Мегакариоциты норма. Исследование клеток

На основании общеклинического анализа крови сложно дать оценку состояния гемопоэза . Более полное представление дает изучение костного мозга (цитологическое, цитохимическое и др.).

Цитологический анализ костного мозга играет большую роль в диагностике заболеваний кроветворной системы. Подсчет миелограммы дает представление о характере эритропоэза (нормобластический или мегалобластический), позволяет обнаружить клетки, характерные для различных заболеваний системы крови (множественной миеломы, острых лейкозов, хронического миелолейкоза, хронического лимфолейкоза, лейкемизированных неходжкинских лимфом, болезни Гоше, Ниманна-Пика, метастазов рака в костном мозге и др.).

Данные миелограммы необходимы для проведения дифференциального диагноза с лейкемоидными реакциями. Сопоставление данных костномозгового кроветворения с картиной периферической крови и клинической симптоматикой позволяет уточнить причину анемии.

Имеются абсолютные и относительные показания к стернальной пункции .
Абсолютные показания : все анемии (кроме типичной железодефицитной), различные цитопении (одноростковая, двуростковая, панцитопения), острые лейкозы, хронические лейкозы в начальной стадии (для подтверждения диагноза и исключения лейкемоидных реакций), выраженное изолированное увеличение СОЭ (для исключения множественной миеломы и макроглобулинемии Вальденстрема), подозрение на метастазы злокачественной опухоли в костном мозге.
Относительные показания : железодефицитные анемии, хронические лейкозы в развернутой стадии.

Аспирационная биопсия костного мозга является технически простым, безопасным и легкодоступным методом. Наиболее часто используется стернальная пункция, предложенная в 1927 г. М. И. Аринкиным и впервые выполненная на кафедре факультетской терапии Военно-медицинской академии. При необходимости можно пунктировать гребень или бугристость подвздошной кости, у детей - пяточную кость. Пункция грудины выполняется иглой И. А. Кассирского с предохранительным щитком. После взятия аспирата костного мозга производят подсчет количества миелокариоцитов, мегакариоцитов, ретикулоцитов, готовят мазки для подсчета миелограммы.

Нормальная миелограмма
Показатели миелограммы Среднее значение (%) Пределы колебаний (%)
Ретикулярные клетки 0,9 0,1-1,6
Недифференцированные бласты 0,6 0,1-1,1
Миелобласты 1,0 0,2-1,7
Промиелоциты 2,5 1,0-4,1
Миелоциты нейтрофильные 9,6 7,0-12,2
Метамиелоциты нейтрофильные 11,5 8,0-15,0
Палочкоядерные нейтрофилы 18,2 12,8-23,7
Сегментоядерные нейтрофилы 18,6 13,1-24,1
Всего клеток нейтрофильного ряда 60,8 52,7-68,9
Миелоциты эозинофильные 0,1 0,0-0,2
Метамиелоциты эозинофильные 0,2 0,1-0,4
Эозинофилы 2,8 0,4-5,2
Всего клеток эозинофилъного ряда 3,2 0,5-5,8
Миелоциты базофильные 0,1 0-0,3
Базофилы 0,1 0-0,3
Всего клеток базофильного ряда 0,2 0-0,5
Лимфобласты 0,1 0-0,2
Пролимфоциты 0,1 0-0,2
Лимфоциты 8,8 4,3-13,3
Всего клеток лимфоидного ряда 9,0 4,3-13,7
Монобласты 0,1 0-0,2
Моноциты 1,9 0,7-3,1
Плазмобласты 0,1 0-0,2
Проплазмоциты 0,1 0,1-0,2
Плазматические клетки 0,9 0,1-1,8
Эритробласты 0,6 0,2-1,1
Нормобласты базофильные 3,6 1,4-5,8
Нормобласты полихроматофильные 12,9 8,9-16,9
Нормобласты оксифильные 3,2 0,8-5,6
Всего клеток эритроидного ряда 20,5 14,5-26,5
Мегакариоциты 0,4 0,2-0,6

Миелокариоциты миелограммы . У здоровых людей количество миелокариоцитов (всех ядросодержащих клеток костного мозга) в камере Горяева составляет 50-250 10 9 /л.

Мегакариоциты миелограммы . Нормальное количество мегакариоцитов в камере Фукса-Розенталя составляет 0,05-0,1 10 6 /л. Необходимо также определять количество мегакариоцитов в окрашенных мазках в 250 полях зрения под малым увеличением и при подсчете миелограммы в процентах.

Следует помнить, что снижение уровня миелокариоцитов и мегакариоцитов в миелограмме отмечается также при разведении аспирата периферической кровью (технические погрешности при выполнении стернальной пункции).

Ретикулоциты миелограммы . Нормальное количество ретикулоцитов в костном мозге составляет 20-30%о. Увеличение их числа наблюдается при гемолитических и постгеморрагических анемиях.

Морфологический анализ клеток костного мозга (подсчет миелограммы) производят на 500 клеток костного мозга, после чего вычисляют процентное содержание каждого вида клеток.

При анализе миелограммы необходимо оценить клеточность (нормо-, гипо- или гиперклеточный), дать качественную характеристику всех клеточных рядов с определением индексов созревания, лейкоэритробластического соотношения, характера эритропоэза (нормобластический, мегалобластический или с мегалобластоидными чертами) и количества митозов. Отдельно следует оценить мегакариоцитопоэз (количество и функция мегакариоцитов).

Костномозговой индекс созревания нейтрофилов определяется по формуле: (промиелоциты + миелоциты + метамиелоциты)/ (палочкоядерные + сегментоядерные нейтрофилы)
В норме костномозговой индекс созревания нейтрофилов равен 0,6-0,8.

Индекс созревания эритроидных клеток определяется по формуле : (полихроматофильные + оксифильные нормоциты)/(эритробласты + базофильные + полихроматофильные + оксифильные нормоциты)
В норме индекс созревания эритроидных клеток равен 0,8-0,9.

Уменьшение индекса свидетельствует о задержке гемоглобинизации и/или преобладании молодых базофильных нормоцитов, дает возможность ориентировочно оценить запасы и обмен железа в организме.

Лейкоэритробластическое соотношение определяется по формуле: (гранулоциты): (ядросодержащие клетки эритроидного ряда) и в норме составляет 3-4:1.

Количество митозов в норме составляет 3,5 на 1000 для клеток гранулоцитарного ряда и 5 на 1000 - для клеток эритроидного ряда.

Заключение по миелограмме не должно быть категоричным, поскольку для постановки диагноза необходимо учитывать клинические данные и показатели периферической крови.

Для более полной характеристики гемопоэза , особенно мегакариоцитопоэза, в ряде случаев требуется гистологическое исследование костного мозга методом трепанобиопсии.

Определение сидеробластов и сидероцитов в миелограмме

При железодефицитных и сидеробластных анемиях важно определять количество сидероцитов и сидеробластов - эритроцитов и эритробластов, содержащих в цитоплазме железо в виде гемосидерина и ферритина (зернышки синего цвета при окраске по Перлсу диаметром 0,2-1,5 мкм). У здоровых людей в периферической крови содержится 1,1-3,0% (в среднем 1,6%) сидероцитов. Содержание сидеробластов в костном мозге составляет 15-40% от всех клеток эритроидного ряда; количество гранул в них обычно 1-2 (не более 4).

Клиническое значение . При хронических железодефицитных анемиях отмечается снижение количества сидероцитов и сидеробластов в костном мозге, гранулы железа в них практически выявить не удается.

Мегакариоциты - гигантские клетки костного мозга - являются родоначальными клетками тромбоцитопоэза. Не­смотря на то, что мегакариоциты идентифицированы как костномозговые "предшественники" тромбоцитов еще в на­
чале нынешнего столетия, механизмы развития и регуляции этих клеток еще полностью не раскрыты.

Мегакариобласты обнаруживают в желточном мешке на 5-й неделе эмбрионального развития. Мегакариоциты встре­чаются в сосудах на 8-й неделе, а макротромбоциты обна­руживают в крови на 16-й и 21-й неделе эмбриогенеза.

Мегакариоциты развиваются из плюрипотентной гемопо- этической стволовой клетки посредством комплекса процессов: 1) коммитации гемопоэтического предшествен­ника на путь мегакариоцитарной дифференцировки; 2) мито­тической амплификации клеток-предшественников мегака- риоцитов; 3) эндомитотического деления ядра, приводящего к возрастанию плоидности; 4) роста цитоплазмы с приобре­тением специфических для тромбоцитов органелл и белков и 5) высвобождения тромбоцитов в циркуляторное русло.

Родоначальной клеткой, коммитированной исключитель­но по мегакариоцитарному ряду, является колониеобразую­щая единица мегакариоцита, способная проходить 1 -9 мито­зов до вступления в эндомитоз и образовывать колонии зре­лых мегакариоцитов.

Различают три стадии созревания мегакариоцитов. Первая стадия - мегакариобласты, составляющие не более 10% всей популяции; вторая, промежуточная стадия - про- мегакариоциты (около 15%); третья - зрелые мегакариоциты (75-85%). Они делятся на гранулярные и базофильные фор­мы, проходящие заключительный эндомитоз и тромбоцито- отделение. Синтез ДНК в этом ряду клеток происходит только в мегакариобласте - самой молодой морфологически рас­познаваемой клетке мегакариоцитарного ростка. Процесс преобразования мегакариобластов в мегакариоциты продол­жается около 25 часов. Время созревания мегакариоцита - 25 часов, а жизненный цикл мегакариоцитов составляет 10 суток.

У взрослого человека мегакариоциты - наиболее круп­ные клетки, их диаметр колеблется от 40 до 100 мкм. По со­держанию ДНК эти клетки являются уникальными: у 2/3 мегакариоцитов содержание ДНК в 8 раз превышает таковое в диплоидных клетках, например в лимфоцитах.

2.4. Тромбоцитопоэз

Своеобразие мегакариоцитарных клеток заключается в непрекращающейся цитоплазматической дифференцировке, которая заканчивается тромбоцитообразованием. Каждый мегакариоцит в зависимости от его величины (плоидности) образует от 2000 до 8000 тромбоцитов. Содержание мегакариоцитов в костномозговом пунктате из грудины у здоровых лиц подвержено небольшим колебаниям и состав­ляете"! ,8-216,2 в1 мкл, надолю зрелых мегакариоцитов при­ходится 76%. Образование клеток-предшественников мега- кариоцитопоэза осуществляется по общему для всех грану­лярных клеток принципу: избыток тромбоцитов в циркулиру­ющей крови в норме тормозит тромбоцитопоэз, а тромбоци- топения его стимулирует. Гуморальная регуляция тромбоци- топоэза происходит с участием тромбопоэтина, а также ИЛ-3, ИЛ-6, ИЛ-11. Наиболее быстрый путь увеличения количества тромбоцитов - ускоренное созревание мегакариоцитов и тромбоцитообразование, связанное со способностью ядра мегакариоцита к заключительному эндомитозу. Созревание мегакариоцитов имеет свои закономерности, которые моди­фицируются в экстремальных условиях: ускоряются при усилении нормальной регенерации (при кровопотере), за­медляются под воздействием внешних и внутренних факто­ров (химиотерапевтических препаратов, дефицита витаминов и пищевых ингредиентов, антитромбоцитарных антител). Митотический индекс мегакариоцитов не превышает 0,5%.

В цитоплазме зрелых мегакариоцитов всегда содержатся морфологически зрелые тромбоциты, по количеству и состо­янию органелл не отличающиеся от периферических тромбо­цитов. Единственным отличием является отсутствие широко­го рыхлого слоя наружной мембраны, гликокаликса, что де­лает тромбоциты, находящиеся в цитоплазме мегакариоцита, морфологически не сформированными. В образовании этого наружного слоя, необходимого для обособления тромбоци­тов, играет роль заключительный эндомитоз, во время кото­рого образуется поверхностная система микротрубочек и гликокапикс тромбоцитов.

Нормальные тромбоциты представляют собой сферичес­кие структуры диаметром от 1 до 5 мкм. Гиаломер тромбо­
цитов ограничен трехслойной мембраной, на которой адсор­бируются факторы свертывающей системы. Она играет боль­шую роль в процессах адгезии и агрегации тромбоцитов. Внутри тромбоцитов имеется множество гранул различной структуры, формы и величины, в которых содержатся фосфо­липиды, АТФ, серотонин, ферменты, фибронектин, гистамин, катионные белки, фактор, активирующий фибробласты, трансформирующий ростовой фактор.

Популяция тромбоци­тов неоднородна. Среди данной популяции различают зрелые тромбоциты (87,0 ± 0,19%), юные (незрелые) (3,2 ± 0,13%), старые (4,5 ± 0,21%) и формы раздражения (2,5 ± 0,1%). Вре­мя циркуляции тромбоцитов - 10-12 суток. Тромбоциты по сравнению с другими клетками периферической крови де­формируются меньше. Двигаясь с током крови, они почти не касаются стенок кровеносного русла. Тромбоциты при кон­такте с эритроцитами не прикрепляются к ним. При исполь­зовании изотопной метки установлено, что 2/3 тромбоцитов находится в циркуляторном русле, 1/3 - в селезенке или в других экстраваскулярных местах. В селезенке тромбоциты "прилипают" к поверхности эндотелиальных клеток, высти­лающих синусы, и кретикулоэндотелиальным клеткам красной пульпы. "Селезеночные" тромбоциты обычно обмениваются с циркулирующими тромбоцитами и мобилизуются после вве­дения эпинефрина. В селезенке обычно секвестрируется большой процент молодых больших тромбоцитов. Увеличе­ние числа тромбоцитов обычно бывает после тяжелой физи­ческой нагрузки. Нет точных данных о мобилизации тромбо­цитов из неселезеночного пула. В норме тромбоциты отсутст­вуют в лимфе и других жидкостях организма. В здоровом организме разрушение тромбоцитов соответствует их про­дукции, что составляет в сутки 35000 ± 4300 пластинок на 1 мкл крови. Поврежденные (старые) тромбоциты накапли­ваются и разрушаются в основном в селезенке.

Промегакариоцит.

По размеру в 1,5-2 раза больше мегакариобласта. Ги­гантское ядро, круглое, но с четкой тенденцией к сегменти­рованию. Ядерный хроматин преимущественно грубо-сет-

2.6. Тромбоцитопоэз

чатый, имеются ядрышки. Цитоплазма базофильная, с еди­ничными азурофильными гранулами.

Мегакариоцит.

Самая большая гемопоэтическая клетка костного мозга. Имеет характерное ядро, с резкими углублениями, может быть самой причудливой формы. Структура хроматина грубо­сетчатая, с утолщениями в узлах сетки. Цитоплазма окси- фильная, с нежными гранулами.

Во многих клетках видно отделение тромбоцитов от цитоплазмы.

Рис. 41. Тромбоцит.

Самая маленькая частица крови (1/4-1/5) размера эрит­роцита). Имеет светло-голубую цитоплазму (гиаломер) и внутреннюю зернистую часть фиолетового цвета - (грануло- мер).

В препарате тромбоциты обычно встречаются группами, что обусловлено их физиологической склонностью к агрега­ции.

Рис. 43. Основные характеристики тромбоцитарного ростка.

Клетки мегакариоцитопоэза - самые крупные клетки крови человека.

Тромбоциты - единственный тип клеток, являющийся исключительно продуктом созревания цитоплазмы.

Все клетки мегакариоцитопоэза обладают специфичес­кой способностью к агрегации с тромбоцитами, которые часто обнаруживаются прилежащими к краю цитоплазмы мате­ринской клетки.

Повышение числа тромбоцитов - тромбоцитоз - явля­ется ведущим симптомом первичной тромбоцитемии, что наблюдается при миелопролиферативных заболеваниях, а
также вторичной тромбоцитемии при хронических воспали­тельных процессах (ревматоидный артрит, туберкулез, сар- коидоз, колит и энтерит), острых инфекциях, гемолизе, ане­миях, злокачественных новообразованиях, после спленэкто­мии.

Снижение числа тромбоцитов - тромбоцитопения - от­мечается при угнетении мегакариоцитопоэза (острые и хро­нические лейкозы, аппастическая анемия, пароксизмальная ночная гемоглобинурия), нарушении продукции тромбоцитов (алкоголизм, мегалобластная анемия). Тромбоцитопения наблюдается при сппеномегалии (цирроз печени, болезнь Гоше), повышенной деструкции и/или утилизации тромбо­цитов (идиопатическая тромбоцитопеническая пурпура, пост- трансфузионная, лекарственная, неонатальная тромбоцито­пения, вторичная тромбоцитопения при лейкозах, лимфомах, системной красной волчанке). Повреждение тромбоцитов может быть индуцировано тромбином (диссеминированное внутрисосудистое свертывание крови, осложнения при ро­дах, сепсисе, черепно-мозговой травме). Тромбоцитопения наблюдается при массивных переливаниях крови и кровеза­менителей за счет гемодилюции. Нарушение функции тромбоцитов может быть обусловлено генетическими, либо внешними факторами. Генетические дефекты лежат в основе болезни Виллебранда и ряда редких синдромов, связанных с недостаточностью АДФ, нарушениями системы тромбоксана А2 или реакциями на него, изменением мембранных глико­липидов и другими молекулярными изменениями.

Тромбоцитемия представляет собой недуг, вызванный чрезмерной выработкой тромбоцитов внутри костного мозга (мегакариоцитов). Количество этих элементов в периферической крови заметно возрастает. Кроме того заболевание имеет непосредственную связь со склонностью больного к развитию тромбоза, появлению кровотечений, а также мегакариоцитарной гиперплазии. Существует несколько разновидностей тромбоцитемии, а именно первичная и вторичная форма. Поговорим о том что собой представляет тромбоцитемия, лечение, симптомы, специфика этого недуга.

Ученым до сих пор не удалось выяснить причины развития первичной тромбоцитемии, которую также именуют эссенциальной. Вторичный тип болезни формируется вследствие кровотечений, инфекционных поражений, ревматоидного артрита, резекции селезенки, а также таких заболеваний, как саркоидоз и определенные разновидности онкологических образований.

Тромбоциты синтезируются внутри костного мозга человека из особенных клеточек- мегакариоцитов. Если у человека развивается тромбоцитемия, эти клетки являются патологически измененными. На этом фоне мегакариоциты в костном мозге вырабатываются особенно эффективно, что и выглядит, как начало болезни.

В большей части случае недуг формируется у людей старшей возрастной группы – от пятидесяти лет и более, гораздо реже он поражает представителей тридцати-сорокалетнего возраста и лишь в единичных случаях диагностируется у детей и подростков. В зависимости от возраста больного, доктор корректирует терапевтические меры.

Симптоматика

В большей части случаев клиническая картина болезни выглядит достаточно стертой. При этом больной может отмечать у себя следующие симптомы:

Цереброваскулярную ишемию. В этом случае человек страдает от головных болей, понижения умственных способностей, может возникать тошнота, головокружения, и целый ряд определенных неврологических симптомов, вызванных нарушенной деятельностью передней и задней церебральной артерии. При обследовании доктор-окулист отмечает окллюзию артерий в сетчатке.

Геморрагический синдром. Данный симптом фиксируется у большей части больных с диагнозом «тромбоцитемия». Он проявляется кожными кровоизлияниями, некоторой кровоточивостью десен. В определенных случаях геморрагия дает о себе знать кровотечениями из мочевых путей, а также желудочно-кишечными кровотечениями.

Эритромегалия. Выражается в жгучих пульсирующих болях, локализирующихся в нижних, а редко и в верхних конечностях. Болезненные ощущения усиливаются при физических нагрузках, а в холоде и во время отдыха уменьшаются. Часто к ним присоединяются потемнение кожи, эритема, жар.

Двигательная микроваскулярная ишемия. Сей симптом проявляется в сильной боли на самых кончиках пальцев. Это явление объясняется тромбозом мелких сосудов. Иногда, в особенно тяжелых случаях, пациент может столкнуться с сухим некрозом кончиков пальцев на ногах или на руках.

Осложнения в период беременности. Женщины, которые столкнулись с этим недугом, в период вынашивания беременности довольно часто переживают инфаркты плаценты, у них может развиваться плацентарная недостаточность, происходить спонтанные аборты. Заметно возрастает вероятность досрочных родов и преждевременной отслойки плаценты. У ребенка может диагностироваться задержка развития.

Лечение

Прогноз недуга является вполне благоприятным. Примерно в пятой части случаев эссенциальная разновидность тромбоцитемии перерождается в миелофиброз. Лишь 2 2%случаев может болезнь может трансформироваться в острый лейкоз.

В том случае, если медикам удалось выявить причину, по которой возросло количество тромбоцитов, то терапевтические мероприятия будут направлены на ее ликвидацию. При правильном подходе к лечению уровень тромбоцитов стабилизируется.

У докторов пока еще нет единого мнения, касательно того, когда именно стоит приступать к терапии тромбоцитопении, имеющей неустановленные причины развития. В том случае, если симптоматику можно классифицировать, как нетяжелую, то лечение сводится лишь к потреблению аспирина – по восемьдесят один миллиграмм в сутки. Использование потенциально опасных медикаментов, призванных понизить количество тромбоцитов, возможно лишь в тяжелых случаях.

Тем пациентам, которые достигли возраста шестидесяти лет и более, у которых наблюдаются тромбозы в анамнезе, а также тем, у кого повышена вероятность развития тромбозам, прописывают медикаменты, понижающие количество тромбоцитов. Однако целесообразность потребления таких средств по отношению к больным младше пятидесяти лет и с невыраженной симптоматикой находится под вопросом.

При лечении тромбоцитопении доктор может прописывать дезагреганты, к которым относится ацетилсалициловая кислота и курантил, а также интерфероны и средства-цитостатики.

Народное лечение тромбоцитопении не оказывает достаточного эффекта. Однако сам факт того, что доктора так и не могут достичь единой точки зрения касательно подхода к лечению недуга, стимулирует больных на самостоятельные поиски народных и гомеопатических средств.

Ранее тромбоцитопения считалась весьма злокачественным заболеванием, но сейчас врачи пришли к выводу, что ее трансформация в острый лейкоз возможна чаще всего лишь на фоне предшествующей химиотерапии. Соответственно, специалист, столкнувшись с ней, должен руководствоваться принципом: «не навреди!».

Дифференцировка и созревание клеток мегакариоцитопоэза происходит в костном мозге, где из коммитированных морфологически неидентифицируемых клеток-предшественников КОЕ-мгкц формируются колонии мегакариоцитарных клеточных элементов. При созревании клетки проходят три морфологически дифференцируемые стадии: мегакариобласт, не превышающий 10% всей популяции, промегакариоцит (около 15%) и мегакариоцит, на его долю приходится от 75 до 85%. Процесс преобразования мегакариобластов в мегакариоциты продолжается около 25 часов. Время созревания мегакариоцита составляет примерно 25 часов, а жизненный цикл его около 10 суток. Отличительной чертой клеточных элементов мегакариоцитопоэза является их способность к эндомитозу (полиплоидизации) делению ядра без разделения цитоплазмы, что приводит к появлению гигантского размера клеток (мегакариоцитов). В процессе мегакариоцитопоэза клетки проделывают от 3 до 6 эндомитозов, что соответствует плоидности мегакариоцита от 8 n до 64 n. Созревание мегакариоцитарных элементов сопровождается накоплением в цитоплазме гранул. Способность зрелых мегакариоцитов к эндоцитозу проявляется в явлении эмпириополезиса, суть которого заключается в захвате гемопоэтических клеток. Частота его возрастает при злокачественных новообразованиях.
В альфа-гранулах мегакариоцитов содержится значительное количество белков: фактор Виллебранда, тромбоцитарный фактор 4, тромбоспондин, фибриноген, фибронектин, тромбоцитарный ростовой фактор, трансформирующий ростовой фактор бета, тромбоцитарный ингибитор коллагеназы. Тромбоцитарная пероксидаза присутствует на всех стадиях созревания клеток мегакариоцитарной линии, включая тромбоциты.
Основная функция мегакариоцитопоэза – образование тромбоцитов, поддержание их количества в кровотоке на постоянном уровне. Мегакариоциты располагаются в костном мозге вблизи костномозговых синусов, цитоплазматические опоры через миграционные поры проникают в синусы костного мозга, где и происходи отшнуровка тромбоцитов. Основными регуляторами, стимулирующими мегакариоцитопоэз являются ИЛ-1, ИЛ-3, ИЛ-4, ИЛ-6, ИЛ-11, фактор стволовых клеток, лейкоз-ингибирующий фактор, ГМ-КСФ, Г-КСФ, эритропоэтин, тромбопоэтин. К факторам, ингибирующим тромбоцитопоэз , относят тромбоцитарный фактор 4, трансформирующий фактор роста бета1-, альфа- и гамма-интерфероны и другие ингибиторы.
Тромбоцит — безъядерная клетка диаметром 2-4 мкм, средний объем 7,5 куб.мкм (от 3 до 10 куб.мкм). Популяция тромбоцитов неоднородна. Различают зрелые тромбоциты (87%), юные (незрелые — 3.2%), старые (4.5%), формы раздражения (2,5%). Микроформы тромбоцитов имеют диаметр менее 1.5 мкм, макроформы могут достигать 5 мкм и мегалоформы до 6-10 мкм. В центре зрелого тромбоцита содержится обильная азурофильная зернистость. Форма тромбоцитов — овальная, круглая, сферическая или дискоидная. Период созревания тромбоцитов в среднем составляет 8 дней, продолжительность пребывания в кровотоке от 9 до 11 днем. В тромбоците выделяют гель-зону и зону органелл. Гель-зона представляет собой матрикс цитоплазмы. В ней расположены микротрубочки, микрофиламенты и другие структуры, обеспечивающие образование псевдоподии, внутреннюю контракцию и секрецию. Зона органелл тромбоцитов состоит из беспорядочно расположенных по цитоплазме митохондрий, пероксисом (содержат каталазу) и гранул хранения. В тромбоцитах выделяют 3 вида органелл хранения: альфа-гранулы, электронно-плотные тельца (бета-гранулы) и лизосомы (гамма-гранулы). В альфа-гранулах хранится до 30 различных белков, большинство из которых синтезируются в мегакариоцитах: фибриноген, фактор Виллебранда, V-фактор, фактор роста тромбоцитов (PDGF), фактор 4 тромбоцитов бета-тромбоглобулин, тромбоспондин, фибронектин. Р-селектин, альфа-макроглобулин, альфа-антплазмин, альфа1-антитрипсин, протеин S, лейкоцитарный хемотаксический фактор, высокомолекулярный кининоген и другие. Участие белков альфа-гранул в физиологических и патологических процессах многостороннее:

  • митогенный и хемотаксический эффект;
  • адгезивное действие, участие в агрегации тромбоцитов;
  • в плазменном гемостазе;
  • вазоактивное действие;
  • иммунные и другие эффекты.

В плотных тельцах (дельта-гранулы) хранятся субстанции, вызывающие прежде всего сосудистые реакции, адениловые нуклеотиды (АТФ, АДФ, АМФ, цАМФ, ГДФ), серотонин, адреналин, норадреналин, ДОФамин, гистамин и другие. Высвобождающиеся из пула хранения АТФ и АДФ быстро метаболизируются в плазме до АМФ и аденозина. АДФ является важнейшим физиологическим метаболитом, обеспечивающим первичный гемостаз.
В лизосомах (гамма-гранулы) находятся гидролитические ферменты пероксидаза, глюкозидазы, галактозидаза или бета-глицерофосфатаза. Лизосомы секретируют хранящийся в них секрет только при воздействии сильных стимуляторов, таких, как коллаген и тромбин, что сопровождается необратимыми изменениями тромбоцитов.
Тромбоциты способны секретировать содержимое гранул частично при обратимой адгезии и в процессе взаимодействия с капиллярной сетью сосудов и полностью при реакции освобождения, связанной с необратимой адгезией на поврежденной сосудистой стенке. После секреции наблюдается дегрануляция, большинство гранулярных мембран деградирует, гранулы практически не восстанавливаются и тромбоциты во многом теряют свою физиологическую активность.
Основные функции тромбоцитов : ангио-трофическая, адгезивно-агрегационная, сорбционно-транспортная, активация плазменного гемостаза, ретракция кровяного сгустка, фиксация и транспорт циркулирующих иммунных комплексов.

Гигантские клетки костного мозга – мегакариоциты – являются родоначальниками кровяных пластинок. Происхождение тромбоцитов из мегакариоцитов костного мозга убедительно демонстрируется наблюдениями, показавшими путем фазовоконтрастной микросъемки культивируемого эксплантата костного мозга весь процесс возникновения кровяных пластинок из гигантских клеток.

Роль гигантских клеток костного мозга как единственных продуцентов кровяных пластинок окончательно доказана электронномикроскопическими, цито- и иммунохимическими методами, методом меченых антител. Путем иммунофлюоресценции удалось доказать существование общих антигенов в мегакариоцитах и тромбоцитах. Как показали исследователи, иммунофлюоресцирующий гамма-глобулин, обладающий специфическими противопластиночными "противочеловеческими" свойствами, вступает с мегакариоцитами и тромбоцитами в реакцию антиген-антитело, что доказывается избирательной флюоресценцией "меченых" кровяных пластинок и гигантских клеток кровяного мозга.

Мегакариоциты развиваются из клетки предшественницы мегакариоцитов путем повторных эндомитозов, приводящих к колоссальной гипертрофии цитоплазмы и полиплоидизму ядра. Промежуточными формами развития гигантских клеток костного мозга являются мегакариобласты и промегакариоциты.

Мегакариобласт – клетка округлой формы, сравнительно небольших размеров, ближе всего стоящая к основной родоначальной клетке кровяных элементов. Она характеризуется довольно грубой структурой ядра. Ядро мегакариобласта, состоящее иногда из двух соприкасающихся бобовидных долек, интенсивно окрашено; в нем содержится несколько четко ограниченных нуклеол голубого цвета. Цитоплазма не содержит зернистости, базофильна; иногда от этой базофильной цитоплазмы отшнуровываются отростки, которые дают начало голубым пластинкам.

Следующим этапом развития является промегакариоцит. Эта форма обычно имеет значительно большие размеры, чем мегакариобласт, и отличается крупным, интенсивно окрашенным ядром с тенденцией к некоторому полиморфизму (бухтообразные вдавления, намечающиеся перетяжки и сегментации ядра). Структура ядра более грубая, чем в мегакариобластах; цитоплазма базофильна, зернистости не содержит или же содержит единичные азурофильные зернышки. В промегакариоцитах, так же как и в мегариобластах, наблюдается процесс клазматоза, т.е. отшнуровки цитоплазматических частичек, образующих так называемые голубые пластинки.

В дальнейшем промегакариоцит проделывает последовательные этапы развития, в течение которых ядро приобретает ещё более грубую структуру и становится полиморфным. Более или менее параллельно с развитием ядра протекает и дифференциация цитоплазмы: она постепенно теряет свою базофилию и приобретает красновато-сиреневую окраску вследствие появления обильной азурофильной зернистости, которой придают большое значение в образовании пластинок.

Мегакариоцит - клетка огромных размеров; в среднем её диаметр равен 50-60 мкм, а в некоторых случаях, например при полицитемиях, достигает 80-100 мкм. Ядро мегакариоцита характеризуется крупной величиной; оно полиплоидно и полиморфно, иногда полисегментировано, принимая причудливые формы - корзинки, цепочки, оленьих рогов и т.п. Развитие ядра завершается его фрагментацией и инволюцией через пикноз, рарефикацию и кариорексис.

Ядерно-цитоплазменное соотношение в мегакариоцитах обычно в пользу цитоплазмы: последняя, занимает нередко все поле зрения микроскопа. Исключение представляют собой гигантские клетки, утратившие большую часть цитоплазмы в процессе образования пластинок. Вообще на препаратах стернального пунктата наряду с целыми, хорошо сохранившимися клетками встречаются разорванные в клочья клетки, отдельные ядра или их фрагменты.

Общее количество мегакариоцитов костного мозга человека исчисляется в 130-190 млн. Цикл функционирования мегакариоцита, т.е. количество дней, в течение которых мегакариоцит отшнуровывает кровяные пластинки, составляет в среднем 8 суток.

В нормальных мегакариоцитах можно видеть все последовательные стадии образования пластинок, начиная с накопления азурофильной зернистости в виде кучек по периферии цитоплазмы и кончая процессом отшнуровывания и отделения пластинок.

Впервые Wright (1906) было показано на костном мозгу котят, что образование кровяных пластинок происходит путем отрыва (отшнуровывания) отдельных частичек из псевдоподий мегакариоцитов, проникающих в капилляры костного мозга.

В физиологических условиях процесс отшнуровки пластинок наблюдается в 40-60% всех мегакариоцитов костного мозга. Новообразованные пластинки образуют как бы "жемчужные цепочки", или "хвосты", отходящие от мегакариоцитов. Процесс образования пластинок больше всего выражен в мегакариоцитах с полиморфным ядром или полинуклеарных мегакариоцитах, что указывает на интимное участие клеточного ядра в этом процессе.

Процесс пластинообразования продолжается до тех пор, пока вся цитоплазма мегакариоцита не окажется "разменянной" на пластинки. Подсчитано, что из одного мегакариоцита получается в среднем около 4 тыс кровяных пластинок. При этом сама гигантская клетка превращается в метамегакариоцит – форму, характеризующуюся крупным ядром, окруженным узким цитоплазматическим венчиком, состоящим из новообразованных пластинок. Дальнейшее, по существу инволютивная, фаза развития гигантской клетки заключается в её распаде на отдельные ядерные фрагменты, в некоторых случаях (при лейкозах) появляющиеся в периферической крови.

Для клиники особый интерес представляет взаимосвязь между мегакариоцитами костного мозга и кровяными пластинками периферической крови. Гиперплазия гигантоклеточного аппарата, наблюдаемая в наибольшей степени при полицитемии и так называемой геморрагической тромбоцитемии, характеризуется преобладанием зрелых полиморфноядерных и зернистых форм мегакариоцитов, отличающихся особенно большими размерами (до 100 мкм и более) и весьма деятельных в функциональном отношении, и сопровождается выраженным гипертромбоцитозом в периферической крови.

Увеличенное содержание в костном мозгу мегакариоцитов наблюдается и при хронической форме миелолейкоза и особенно при остеомиелосклерозе. Однако и здесь параллельно с нарушением созревания миелоидных клеток нарушается процесс созревания гигантских клеток: среди последних преобладают юные формы – мегакариобласты и промегакариоциты; одновременно наблюдается повышенное образование пластинок в зрелых мегакариоцитах.

Реактивная гиперплазия костного мозга в целом, сопровождающаяся повышенным образованием пластинок мегакариоцитами, отмечается также при постгеморрагических анемиях.

Количество мегакариоцитов всех типов уменьшено при гипопластических и апластических состояниях костного мозга.

При пернициозной анемии, спру и других В 12 (фолиево) - дефицитных состояниях наблюдается сдвиг мегакариоцитов вправо, аналогичный нейтрофильному сдвигу вправо и выражающейся в том, что часть гигантских клеток содержит необычайно полиморфное ядро. Встречаются и двуядерные мегакариоциты; при этом, несмотря на наличие зрелой азурофильной зернистости, мегакариоциты малоактивны; процессы образования пластинок в них замедлены, результатом чего является присущая этим заболеваниям тромбоцитопения.

Тромбоциты, или кровяные пластинки, называемые также бляшками Биццоцеро (в честь детально описавшего их в 1882 г. итальянского ученого Bizzozero),представляют собой наряду с эритро- и лейкоцитами третий форменный элемент крови.

Кровяные пластинки под разными названиями: "globulins" (Donne), "Elementarblaschen" (Zimmerman) – были известны уже с 40-х годов ХIХ века, однако самостоятельность этих элементов и их важная роль в процессах гемостаза и свертывания крови были установлены лишь в 80-х годах после работ Hayem (1878), М.Лавдовского (1883) и др. В отличие от белых и красных кровяных телец, представляющих собой живые (лейкоциты) или лишенные ядер (эритроциты) клетки, кровяные пластинки представляют собой лишь цитоплазматические осколки гигантских клеток костного мозга - мегакариоцитов. По этой причине название "тромбоцит" (от греческого слова "cytos"-клетка) по отношению к кровяным пластинкам человека не совсем правильно. Истинные тромбоциты, представляющиеся ядерными клетками, имеются только у низших позвоночных, в частности у лягушки, - так называемые веретенообразные клетки Реклингаузена.

В нормальных условиях количество кровяных пластинок колеблется между 200-400·10 9 /л. Общее число кровяных пластинок у человека составляет примерно 1,5 триллиона. Вся масса тромбоцитов человеческого организма составляет около 20 мл (две десертные ложки).