Регулирование жизненных функций организма. Гормоны

Пути действия гормонов рассматриваются в виде двух альтерна­тивных возможностей:

1) действия гормона с поверхности клеточной мембраны после связывания со специфическим мембранным рецеп­тором и запуска тем самым цепочки биохимических превращений в мембране и цитоплазме (эффекты пептидных гормонов и катехоламинов);

2) действия гормона путем проникновения через мембрану и связывания с рецептором цитоплазмы, после чего гормон-рецепторный комплекс проникает в ядро и органоиды клетки, где и реализует свой регуляторный эффект (стероидные Гормоны,гормоны щитовидной железы).

Система гуанилатциклаза-цГМФ

Система гуанилатциклаза-цГМФ. Активация мембранной гу-анилатциклазы происходит не под непосредственным влиянием гор­мон-рецепторного комплекса, а опосредованно через ионизирован­ный кальций и оксидантные системы мембран. Типичная стимуля­ция активности гуанилатциклазы ацетилхолином также реализуется опосредованно через Са++ . Через активацию гуанилатциклазы ре­ализует эффект и натриуретический гормон предсердий - атриопептид. Путем активации перекисного окисления стимулирует гу-анилатциклазу биологически активное вещество (тканевой гормон) сосудистой стенки - расслабляющий эндотелиальный фактор. Под влиянием гуанилатциклазы из ГТФ синтезируется цГМФ, активи­рующий цГМФ-зависимые протеинкиназы, которые уменьшают ско­рость фосфорилирования легких цепей миозина в гладких мышцах стенок сосудов, приводя к их расслаблению. В большинстве тканей биохимические и физиологические эффекты цАМФ и цГМФ проти-воложны. Примерами могут служить стимуляция сокращений сердца под влиянием цАМФ и торможение их цГМФ, стимуляция сокра­щения гладких мышц кишечника цГМФ и подавление цАМФ. цГМФ играет роль в гиперполяризации рецепторов сетчатки глаза под влиянием фотонов света. Ферментативный гидролиз цГМФ осущест­вляется с помощью специфической фосфодиэстеразы.

БИЛЕТ №8

Роль паратгормона и кальцитонина в регуляции уровня кальция в крови. Химическое происхождение, механизмы действия, органы-мишени, метаболические эффекты. Патологии, связанные с гипер- и гипофункцией этих гормонов.

Паратгормон - полипептид, состоящий из 84 аминокислотных остатков, образуется и секретируется паращитовидными железами в виде высокомолекулярного прогормона. Прогормон после выхода из клеток подвергается протеолизу с образованием паратгормона. Продукцию, секрецию и гидролитическое расщепление паратиреоидного гормона регулирует концентрация кальция в крови. Снижение её приводит к стимуляции синтеза и высвобождению гормона, а понижение вызывает обратный эффект. Паратгормон повышает концентрацию кальция и фосфатов в крови. Паратиреоидный гормон действует на остеобласты, вызывая повышение деминерализации костной ткани. Активен не только сам гормон, но и его аминоконцевой пептид (1-34 аминокислоты). Он образуется при гидролизе паратиреоидного гормона в гепатоцитах и почках в тем большем количестве, чем ниже концентрация кальция в крови. В остеокластах активизируются ферменты, разрушающие промежуточное вещество кости, а в клетках проксимальных канальцев почек ингибируется обратная реабсорбция фосфатов. В кишечнике усиливается всасывание кальция.

Кальцитонин - гормон гипокальциемического действия, пептидной природы, синтезируется в С-клетках (парафолликулярные клетки) щитовидной железы. Некоторое количество синтезируется с легких. Впервые на существование кальцитонина, обладающего способностью поддерживать постоянный уровень кальция в крови, указал в 1962 году Д.Кнопп, который ошибочно считал, что этот гормон синтезируется паращитовидными железами.
Главными мишенями действия гормона являются кости и почки. Основная физиологическая роль кальцитонина состоит в предотвращении гиперкальциемии, которая возможна при поступлении кальция в организм. Эта функция осуществляется, скорее всего, путем торможения выхода кальция из костей.
Основной функций данного гормона является антагонистическое действие по отношению к паратгормону (гормону, вырабатываемого паращитовидными железами, так же участвующему в регуляции метаболизма кальция и повышающего содержание кальция в крови. См "Паратгормон"). Действие кальцитонина и паратгормона на кости имеет в общем противоположный характер, но в то же время он не является антипаратгормоном. Скорее всего эти гормоны действуют на различные виды клеток в костях.
Регуляция синтеза кальцитонина контролируется концентрацией кальция в крови. Увеличение концентрации кальция стимулирует синтез гормона, снижение приводит к обратному эффекту. Действие кальцитонина проявляется в угнетении активности остеокластов, уменьшении резорбции кости, предотвращении высвобождения кальция из кости и, как следствие, снижении содержания кальция в крови. Кальцитонин оказывает прямое влияние на почки, повышая экскрецию кальция, фосфора и натрия за счет подавления их канальцевой реабсорбции. Кальцитонин ингибирует всасывание кальция в тонкой кишке.
В клинической практике определение содержание кальцитонина в крови может иметь важное значение для диагностики медуллярного рака щитовидной железы, поскольку его содержание при данной форме рака в сыворотке крови увеличивается. Следует учитывать, что повышение содержания кальцитонина в крови может происходить при раке легкого и молочной железы и опухолей других локализаций (рак простаты). Некоторое повышение в содержании возможно при беременности, лечении эстрогенами, введении кальция, передозировке витамина Д. Поэтому постановка диагноза проводится с учетом всех возможных методов обследования.

Органы-мишени для ПТГ - кости и почки. В клетках почек и костной ткани локализованы специфические рецепторы, которые взаимодействуют с паратгормоном, в результате чего инициируется каскад событий, приводящий к активации аденилатциклазы. Внутри клетки возрастает концентрация молекул цАМФ, действие которых стимулирует мобилизацию ионов кальция из внутриклеточных запасов. Ионы кальция активируют киназы, которые фосфорилируют особые белки, индуцирующие транскрипцию специфических генов.

Гиперпаратиреоз

При первичном гиперпаратиреозе нарушается механизм подавления секреции паратгормона в ответ на гиперкальциемию. Это заболевание встречается с частотой 1:1000. Причинами могут быть опухоль околощитовидной железы (80%) или диффузная гиперплазия желёз, в некоторых случаях рак паращитовидной железы (менее 2%). Избыточная секреция паратгормона приводит к повышению мобилизации кальция и фосфатов из костной ткани, усилению реабсорбции кальция и выведению фосфатов в почках. Вследствие этого возникает гиперкальциемия, которая может приводить к снижению нервно-мышечной возбудимости и мышечной гипотонии. У больных появляются общая и мышечная слабость, быстрая утомляемость и боли в отдельных группах мышц, увеличивается риск переломов позвоночника, бедренных костей и костей предплечья. Увеличение концентрации фосфата и ионов кальция в почечных канальцах может служить причиной образования в почках камней и приводит к гиперфосфатурии и гипофосфатемии.

Вторичный гиперпаратиреоз встречается при хронической почечной недостаточности и дефиците витамина D 3 и сопровождается гипокальциемией, связанной в основном с нарушением всасывания кальция в кишечнике из-за угнетения образования кальцитриола поражёнными почками. В этом случае секреция паратгормона увеличивается. Однако повышенный уровень паратгормона не может нормализовать концентрацию ионов кальция в плазме крови вследствие нарушения синтеза кальцитриола и снижения всасывания кальция в кишечнике. Наряду с гипокальциемией, нередко наблюдают гиперфостатемию. У больных развивается повреждение скелета (остеопороз) вследствие повышения мобилизации кальция из костной ткани. В некоторых случаях (при развитии аденомы или гиперплазии околощитовидных желёз) автономная гиперсекреция паратгормона компенсирует гипокальциемию и приводит к гипер-кальциемии (третичный гиперпаратиреоз ).

Гипопаратиреоз

Основной симптом гипопаратиреоза, обусловленный недостаточностью паращитовидных желёз, - гипокальциемия. Понижение концентрации ионов кальция в крови может вызвать неврологические, офтальмологические нарушения и нарушения ССС, а также поражения соединительной ткани. У больного гипопарати-реозом отмечают повышение нервно-мышечной проводимости, приступы тонических судорог, судороги дыхательных мышц и диафрагмы, ларингоспазм

4 основные системы регуляции метаболизма: Центральная нервная система (за счет передачи сигналов посредством нервных импульсов и нейромедиаторов); Эндокринная система (с помощью гормонов, которые синтезируются в железах и транспортируются к клеткам-мишеням (на рис. А); Паракринная и аутокринная системы (при участии сигнальных молекул, секретируемых из клеток в межклеточное пространство — эйкозаноидов, гистаминов, гормонов ЖКТ, цитокинов) (на рис. Б и В); Иммунная система (посредством специфических белков – антител, Т-рецепторов, белков комплекса гистосовместимости.) Все уровни регуляции интегрированы и действуют как единое целое.

Эндокринная система регулирует обмен веществ посредством гормонов. Гормоны (др. -греч. ὁρμάω - возбуждаю, побуждаю) — — биологически активные органические соединения, которые вырабатываются в незначительных количествах в железах внутренней секреции, осуществляют гуморальную регуляцию обмена веществ и имеют различную химическую структуру.

Классическим гормонам присущ ряд признаков: Дистантность действия – синтез в железах внутренней секреции, а регуляция отдаленных тканей Избирательность действия Строгая специфичность действия Кратковременность действия Действуют в очень низких концентрациях, под контролем ЦНС и регуляция их действия осуществляется в большинстве случаев по типу обратной связи Действуют опосредованно через белковые рецепторы и ферментативные системы

Организация нервно-гормональной регуляции Существует строгая иерархия или соподчиненность гормонов. Поддержание уровня гормонов в организме в большинстве случаев обеспечивает механизм отрицательной обратной связи.

Регуляция уровня гормонов в организме Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Существуют эндокринные железы для которых отсутствует регуляция тропными гормонами – паращитовидная железа, мозговое вещество надпочечников, ренин-альдостероновая система и поджелудочная железа. Они контролируются нервными влияниями или концентрацией определенных веществ в крови.

Классификация гормонов по биологическим функциям; по механизму действия; по химическому строению; различают 4 группы: 1. Белково-пептидные 2. Гормоны-производные аминокислот 3. Гормоны стероидной природы 4. Эйкозаноиды

1. Белково — пептидные гормоны Гормоны гипоталамуса; гормоны гипофиза; гормоны поджелудочной железы — инсулин, глюкагон; гормоны щитовидной и паращитовидной желез – соответственно кальцитонин и паратгормон. Вырабатываются в основном путем прицельного протеолиза. У гормонов короткое время жизни, имеют от 3 до 250 АМК остатков.

Главный анаболический гормон – инсулин, главный катаболический гормон — глюкагон

Некоторые представители белково — пептидных гормонов: тиролиберина (пироглу-гис-про- NN НН 22), инсулина и соматостатина.

2. Гормоны — производные аминокислот Являются производными аминокислоты — тирозина. К ним относятся гормоны щитовидной железы — трийодтиронин ((II 33) и тироксин (II 44), а а также — адреналин и норадреналин – катехоламины.

3. Гормоны стероидной природы Синтезируются из холестерина (на рис.) Гормоны коркового вещества надпочечников – кортикостероиды (кортизол, кортикостерон) Гормоны коркового вещества надпочечников – минералокортикоиды (андостерон) Половые гормоны: андрогены (19 «С») и эстрогены (18 «С»)

Эйкозаноиды Предшественником всех эйкозаноидов является арахидоновая кислота. Они делятся на 3 группы – простагландины, лейкотриены, тромбоксаны. Эйказоноиды — медиаторы (локальные гормоны) - широко распространенная группа сигнальных веществ, которые образуются почти во всех клетках организма и и имеют небольшую дальность действия. Этим они отличаются от классических гормонов, синтезирующихся в специальных клетках желез внутренней секреции. .

Характеристика разных групп эйказоноидов Простагландины (Pg)- синтезируются практически во всех клетках, кроме эритроцитов и лимфоцитов. Выделяют такие типы простагландинов A, B, C, D, E, F. Функции простагландинов сводятся к изменению тонуса гладких мышц бронхов, мочеполовой и сосудистой систем, желудочно-кишечного тракта, при этом направленность изменений различна в зависимости от типа простагландинов и условий. Они также влияют на температуру тела. Простациклины являются подвидом простагландинов (Pg I), но дополнительно обладают особой функцией- ингибируют агрегацию тромбоцитов и обусловливают вазодилатацию. Особенно активно синтезируются в эндотелии сосудов миокарда, матки, слизистой желудка. .

Тромбоксаны и лейкотриены Тромбоксаны (Tx) образуются в тромбоцитах, стимулируют их агрегацию и вызывают сужение мелких сосудов. Лейкотриены (Lt) активно синтезируются в лейкоцитах, в клетках лёгких, селезёнки, мозга, сердца. Выделяют 6 типов лейкотриенов: A, B, C, D, E, F. В лейкоцитах они стимулируют подвижность, хемотаксис и миграцию клеток в очаг воспаления. Также вызывают сокращение мускулатуры бронхов в дозах в 100- 1000 раз меньших, чем гистамин.

Взаимодействие гормонов с рецепторами клеток-мишеней Для проявления биологической активности связывание гормонов с рецепторами должно приводить к образованию сигнала, который вызывает биологический ответ. Например: щитовидная железа – мишень для тиротропина, под действием которого увеличивается количество ацинарных клеток, повышается скорость синтеза тиреоидных гормонов. Клетки-мишени отличают соответсвующий гормон, благодаря наличию соответствующего рецептора.

Общая характеристика рецепторов Рецепторы могут находится: — на поверхности клеточной мембраны — внутри клетки – в цитозоле или в ядре. Рецепторы – это белки, могут состоять из нескольких доменов. Мембранные рецепторы имеют домен узнавания и связывания с гормоном, трансмембранный и цитоплазматический домены. Внутриклеточные (ядерные) – домены связывания с гормоном, с ДНК и с белками, регулирующие трансдукцию.

Основные этапы передачи гормонального сигнала: через мембранные (гидрофобные) и и внутриклеточн ые ые (гидрофильные) рецепторы. Это быстрый и медленный пути.

Гормональный сигнал меняет скорость метаболических процессов ответ путем: — изменение активности ферментов — изменение количества ферментов. По механизму действия различают гормоны: — взаимодействующие с мембранными рецепторами (пептидные гормоны, адреналин, эйкозаноиды) и — взаимодействующие с внутриклеточными рецепторами (стероидные и тиреодные гормоны)

Передача гормонального сигнала через внутриклеточные рецепторы для стероидных гормонов (гормоны коры надпочечников и половые гормоны), тиреодных гормонов (Т 3 и Т 4). Медленный тип передачи.

Передача гормонального сигнала через мембранные рецепторы Передача информации от первичного посредника гормона осуществляется через рецептор. Этот сигнал рецепторы трансформируют в изменение концентрации вторичных посредников, получивших название вторичных мессенджеров. Сопряжение рецептора с эффекторной системой осуществляется через GG –белок. Общим механизмом, посредством которого реализуются биологические эффекты является процесс «фосфорилирования – дефосфорилирования ферментов» Существуют разные механизмы передачи гормонального сигналы через мембранные рецепторы – аденилатциклазная, гуанилатциклазная, инозитолфосфатная системы и другие.

Сигнал от гормона трансформируется в изменении концентрации вторичных посредников – ц. АМФ, ц. ГТФ, ИФ 3, ДАГ, СА 2+, NO.

Самая распространенная система передача гормонального сигнала через мембранные рецепторы – аденилатциклазная система. Комплекс гормон-рецептор связан с G – белком, который имеет 3 субъединицы (α , β и γ). В отсутствии гормона α — субъединица связана с ГТФ и аденилатциклазой. Комплекс гормон-рецептор приводит к отщеплению димера βγ от α ГТФ. Субъединица α ГТФ активирует аденилатциклазу, катализирующую образование циклической АМФ (ц. АМФ). ц. АМФ активирует протеинкиназу А(ПКА), фосфорилируюшую ферменты, которые меняют скорость метаболических процессов. Протеинкиназы различают А, В, С и др.

Адреналин и глюкагон через аденилатциклазную систему передачи гормонального сигнала активируют гормонзависимую ТАГ-липазу адипоцитов. Происходит при напряжении организма (голодании, длительной мышечной работе, охлаждении). Инсулин блокирует этот процесс. Протеинкиназа А фосфорилирует ТАГ-липазу и активирует ее. ТАГ-липаза отщепляет от от триацилглицеролов жирные кислоты с образованием глицерола. Жирные кислоты окисляются и обеспечивают организм энергией.

Передача сигнала с адренорецепторов. АС – аденилатциклаза, Pk. A – протеинкиназа А, Pk. C – протеинкиназа С, Фл. С – фосфолипаза С, Фл. А 2 – фосфолипаза А 2, Фл. D – фосфолипаза D, ФХ – фосфатидилхолин, ФЛ – фосфолипиды, ФК – фосфатидная кислота, Ах. К – арахидоновая кислота, PIP 2 – фосфатидилинозитол бифосфат, IP 3 – инозитол трифосфат, DAG – диацилглицерол, Pg – простагландины, LT – лейкотриены.

Адренорецепторы всех типов реализуют свое действие через Gs-белки. α- субъединицы этого белка активируют аденилатциклазу, которая обеспечивает синтез в клетке ц. АМФ из АТФ и активацию ц. АМФ зависимой протеинкиназы А. ββ γ-субъединицы Gs-белка активируют Са 2+-каналы L-типа и макси-K+-каналы. Под влиянием ц. АМФ-зависимой протеинкиназы А происходит фосфорилирование киназы легких цепей миозина и она переходит в неактивную форму, не способную фосфорилировать легкие цепи миозина. Процесс фосфорилирования легких цепей прекращается и гладкомышечная клетка расслабляется.

Американские ученые Роберт Лефковиц и Брайан Кобилка удостоились Нобелевской премии в 2012 г. за постижение механизмов взаимодействия рецепторов адреналина с G-белками. Взаимодействие бета-2 рецептора (обозначен синим цветом) c G- белками (обозначены зеленым цветом). Рецепторы, сопряженные с G-белками, очень красивые, если рассматривать архитектурные молекулярные ансамбли клетки как шедевры природы. Их называют «семиспиральными» , поскольку они, спирально упакованы в клеточной мембране на манер елочного серпантина и «пронизывают» ее семь раз, выставляя на поверхность «хвостик» , способный воспринять сигнал и передать конформационные изменения всей молекуле.

G-белки (англ. G proteins) - это семейство белков, относящихся к ГТФазам и функционирующих в качестве посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену ГДФ (синий цвет) на ГТФ (зеленый цвет) как молекулярный функциональный «выключатель» для регулировки клеточных процессов.

G-белки делятся на две основных группы - гетеротримерные («большие») и «малые» . Гетеротримерные G-белки - это белки с четвертичной структурой, состоящие из трёх субъединиц: альфа(α), бета (β) и гамма (γ). Малые G-белки - это белки из одной полипептидной цепи, они имеют молекулярную массу 20- 25 к. Да и относятся к суперсемейству Ras малых ГТФаз. Их единственная полипептидная цепь гомологична α-субъединице гетеротримерных G-белков. Обе группы G-белков участвуют во внутриклеточной сигнализации.

Циклический аденозинмонофосфат (циклический AMФ, ц. AMФ, c. AMP) - производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану. .

Каждой из систем передачи гормонального сигнала соответствует определенный класс протеинкиназ Активность протеинкиназ типа А регулируется ц. АМФ, протеинкиназы G — ц. ГМФ. Са 2+ — кальмодулинзависимые протеинкиназы находятся под контролем концентрации СА 2+. Протеинкиназы типа С регулируются ДАГ. Повышение уровня какого-либо вторичного посредника приводит к активации определенного класса протеинкиназ. Иногда субъединица мембранного рецептора может обладать активностью фермента. Например: тирозиновая протеинкиназа рецептора инсулина, активность которой регулируется гормоном.

Действие инсулина на клетки-мишени начинается после его связывания с мембранными рецепторами, при этом внутриклеточный домен рецептора обладает тирозинкиназной активностью. Тирозинкиназа запускает процессы фосфорилирования внутриклеточных белков. Происходящее при этом аутофосфорилирование рецептора ведет к усилению первичного сигнала. Инсулин-рецепторный комплекс может вызывать активирование фосфолипазы С, образование вторичных посредников инозитолтрифосфата и диацилглицерола, активацию протеинкиназы С, ингибирование ц. АМФ. Участие нескольких систем вторичных посредников объясняет многообразие и различия эффектов инсулина в разных тканях.

Другая система – гуанилатциклазная мессенджерская система. Цитоплазматический домен рецептора обладает активностью гуанилатциклазы (гемсодержащий фермент). Молекулы ц. ГТФ могут активировать ионные каналы или протеинкиназу GG , фосфорилирующую ферменты. ц. ГМФ контролирует обмен воды и ионный транспорт в почках и кишечнике, а в сердечной мышце служит сигналом релаксации.

Инозитолфосфатная система. Связывание гормона с рецептором, вызывает изменение конформациии рецептора. Происходит диссоциация G-G- белка и ГДФ заменяется на ГТФ. Отделившаяся α-субъединица, связанная с молекулой ГТФ, приобретает сродство к фосфолипазе С. Под действием фосфолипазы-С происходит гидролиз липида мембраны фосфатидилинозитол-4, 5 -бисфосфата (ФИФ 2) и образование инозитол-1, 4, 5 -трифосфат (ИФ 3) и диацилглицерол (ДАГ). ДАГ участвует в активации фермента протеинкиназы С (ПКС). Инозитол-1, 4, 5 -трифосфат (ИФ 3) связывается специфическими центрами Са 2+-канала мембраны ЭР, это приводит к изменению конформации белка и открытию канала — Са 2+ поступает в цитозоль. В отсутствие в цитозоле ИФ 3 канал закрыт.

В настоящее время различают следующие варианты действия гормонов:

  1. гормональное, или гемокринное, т.е. действие на значительном удалении от места образования;
  2. изокринное, или местное, когда химическое вещество, синтезированное в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой, и высвобождение этого вещества осуществляется в межтканевую жидкость и кровь;
  3. нейрокринное, или нейроэндокринное (синаптическое и несинаптическое) , действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейротрансмиттера или нейромодулятора, т.е. вещества, изменяющего (обычно усиливающего) действие нейротрансмиттера;
  4. паракринное - разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости;
  5. юкстакринное – разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передается через плазматическую мембрану рядом расположенной другой клетки;
  6. аутокринное действие, когда высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность;
  7. солинокринное действие, когда гормон из одной клетки поступает в просвет протока и достигает таким образом другой клетки, оказывая на нее специфическое воздействие (например, некоторые желудочно-кишечные гормоны).

Синтез белковых гормонов, как и других белков, находится под генетическим контролем, и типичные клетки млекопитающих экспрессируют гены, которые кодируют от 5000 до 10 000 различных белков, а некоторые высокодифференцированные клетки – до 50 000 белков. Любой синтез белка начинается с транспозиции сегментов ДНК , затем транскрипции, посттранскрипционного процессинга, трансляции, посттрансляционного процессинга и модификации. Многие полипептидные гормоны синтезируются в форме больших предшественников - прогормонов (проинсулин, проглюкагон, проопиомеланокортин и др.). Конверсия прогормонов в гормоны осуществляется в аппарате Гольджи.

    Существуют два основных механизма действия гормонов на уровне клетки:
  1. Реализация эффекта с наружной поверхности клеточной мембраны.
  2. Реализация эффекта после проникновения гормона внутрь клетки.

1)Реализация эффекта с наружной поверхности клеточной мембраны

В этом случае рецепторы расположены на мембране клетки. В результате взаимодействия гормона с рецептором активируется мембранный фермент - аденилатциклаза. Этот фермент способствует образованию из аденозинтрифосфорнои кислоты (АТФ) важнейшего внутриклеточного посредника реализации гормональных эффектов - циклического 3,5-аденозинмонофосфата (цАМФ). цАМФ активирует клеточный фермент протеинкиназу, реализующую действие гормона. Установлено, что гормоно-зависимая аденилатциклаза - это общий фермент, на который действуют различные гормоны, в то время как рецепторы гормонов множественны и специфичны для каждого гормона. Вторичными посредниками кроме цАМФ могут быть циклический 3,5-гуанозинмонофосфат (цГМФ), ионы кальция, инозитол-трифосфат. Так действуют пептидные, белковые гормоны, производные тирозина - катехоламины. Характерной особенностью действия этих гормонов является относительная быстрота возникновения ответной реакции, что обусловлено активацией предшествующих уже синтезированных ферментов и других белков.

Гормоны осуществляют свое биологическое действие, комплексируясь с рецепторами – информационными молекулами, трансформирующими гормональный сигнал в гормональное действие. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматических мембранах клеток, а другие гормоны – с рецепторами, локализованными внутриклеточно, т.е. с цитоплазматическими и ядерными .

Плазматические рецепторы в зависимости от структуры подразделяются на:

  1. семи фрагментов (петель);
  2. рецепторы, трансмембранный сегмент которых состоит из одного фрагмента (петли или цепи);
  3. рецепторы, трансмембранный сегмент которых состоит из четырех фрагментов (петель).

К гормонам, рецептор которых состоит из семи трансмембранных фрагментов, относятся:
АКТГ, ТТГ, ФСГ, ЛГ, хорионический гонадотропин, простагландины, гастрин, холецистокинин, нейропептид Y, нейромедин К, вазопрессин, адреналин (a-1 и 2, b-1 и 2), ацетилхолин (М1, М2, М3 и М4), серотонин (1А, 1В, 1С, 2), дофамин (Д1 и Д2), ангиотензин, вещество К, вещество Р, или нейрокинин 1, 2 и 3 типа, тромбин, интерлейкин-8, глюкагон, кальцитонин, секретин, соматолиберин, ВИП, гипофизарный аденилатциклазактивирующий пептид, глютамат (MG1 – MG7), аденин.

Ко второй группе относятся гормоны, имеющие один трансмембранный фрагмент:
СТГ, пролактин, инсулин, соматомаммотропин, или плацентарный лактоген, ИФР-1, нервные факторы роста, или нейротрофины, фактор роста гепатоцитов, предсердный натрийуретический пептид типа А, В и С, онкостатин, эритропоэтин, цилиарный нейротрофический фактор, лейкемический ингибиторный фактор, фактор некроза опухолей (р75 и р55), нервный фактор роста, интерфероны (a, b и g), эпидермальный фактор роста, нейродифференцирующий фактор, факторы роста фибробластов, факторы роста тромбоцитов А и В, макрофагный колониестимулирующий фактор, активин, ингибин, интерлейкины-2, 3, 4, 5, 6 и 7, гранулоцито-макрофагный колониестимулирующий фактор, гранулоцитный колониестимулирующий фактор, липопротеин низкой плотности, трансферрин, ИФР-2, урокиназный плазминогенный активатор.

К гормонам третьей группы, рецептор которых имеет четыре трансмембранных фрагмента, относятся:
ацетилхолин (никотиновые мышечные и нервные), серотонин, глицин, g-аминомасляная кислота.

Cопряжение рецептора с эффекторными системами осуществляется через так называемый G-белок, функция которого заключается в обеспечении многократного проведения гормонального сигнала на уровне плазматической мембраны. G-белок в активированной форме стимулирует через аденилатцик-лазу синтез циклического АМФ, который запускает каскадный механизм активирования внутриклеточных белков.

Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты «вторичных» мессенджеров внутри клетки, является процесс фосфорилирования – дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев – тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток.

Аденилатциклазная мессенджерная система

Наиболее изученным является аденилатциклазный путь передачи гормонального сигнала. В нем задействовано мимимум пять хорошо изученных белков:
1)рецептор гормона ;
2)фермент аденилатциклаза , выполняющая функцию синтеза циклического АМФ (цАМФ);
3)G-белок , осуществляющий связь между аденилатциклазой и рецептором;
4)цАМФ-зависимая протеинкиназа , катализирующая фосфорилирование внутриклеточных ферментов или белков-мишеней, соответственно изменяя их активность;
5)фосфодиэстераза , которая вызывает распад цАМФ и тем самым прекращает (обрывает) действие сигнала

Показано, что связывание гормона с β-адренергическим рецептором приводит к структурным изменениям внутриклеточного домена рецептора, что в свою очередь обеспечивает взаимодействие рецептора со вторым белком сигнального пути – ГТФ-связывающим.

ГТФ-связывающий белок – G-белок – представляет собой смесь 2 типов белков:
активного G s (от англ. stimulatory G)
ингибиторного G i
В составе каждого из них имеется три разные субъединицы (α-, β- и γ-), т.е. это гетеротримеры. Показано, что β-субъединицы G s и G i идентичны; в то же время α-субъединицы, являющиеся продуктами разных генов, оказались ответственными за проявление G-белком активаторной и ингибиторной активности. Гормонрецепторный комплекс сообщает G-белку способность не только легко обменивать эндогенный связанный ГДФ на ГТФ, но и переводить G s -белок в активированное состояние, при этом активный G-белок диссоциирует в присутствии ионов Mg 2+ на β-, γ-субъединицы и комплекс α-субъединицы G s в ГТФ-форме; этот активный комплекс затем перемещается к молекуле аденилатциклазы и активирует ее. Сам комплекс затем подвергается самоинактивации за счет энергии распада ГТФ и реассоциации β- и γ-субъединиц с образованием первоначальной ГДФ-формы G s .

Рец - рецептор; G - G-белок; АЦ -аденилатциклаза.

Представляет собой интегральный белок плазматических мембран, его активный центр ориентирован в сторону цитоплазмы и катализирует реакцию синтеза цАМФ из АТФ:

Каталитический компонент аденилатциклазы, выделенный из разных тканей животных, представлен одним полипептидом. В отсутствие G-белков он практически неактивен. Содержит две SH-группы, одна из которых вовлечена в сопряжение с G s -белком, а вторая необходима для проявления каталитической активности.Под действием фосфоди-эстеразы цАМФ гидролизуется с образованием неактивного 5"-АМФ.

Протеинкиназа – это внутриклеточный фермент, через который цАМФ реализует свой эффект. Протеинкиназа может существовать в 2 формах. В отсутствие цАМФ протеинкиназа представлена в виде тетрамерного комплекса, состоящего из двух каталитических (С 2) и двух регуляторных (R 2) субъединиц; в этой форме фермент неактивен. В присутствии цАМФ протеинкиназный комплекс обратимо диссоциирует на одну R 2 -субъединицу и две свободные каталитические субъединицы С; последние обладают ферментативной активностью, катализируя фосфорилирование белков и ферментов, соответственно изменяя клеточную активность.

Активность многих ферментов регулируется цАМФ-зависимым фосфорилированием, соответственно большинство гормонов белково-пептидной природы активирует этот процесс. Однако ряд гормонов оказывает тормозящий эффект на аденилатциклазу, соответственно снижая уровень цАМФ и фосфорилирование белков. В частности, гормон соматостатин, соединяясь со своим специфическим рецептором – ингибиторным G-белком (Gi , являющимся структурным гомологом Gs-белка), ингибирует аденилатциклазу и синтез цАМФ, т.е. вызывает эффект, прямо противоположный вызываемому адреналином и глюкагоном. В ряде органов простагландины (в частности, РGЕ 1) также оказывают ингибиторный эффект на аденилатциклазу, хотя в том же органе (в зависимости от типа клеток) и тот же PGE 1 может активировать синтез цАМФ.

Более подробно изучен механизм активирования и регуляции мышечной гликогенфосфорилазы, активирующей распад гликогена. Выделяют 2 формы:
каталитически активную – фосфорилаза а и
неактивную – фосфорилаза b .

Обе фосфорилазы построены из двух идентичных субъединиц, в каждой остаток серина в положении 14 подвергается процессу фосфорилирования–дефосфорилирования, соответственно активированию и инактивированию.

Под действием киназы фосфорилазы b, активность которой регулируется цАМФ-зависимой протеинкиназой, обе субъединицы молекулы неактивной формы фосфорилазы b подвергаются ковалентному фосфорилиро-ванию и превращаются в активную фосфорилазу а. Дефосфорилирование последней под действием специфической фосфатазы фосфорилазы а приводит к инактивации фермента и возврату в исходное состояние.

В мышечной ткани открыты 3 типа регуляции гликогенфосфорилазы.
Первый тип ковалентная регуляция , основанная на гормонзависимом фосфорилировании–дефосфорилировании субъединиц фосфорилазы.
Второй тип аллостерическая регуляция . Она основана на реакциях аденилирования–деаденилирования субъединиц гликогенфосфорилазы b (соответственно активирование–инактивирование). Направление реакций определяется отношением концентраций АМФ и АТФ, присоединяющихся не к активному центру, а к аллостерическому центру каждой субъединицы.

В работающей мышце накопление АМФ, обусловленное тратой АТФ, вызывает аденилирование и активирование фосфорилазы b. В покое, наоборот, высокие концентрации АТФ, вытесняя АМФ, приводят к аллостерическому ингибированию этого фермента путем деаденилирования.
Третий тип кальциевая регуляция , основанная на аллостерическом активировании киназы фосфорилазы b ионами Са 2+ , концентрация которых повышается при мышечном сокращении, способствуя тем самым образованию активной фосфорилазы а.

Гуанилатциклазная мессенджерная система

Довольно долгое время циклический гуанозинмонофосфат (цГМФ) рассматривался как антипод цАМФ. Ему приписывали функции, противоположные цАМФ. К настоящему времени получено много данных, что цГМФ принадлежит самостоятельная роль в регуляции функции клеток. В частности, в почках и кишечнике он контролирует ионный транспорт и обмен воды, в сердечной мышце служит сигналом релаксации и т.д.

Биосинтез цГМФ из ГТФ осуществляется под действием специфической гуанилатциклазы по аналогии с синтезом цАМФ:

Адреналинрецепторный комплекс: АЦ - аденилатциклаза, G - G-белок; С и R - соответственно каталитические и регуляторные субъединицы протеинкиназы; КФ - киназа фосфорилазы b; Ф - фосфорилаза; Глк-1-P - глюкозо-1-фосфат; Глк-6-P - глюкозо-6-фосфат; УДФ-Глк - уридиндифосфатглюкоза; ГС - гликогенсинтаза.

Известны четыре разные формы гуанилатциклазы, три из которых являются мембраносвязанными и одна – растворимая открыта в цитозоле.

Мембраносвязанные формы состоят из 3 участков :
рецепторного , локализованного на внешней поверхности плазматической мембраны;
внутримембранного домена и
каталитического компонента , одинакового у разных форм фермента.
Гуанилатциклаза открыта во многих органах (сердце, легкие, почки, надпочечники, эндотелий кишечника, сетчатка и др.), что свидетельствует о широком ее участии в регуляции внутриклеточного метаболизма, опосредованном через цГМФ. Мембраносвязанный фермент активируется через соответствующие рецепторы короткими внеклеточными пептидами, в частности гормоном предсердным натрийуретическим пептидом (АНФ), термостабильным токсином грамотрицательных бактерий и др. АНФ, как известно, синтезируется в предсердии в ответ на увеличение объема крови, поступает с кровью в почки, активирует гуанилатциклазу (соответственно повышает уровень цГМФ), способствуя экскреции Na и воды. Гладкие мышечные клетки сосудов также содержат аналогичную рецептор-гуанилатциклазную систему, посредством которой связанный с рецептором АНФ оказывает сосудорасширяющее действие, способствуя снижению кровяного давления. В эпителиальных клетках кишечника активатором рецептор–гуанилатциклазной системы может служить бактериальный эндотоксин, который приводит к замедлению всасывания воды в кишечнике и развитию диареи.

Растворимая форма гуанилатциклазы является гемсодержащим ферментом, состоящим из 2 субъединиц. В регуляции этой формы гуанилатциклазы принимают участие нитровазодилататоры, свободные радикалы – продукты перекисного окисления липидов. Одним из хорошо известных активаторов является эндотелиальный фактор (EDRF) , вызывающий релаксацию сосудов. Действующим компонентом, естественным лигандом, этого фактора служит оксид азота NO. Эта форма фермента активируется также некоторыми нитрозовазодилататорами (нитроглицерин, нитропруссид и др.), используемыми при болезнях сердца; при распаде этих препаратов также освобождается NO.

Оксид азота образуется из аминокислоты аргинина при участии сложной Са 2+ -зависимой ферментной системы со смешанной функцией, названной NO-синтазой:

Оксид азота при взаимодействии с гемом гуанилатциклазы способствует быстрому образованию цГМФ, который снижает силу сердечных сокращений путем стимулирования ионных насосов, функционирующих при низких концентрациях Са 2+ . Однако действие NO кратковременное, несколько секунд, локализованное – вблизи места его синтеза. Подобный эффект, но более длительный оказывает нитроглицерин, который медленнее освобождает NO.

Получены доказательства, что большинство эффектов цГМФ опосредовано через цГМФ-зависимую протеинкиназу, названную протеинкина-зой G. Этот широко распространенный в эукариотических клетках фермент получен в чистом виде. Он состоит из 2 субъединиц – каталитического домена с последовательностью, аналогичной последовательности С-субъединицы протеинкиназы А (цАМФ-зависимой), и регуля-торного домена, сходного с R-субъединицей протеинкиназы А. Однако протеинкиназы А и G узнают разные последовательности белков, регулируя соответственно фосфорилирование ОН-группы серина и треонина разных внутриклеточных белков и оказывая тем самым разные биологические эффекты.

Уровень циклических нуклеотидов цАМФ и цГМФ в клетке контролируется соответствующими фосфодиэстеразами, катализирующими их гидролиз до 5"-нуклеотидмонофосфатов и различающимися по сродству к цАМФ и цГМФ. Выделены и охарактеризованы растворимая кальмоду-линзависимая фосфодиэстераза и мембраносвязанная изоформа, не регулируемая Са 2+ и кальмодулином.

Са 2+ -мессенджерная система

Ионам Са 2+ принадлежит центральная роль в регуляции многих клеточных функций. Изменение концентрации внутриклеточного свободного Са 2+ является сигналом для активации или ингибирования ферментов, которые в свою очередь регулируют метаболизм, сократительную и секреторную активность, адгезию и клеточный рост. Источники Са 2+ могут быть внутри- и внеклеточными. В норме концентрация Са 2+ в цитозоле не превышает 10 -7 М, и основными источниками его являются эндоплазматический ретикулум и митохондрии. Нейрогормональные сигналы приводят к резкому повышению концентрации Са 2+ (до 10 –6 М), поступающего как извне через плазматическую мембрану (точнее, через потенциалзависимые и рецепторзависимые кальциевые каналы), так и из внутриклеточных источников. Одним из важнейших механизмов проведения гормонального сигнала в кальций–мессенджерной системе является запуск клеточных реакций (ответов) путем активирования специфической Са 2+ -кальмодулин-зависимой протеинкиназы. Регуляторной субъединицей этого фермента оказался Са 2+ -связывающий белок кальмодулин. При повышении концентрации Са 2+ в клетке в ответ на поступающие сигналы специфическая протеинкиназа катализирует фосфорилирование множества внутриклеточных ферментов – мишеней, регулируя тем самым их активность. Показано, что в состав киназы фосфорилазы b, активируемой ионами Са 2+ , как и NO-синтазы, входит кальмодулин в качестве субъединицы. Кальмодулин является частью множества других Са 2+ -связывающих белков. При повышении концентрации кальция связывание Са 2+ с кальмодулином сопровождается конформационными его изменениями, и в этой Са 2+ -связанной форме кальмодулин модулирует активность множества внутриклеточных белков (отсюда его название).

К внутриклеточной системе мессенджеров относят также производные фосфолипидов мембран эукариотических клеток, в частности фосфорилированные производные фосфатидилинозитола. Эти производные освобождаются в ответ на гормональный сигнал (например, от вазопрессина или тиротропина) под действием специфической мембраносвязанной фосфолипазы С. В результате последовательных реакций образуются два потенциальных вторичных мессенджера – диацилглицерол и инозитол-1,4,5-трифосфат.

Биологические эффекты этих вторичных мессенджеров реализуются по-разному. Действие диацилглицерола, как и свободных ионов Са 2+ , опосредовано через мембраносвязанный Са-зависимый фермент протеинкиназу С , которая катализирует фосфорилирование внутриклеточных ферментов, изменяя их активность. Инозитол-1,4,5-трифосфат связывается со специфическим рецептором на эндоплазматическом ретикулуме, способствуя выходу из него ионов Са 2+ в цитозоль.

Таким образом, представленные данные о вторичных мессенджерах свидетельствуют о том, что каждой из этих систем посредников гормонального эффекта соответствует определенный класс протеинкиназ, хотя нельзя исключить возможности существования тесной связи между этими системами. Активность протеинкиназ типа А регулируется цАМФ, протеинкиназы G – цГМФ; Са 2+ -кальмодулинзависимые протеинкиназы находятся под контролем внутриклеточной [Са 2+ ], а протеинкиназа типа С регулируется диацилглицеролом в синергизме со свободным Са 2+ и кислыми фосфолипидами. Повышение уровня какого-либо вторичного мес-сенджера приводит к активации соответствующего класса протеинкиназ и последующему фосфорилированию их белковых субстратов. В результате меняется не только активность, но и регуляторные и каталитические свойства многих ферментных систем клетки: ионных каналов, внутриклеточных структурных элементов и генетического аппарата.

2)Реализация эффекта после проникновения гормона внутрь клетки

Во этом случае рецепторы для гормона находятся в цитоплазме клетки. Гормоны этого механизма действия в силу своей липофильности легко проникают через мембрану внутрь клетки-мишени и связываются в ее цитоплазме специфическими белками-рецепторами. Гормон-рецепторный комплекс входит в клеточное ядро. В ядре комплекс распадается, и гормон взаимодействует с определенными участками ядерной ДНК, следствием чего является образование особой матричной РНК. Матричная РНК выходит из ядра и способствует синтезу на рибосомах белка или белка-фермента. Так действуют стероидные гормоны и производные тирозина - гормоны щитовидной железы. Для их действия характерна глубокая и длительная перестройка клеточного метаболизма.

Известно, что эффект стероидных гормонов реализуется через генетический аппарат путем изменения экспрессии генов. Гормон после доставки с белками крови в клетку проникает (путем диффузии) через плазматическую мембрану и далее через ядерную мембрану и связывается с внутриядерным рецептором–белком. Комплекс стероид–белок затем связывается с регуляторной областью ДНК, с так называемыми гормончувствительными элементами, способствуя транскрипции соответствующих структурных генов, индукции синтеза белка de novo и изменению метаболизма клетки в ответ на гормональный сигнал.

Следует подчеркнуть, что главной и отличительной особенностью молекулярных механизмов действия двух основных классов гормонов является то, что действие пептидных гормонов реализуется в основном путем посттрансляционных (постсинтетических) модификаций белков в клетках, в то время как стероидные гормоны (а также тиреоидные гормоны, ретиноиды, витамин D3-гормоны) выступают в качестве регуляторов экспрессии генов.

Инактивация гормонов происходит в эффекторных органах, в основном в печени, где гормоны претерпевают различные химические изменения путем связывания с глюкуроновой или серной кислотой либо в результате воздействия ферментов. Частично гормоны выделяются с мочой в неизмененном виде. Действие некоторых гормонов может блокироваться благодаря секреции гормонов, обладающих антагонистическим эффектом.

Биологически активное вещество (БАВ), физиологически активное вещество (ФАВ) - вещество, которое в малых количествах (мкг, нг) оказывает выраженный физиологический эффект на различные функции организма.

Гормон — физиологически активное вещество, вырабатываемое или специализированными эндокринными клетками, выделяемое во внутреннюю среду организма (кровь, лимфа) и оказывающее дистантное действие на клетки-мишени.

Гормон - это сигнальная молекула, секретируемая эндокринными клетками, которая посредством взаимодействия со специфическими рецепторами клеток-мишеней регулирует их функции. Поскольку гормоны являются носителями информации, то они, как и другие сигнальные молекулы, обладают высокой биологической активностью и вызывают ответные реакции клеток-мишеней в очень малых концентрациях (10 -6 — 10 -12 М/л).

Клетки-мишени (ткани-мишени, органы-мишени) — клетки, ткани или органы, в которых имеются специфичные для данного гормона рецепторы. Некоторые гормоны имеют единственную ткань-мишень, тогда как другие оказывают влияние повсеместно в организме.

Таблица. Классификация физиологически активных веществ

Свойства гормонов

Гормоны имеют ряд общих свойств. Обычно они образуются специализированными эндокринными клетками. Гормоны обладают избирательностью действия, которая достигается благодаря связыванию со специфическими рецепторами, находящимися на поверхности клеток (мембранные рецепторы) или внутри них (внутриклеточные рецепторы), и запуску каскада процессов внутриклеточной передачи гормонального сигнала.

Последовательность событий передачи гормонального сигнала может быть представлена в виде упрощенной схемы «гормон (сигнал, лиганд) -> рецептор -> второй (вторичный) посредник -> эффекторные структуры клетки -> физиологический ответ клетки». У большинства гормонов отсутствует видовая специфичность (за исключением ), что позволяет изучать их эффекты на животных, а также использовать гормоны, полученные от животных, для лечения больных людей.

Различают три варианта межклеточного взаимодействия с помощью гормонов:

  • эндокринный (дистантный), когда они доставляются к клеткам-мишеням от места продукции кровью;
  • паракринный — гормоны диффундируют к клетке-мишени от рядом расположенной эндокринной клетки;
  • аутокринный — гормоны воздействуют на клетку-продуцент, которая одновременно является для него клеткой-мишенью.

По химической структуре гормоны делят на три группы:

  • пептиды (число аминокислот до 100, например тиротропина рилизинг-гормон, АКТГ) и белки (инсулин, гормон роста, и др.);
  • производные аминокислот: тирозина (тироксин, адреналин), триптофана — мелатонин;
  • стероиды, производные холестерола (женские и мужские половые гормоны, альдостерон, кортизол, кальцитриол) и ретиноевая кислота.

По выполняемой функции гормоны делят на три группы:

  • эффекторные гормоны , действующие непосредственно на клетки-мишени;
  • тронные гормоны гипофиза , контролирующие функцию периферических эндокринных желез;
  • гормоны гипоталамуса , регулирующие секрецию гормонов гипофизом.

Таблица. Типы действия гормонов

Тип действия

Характеристика

Гормональное (гемокринное)

Действие гормона на значительном удалении от места образования

Изокринное (местное)

Гормон, синтезируемый в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой. Его высвобождение осуществляется в межтканевую жидкость и кровь

Нейрокринное (нейроэндокринное)

Действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейромедиатора или нейромодулятора

Паракринное

Разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости

Юкстакринное

Разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передастся через плазматическую мембрану рядом расположенной клетки

Аутокринное

Высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность

Соликринное

Высвобождающийся из клетки гормон поступает в просвет протока и достигает, таким образом, другой клетки, оказывая на нес специфическое воздействие (характерно для желудочно- кишечных гормонов)

Гормоны циркулируют в крови в свободном (активная форма) и связанном (неактивная форма) состоянии с белками плазмы или форменных элементов. Биологической активностью обладают гормоны в свободном состоянии. Содержание их в крови зависит от скорости секреции, степени связывания, захвата и скорости метаболизма в тканях (связывания со специфическими рецепторами, разрушения или инактивации в клетках-мишенях или гепатоцитах), удаления с мочой или желчью.

Таблица. Физиологически активные вещества, открытые в последнее время

Ряд гормонов может подвергаться в клетках-мишенях химическим превращениям в более активные формы. Так, гормон «тироксин», подвергаясь дейодированию, превращается в более активную форму — трийодтиронин. Мужской половой гормон тестостерон в клетках-мишенях может не только превращаться в более активную форму — дегидротестостерон, но и в женские половые гормоны группы эстрогенов.

Действие гормона на клетку-мишень обусловлено связыванием, стимуляцией специфического к нему рецептора, после чего происходит передача гормонального сигнала на внутриклеточный каскад превращений. Передача сигнала сопровождается его многократным усилением, и действие на клетку небольшого числа молекул гормона может сопровождаться мощной ответной реакцией клеток-мишеней. Активация гормоном рецептора сопровождается также включением внутриклеточных механизмов, прекращающих ответ клетки на действие гормона. Это могут быть механизмы, понижающие чувствительность (десенситизация/адаптация) рецептора к гормону; механизмы, дефосфорилирующие внутриклеточные ферментные системы и др.

Рецепторы к гормонам, как и к другим сигнальным молекулам, локализованы на клеточной мембране или внутри клетки. С рецепторами клеточной мембраны (1-TMS, 7-TMS и лигандзависимые ионные каналы) взаимодействуют гормоны гидрофильной (лииофобной) природы, для которых клеточная мембрана не проницаема. Ими являются катехоламины, мелатонин, серотонин, гормоны белково-пептидной природы.

Гормоны гидрофобной (липофильной) природы диффундируют через плазматическую мембрану и связываются с внутриклеточными рецепторами. Эти рецепторы делятся на цитозольные (рецепторы стероидных гормонов — глюко- и минералокортикоидов, андрогенов и прогестинов) и ядерные (рецепторы тиреоидных йодсодержащих гормонов, кальцитриола, эстрогенов, ретиноевой кислоты). Цитозольные рецепторы и рецепторы эстрогенов связаны с белками теплового шока (БТШ), что предотвращает их проникновение в ядро. Взаимодействие гормона с рецептором приводит к отделению БТШ, образованию гормон-рецепторного комплекса и активации рецептора. Комплекс гормон-рецептор перемещается в ядро, где он взаимодействует со строго определенными гормон-чувствительными (узнающими) участками ДНК. Это сопровождается изменением активности (экспрессией) определенных генов, контролирующих синтез белков в клетке и другие процессы.

По использованию тех или иных внутриклеточных путей передачи гормонального сигнала наиболее распространенные гормоны можно разделить на ряд групп (табл. 8.1).

Таблица 8.1. Внутриклеточные механизмы и пути действия гормонов

Гормоны контролируют разнообразные реакции клеток-мишеней и через них — физиологические процессы организма. Физиологические эффекты гормонов зависят от их содержания в крови, количества и чувствительности рецепторов, состояния пострецепторных структур в клетках-мишенях. Под действием гормонов может происходить активация или торможение энергетического и пластического метаболизма клеток, синтеза различных, в том числе белковых веществ (метаболическое действие гормонов); изменение скорости деления клетки, ее дифференцировки (морфогенетическое действие), инициирование запрограммированной гибели клетки (апоптоз); запуск и регуляция сокращения и расслабления гладких миоцитов, секреции, абсорбции (кинетическое действие); изменение состояния ионных каналов, ускорение или торможение генерации электрических потенциалов в водителях ритма (корригирующее действие), облегчение или угнетение влияния других гормонов (реактогенное действие) и т.д.

Таблица. Распределение гормона в крови

Скорость возникновения в организме и продолжительность ответных реакций на действие гормонов зависит от типа стимулируемых рецепторов и скорости метаболизма самих гормонов. Изменения физиологических процессов могут наблюдаться через несколько десятков секунд и длиться кратковременно при стимуляции рецепторов плазматической мембраны (например, сужение сосудов и повышение артериального давления крови под действием адреналина) или наблюдаться через несколько десятков минут и длиться часами при стимуляции ядерных рецепторов (например, усиление обмена в клетках и увеличение потребления кислорода организмом при стимуляции тиреоидных рецепторов трийодтиронином).

Таблица. Время действия физиологически активных веществ

Поскольку одна и та же клетка может содержать рецепторы к разным гормонам, то она способна быть одновременно клеткой-мишенью для нескольких гормонов и других сигнальных молекул. Действие одного гормона на клетку нередко сочетается с влиянием других гормонов, медиаторов, цитокинов. При этом в клетках-мишенях может происходить запуск ряда путей передачи сигналов, в результате взаимодействия которых может наблюдаться усиление или торможение ответной реакции клетки. Например, на гладкий миоцит стенки сосудов могут одновременно действовать норадреналин и , суммируя их сосудосуживающее влияние. Сосудосуживающее действие вазопрессина может быть устранено или ослаблено одновременным действием на гладкие миоциты сосудистой стенки брадикинина или оксида азота.

Регуляция образования и секреции гормонов

Регуляция образования и секреции гормонов является одной из важнейших функций и нервной систем организма. Среди механизмов регуляции образования и секреции гормонов выделяют влияние ЦНС, «тройных» гормонов, влияние по каналам отрицательной обратной связи концентрации гормонов в крови, влияние конечных эффектов гормонов на их секрецию, влияние суточных и других ритмов.

Нервная регуляция осуществляется в различных эндокринных железах и клетках. Это регуляция образования и секреции гормонов нейросекреторными клетками переднего гипоталамуса в ответ на поступление к нему нервных импульсов с различных областей ЦНС. Эти клетки обладают уникальной способностью возбуждаться и трансформировать возбуждение в образование и секрецию гормонов, стимулирующих (рилизинг-гормоны, либерины) или тормозящих (статины) секрецию гормонов гипофизом. Например, при увеличении притока нервных импульсов к гипоталамусу в условиях психоэмоционального возбуждения, голода, болевого воздействия, действии тепла или холода, при инфекции и в других чрезвычайных условиях, нейросекреторные клетки гипоталамуса высвобождают в портальные сосуды гипофиза кортикотропина рилизинг-гормон, который усиливает секрецию адренокортикотропного гормона (АКТГ) гипофизом.

Непосредственное влияние на образование и секрецию гормонов оказывает АНС. При повышении тонуса СНС увеличивается секреция тройных гормонов гипофизом, секреция катехоламинов мозговым веществом надпочечников, тиреоидных гормонов щитовидной железой, снижается секреция инсулина. При повышении тонуса ПСНС увеличивается секреция инсулина, гастрина и тормозится секреция тиреоидных гормонов.

Регуляции тронными гормонами гипофиза используется для контроля образования и секреции гормонов периферическими эндокринными железами (щитовидной, корой надпочечников, половыми железами). Секреция тропных гормонов находится под контролем гипоталамуса. Тропные гормоны получили свое название из-за их способности связываться (обладать сродством) с рецепторами клеток-мишеней, формирующих отдельные периферические эндокринные железы. Троп- ный гормон к тироцитам щитовидной железы называют тиро- тропином или тиреотропным гормоном (ТТГ), к эндокринным клеткам коры надпочечников — адренокортикотропным гормоном (АКГТ). Тропные гормоны к эндокринным клеткам половых желез получили название: лютропин или лютеинизирующий гормон (ЛГ) — к клеткам Лейдига, желтому телу; фоллитропин или фолликулостимулирующий гормон (ФСГ) — к клеткам фолликулов и клеткам Сертоли.

Тропные гормоны при повышении их уровня в крови многократно стимулируют секрецию гормонов периферическими эндокринными железами. Они могут оказывать на них также другие эффекты. Так, например, ТТГ усиливает в щитовидной железе кровоток, активирует метаболические процессы в тироцитах, захват ими йода из крови, ускоряет процессы синтеза и секреции тиреоидных гормонов. При избыточном количестве ТТГ наблюдается гипертрофия щитовидной железы.

Регуляция обратными связями используется для контроля секреции гормонов гипоталамуса и гипофиза. Ее суть заключается в том, что нейросекреторные клетки гипоталамуса имеют рецепторы и являются клетками-мишенями гормонов периферической эндокринной железы и тройного гормона гипофиза, контролирующего секрецию гормонов этой периферической железой. Таким образом, если под влиянием гипоталамического тиреотропин-рилизинг-гормона (ТРГ) увеличится секреция ТТГ, то последний свяжется не только с рецепторами тирсоцитов, но и с рецепторами нейросекреторных клеток гипоталамуса. В щитовидной железе ТТГ стимулирует образование тиреоидных гормонов, а в гипоталамусе — тормозит дальнейшую секрецию ТРГ. Связь между уровнем ТТГ в крови и процессами образования и секреции ТРГ в гипоталамусе получила название короткой петли обратной связи.

На секрецию ТРГ в гипоталамусе оказывает влияние и уровень гормонов щитовидной железы. Если их концентрация в крови повышается, то они связываются с рецепторами тиреоидных гормонов нейросекреторных клеток гипоталамуса и тормозят синтез и секрецию ТРГ. Связь между уровнем тиреоидных гормонов в крови и процессами образования и секреции ТРГ в гипоталамусе получила название длинной петли обратной связи. Имеются экспериментальные данные о том, что гормоны гипоталамуса не только регулируют синтез и выделение гормонов гипофиза, но и тормозят собственное выделение, что определяют понятием сверхкороткой петли обратной связи.

Совокупность железистых клеток гипофиза, гипоталамуса и периферических эндокринных желез и механизмов их взаимного влияния друг на друга назвали системами или осями гипофиз — гипоталамус — эндокринная железа. Выделяют системы (оси) гипофиз — гипоталамус — щитовидная железа; гипофиз — гипоталамус — кора надпочечников; гипофиз — гипоталамус — половые железы.

Влияние конечных эффектов гормонов на их секрецию имеет место в островковом аппарате поджелудочной железы, С-клетках щитовидной железы, паращитовидных железах, гипоталамусе и др. Это демонстрируется следующими примерами. При повышении в крови уровня глюкозы стимулируется секреция инсулина, а при понижении — глюкагона. Эти гормоны по паракринному механизму тормозят секрецию друг друга. При повышении в крови уровня ионов Са 2+ стимулируется секреция кальцитонина, а при понижении — паратирина. Прямое влияние концентрации веществ на секрецию гормонов, контролирующих их уровень, является быстрым и эффективным способом поддержания концентрации этих веществ в крови.

Среди рассматриваемых механизмов регуляции секреции гормонов их конечными эффектами можно отметить регуляцию секреции антидиуретического гормона (АДГ) клетками заднего гипоталамуса. Секреция этого гормона стимулируется при повышении осмотического давления крови, например при потере жидкости. Снижение диуреза и задержка жидкости в организме под действием АДГ ведут к снижению осмотического давления и торможению секреции АДГ. Похожий механизм используется для регуляции секреции натрийуретического пептида клетками предсердий.

Влияние суточных и других ритмов на секрецию гормонов имеет место в гипоталамусе, надпочечниках, половых, шишковидной железах. Примером влияния суточного ритма является суточная зависимость секреции АКТГ и кортикостероидных гормонов. Самый низкий их уровень в крови наблюдается в полночь, а самый высокий — утром после пробуждения. Наиболее высокий уровень мелатонина регистрируется ночью. Хорошо известно влияние лунного цикла на секрецию половых гормонов у женщин.

Определение гормонов

Секреция гормонов - поступление гормонов во внутреннюю среду организма. Полипептидные гормоны накапливаются в гранулах и секретируются путем экзоцитоза. Стероидные гормоны не накапливаются в клетке и секретируются сразу после синтеза путем диффузии через клеточную мембрану. Секреция гормонов в большинстве случаев имеет циклический, пульсирующий характер. Периодичность секреции — от 5-10 мин до 24 ч и более (распространенный ритм — около 1 ч).

Связанная форма гормона — образование обратимых, соединенных нековалентными связями комплексов гормонов с белками плазмы и форменными элементами. Степень связывания различных гормонов сильно варьирует и определяется их растворимостью в плазме крови и наличием транспортного белка. Например, 90 % кортизола, 98 % тестостерона и эстрадиола, 96 % трийодтиронина и 99 % тироксина связываются с транспортными белками. Связанная форма гормона не может взаимодействовать с рецепторами и формирует резерв, который может быть быстро мобилизован для пополнения пула свободного гормона.

Свободная форма гормона — физиологически активное вещество в плазме крови в несвязанном с белком состоянии, способное взаимодействовать с рецепторами. Связанная форма гормона находится в динамическом равновесии с пулом свободного гормона, который в свою очередь находится в равновесии с гормоном, связанным с рецепторами в клетках-мишенях. Большинство полипептидных гормонов, за исключением соматотропина и окситоцина, циркулирует в низких концентрациях в крови в свободном состоянии, не связываясь с белками.

Метаболические превращения гормона - его химическая модификация в тканях-мишенях или других образованиях, обусловливающая снижение/повышение гормональной активности. Важнейшим местом обмена гормонов (их активации или инактивации) является печень.

Скорость метаболизма гормона - интенсивность его химического превращения, которая определяет длительность циркуляции в крови. Период полураспада катехоламинов и полипептидных гормонов составляет несколько минут, а тиреоидных и стероидных гормонов — от 30 мин до нескольких суток.

Гормональный рецептор — высокоспециализированная клеточная структура, входящая в состав плазматических мембран, цитоплазмы или ядерного аппарата клетки и образующая специфичное комплексное соединение с гормоном.

Органоспецифичность действия гормона - ответные реакции органов и тканей на физиологически активные вещества; они строго специфичны и не могут быть вызваны другими соединениями.

Обратная связь — влияние уровня циркулирующего гормона на его синтез в эндокринных клетках. Длинная цепь обратной связи — взаимодействие периферической эндокринной железы с гипофизарными, гипоталамическими центрами и с супрагипоталамическими областями ЦНС. Короткая цепь обратной связи — изменение секреции гипофизарного тронного гормона, модифицирует секрецию и высвобождение статинов и либеринов гипоталамуса. Ультракороткая цепь обратной связи — взаимодействие в пределах эндокринной железы, при котором выделение гормона влияет на процессы секреции и высвобождения его самого и других гормонов из данной железы.

Отрицательная обратная связь - повышение уровня гормона, приводящее к торможению его секреции.

Положительная обратная связь — повышение уровня гормона, обусловливающее стимуляцию и возникновение пика его секреции.

Анаболические гормоны - физиологически активные вещества, способствующие образованию и обновлению структурных частей организма и накоплению в нем энергии. К таким веществам относятся гонадотропные гормоны гипофиза (фоллитропин, лютропин), половые стероидные гормоны (андрогены и эстрогены), гормон роста (соматотропин), хориони- ческий гонадотропин плаценты, инсулин.

Инсулин — белковое вещество, вырабатываемое в β-клетках островков Лангерганса, состоящее из двух полипептидных цепей (А-цепь — 21 аминокислота, В-цепь — 30), снижающее уровень глюкозы крови. Первый белок, у которого была полностью определена первичная структура Ф. Сенгером в 1945-1954 гг.

Катаболические гормоны — физиологически активные вещества, способствующие распаду различных веществ и структур организма и высвобождению из него энергии. К таким веществам относятся кортикотропин, глюкокортикоиды (корти- зол), глюкагон, высокие концентрации тироксина и адреналина.

Тироксин (тетрайодтиронин) - йодсодержащее производное аминокислоты тирозина, вырабатываемое в фолликулах щитовидной железы, повышающее интенсивность основного обмена, теплопродукцию, оказывающее влияние на рост и дифференцировку тканей.

Глюкагон - полипептид, вырабатываемый в а-клетках островков Лангерганса, состоящий из 29 аминокислотных остатков, стимулирующий распад гликогена и повышающий уровень глюкозы крови.

Кортикостероидные гормоны - соединения, образующиеся в корковом веществе надпочечников. В зависимости от числа атомов углерода в молекуле делят на С 18 -стероиды — женские половые гормоны — эстрогены, С 19 -стероиды — мужские половые гормоны — андрогены, С 21 -стероиды — собственно кортикостероидные гормоны, обладающие специфическим физиологическим действием.

Катехоламины — производные пирокатехина, активно участвующие в физиологических процессах в организме животных и человека. К катехоламинам относятся адреналин, норадреналин и дофамин.

Симпатоадреналовая система — хромаффинные клетки мозгового вещества надпочечников и иннервирующие их преганглионарные волокна симпатической нервной системы, в которых синтезируются катехоламины. Хромаффинные клетки также обнаружены в аорте, каротидном синусе, внутри и около симпатических ганглиев.

Биогенные амины — группа азотсодержащих органических соединений, образующихся в организме путем декарбоксилирования аминокислот, т.е. отщепления от них карбоксильной группы — СООН. Многие из биогенных аминов (гистамин, серотонин, норадреналин, адреналин, дофамин, тирамин и др.) оказывают выраженный физиологический эффект.

Эйкозаноиды - физиологически активные вещества, производные преимущественно арахидоновой кислоты, оказывающие разнообразные физиологические эффекты и подразделяющиеся на группы: простагландины, простациклины, тром- боксаны, левугландины, лейкотриены и др.

Регуляторные пептиды — высокомолекулярные соединения, представляющие собой цепочку аминокислотных остатков, соединенных пептидной связью. Регуляторные пептиды, насчитывающие до 10 аминокислотных остатков, называют олигопептидами, от 10 до 50 — полипептидами, свыше 50 — белками.

Антигормон — защитное вещество, вырабатываемое организмом при длительном введении белковых гормональных препаратов. Образование антигормона является иммунологической реакцией на введение извне чужеродного белка. По отношению к собственным гормонам организм не образует антигормоны. Однако могут быть синтезированы вещества, близкие по строению к гормонам, которые при введении в организм действуют как антиметаболиты гормонов.

Антиметаболиты гормонов — физиологически активные соединения, близкие по строению к гормонам и вступающие с ними в конкурентные, антагонистические отношения. Антиметаболиты гормонов способны занимать их место в физиологических процессах, совершающихся в организме, или блокировать гормональные рецепторы.

Тканевой гормон (аутокоид, гормон местного действия) — физиологически активное вещество, вырабатываемое неспециализированными клетками и оказывающее преимущественно местный эффект.

Нейрогормон — физиологически активное вещество, вырабатываемое нервными клетками.

Эффекторный гормон - физиологически активное вещество, оказывающее непосредственный эффект на клетки и органы-мишени.

Тронный гормон — физиологически активное вещество, действующее на другие эндокринные железы и регулирующее их функции.

Согласно современным представлениям, действие гормонов основано на стимуляции или угнетении каталитической функции определенных ферментов. Этот эффект достигается, во-первых, посредством активации или ингибирования уже имеющихся ферментов в клетках, во-вторых, посредством увеличения концентрации ферментов в клетках за счет ускорения синтеза ферментов путем активации генов. Гормоны могут увеличивать или уменьшать проницаемость клеточных и субклеточных мембран для ферментов и других биологически активных веществ, благодаря чему облегчается или тормозится действие фермента на субстрат.

Различают следующие типы механизма действия гормонов: мембранный, мембранно-внутриклеточный и внутриклеточный (цитозольный).

Мембранный механизм. Гормон связывается с клеточной мембраной и в месте связывания изменяет ее проницаемость для глюкозы, аминокислот и некоторых ионов. В этом случае гормон выступает как эффектор транспортных систем мембраны. Такое действие оказывает инсулин, изменяя транспорт глюкозы. Но этот тип транспорта гормонов редко встречается в изолированном виде. Инсулин, например, обладает как мембранным, так и мембранно-внутриклеточным механизмом действия.

Мембранно-внутриклеточный механизм. По мембранно-внутриклеточному типу действуют гормоны, которые не проникают в клетку и поэтому влияют на обмен веществ через внутриклеточного химического посредника. К ним относят белково-пептидные гормоны (гормоны гипоталамуса, гипофиза, поджелудочной) и паращитовидной желез, тиреокальцитонин щитовидной железы); производные аминокислот (гормоны мозгового слоя надпочечников - адреналин и норадреналин, щитовидной железы - тироксин, трийодтиронин).

Функции внутриклеточных химических посредников гормонов выполняют циклические нуклеотиды - циклический 3",5"-аденозинмонофос-фат (цАМФ) и циклический 3",5"-гуанозинмонофосфат (цГМФ), ионы кальция.

Гормоны влияют на образование циклических нуклеотидов: цАМФ - через аденилатциклазу, цГМФ - через гуанилатциклазу.

Аденилатциклаза встроена в мембрану клетки и состоит из трех взаимосвязанных частей: рецепторной, представленной набором мембранных рецепторов, находящихся снаружи мембраны; сопрягающей (Л), представленной особым Л-белком, расположенным в липидном слое мембраны, и каталитической (С), являющейся ферментным белком, то есть собственно аденилатциклазой, которая превращает АТФ (аденозинтрифосфат) в цАМФ.

Аденилатциклаза работает по следующей схеме. Как только гормон связывается с рецептором (R) и образуется комплекс гормон - рецептор, происходит образование комплекса Л-белок - ГТФ (гуанозинтрифосфат), который активирует каталитическую (С) часть аденилатциклазы. Активация аденилатциклазы приводит к образованию цАМФ внутри клетки у внутренней поверхности мембраны из АТФ.

Даже одна молекула гормона, связавшегося с рецептором, заставляет работать аденилатциклазу. При этом на одну молекулу связавшегося гормона образуется 10-100 молекул цАМФ внутри клетки. В активном состоянии аденилатциклаза находится до тех пор, пока существует комплекс гормон - рецептор.

Аналогичным образом работает и гуанилатциклаза. Комплекс гормон - рецептор активирует гуанилатциклазу, ее активация приводит к образованию цГМФ внутри клетки из ГТФ.

В цитоплазме клетки находятся неактивные протеинкиназы. Циклические нуклеотиды - цАМФ и цГМФ - активируют протеинкиназы. Существуют цАМФ-зависимые и цГМФ-зависимые протеинкиназы, которые активируются своим циклическим нуклеотидом. В зависимости от мембранного рецептора, связывающего определенный гормон, включается или аденилатциклаза, или гуанилатциклаза и соответственно происходит образование или цАМФ, или цГМФ.

Через цАМФ действует большинство гормонов, а через цГМФ - только окситоцин, тиреокальцитонин, инсулин и адреналин (через а-адренорецепторы).

При помощи активированных протеинкиназ осуществляется два вида регуляции активности ферментов: активация уже имеющихся ферментов путем ковалентной модификации, то есть фосфорилированием (количество ферментного белка не изменяется); изменение количества ферментного белка за счет изменения скорости его биосинтеза.

Влияние циклических нуклеотидов на биохимические процессы прекращается под влиянием специального фермента - фосфодиэстеразы, разрушающей цАМФ и цГМФ. Образующие АМФ и ГМФ не способны активировать протеинкиназы.

Другой фермент - фосфопротеид-фосфатаза - разрушает результат действия протеинкиназы, то есть отщепляет фосфорную кислоту от ферментных белков, в результате чего они становятся неактивными.

Внутри клетки ионов кальция содержится ничтожно мало, вне клетки их больше. Ионы кальция поступают из внешней среды по кальциевым каналам в мембране. В клетке кальций взаимодействует с кальций-связывающим белком калмодулином (КМ). Комплекс Са2+- КМ изменяет (модулирует) активность ферментов, что ведет к изменению биохимических функций клеток.

Таким образом, чувствительность тканей и органов к гормонам зависит от мембранных рецепторов, а специфическое регуляторное влияние их определяется внутриклеточным посредником.

Внутриклеточный (цитозольный) механизм действия. Он характерен для стероидных гормонов (кортикостероидов, половых гормонов - андрогенов, эстрогенов и гестагенов). Стероидные гормоны по физико-химическим свойствам относятся к липофильным веществам и способны проникать через липидный слой плазматической мембраны.

Гормон проникает внутрь клетки и взаимодействует со специфическим белком-рецептором, находящимся в цитоплазме, образуя гормон-рецепторный комплекс. В цитоплазме клетки последний подвергается активации. В активированной форме этот комплекс проникает через ядерную мембрану к хромосомам ядра и взаимодействует с ними. При этом происходит активация генов, сопровождающаяся усиленным синтезом РНК, что приводит к ускоренному синтезу соответствующих ферментов. Цитоплазматический белок-рецептор служит посредником в действии гормона, однако он приобретает эти свойства только после его соединения с гормоном.

Наряду с непосредственным действием на ткани гормоны влияют и через центральную нервную систему. Они возбуждают специальные хеморецепторы, от которых возбуждение направляется в центральную нервную систему, причем рефлекторные дуги рефлексов, вызванных гормонами, замыкаются в разных отделах центральной нервной системы, включая кору больших полушарий.