вдвое и наблюдается перестройка генного аппарата клетки. Период от одного деления клетки к другому называется ее жизненным циклом.

Клетка — это основная структурная и функциональная единица всех живых организмов, кроме вирусов. Она имеет специфическое строение, включающее множество составляющих, которые выполняют определенные функции.

Какая наука изучает клетку?

Всем известно, что наука о живых организмах - биология. Строение клетки изучает ее отрасль - цитология.

Из чего состоит клетка?

Данная структура состоит из мембраны, цитоплазмы, органоидов, или органелл, и ядра (в прокариотических клетках отсутствует). Строение клеток организмов, относящихся к разным классам, немного различается. Существенные отличия наблюдаются между структурой клеток эукариотов и прокариотов.

Плазматическая мембрана

Мембрана играет очень важную роль — она отделяет и защищает содержимое клетки от внешней среды. Она состоит из трех слоев: двух белковых и среднего фосфолипидного.

Клеточная стенка

Еще одна структура, защищающая клетку от воздействия внешних факторов, расположена поверх плазматической мембраны. Присутствует в клетках растений, бактерий и грибов. У первых она состоит из целлюлозы, у вторых — из муреина, у третьих — из хитина. В животных клетках поверх мембраны расположен гликокаликс, который состоит из гликопротеидов и полисахаридов.

Цитоплазма

Она представляет собой все пространство клетки, ограниченное мембраной, за исключением ядра. Цитоплазма включает органоиды, которые выполняют основные функции, отвечающие за жизнедеятельность клетки.

Органеллы и их функции

Строение клетки живого организма подразумевает ряд структур, каждая из которых выполняет определенную функцию. Они называются органеллами, или органоидами.

Митохондрии

Их можно назвать одними из самых важных органелл. Митохондрии отвечают за синтез энергии, необходимой для жизнедеятельности. Кроме того, они участвуют в процессе синтеза некоторых гормонов и аминокислот.

Энергия в митохондриях вырабатывается вследствие окисления молекул АТФ, которое происходит при помощи специального фермента под названием АТФ-синтаза. Митохондрии представляют собой округлые или палочковидные структуры. Их количество в животной клетке, в среднем, составляет 150-1500 штук (это зависит от ее предназначения). Они состоят из двух мембран и матрикса — полужидкой массы, заполняющей внутреннее пространство органеллы. Основной составляющей оболочек являются белки, также в их структуре присутствуют фосфолипиды. Пространство между мембранами заполнено жидкостью. В матриксе митохондрий находятся зерна, которые накапливают определенные вещества, такие как ионы магния и кальция, необходимые для выработки энергии, и полисахариды. Также эти органеллы имеют собственный аппарат биосинтеза белка , похожий на таковой у прокариотов. Он состоит из митохондриальной ДНК, набора ферментов, рибосом и РНК. Строение клетки прокариотов имеет свои особенности: митохондрий в ней нет.

Рибосомы

Эти органеллы состоят из рибосомальной РНК (рРНК) и белков. Благодаря им осуществляется трансляция — процесс синтеза белков на матрице иРНК (информационной РНК). В одной клетке может содержаться до десяти тысяч данных органоидов. Рибосомы состоят из двух частей: маленькой и большой, которые объединяются непосредственно в присутствии иРНК.

Рибосомы, которые участвуют в синтезе белков, необходимых для самой клетки, сконцентрированы в цитоплазме. А те, с помощью которых вырабатываются белки, транспортируемые за пределы клетки, располагаются на плазматической мембране.

Комплекс Гольджи

Он присутствует только в клетках эукариотов. Данная органелла состоит из диктосом, количество которых обычно составляет приблизительно 20, но может доходить и до нескольких сотен. Аппарат Гольджи входит в строение клетки только эукариотических организмов. Он расположен около ядра и выполняет функцию синтеза и хранения определенных веществ, к примеру, полисахаридов. В нем образуются лизосомы, о которых пойдет речь ниже. Также эта органелла является частью выделительной системы клетки. Диктосомы представлены в виде стопок из сплющенных цистерн дискообразной формы. На краях этих структур образуются пузырьки, где находятся вещества, которые необходимо вывести из клетки.

Лизосомы

Эти органоиды представляют собой маленькие пузырьки с набором ферментов. Их структура имеет одну мембрану, покрытую сверху слоем белка. Функция, которую выполняют лизосомы, заключается во внутриклеточном переваривании веществ. Благодаря ферменту гидролазе с помощью указанных органоидов расщепляются жиры, белки, углеводы, нуклеиновые кислоты.

Эндоплазматическая сеть (ретикулум)

Строение клетки всех эукариотических клеток подразумевает и наличие ЭПС (эндоплазматической сети). Эндоплазматический ретикулум состоит из трубочек и сплющенных полостей, имеющих мембрану. Этот органоид бывает двух видов: шероховатая и гладкая сеть. Первая отличается тем, что к ее мембране крепятся рибосомы, вторая такой особенности не имеет. Шероховатая эндоплазматическая сеть выполняет функцию синтеза белков и липидов, которые требуются для формирования клеточной мембраны или для других целей. Гладкая принимает участие в выработке жиров, углеводов, гормонов и других веществ, кроме белков. Также эндоплазматический ретикулум выполняет функцию транспортировки веществ по клетке.

Цитоскелет

Он состоит из микротрубочек и микрофиламентов (актиновых и промежуточных). Составляющие цитоскелета представляют собой полимеры белков, в основном, актина, тубулина или кератина. Микротрубочки служат для поддержания формы клетки, они формируют органы движения у простейших организмов, таких как инфузории, хламидомонады, эвглены и т. д. Актиновые микрофиламенты также играют роль каркаса. Кроме того, они участвуют в процессе перемещения органелл. Промежуточные в разных клетках построены из различных белков. Они поддерживают форму клетки, а также закрепляют ядро и другие органеллы в постоянном положении.

Клеточный центр

Состоит из центриолей, которые имеют форму полого цилиндра. Его стенки образованы из микротрубочек. Эта структура участвует в процессе деления, обеспечивая распределение хромосом между дочерними клетками.

Ядро

В клетках эукариотов это один из важнейших органоидов. В нем хранится ДНК, в которой зашифрована информация обо всем организме, о его свойствах, о белках, которые должны синтезироваться клеткой, и т. д. Оно состоит из оболочки, которая защищает генетический материал, ядерного сока (матрикса), хроматина и ядрышка. Оболочка сформирована из двух пористых мембран, расположенных на некотором расстоянии друг от друга. Матрикс представлен белками, он образует внутри ядра благоприятную среду для хранения наследственной информации. В ядерном соке содержатся нитчатые белки, служащие опорой, а также РНК. Также здесь присутствует хроматин — интерфазная форма существования хромосом. Во время деления клетки из глыбок он превращается в палочковидные структуры.

Ядрышко

Это обособленная часть ядра, отвечающая за формирование рибосомальной РНК.

Органеллы, присущие только растительным клеткам

Клетки растений имеют некоторые органоиды, которые не свойственны больше ни для каких организмов. К ним относятся вакуоли и пластиды.

Вакуоль

Это своеобразный резервуар, где хранятся запасные питательные вщеества, а также продукты жизнедеятельности, которые не могут быть выведены наружу из-за плотной клеточной стенки. Она отделяется от цитоплазмы специфической мембраной, которая называется тонопластом. По мере того как функционирует клетка, отдельные небольшие вакуоли сливаются в одну большую — центральную.

Пластиды

Эти органоиды делятся на три группы: хлоропласты, лейкопласты и хромопласты.

Хлоропласты

Это важнейшие органоиды растительной клетки. Благодаря им осуществляется фотосинтез, в процессе которого клетка получает нужные ей питательные вещества. Хлоропласты имеют две мембраны: внешнюю и внутреннюю; матрикс — вещество, которым заполнено внутреннее пространство; собственную ДНК и рибосомы; зерна крахмала; граны. Последние состоят из стопок тилакоидов с хлорофиллом, окруженных мембраной. Именно в них и происходит процесс фотосинтеза.

Лейкопласты

Эти структуры состоят из двух мембран, матрикса, ДНК, рибосом и тилакоидов, но последние не содержат хлорофилл. Лейкопласты выполняют запасную функцию, накапливая питательные вещества. В них содержатся специальные ферменты, позволяющие получать из глюкозы крахмал, который, собственно, и служит запасным веществом.

Хромопласты

Данные органоиды имеют такую же структуру, как и описанные выше, однако в них нет тилакоидов, но есть каротиноиды, которые имеют специфическую окраску и расположены непосредственно возле мембраны. Именно благодаря этим структурам лепестки цветов окрашены в определенный цвет, позволяющий привлекать насекомых-опылителей.