Механизм компенсации кровообращения. Механизмы компенсации при сердечной недостаточности

Происходит активация нескольких нейроэндокринных систем, важнейшими из которых являются:

симпатико-адреналовая система (САС) и ее эффекторы (адреналин и норадреналин);

ренин-ангиотензин-альдостероновая система (РААС) (почки - надпочечники);

тканевые ренин-ангиотензиновые системы (РАС);

предсердный натрийуретический пептид;

эндотелиальная дисфункция и др.

увеличение ЧСС (стимуляция b1-адренергических рецепторов) и, соответственно, МО (поскольку МО = УО х ЧСС);

повышение сократимости миокарда (стимуляция b1- и a1-рецепторов);

системная вазоконстрикция и повышение ОПСС и АД (стимуляция a1-рецепторов);

повышение тонуса вен (стимуляция a1-рецепторов), что сопровождается увеличением венозного возврата крови к сердцу и увеличением преднагрузки;

стимуляция развития компенсаторной гипертрофии миокарда;

активирование РААС (почечно-надпочечниковой) в результате стимуляции b1-адренергических рецепторов юкстагломерулярных клеток и тканевых РАС за счет дисфункции эндотелия.

На начальных этапах повышение активности САС способствует увеличению сократимости миокарда, притока крови к сердцу, величины преднагрузки и давления наполнения желудочков, что в конечном итоге приводит к сохранению в течение определенного времени достаточного сердечного выброса. Однако длительная гиперактивация САС у больных хронической СН может иметь многочисленные негативные последствия, способствуя:

1. Значительному увеличению преднагрузки и постнагрузки (за счет чрезмерной вазоконстрикции, активации РААС и задержки натрия и воды в организме).

2. Повышению потребности миокарда в кислороде (в результате положительного инотропного эффекта активации САС).

3. Уменьшению плотности b-адренергических рецепторов на кардиомиоцитах, что со временем приводит к ослаблению инотропного эффекта катехоламинов (высокая концентрация катехоламинов в крови уже не сопровождается адекватным увеличением сократимости миокарда).

4. Прямому кардиотоксическому эффекту катехоламинов (некоронарогенные некрозы, дистрофические изменения миокарда).

5. Развитию фатальных желудочковых нарушений ритма (желудочковой тахикардии и фибрилляции желудочков) и т.д.

Гиперактивация симпатико-адреналовой системы

Один из наиболее ранних компенсаторных факторов при дисфункции сердца. Особенно важной оказывается в случаях развития острой СН. Эффекты реализуются прежде всего через a- и b-адренергические рецепторы клеточных мембран различных органов и тканей.

Гиперактивация ренин-ангиотензин-альдостероновой системы

Имеет значение не только почечно-надпочечниковая РААС, но и локальные тканевые.

Активация почечной ренин-ангиотензиновой системы сопровождается выделением клетками ЮГА почек ренина, расщепляющего ангиотензиноген с образованием пептида - ангиотензина I (АI). Последний под действием АПФ трансформируется в ангиотензин II, который является основным и наиболее мощным эффектором РААС. Воздействие АII на АТ2-рецепторы клубочковой зоны коркового вещества надпочечников приводит к образованию альдостерона, основным эффектом которого является задержка в организме натрия и воды, что способствует увеличению ОЦК.

В целом активация РААС сопровождается следующими эффектами:

выраженной вазоконстрикцией, повышением АД;

задержкой в организме натрия и воды и увеличением ОЦК;

повышением сократимости миокарда (положительное инотропное действие);

инициированием развития гипертрофии и ремоделирования сердца;

активацией образования соединительной ткани (коллагена) в миокарде;

повышением чувствительности миокарда к токсическому влиянию катехоламинов.

Активация РААС при острой СН и на начальных этапах развития хронической СН имеет компенсаторное значение и направлена на поддержание нормального уровня АД, ОЦК, перфузионного давления в почках, увеличение пред- и постнагрузки, увеличение сократимости миокарда. Однако в результате длительной гиперактивации РААС развивается ряд отрицательных эффектов:

1. увеличение ОПСС и снижение перфузии органов и тканей;

2. чрезмерное увеличение постнагрузки на сердце;

3. значительная задержка жидкости в организме, что способствует формированию отечного синдрома и повышению преднагрузки;

4. инициация процессов ремоделирования сердца и сосудов, в том числе гипертрофии миокарда и гиперплазии гладкомышечных клеток;

5. стимуляция синтеза коллагена и развитие фиброза сердечной мышцы;

6. развитие некроза кардиомиоцитов и прогрессирующее повреждение миокарда с формированием миогенной дилатации желудочков;

7. повышение чувствительности сердечной мышцы к катехоламинам, что сопровождается возрастанием риска возникновения фатальных желудочковых аритмий у больных СН.

Антидиуретический гормон (АДГ), секретируемый задней долей гипофиза, участвует в регуляции проницаемости для воды дистальных отделов канальцев почек и собирательных трубок. Например, при недостатке в организме воды и дегидратации тканей происходит уменьшение объема циркулирующей крови (ОЦК) и увеличение осмотического давления крови (ОДК). В результате раздражения осмо- и волюморецепторов усиливается секреция АДГ задней долей гипофиза. Под влиянием АДГ повышается проницаемость для воды дистальных отделов канальцев и собирательных трубок, и, соответственно, усиливается факультативная реабсорбция воды в этих отделах. В итоге выделяется мало мочи с высоким содержанием осмотически активных веществ и высокой удельной плотностью мочи.

Наоборот, при избытке воды в организме и гипергидратации тканей в результате увеличения ОЦК и уменьшения ОДК происходит раздражение осмо- и волюморецепторов, и секреция АДГ резко снижается или даже прекращается. В результате реабсорбция воды в дистальных отделах канальцев и собирательных трубках снижается, тогда как Na+ продолжает реабсорбироваться в этих отделах. Поэтому выделяется много мочи с низкой концентрацией осмотически активных веществ и низкой удельной плотностью.

Нарушение функционирования этого механизма при сердечной недостаточности может способствовать задержке воды в организме и формированию отечного синдрома. Чем меньше сердечный выброс, тем больше раздражение осмо- и волюморецепторов, что приводит к увеличению секреции АДГ и, соответственно, задержке жидкости.

Предсердный натрийуретический пептид

Предсердный натрийуретический пептид (ПНУП) является своеобразным антагонистом вазоконстрикторных систем организма (САС, РААС, АДГ и других). Он продуцируется миоцитами предсердий и выделяется в кровоток при их растяжении. ПНУП вызывает вазодилатирующий, натрийуретический и диуретический эффекты, угнетает секрецию ренина и альдостерона.

Секреция ПНУП - это один из наиболее ранних компенсаторных механизмов, препятствующих чрезмерной вазоконстрикции, задержке Nа+ и воды в организме, а также увеличению пред- и постнагрузки.

Активность ПНУП быстро усиливается по мере прогрессирования СН. Однако, несмотря на высокий уровень циркулирующего ПНУП, степень его положительных эффектов при хронической СН заметно снижается, что связано, вероятно, с уменьшением чувствительности рецепторов и увеличением расщепления пептида. Поэтому максимальный уровень циркулирующего ПНУП ассоциируется с неблагоприятным течением хронической СН.

Нарушения эндотелиальной функции

Дисфункция эндотелия, возникающая под действием различных повреждающих факторов (гипоксии, чрезмерной концентрации катехоламинов, ангиотензина II, серотонина, высокого уровня АД, ускорения кровотока и т.д.), характеризуется преобладанием вазоконстрикторных эндотелийзависимых влияний и закономерно сопровождается повышением тонуса сосудистой стенки, ускорением агрегации тромбоцитов и процессов пристеночного тромбообразования.

К числу важнейших эндотелийзависимых вазоконстрикторных субстанций, повышающих сосудистый тонус, агрегацию тромбоцитов и свертываемость крови, относятся эндотелин-1 (ЭТ1), тромбоксан А2, простагландин PGH2, ангиотензин II (АII) и др. Они оказывают существенное влияние на сосудистый тонус и сократимость миокарда, величину преднагрузки и постнагрузки, агрегацию тромбоцитов и т.д.. Кроме того, эндотелин-1 способствует образованию коллагена в сердечной мышце и развитию кардиофиброза. Существенную роль вазоконстрикторные субстанции играют в процессе пристеночного тромбообразования

Одним из ведущих патогенетических механизмов формирования и прогрессирования сердечной недостаточности является гиперактивация нейрогормональных систем организма - САС, РААС, АДГ, ПНУП и др., а также дисфункция эндотелия.

2. На начальных этапах развития заболевания активация этих систем носит адаптационный характер и направлена на сохранение достаточного сердечного выброса, системного АД и перфузии органов и тканей. Этот эффект реализуется благодаря:

увеличению ЧСС;

повышению сердечного выброса за счет гиперфункции с последующей гипертрофией;

увеличению постнагрузки (вазоконстрикция);

увеличению преднагрузки и ОЦК (физиологическая задержка натрия и воды) и др.

3. Длительная чрезмерная активация нейрогормональных систем приводит к:

избыточной задержке натрия и воды в организме (отечный синдром);

резкому увеличению ОПСС (нарушение перфузии органов и тканей);

чрезмерному возрастанию пред- и постнагрузки, что ведет к снижению функции сердца;

стимулированию синтеза коллагена и развитию кардиофиброза;

развитию некрозов кардиомиоцитов, прогрессирующему повреждению сердечной мышцы и формированию миогенной дилатации сердца.

Кровообращение (circulatio sanguinis) - непрерывное движение крови по замкнутой системе полостей сердца и кровеносных сосудов, обеспечивающее все жизненно важные функции организма.

Направленный ток крови обусловлен градиентом давления, который определяется активной (насосной) работой сердца , объемом (массой) циркулирующей крови, ее вязкостью, сопротивлением сосудов току крови и другими факторами. Величина градиента давления имеет пульсирующий характер, обусловливаемый периодическими сокращениями сердца и изменениями тонуса кровеносных сосудов.

По строению, биофизическим особенностям и функции кровеносные сосуды подразделяют на магистральные сосуды (аорта и крупные артерии), по которым осуществляется поступательный кровоток за счет потенциальной энергии растянутых в систолу стенок; сосуды сопротивления (мелкие артерии и артериолы), определяющие величину общего периферического сосудистого сопротивления; обменные сосуды (капилляры), обеспечивающие обмен веществ между кровью и тканями; шунтирующие сосуды (артериовенозные анастомозы), по которым осуществляется сброс крови из артерий в вены, минуя капилляры; емкостные сосуды (вены), обладающие большой растяжимостью и низкой эластичностью (содержат до 70-80% объема циркулирующей крови).

Условно выделяют большой и малый круг кровообращения. По большому кругу кровь из левого желудочка сердца поступает в аорту и отходящие от нее кровеносные сосуды, пронизывающие все ткани и органы тела, а затем в правое предсердие; по малому - из правого желудочка сердца в легкие, где обогащается кислородом и освобождается от избытка углекислого газа, затем попадает в левое предсердие. У взрослого человека приблизительно 84% всего объема крови содержится в большом круге кровообращения, около 10% - в малом и около 7% - в сердце. Объем (масса) циркулирующей крови (т.е. общий объем крови за вычетом объема крови, находящегося в кровяных депо) у взрослого человека составляет 4-6 л , что соответствует 6-8% веса (массы) тела. Кровяными депо называют органы, которые могут задерживать в своих сосудах значительное количество крови (как правило, в концентрированном виде). Основными органами, выполняющими такую функцию, являются печень, селезенка, субпапиллярное сосудистое сплетение кожи, почки, легкие, костный мозг. Мобилизация их функции как депо крови возникает в условиях повышения потребности организма в кислородной емкости крови (интенсивная мышечная работа, стресс-реакции и др.).

Кровообращение характеризуется следующими основными показателями.

Систолический (ударный) объем крови (СОК), выбрасываемой сердцем за одно сокращение. В покое он равен 60-70 мл , при физической нагрузке может возрастать в 3-5 раз. СОК левого и правого желудочков одинаков.

Минутный объем крови (МОК), выбрасываемой сердцем за 1 мин. В покое составляет 5,0-5,5 л , при физической работе увеличивается в 2-4 раза, у тренированных - в 6-7 раз. При заболеваниях, например при декомпенсированных пороках сердца или первичной гипертензии малого круга, МОК снижается до 2,5-1,5 л.

Объем (масса) циркулирующей крови (ОЦК) составляет 75-80 мл на 1 кг массы тела. При физических нагрузках, декомпенсированных пороках сердца ОЦК увеличивается (гиперволемия) из-за выхода крови из кровяных депо, достигая 140-190 мл/кг . При кровопотере, коллапсе, шоке, обезвоживании организма ОЦК уменьшается (гиповолемия).

Частота сердечных сокращений (ЧСС) в одну минуту (ударов в 1 мин ) колеблется от 60 до 80 ударов в 1 мин ; у тренированных людей - в пределах 40-60 ударов в 1 мин. Максимальная частота при тяжелой физической нагрузке может достигать 180-240 ударов в 1 мин . При различных видах патологии сердечно-сосудистой системы ЧСС меняется в сторону учащения или урежения (см. Пульс ).

Время кругооборота крови - это время, в течение которого единица объема крови проходит оба круга кровообращения . В норме оно составляет 20-25 с . Уменьшается при физической нагрузке и увеличивается при нарушениях кровообращения, например при декомпенсированных пороках сердца оно достигает 50-60 с .

Давление крови (кровяное давление) обеспечивает кровоток по системе кровеносных сосудов. Его величина зависит от многих факторов и существенно отличается в различных областях тела (см. Кровяное давление ).

Регуляция кровообращения обеспечивается взаимодействием местных гуморальных механизмов при активном участии нервной системы и направлена на оптимизацию соотношения кровотока в органах и тканях с уровнем функциональной активности организма.

В процессе обмена веществ в органах и тканях постоянно образуются метаболиты, влияющие на тонус кровеносных сосудов. Интенсивность образования метаболитов (СО 2 или Н + ; лактата, пирувата, АТФ, АДФ, АМФ и др.), определяемая функциональной активностью органов и тканей, является одновременно и регулятором их кровоснабжения. Этот тип саморегуляции называется метаболическим.

Местные саморегуляторные механизмы генетически обусловлены и заложены в структурах сердца и кровеносных сосудов. Их можно рассматривать и как местные миогенные ауторегуляторные реакции, суть которых состоит в сокращении мышц в ответ на их растяжение объемом или давлением.

Гуморальная регуляция кровообращения осуществляется с участием гормонов, ренин-ангиотензиновой системы, кининов, простагландинов, вазоактивных пептидов, регуляторных пептидов, отдельных метаболитов, электролитов и других биологически активных веществ. Характер и степень их влияния определяются дозой действующего вещества, реактивными свойствами организма, его отдельных органов и тканей, состоянием нервной системы и другими факторами. Так, разнонаправленное действие катехоламинов крови на тонус сосудов и сердечной мышцы связано с наличием в них a - и b -адренорецепторов. При возбуждении a -адренорецепторов происходит сужение, а при возбуждении b -адренорецепторов - расширение кровеносных сосудов. Количество a - и b -рецепторов в разных сосудах неодинаково. При преобладании в сосудах a -рецепторов адреналин крови вызывает их сужение, а при преобладании b -рецепторов - расширение. При низких концентрациях адреналина в плазме первыми возбуждаются как более возбудимые b -рецепторы. При одновременном возбуждении a - и b -рецепторов преобладает вазоконстрикторный эффект.

В основе нервной регуляции кровообращения лежит взаимодействие безусловных и условных сердечно-сосудистых рефлексов. Их подразделяют на собственные и сопряженные рефлексы. Афферентное звено собственных рефлексов К. представлено ангиоцепторами (баро- и хеморецепторами), расположенными в различных участках сосудистого русла и в сердце. Местами они собраны в скопления, образующие рефлексогенные зоны. Главными из них являются зоны дуги аорты, каротидного синуса, позвоночной артерии. Афферентное звено сопряженных рефлексов кровообращения располагается за пределами сосудистого русла, его центральная часть включает различные структуры коры головного мозга, гипоталамуса, продолговатого и спинного мозга. В продолговатом мозге располагаются жизненно важные ядра сердечно-сосудистого центра: нейроны латеральной части продолговатого мозга через симпатические нейроны спинного мозга оказывают тоническое активирующее влияние на сердце и кровеносные сосуды; нейроны медиальной части продолговатого мозга тормозят симпатические нейроны спинного мозга; моторное ядро блуждающего нерва угнетает деятельность сердца; нейроны вентральной поверхности продолговатого мозга стимулируют деятельность симпатической нервной системы. Через гипоталамус осуществляется связь нервного и гуморального звеньев регуляции К. Эфферентное звено регуляции кровообращения представлено симпатическими пре- и постганглионарными нейронами, пре- и постганглионарными нейронами парасимпатической нервной системы (см. Вегетативная нервная система ). Вегетативная иннервация охватывает все кровеносные сосуды кроме капилляров.

Симпатические адренергические нервы вызывают сужение периферических сосудов. В окончаниях постганглионарных симпатических нейронов выделяется норадреналин (см. Медиаторы ). Степень сокращения гладких мышц сосудов зависит от количества выделившегося медиатора, а оно связано с частотой эфферентной импульсации. В покое по вазоконстрикторным нейронам поступают импульсы с частотой 1-3 импульса в 1 с. Максимальное сужение сосудов наступает при частоте 10 импульсов в 1 с . Изменение частоты импульсации приводит или к увеличению сосудистого тонуса (при учащении импульсов), или к его уменьшению (при урежении импульсов), т.е. происходит относительное сужение или расширение сосудов.

В нормальных условиях все механизмы регуляции К. взаимодействуют друг с другом по принципам, описываемым теорией функциональных систем (см. Функциональные системы ), влияя на сердечный выброс, общее периферическое сосудистое сопротивление, емкость сосудов и объем циркулирующей крови.

Взаимосвязь различных параметров кровообращения , закономерности их взаимодействия рассматриваются гемодинамикой - специальным разделом физиологии К. , занимающимся изучением общих и частных случаев нарушений кровообращения применительно к клинической практике.

Общие механизмы нарушений кровообращения . Нарушения кровообращения могут быть вызваны изменениями функции сердца, сосудов, а также реологических свойств текущей по ним крови. Поскольку отдельные части кровеносной системы тесно связаны между собой, нарушение функции каждой из них всегда оказывает влияние на функцию других. Нарушения К. могут быть общими, охватывая всю кровеносную систему, и местными (в отдельных участках сосудистого русла). Поскольку непрерывное кровообращение необходимо для обеспечения нормального функционирования любых частей организма, его нарушение влечет за собой расстройства функции соответствующих органов.

Сердце работает как насос, перекачивающий кровь из венозной системы в артериальную. Для того чтобы кровоток во всей сосудистой системе организма был непрерывным, необходим некоторый постоянный уровень кровяного давления в аорте и крупных артериальных ветвях, называемый общим артериальным давлением (АД).

Величина общего АД зависит от минутного объема крови, выбрасываемой сердцем, и общего периферического сопротивления. При увеличении минутного объема крови или общего периферического сопротивления АД повышается, и наоборот. Длительное повышение общего артериального давления (см. Гипертензия артериальная ) обычно бывает обусловлено увеличением периферического сопротивления. Патологическое понижение общего артериального давления (см. Гипотензия артериальная ) чаще всего связано с уменьшением минутного объема крови при недостаточности сердечной деятельности или с уменьшением возврата крови из вен к сердцу (обычно при уменьшении объема циркулирующей крови). Характер кровотока в каждом органе в любых частях тела выражается зависимостью

где Q - объемная скорость кровотока, D Р - градиент давления на протяжении данного сосудистого русла и R - сопротивление току крови в нем. Для кровеносной системы каждого органа градиент давления соответствует артериовенозной разности давлений, т. е разности давлений между артериями (Р арт.) и венами (Р вен.). Следовательно,

Понижение Р арт. так же, как и повышение Р вен. , влечет за собой уменьшение Q в сосудистой системе данного органа (при условии неизменного сопротивления на ее протяжении). С другой стороны, сопротивление кровотоку определяется шириной просвета сосудов в данном органе и реологическими свойствами крови. Как только это сопротивление уменьшается (например, при местном расширении артерий и артериол), местный кровоток усиливается, что вызывает артериальную гиперемию . Наоборот, увеличение сопротивления в периферических артериях (при местной вазоконстрикции, при их тромбозе и т.д.) приводит к уменьшению объемной скорости кровотока в органе и возникновению ишемии . Увеличение сопротивления может происходить и в капиллярах той или иной сосудистой области, например вследствие усиленной внутрисосудистой агрегации эритроцитов. Наконец, сопротивление может возрастать и в венозной системе того или иного органа (например, при тромбозе или сдавлении вен). В этих случаях в системе микроциркуляции возникает венозный застой, сопровождающийся уменьшением объемной скорости кровотока в органе.

Причинами нарушения основной, т.е. насосной, функции сердца могут быть уменьшение возврата крови из вен к сердцу, что обычно бывает обусловлено уменьшением объема циркулирующей крови; декомпенсированные пороки сердца, в частности недостаточность клапанов сердца, когда неполное смыкание их створок приводит к возврату части крови в ретроградно расположенную полость сердца или же имеется стеноз сердечных отверстий, значительно увеличивающий сопротивление кровотоку в них; слабость сердечной мышцы, сокращения которой не обеспечивают достаточно высокого внутрижелудочкового давления для того, чтобы перемещать весь объем крови в пределах большого и малого круга кровообращения ; неспособность полостей сердца к достаточному расширению во время диастолы в результате накопления значительного количества крови (при тампонаде сердца) или экссудата (при перикардитах) в полости перикарда или же облитерации последней вследствие хронического перикардита.

Изменения величины сопротивления в артериях отдельных органов обычно не отражаются на уровне общего АД, но ведут к изменениям в их кровоснабжении. Такого рода нарушения функции периферических артерий могут быть связаны с функциональным расширением или сужением сосудов (см. Ангиоспазм ), со структурными изменениями стенок (см. Атеросклероз ), с полной или частичной закупоркой сосудистого просвета (см. Тромбоз , Эмболия ).

Ослабление кровотока в отдельных артериях вследствие увеличения сопротивления в них не обязательно ведет к уменьшению снабжения органа кровью, т.к. при этом может иметь место приток крови по коллатералям.

Если же коллатеральный приток крови недостаточен, то в соответствующих участках ткани (или органа) возникает ишемия.

Роль нарушений функции венозной системы в общих расстройствах кровообращения обусловлена их емкостной функцией. Вены осуществляют дренаж крови всех органов. Сопротивление кровотоку в венах очень низкое и может только возрастать, например при их сдавлении или закупорке тромбом. При этом затрудняется отток крови из микроциркуляторной системы соответствующего органа, что может сопровождаться развитием венозного застоя.

Микроциркуляторные нарушения имеют весьма существенное значение, т.к. в организме не происходит ни одного физиологического или патологического процесса без участия системы микроциркуляции . Микроциркуляторное русло включает в себя капилляры, ветвления соответствующих мелких артерий и вен. Основной функцией этих сосудов является обеспечение адекватного кровоснабжения определенных участков ткани, которое при нормальных условиях соответствует ее метаболическим потребностям. Изменения притока крови со стороны артерий в капилляры могут вызывать такие нарушения микроциркуляции, как артериальная гиперемия или ишемия. Артериальная гиперемия возникает при расширении артериальных сосудов микроциркуляторного русла. Градиент давлений и скорость кровотока в капиллярах при этом увеличиваются. Концентрация эритроцитов в крови (гематокрит), протекающей по микроциркуляторному руслу, и количество функционирующих капилляров растут. Внутрикапиллярное давление повышается, это способствует переходу воды из крови в тканевые щели, что при определенных условиях может привести к отеку ткани.

При констрикции приводящих артерий или возникновении препятствий для кровотока в их просвете в микроциркуляторном русле развивается ишемия, при которой основные параметры микроциркуляции изменяются в противоположном направлении: линейная скорость кровотока и гематокрит в капиллярах понижаются, приводя к недостаточности снабжения тканей кислородом, - возникает гипоксия . Внутрикапиллярное давление падает, и количество функционирующих капилляров сокращается. При этом уменьшается доставка энергетических и пластических материалов в ткани, а продукты обмена веществ накапливаются в них. Если коллатеральный приток крови не устраняет дефицита кровоснабжения, то нарушается метаболизм ткани и развиваются различные патологические изменения вплоть до некроза.

При затруднении оттока крови в венозную систему отмечаются типичные для венозного застоя нарушения микроциркуляции. Градиент кровяного давления в капиллярах понижается, что приводит к значительному замедлению в них кровотока. При этом снабжение тканей кислородом и другими энергетическими веществами уменьшается, а продукты обмена веществ не удаляются и задерживаются в них. В результате изменяются механические свойства ткани: ее растяжимость растет, а упругость падает. При таких условиях резко усиливается фильтрация жидкости из капилляров в ткань и развивается отек.

Микроциркуляция может нарушаться также независимо от первичных изменений притока крови из артерий или ее оттока в вены. Это происходит, когда меняются реологические свойства крови вследствие усиления внутрисосудистой агрегации эритроцитов, причем кровоток в капиллярах замедляется в разной степени, вплоть до его полной остановки - развития стаза.

Нарушения функции сердечно-сосудистой системы в целом могут быть вызваны воздействием разнообразных патогенных факторов на сердце, артерии, капилляры и вены, а также на циркулирующую в них кровь непосредственно или опосредованно - через нейрогуморальные механизмы. Поэтому различные нарушения функции вегетативной нервной системы, желез внутренней секреции, а также синтеза и превращений в организме разных физиологически активных веществ вызывают нарушения в системе кровообращения . При этом нейрогуморальные факторы, участвующие в регуляции нормальной работы сердца, в определенных условиях также вызывают нарушения его деятельности. Величина общего АД в большой степени зависит от влияний нервных и гуморальных факторов, действующих и на сердечную деятельность, и на тонус стенок периферических артерий.

Нейрогуморальные факторы, специфически действующие на артерии тех или иных органов, могут становиться причиной нарушений кровоснабжения тех или иных органов. Необходимым условием для этого является местное образование или специфическое действие таких физиологически активных веществ, как простагландины и серотонин, способствующие развитию спазма крупных артерий, снабжающих кровью какой-либо орган, например головной мозг.

Компенсация при нарушениях кровообращения . При возникновении каких-либо нарушений кровообращения обычно быстро наступает его функциональная компенсация. Компенсация осуществляется прежде всего теми же механизмами регулирования, что и в норме. На ранних стадиях нарушений кровообращения их компенсация происходит без каких-либо существенных сдвигов в структуре сердечно-сосудистой системы. Структурные изменения тех или иных частей системы кровообращения (например, гипертрофия миокарда, развитие артериальных или венозных коллатеральных путей) возникают обычно позже и направлены на улучшение работы механизмов компенсации.

Компенсация возможна за счет усиления сокращений миокарда, расширения полостей сердца, а также гипертрофии сердечной мышцы. Так, при затруднении изгнания крови из желудочка, например при стенозе устья аорты или легочного ствола, реализуется резервная мощность сократительного аппарата миокарда, что способствует усилению силы сокращения. При недостаточности клапанов сердца в каждую следующую фазу сердечного цикла часть крови возвращается в обратном направлении. При этом развивается дилатация полостей сердца, носящая компенсаторный характер. Однако чрезмерная дилатация создает неблагоприятные условия для работы сердца.

Повышение общего АД, вызванное увеличением общего периферического сопротивления, компенсируется, в частности, за счет усиления работы сердца и создания такой разности давлений между левым желудочком и аортой, которая способна обеспечить выброс в аорту всего систолического объема крови.

В ряде органов, особенно в головном мозге, при повышении уровня общего АД начинают функционировать компенсаторные механизмы, благодаря которым кровяное давление в сосудах мозга поддерживается на нормальном уровне.

При увеличении сопротивления в отдельных артериях (вследствие ангиоспазма, тромбоза, эмболии и т.д.) нарушение кровоснабжения соответствующих органов или их частей может быть компенсировано за счет коллатерального притока крови. В головном мозге коллатеральные пути представлены в виде артериальных анастомозов в области виллизиева круга и в системе пиальных артерий на поверхности больших полушарий. Артериальные коллатерали хорошо развиты и в сердечной мышце. Помимо артериальных анастомозов важную роль для коллатерального притока крови играет их функциональная дилатация, значительно уменьшающая сопротивление кровотоку и способствующая притоку крови в ишемизированную область. Если в расширившихся коллатеральных артериях кровоток оказывается усиленным в течение длительного времени, то наступает постепенная их перестройка, калибр артерий возрастает, так что в дальнейшем они могут полностью обеспечивать кровоснабжение органа в той же степени, что и основные артериальные стволы.

При увеличении сопротивления в отдельных венозных сосудах (при тромбозе, сдавлении вен и т.д.) коллатеральный отток крови осуществляется за счет широкой сети анастомозов, имеющейся в венозной системе. Однако при недостаточности кровотока по коллатеральным путям, особенно при их тромбозе, наступает декомпенсация оттока крови с венозным застоем в соответствующих органах.

Недостаточность кровообращения . Этиология, патогенез и клинические проявления недостаточности кровообращения отличаются разнообразием. Общим для них является наличие дисбаланса между потребностью в кислороде, питательных веществах и их доставкой с кровью. Конкретные причины такого дисбаланса, механизм его возникновения и признаки проявления (общие и местные) могут быть различны. Существует и более узкое понимание недостаточности кровообращения , полностью соответствующее значению терминов «сердечная недостаточность» и «хроническая сердечная недостаточность». Настаивая на понимании недостаточности кровообращения как эквивалента сердечной недостаточности, обычно ссылаются на то, что при этом патологическом состоянии всегда оказываются затронутыми функции сосудистой системы, в частности отмечается сосудистая дистония на различных уровнях, например, при такой форме сердечной недостаточности, как кардиогенный шок (см. Инфаркт миокарда ), наблюдаются разнообразные сосудистые реакции: повышение тонуса резистивных сосудов в первой фазе шока и резкое падение во второй. При хронической сердечной недостаточности также выявляются различные изменения периферического сосудистого сопротивления и венозного тонуса, связанные с гипоксией артериальных стенок, длительными застойными явлениями в венозной системе и т.д., что свидетельствует не только о недостаточности кровообращения, но и о сердечно-сосудистой недостаточности. Наряду с этими терминами иногда используются термины «декомпенсация кровообращения» и «декомпенсация сердечной деятельности». Однако большинство советских кардиологов рекомендуют применять термин «сердечная недостаточность». При этом отмечают, что первичным этиологическим звеном в подобных случаях является снижение насосной функции сердца, а те или иные изменения со стороны сосудистого тонуса имеют в этих случаях вторичный характер. Говорить о сердечно-сосудистой недостаточности можно лишь тогда, когда функция сердца и тонус сосудов нарушаются одновременно, например под действием того или иного токсического фактора. Критически следует относиться и к понятию «декомпенсация сердечной деятельности». На различных стадиях сердечной недостаточности речь идет не о декомпенсации, а, напротив, о включении тех или иных компенсаторных механизмов, которые в здоровом организме при данном уровне обменных процессов не функционируют. Так, на первой стадии сердечной недостаточности наблюдается учащение сердечных сокращений в покое, в результате чего увеличивается сердечный выброс, что позволяет обеспечить жизненные потребности организма, несмотря на снижение насосной функции сердца. По существу лишь терминальную стадию сердечной недостаточности можно рассматривать как декомпенсацию, когда мобилизация всех компенсаторных механизмов не в состоянии обеспечить жизнедеятельность организма.

Генерализованная недостаточность кровообращения включает также различные формы острой и хронической сосудистой недостаточности, такие как обморок , коллапс , шок , длительное снижение артериального давления.

Недостаточность кровообращения нередко носит регионарный характер и проявляется в виде нарушений кровотока, вызываемых сосудистой непроходимостью в результате экстравазальных компрессионных процессов, развития внутрисосудистых препятствий кровотоку (например, в результате атеросклероза сосудов, васкулитов, эмболии, тромбоза, травмы сосуда) и, наконец, изменений сосудистого тонуса (чаще всего спазма артерий и артериол и снижения тонуса вен). Клиническое значение регионарной недостаточности кровообращения зависит от локализации поражения сосудистой системы и от степени развившихся при этом нарушений кровоснабжения. Особое значение имеет коронарная недостаточность , расстройства артериального кровоснабжения мозга (см. Мозговое кровообращение ), сосудов конечностей (см. Облитерирующие поражения сосудов конечностей ) и др. Вообще же нарушение кровотока по любой артерии всегда представляет опасность для функции васкуляризируемого органа, если только оно не компенсируется достаточно развитыми коллатералями. В патогенезе регионарных проявлений недостаточности кровообращения большую роль играют расстройства в системе микроциркуляции: спазмы и дистония артериол, стазы в капиллярной системе, нарушение тонуса венул вследствие гипоксии и выделения в кровяное русло биологически активных метаболитов.

Из форм недостаточности кровообращения , развивающихся в венозной системе, чаще всего встречаются нарушения оттока крови (венозного возврата) в результате тромбофлебита , а также снижения венозного тонуса (например, венозной гипотензии в венах нижних конечностей у лиц пожилого возраста).

Методы исследования кровообращения . Существует большое число различных методов, позволяющих оценивать те или иные характеристики движения и распределения крови в организме, а также функцию звеньев, осуществляющих эти процессы. При этом решаются две главные задачи: установление общих закономерностей функционирования сердечно-сосудистой системы и выявление индивидуальных функциональных особенностей кровообращения , что необходимо для практических целей, в частности для диагностики нарушений кровообращения.

Методы исследования кровообращения делят на инвазивные (кровавые) и неинвазивные (бескровные). Структуру различных отделов сердечно-сосудистой системы оценивают с помощью различных рентгенологических методов (см.

Библиогр.: Власов Ю.А. Онтогенез кровообращения человека, Новосибирск, 1985; Джонсон П. Периферическое кровообращение , пер. с англ., М., 1982; Руководство по кардиологии, под ред. Е.И. Чазова, т. 2, 1982; Руководство по физиологии: Физиология кровообращения. Физиология сосудистой системы, под ред. Б.И. Ткаченко, с. 56, Л., 1984; Физиология человека, под ред. Р. Шмидта и Г. Тевса, пер. с англ., т. 3, М., 1986; Функциональные системы организма, под ред. К. В. Судакова, М., 1987.

Глава 2
Анатомия, физиология и патофизиология окклюзирующих заболеваний ветвей дуги аорты

КОМПЕНСАЦИЯ КРОВООБРАЩЕНИЯ ПРИ ПОРАЖЕНИЯХ СОСУДОВ МОЗГА

Поражение одной или нескольких магистральных артерий мозга приводит к немедленному включению механизмов компенсации кровообращения. Во-первых, происходит увеличение притока крови по другим сосудам. Доказано, что при пережатии ОСА кровоток по противоположной сонной артерии увеличивается на 13-38%. Во-вторых, компенсация кровотока может быть достигнута увеличением минутного объема сердца.

Так, работами В.С. Работникова доказано, что у больных с окклюзирующими поражениями брахиоцефальных артерий отмечается ряд сдвигов в общей гемодинамике в виде увеличения объема циркулирующей крови (ОЦК), ударного индекса (УИ), минутного объема (МИ) за счет увеличения контрактильности желудочков.

Одним из важных факторов, обеспечивающих нормальное кровообращение головного мозга, является системное АД. Артериальная гипертензия, как приспособительная реакция организма, встречается у 20-30% больных с недостаточностью мозгового кровообращения. Кроме того, при изменении реактивности каротидного синуса (при атеросклерозе, артериите) включается его депрессорная функция, что также ведет к повышению АД.

Значительную роль в регуляции мозгового кровотока играет также содержание в крови углекислого газа (СО2). В артериальной крови всего лишь 1,3-1,7% вызывает расширение мозговых сосудов, тогда как для костно-мышечных сосудов пороговая величина Со 2 крови равна 3%.

Работами Е.В. Шмидта, Bove были выявлены приспособительные изменения метаболизма в условиях ишемии (увеличение парциального давления СО 2 (Рсо 2), снижение pH крови), которые направлены на уменьшение периферического сопротивления мозговых сосудов, улучшая этим мозговой кровоток. В то же время Holdt-Rasmussen установил, что у больных с нарушением мозгового кровообращения имеется извращенная реакция сосудов мозга на вдыхание СO 2 . Fieschi с помощью радиоактивного альбумина отметили, у части больных, отсутствие изменений мозгового кровотока при вдыхании СO 2 с острыми нарушениями мозгового кровообращения.

Важнейшим фактором, определяющим компенсацию мозгового кровообращения при окклюзирующих поражениях брахиоцефальных артерий, является состояние коллатерального сосудистого русла, а точнее скорость его развития в момент мозговой катастрофы. Недостаточное его развитие приводит к нарушению мозгового кровообращения. При адекватном его состоянии клинические проявления окклюзирующих поражений брахиоцефальных артерий могут отсутствовать.

Процесс формирования коллатерального кровообращения имеет временные характеристики, и клинические проявления поражения магистральных артерий головного мозга будут зависеть в первую очередь от скорости формирования адекватного коллатерального кровообращения.

Уровень и степень эффективности коллатерального кровообращения зависят от ряда факторов. К ним относятся: состояние общей гемодинамики, темп развития и локализация окклюзирующего поражения, а также состояние сосудов, обеспечивающих коллатеральное кровообращение.

При поражении основного ствола магистральной артерии возникает компенсаторное расширение концевых ветвей в бассейне этой артерии, как в связи с возникновением перепада внутрисосудистого давления, так и в связи с падением напряжения О 2 в ткани мозга, в результате чего нарушается аэробное окисление глюкозы и происходит накопление углекислоты и молочной кислоты.

Б.Н. Клосовский предложил различать 4 уровня коллатерального кровообращения головного мозга. Первый – уровень виллизиева круга, второй – уровень коллатерального кровообращения на поверхности мозга в субарахноидальном пространстве. В этих зонах сосредоточена основная масса наиболее крупных анастомозов между ветвями передней и средней, средней и задней, передней и задней мозговых артерий. Третьим уровнем коллатерального кровообращения являются анастомозы внутри какой-либо области, например полушарий головного мозга. Четвертый уровень – внутримозговая капиллярная сеть. Е.В. Шмидт, кроме того, различает внечерепной уровень коллатерального кровообращения за счет анастомозирования внутренней сонной артерии и позвоночной артерии с бассейном наружной сонной артерии.

Мы считаем достаточным для оценки кровообращения (магистрального, коллатерального и тканевого) подразделение на 2 уровня: первый – до уровня (и включая его) анатомически обусловленных и сформированных коллатералей (уровень виллизиева круга), второй – от уровня (исключая его) анатомически обусловленных и сформированных коллатералей. Принципиально это подразделение сходно с делением на проксимальное и дистальное поражение артерий.

Основным путем компенсации является кровоток через ПСА. В норме все три пути коллатерального кровообращения находятся между собой в гемодинамическом равновесии, дополняя и заменяя друг друга. При поражении ВСА в первую очередь включается противоположная ВСА через ПСА, которая участвует в формировании переднего отдела виллизиева круга. Уровень же кровотока по этой артерии в основном зависит от состояния контралатеральной (по отношению к пораженной) ВСА, как бы являясь пусковым механизмом для включения остальных путей. Так, при недостаточной степени развития перетока по передней соединительной артерии вследствие недоразвития ее, атеросклеротического поражения либо при поражении контралатеральной ВСА развивается коллатеральное кровообращение через глазничный анастомоз из системы ипси- или контралатеральной сонной артерии, и/или развивается коллатеральное кровообращение через ЗСА.

При окклюзирующем поражении ВСА анатомическое строение виллизиева круга имеет важное значение в осуществлении всех видов компенсации кровообращения. Однако не меньшее значение имеет функциональное состояние всех отделов виллизиева круга.

Окклюзия артерии, ее стеноз или извитость вызывают развитие коллатерального кровотока, обусловленное в первую очередь падением в той или иной степени перфузионного давления дистальнее места поражения. При этом степень компенсации может быть различной, и в достаточно большом количестве случаев (до 25-35%) перфузионное давление в дистальных отделах приближается или доходит до нормы (например наличие антеградного кровотока по глазничному анастомозу при изолированной окклюзии внутренней сонной артерии). Однако это не означает полной компенсации кровообращения. Так как мозгу в ряде случаев, для нормального функционирования необходимо увеличение общего мозгового кровотока на 40-60% другим важнейшим показателем будет являться потенциальная возможность компенсации увеличения потребляемой крови. Другими словами, двумя основными показателями степени компенсации мозгового кровотока будут уровень кровотока в покое и степень увеличения кровотока при дозированной нагрузке (функциональной пробе) по отношению к уровню кровотока в покое.

Сочетание различных по гемодинамической значимости поражений магистральных артерий головного мозга не означает простое суммирование этих величин. Суммарный дефицит мозгового кровотока зависит не только от объема поражения, но и от состояния гомеостаза пациента. Большую роль в нарушении кровотока играет так же и взаимовлияние поражений. Гораздо проще объяснить это взаимовлияние на некоторых примерах. У больного Х., ранее полностью асимптомного неврологически с незначительными стенозами ("гемодинамически незначимыми") обеих сонных артерий, после обнаружения патологии и назначения лечения (аспирин) развивается ишемический инсульт. На первый взгляд механизм развития инсульта непонятен. Однако с точка зрения гемодинамики произошло следующее – до назначения лечения у больного была относительно высокая вязкость крови. Число Рейнольдса (определяющее переход ламинарного потока крови в турбулентный) обратно пропорциональное вязкости крови, было низким, и в участке стеноза процент турбулентности был незначительный. Следовательно в этот период сонные артерии обеспечивали и достаточный кровоток, и достаточную потенциальную возможность увеличения кровотока (реактивность). Уменьшение вязкости крови повлекло за собой снижение объемного кровотока по сонным артериям за счет формирования высокотурбулентного потока дистальнее стеноза. Срыв кровотока по одной сонной артерии вызывает компенсаторное увеличение системного давления и увеличение объемного кровотока по противоположной сонной артерии, что влечет за собой аналогичное ограничение кровотока.

Необходимо отдельно остановиться на наружной сонной артерии, определить ее гемодинамическую роль в кровоснабжении головного мозга при окклюзиях ВСА, как источника коллатерального кровообращения.

В норме НСА в кровоснабжении головного мозга участия не принимает, но при окклюзии внутренних сонных артерий в мозговое кровоснабжение включается разветвленная коллатеральная сеть ветвей НСА, анастомозирующих с интракраниальными ветвями внутренних сонных и позвоночных артерий.

При анализе частоты окклюзионных поражений ветвей дуги аорты было обнаружено, что чаше всего поражается бифуркация обшей и проксимальный отдел внутренней сонных артерий. Рост атеросклеротической бляшки приводит к окклюзии (в 9-34% случаев окклюзионных поражений ветвей дуги аорты) внутренней и (в 3-6% случаев) общей сонных артерий. НСА поражается значительно реже, чем ВСА. Гемодинамически значимое поражение НСА при окклюзии ВСА встречается в 26,9-52,2%. По нашим данным у 36.8% пациентов при окклюзии ВСА имеется гемодинамически значимый стеноз наружной сонной артерии.

Ряд авторов утверждают, что роль НСА в осуществлении интракраниального кровообращения сомнительна, но большая группа специалистов, такие как, Ю.Л. Грозовский, F.F. Barnett, A.D. Callow и др. отмечают важную роль НСА в мозговой гемодинамике при окклюзии ВСА. По мнению Fields W.S. (1976), F.F. Barnett (1978), McGuiness (1988), при окклюзии внутренних сонных артерий НСА берет на себя до 30% мозгового кровотока. Восстановление адекватного, магистрального кровотока по НСА при ее стенозе или окклюзии ОСА и ВСА у больных с сосудисто-мозговой недостаточностью приводит к улучшению кровоснабжения мозга через системные анастомозы, что в свою очередь приводит к снижению проявлений нарушения мозгового кровообращения.

Однако настоящая работа не ставит целью показать значимость НСА в мозговой гемодинамике. Наружная сонная артерия нами рассматривается как донорская для формирования ЭИКМА. Состояние НСА обусловливает адекватность микроанастомоза. В зависимости от степени сужения различают три вида поражения НСА (

1 – отсутствие поражения НСА, 2 – стеноз НСА, 3 – окклюзия устья НСА при окклюзии ОСА и ВСА">рис. 9):

  • отсутствие поражения НСА,
  • стеноз НСА,
  • окклюзия устья НСА при окклюзии ОСА и ВСА.

Состояние НСА определяется при помощи ультразвуковых методов исследования, дуплексного сканирования и рентгеноконтрастной ангиографии. В протокол обследования больных в обязательном порядке включено измерение артериального давления в височных артериях. Данное исследование высокоинформативно и у больных со стенозом НСА является основным для определения показаний к этапности к оперативным вмешательствам.

Особый интерес представляет ситуация когда окклюзированы как ВСА, так и ОСА – соответственно прекращается магистральный кровоток и по НСА. У этих больных возможна реваскуляризация мозга с использованием длинных шунтов – подключично-корковое шунтирование почти в 100% случаев закончились тромбозом шунта.

Сохранение проходимости НСА за ее первой ветвью позволило использовать ветви НСА в качестве донора после восстановления магистрального кровотока путем подключично-НСА протезирования.

При окклюзии ВСА и ОСА НСА остается проходимой дистальнее первой ветви, сохраняется циркуляция крови по анастомозам между ветвями НСА, что препятствует распространению тромбоза.

Подключично-наружно сонное шунтирование или протезирование создает следующую гемодинамическую ситуацию: кровь из шунта сбрасывается в НСА где распределяется между ее ветвями, за счет высокой возможности принять кровь увеличивается объемный поток крови по шунту, что является профилактикой его тромбоза.

При окклюзии ВСА причиной повторных нарушений мозгового кровообращения могут быть как гемодинамические факторы, обусловленные самой окклюзией ВСА, стенозом НСА, так и эмбологенные, причиной которых могут быть микроэмболии с изъязвленных бляшек в НСА или из культи ВСА.

Микроэмболы могут пройти через ГА, при этом чаще всего наблюдается нарушение ретинального кровообращеничя. Этот факт подтверждается сообщениями о прямом визуальном наблюдении прохождения эмболов через сосуды сетчатки при прямой офтальмоскопии. Barnet F.F. причиной ТИА в бассейне окклюзированной ВСА при нормальной гемодинамике в ряде случаев считает микроэмболию через глазничный анастомоз.

Ringelstein E.B. с соавторами показали, что у больных с окклюзией ВСА повторные нарушения мозгового кровообращения были обусловлены в 41% случаев гемодинамическими факторами, в 40% – эмбологенными и в 19% случаев носили смешанный характер.

Первые операции на НСА начались в 60-х годах. Факт, что при выполнении эндартерэктомии (ЭАЭ) из НСА производят резекцию культи ВСА, то есть устраняют источник микроэмболий.

Для выявления градиента давления между ветвями НСА – донорскими артериями и интаркраниальными ветвями ВСА, в частности корковыми ветвями СМА, нами применен метод измерения АД в поверхностной височной артерии с помощью оригинальной манжетки и определения давления в центральной артерии сетчатки как характеристики давления в СМА и ее ветвях.

По мере деления СМА давление в ее концевых артериях должно несколько снижаться, иначе не было бы кровотока по градиенту давления и работы потока крови против сил гравитации. Этот фактор полезен, так как уменьшает давление в артерии реципиенте. Теменная и височная артерия, которые могут использоваться в качестве донорских артерий, являются ветвями НСА 2-го порядка, следовательно, падение давления в них будет меньше, чем в корковых ветвях СМА, являющихся артериями 3-го порядка. То есть создаются оптимальные гемодинамические условия, необходимые для работы ЭИКМА.

Здоровый организм обладает многообразными механизмами, обеспечивающими своевременную разгрузку сосудистого русла от избытка жидкости. При сердечной недостаточности «включаются» компенсаторные механизмы, направленные на сохранение нормальной гемодинамики. Эти механизмы в условиях острой и хронической недостаточности кровообращения имеют много общего, вместе с тем между ними отмечаются существенные различия.

Как и при острой, так и при хронической сердечной недостаточности все эндогенные механизмы компенсации гемодинамических нарушений можно подразделить на интракардиальные: компенсаторная гиперфункция сердца (механизм Франка-Старлинга, гомеометрическая гиперфункция), гипертрофия миокарда и экстракардиальные: разгрузочные рефлексы Бейнбриджа, Парина, Китаева, активация выделительной функции почек, депонирование крови в печени и селезенке, потоотделение, испарение воды со стенок легочных альвеол, активация эритропоэза и др. Такое деление в некоторой степени условно, поскольку реализация как интра-, так и экстракардиальных механизмов находится под контролем нейрогуморальных регуляторных систем.

Механизмы компенсации гемодинамических нарушений при острой сердечной недостаточности. На начальной стадии систолической дисфункции желудочков сердца включаются интракардиальные факторы компенсации сердечной недостаточности, важнейшим из которых является механизм Франка-Старлинга (гетерометрический механизм компенсации, гетерометрическая гиперфункция сердца). Реализацию его можно представить следующим образом. Нарушение сократительной функции сердца влечет за собой уменьшение ударного объема крови и гипоперфузию почек. Это способствует активации РААС, вызывающей задержку воды в организме и увеличение объема циркулирующей крови. В условиях возникшей гиперволемии происходит усиленный приток венозной крови к сердцу, увеличение диастолического кровенаполнения желудочков, растяжение миофибрилл миокарда и компенсаторное повышение силы сокращения сердечной мышцы, которое обеспечивает прирост ударного объема. Однако если конечное диастолическое давление повышается более чем на 18-22 мм рт.ст. возникает чрезмерное перерастяжение миофибрилл. В этом случае компенсаторный механизм Франка-Старлинга перестает действовать, а дальнейшее увеличение конечного диастолического объема или давления вызывает уже не подъем, а снижение ударного объема.

Наряду с внутрисердечными механизмами компенсации при острой левожелудочковой недостаточности запускаются разгрузочные экстракардиальные рефлексы, способствующие возникновению тахикардии и увеличению минутного объема крови (МОК). Одним из наиболее важных сердечно-сосудистых рефлексов, обеспечивающих увеличение МОК, является рефлекс Бейнбриджа увеличение частоты сердечных сокращений в ответ на увеличение объема циркулирующей крови. Этот рефлекс реализуется при раздражении механорецепторов, локализованных в устье полых и легочных вен. Их раздражение передается на центральные симпатические ядра продолговатого мозга, в результате чего происходит повышение тонической активности симпатического звена вегетативной нервной системы, и развивается рефлекторная тахикардия. Рефлекс Бейнбриджа направлен на увеличение минутного объема крови.

Рефлекс Бецольда-Яриша — это рефлекторное расширение артериол большого круга кровообращения в ответ на разражение механо- и хеморецепторов, локализованных в желудочках и предсердиях.

В результате возникает гипотония, которая сопровождается бра-

дикардией и временной остановкой дыхания. В реализации этого рефлекса принимают участие афферентные и эфферентные волокна n. vagus. Этот рефлекс направлен на разгрузку левого желудочка.

К числу компенсаторных механизмов при острой сердечной недостаточности относится и повышение активности симпатоадреналовой системы, одним из звеньев которого является высвобождение норадреналина из окончаний симпатических нервов, иннервирующих сердце и почки. Наблюдаемое при этом возбуждение β -адренорецепторов миокарда ведет к развитию тахикардии, а стимуляция подобных рецепторов в клетках ЮГА вызывает усиленную секрецию ренина. Другим стимулом секреции ренина является снижение почечного кровотока в результате вызванной катехоламинами констрикции артериол почечных клубочков. Компенсаторное по своей природе усиление адренергического влияния на миокард в условиях острой сердечной недостаточности направлено на увеличение ударного и минутного объемов крови. Положительный инотропный эффект оказывает также ангиотензин-II. Однако эти компенсаторные механизмы могут усугубить сердечную недостаточность, если повышенная активность адренергической системы и РААС сохраняется достаточно продолжительное время (более 24 ч).

Все сказанное о механизмах компенсации сердечной деятельности в одинаковой степени относится как к лево-, так и к правожелудочковой недостаточности. Исключением является рефлекс Парина, действие которого реализуется только при перегрузке правого желудочка, наблюдаемой при эмболии легочной артерии.

Рефлекс Ларина — это падение артериального давления, вызванное расширением артерий большого круга кровообращения, снижением минутного объема крови в результате возникающей брадикардии и уменьшением объема циркулирующей крови из-за депонирования крови в печени и селезенке. Кроме того, для рефлекса Парина характерно появление одышки, связанной с наступающей гипоксией мозга. Полагают, что рефлекс Парина реализуется за счет усиления тонического влияния n.vagus на сердечно-сосудистую систему при эмболии легочных артерий.

Механизмы компенсации гемодинамических нарушений при хронической сердечной недостаточности. Основным звеном патогенеза хронической сердечной недостаточности является, как известно, постепенно нарастающее снижение сократительной функции ми-

окарда и падение сердечного выброса. Происходящее при этом уменьшение притока крови к органам и тканям вызывает гипоксию последних, которая первоначально может компенсироваться усиленной тканевой утилизацией кислорода, стимуляцией эритропоэза и т.д. Однако этого оказывается недостаточно для нормального кислородного обеспечения органов и тканей, и нарастающая гипоксия становится пусковым механизмом компенсаторных изменений гемодинамики.

Интракардиальные механизмы компенсации функции сердца. К ним относятся компенсаторная гиперфункция и гипертрофия сердца. Эти механизмы являются неотъемлемыми компонентами большинства приспособительных реакций сердечно-сосудистой системы здорового организма, но в условиях патологии могут превратиться в звено патогенеза хронической сердечной недостаточности.

Компенсаторная гиперфункция сердца выступает как важный фактор компенсации при пороках сердца, артериальной гипертензии, анемии, гипертонии малого круга и других заболеваниях. В отличие от физиологической гиперфункции она является длительной и, что существенно, непрерывной. Несмотря на непрерывность, компенсаторная гиперфункция сердца может сохраняться в течение многих лет без явных признаков декомпенсации насосной функции сердца.

Увеличение внешней работы сердца, связанное с подъемом давления в аорте (гомеометрическая гиперфункция), приводит к более выраженному возрастанию потребности миокарда в кислороде, чем перегрузка миокарда, вызванная повышением объема циркулирующей крови (гетерометрическая гиперфункция). Иными словами, для осуществления работы в условиях нагрузки давлением мышца сердца использует гораздо больше энергии, чем для выполнения той же работы, связанной с нагрузкой объемом, а следовательно, при стойкой артериальной гипертензии гипертрофия сердца развивается быстрее, чем при увеличении объема циркулирующей крови. Например, при физической работе, высотной гипоксии, всех видах клапанной недостаточности, артериовенозных фистулах, анемии гиперфункция миокарда обеспечивается за счет увеличения минутного объема сердца. При этом систолическое напряжение миокарда и давление в желудочках возрастают незначительно, и гипертрофия развивается медленно. В то же время при гипертонической болезни, гипертензии малого круга, стено-

зах клапанных отверстий развитие гиперфункции связано с повышением напряжения миокарда при незначительно измененной амплитуде сокращений. В этом случае гипертрофия прогрессирует достаточно быстро.

Гипертрофия миокарда это увеличение массы сердца за счет увеличения размеров кардиомиоцитов. Существуют три стадии компенсаторной гипертрофии сердца.

Первая, аварийная, стадия характеризуется, прежде всего, увеличением интенсивности функционирования структур миокарда и, по сути, представляет собой компенсаторную гиперфункцию еще не гипертрофированного сердца. Интенсивность функционирования структур — это механическая работа, приходящаяся на единицу массы миокарда. Увеличение интенсивности функционирования структур закономерно влечет за собой одновременную активацию энергообразования, синтеза нуклеиновых кислот и белка. Указанная активация синтеза белка происходит таким образом, что вначале увеличивается масса энергообразующих структур (митохондрий), а затем — масса функционирующих структур (миофибрилл). В целом увеличение массы миокарда приводит к тому, что интенсивность функционирования структур постепенно возвращается к нормальному уровню.

Вторая стадия — стадия завершившейся гипертрофии — характеризуется нормальной интенсивностью функционирования структур миокарда и соответственно нормальным уровнем энергообразования и синтеза нуклеиновых кислот и белков в ткани сердечной мышцы. При этом потребление кислорода на единицу массы миокарда остается в границах нормы, а потребление кислорода сердечной мышцей в целом увеличено пропорционально возрастанию массы сердца. Увеличение массы миокарда в условиях хронической сердечной недостаточности происходит за счет активации синтеза нуклеиновых кислот и белков. Пусковой механизм этой активации изучен недостаточно. Считается, что определяющую роль здесь играет усиление трофического влияния симпатоадреналовой системы. Эта стадия процесса совпадает с длительным периодом клинической компенсации. Содержание АТФ и гликогена в кардиомиоцитах также находится при этом в пределах нормы. Подобные обстоятельства придают относительную устойчивость гиперфункции, но вместе с тем не предотвращают исподволь развивающихся в данной стадии нарушений обмена и структуры миокарда. Наиболее ранними признаками таких нарушений являются

значительное увеличение концентрации лактата в миокарде, а также умеренно выраженный кардиосклероз.

Третья стадия прогрессирующего кардиосклероза и декомпенсации характеризуется нарушением синтеза белков и нуклеиновых кислот в миокарде. В результате нарушения синтеза РНК, ДНК и белка в кардиомиоцитах наблюдается относительное уменьшение массы митохондрий, что ведет к торможению синтеза АТФ на единицу массы ткани, снижению насосной функции сердца и прогрессированию хронической сердечной недостаточности. Ситуация усугубляется развитием дистрофических и склеротических процессов, что способствует появлению признаков декомпенсации и тотальной сердечной недостаточности, завершающейся гибелью пациента. Компенсаторная гиперфункция, гипертрофия и последующая декомпенсация сердца — это звенья единого процесса.

Механизм декомпенсации гипертрофированного миокарда включает следующие звенья:

1. Процесс гипертрофии не распространяется на коронарные сосуды, поэтому число капилляров на единицу объема миокарда в гипертрофированном сердце уменьшается (рис. 15-11). Следовательно, кровоснабжение гипертрофированной сердечной мышцы оказывается недостаточным для выполнения механической работы.

2. Вследствие увеличения объема гипертрофированных мышечных волокон уменьшается удельная поверхность клеток, в связи с

Рис. 5-11. Гипертрофия миокарда: 1 — миокард здорового взрослого; 2 — гипертрофированный миокард взрослого (масса 540 г); 3 — гипертрофированный миокард взрослого (масса 960 г)

этим ухудшаются условия для поступления в клетки питательных веществ и выделения из кардиомиоцитов продуктов метаболизма.

3. В гипертрофированном сердце нарушается соотношение между объемами внутриклеточных структур. Так, увеличение массы митохондрий и саркоплазматического ретикулума (СПР) отстает от увеличения размеров миофибрилл, что способствует ухудшению энергоснабжения кардиомиоцитов и сопровождается нарушением аккумуляции Са 2 + в СПР. Возникает Са 2 +-перегрузка кардиомиоцитов, что обеспечивает формирование контрактуры сердца и способствует уменьшению ударного объема. Кроме того, Са 2 +-перегрузка клеток миокарда повышает вероятность возникновения аритмий.

4. Проводящая система сердца и вегетативные нервные волокна, иннервирующие миокард, не подвергаются гипертрофии, что также способствует возникновению дисфункции гипертрофированного сердца.

5. Активируется апоптоз отдельных кардиомиоцитов, что способствует постепенному замещению мышечных волокон соединительной тканью (кардиосклероз).

В конечном итоге гипертрофия утрачивает приспособительное значение и перестает быть полезной для организма. Ослабление сократительной способности гипертрофированного сердца происходит тем скорее, чем сильнее выражены гипертрофия и морфологические изменения в миокарде.

Экстракардиальные механизмы компенсации функции сердца. В отличие от острой сердечной недостаточности роль рефлекторных механизмов экстренной регуляции насосной функции сердца при хронической сердечной недостаточности сравнительно невелика, поскольку нарушения гемодинамики развиваются постепенно на протяжении нескольких лет. Более или менее определенно можно говорить о рефлексе Бейнбриджа, который «включается» уже на стадии достаточно выраженной гиперволемии.

Особое место среди «разгрузочных» экстракардиальных рефлексов занимает рефлекс Китаева, который «запускается» при митральном стенозе. Дело в том, что в большинстве случаев проявления правожелудочковой недостаточности связаны с застойными явлениями в большом круге кровообращения, а левожелудочковой — в малом. Исключение составляет стеноз митрального клапана, при котором застойные явления в легочных сосудах вызваны не декомпенсацией левого желудочка, а препятствием току крови через

левое атриовентрикулярное отверстие — так называемым «первым (анатомическим) барьером». При этом застой крови в легких способствует развитию правожелудочковой недостаточности, в генезе которой рефлекс Китаева играет важную роль.

Рефлекс Китаева — это рефлекторный спазм легочных артериол в ответ на повышение давления в левом предсердии. В результате возникает «второй (функциональный) барьер», который первоначально играет защитную роль, предохраняя легочные капилляры от чрезмерного переполнения кровью. Однако затем этот рефлекс приводит к выраженному повышению давления в легочной артерии — развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n. vagus, a эфферентное — симпатическим звеном вегетативной нервной системы. Негативной стороной данной приспособительной реакции является подъем давления в легочной артерии, приводящий к увеличению нагрузки на правое сердце.

Однако ведущую роль в генезе долговременной компенсации и декомпенсации нарушенной сердечной функции играют не рефлекторные, а нейрогуморальные механизмы, важнейшим из которых является активация симпатоадреналовой системы и РААС. Говоря об активации симпатоадреналовой системы у пациентов с хронической сердечной недостаточностью, нельзя не указать, что у большинства из них уровень катехоламинов в крови и моче находится в пределах нормы. Этим хроническая сердечная недостаточность отличается от острой сердечной недостаточности.

Компенсаторные механизмы

Информация, релевантная «Компенсаторные механизмы»

При любой эндокринной патологии, как и при всех заболеваниях, наряду с нарушением функций развиваются компенсаторно-приспособительные механизмы. Например, при гемикастрации – компенсаторная гипертрофия яичника или семенника; гипертрофия и гиперплазия секреторных клеток коркового вещества надпочечника при удалении части паренхимы железы; при гиперсекреции глюкокортикоидов – уменьшение их

Размер почки уменьшен за счет гибели нефронов. Компенсаторные механизмы велики: при 50% гибели нефронов ХПН еще не развивается. Запустевают клубочки, гибнут канальцы, идут фибропластические процессы: гиалиноз, склероз оставшихся клубочков. Относительно сохранившихся клубочков существуют 2 точки зрения: 1) Они берут на себя функцию тех нефронов, которые погибли (1:4) — клетки увеличиваются в

Физиологическая реакция организма в ответ на изменения во времени подразделяется на три фазы: 1) немедленная химическая реакция буферных систем; 2) дыхательная компенсация (при метаболических нарушениях кислотно-основного состояния); 3) более медленная, но более эффективная компенсаторная реакция почек, способная ТАБЛИЦА 30-1. Диагностика нарушений кислотно-основного состояния Нарушение

Следует выделить три основные группы механизмов выздоровления: 1) срочные (неустойчивые, «аварийные») защитно-компенсаторные реакции, возникающие в первые секунды и минуты после воздействия и представляющие собой главным образом защитные рефлексы, с помощью которых организм освобождается от вредных веществ и удаляет их (рвота; кашель, чиханье и т.д.). К этому типу реакций следует отнести

При описании нарушений кислотно-основного состояния и компенсаторных механизмов необходимо использовать точную терминологию (табл. 30-1). Суффикс «оз» отражает патологический процесс, приводящий к изменению рН артериальной крови. Нарушения, которые приводят к снижению рН, называют ацидозом, тогда как состояния, которые вызывают увеличение рН,- алкалозом. Если первопричиной нарушений является

Терминальные состояния — это своеобразный патологический симптомокомплекс, проявляющийся тяжелейшими нарушениями функций органов и систем, с которыми организм без помощи извне справиться не может. Другими словами это состояния пограничные между жизнью и смертью. К ним относятся все стадии умирания и ранние этапы постреанимационного периода. Умирание может быть следствием развития любого тяжелого

Недостаточность внешнего дыхания (НВД) – это патологическое состояние, развивающееся вследствие нарушения внешнего дыхания, при котором не обеспечивается нормальный газовый состав артериальной крови или он достигается в результате включения компенсаторных механизмов, приводящих к ограничению резервных возможностей организма. Формы недостаточности внешнего дыхания

Повышение рН артериальной крови угнетает дыхательный центр. Снижение альвеолярной вентиляции приводит к увеличению PaCO2 и сдвигу рН артериальной крови в сторону нормы. Компенсаторная реакция дыхания при метаболическом алкалозе менее предсказуема, чем при метаболическом ацидозе. Гипоксемия, развивающаяся в результате прогрессирующей гиповентиляции, в конечном счете активирует чувствительные к

Первый ЭКГ признак Поскольку экстрасистола - это внеочередное возбуждение, то на ЭКГ ленте месторасположение ее будет раньше предполагаемого очередного синусового импульса. Поэтому пред экстрасистолический интервал, т.е. интервал R(синусовый) - R(экстрасистолический) будет меньше интервала R(синусовый) - R(синусовый). Рис. 68. Предсердная экстрасистола. В отведении III

Активный экстрасистолический очаг находится в желудочках. Первый ЭКГ признак Этот признак характеризует экстрасистолу как таковую, вне зависимости от места расположения эктопического очага. Краткая запись - интервал R(с)-R(э)

Компенсаторные механизмы сердечной недостаточности. Сердечные гликозиды — дигоксин

Компенсаторные механизмы . активируемые во время ЗСН, проявляются в виде положительной инотропии. Повышение силы сокращения мышц ([+dP/dt]max) носит название положительной инотропии. Она возникает как следствие усиленной симпатической стимуляции сердца и активации (З1-адренорецепторов желудочков и ведет к повышению эффективности систолического выброса. Но благоприятный эффект этого компенсаторного механизма не может поддерживаться долго. Развивается недостаточность в результате перегрузки желудочков, возникающей вследствие повышения давления в желудочках при их наполнении, систолического стресса стенки и повышенной потребности миокарда в энергии.

Лечение застойной сердечной недостаточности . Существует две фазы ЗСН: острая и хроническая. Лекарственная терапия должна не только облегчить симптомы заболевания, но и снизить смертность. Эффект лекарственной терапии наиболее благоприятен в тех случаях, когда ЗСН возникла вследствие кардиомиопатии или артериальной гипертензии. Цель лечения состоит в том, чтобы:

Уменьшить застой (отеки);

Улучшить систолическую и диастолическую функции сердца. Для достижения этой цели используют различные лекарственные средства.

Сердечные гликозиды используют для лечения сердечной недостаточности более 200 лет. Дигоксин - прототипичный сердечный гликозид, экстрагируемый из листьев пурпурной и белой наперстянки (Digitalis purpurea и D. lanata соответственно). Дигоксин - наиболее распространенный препарат из группы сердечных гликозидов, применяемых в США.

Все сердечные гликозиды обладают сходной химической структурой. Дигоксин, дигиталис и оубаин содержат агликоновое стероидное ядро, имеющее значение для фармакологической активности, а также ненасыщенное, связанное с С17 лактоновое кольцо, обладающее кардиотоническим действием, и связанный с С3 углеводный компонент (сахар), влияющий на активность и фармакокинетические свойства гликозидов.

Сердечные гликозиды ингибируют мембраносвязанную Nа+/К+-АТФазу, улучшая симптоматику ЗСН. Эффекты сердечных гликозидов на молекулярном уровне обусловлены ингибированием мембраносвя-занной Nа+/К+-АТФазы. Этот фермент участвует в создании мембранного потенциала покоя большинства возбудимых клеток посредством выведения трех ионов Na+ из клетки в обмен на поступление двух ионов К+ в клетку против градиента концентрации, тем самым создавая высокую концентрацию К+ (140 мМ) и низкую концентрацию Na+ (25 мМ). Энергию для этого насосного эффекта дает гидролиз АТФ. Ингибирование насоса приводит к повышению внутриклеточной цитоплазматической концентрации Na+.

Повышение концентрации Na+ ведет к ингибированию мембраносвязанного Ка+/Са2+-обменника и как следствие - к повышению концентрации цито-плазматического Са2+. Обменник представляет собой АТФ-независимый антипортер, вызывающий в обычных условиях вытеснение Са2+ из клеток. Повышение концентрации Na+ в цитоплазме пассивно снижает обменную функцию, и из клетки вытесняется меньше Са2+. Затем Са2+ в повышенной концентрации активно нагнетается в саркоплазматический ретикулум (СР) и становится доступным для высвобождения в течение последующей клеточной деполяризации, тем самым усиливая связь возбуждение-сокращение. Результатом является более высокая сократимость, известная как положительная инотропия.

При сердечной недостаточности положительное инотропное действие сердечных гликозидов изменяет кривую Франка-Старлинга желудочковой функции.

Несмотря на широкое применение дигиталиса, отсутствуют убедительные доказательства того, что он благоприятно влияет на отдаленный прогноз при ЗСН. У многих пациентов дигиталис улучшает симптоматику, однако не снижает смертность от ЗСН.

Основным звеном патогенеза ХСН является постепенно нарастающее сниже­ние сократительной функции миокарда и паде­ние сердечного выброса. Происходящее при этом уменьшение притока крови к органам и тканям вызывает гипоксию последних, которая перво­начально может компенсироваться усиленной тканевой утилизацией кислорода, стимуляцией эритропоэза и т.д. Однако этого оказывается не­достаточно для нормального кислородного обес­печения органов и тканей, и нарастающая ги­поксия становится пусковым механизмом ком­пенсаторных изменений гемодинамики.

Как и при острой сердечной недостаточности, все эндогенные механизмы компенсации гемо­динамических нарушений при ХСН можно под­разделить: на интракардиальные (механизм Франка - Старлинга, компенсаторная гиперфун­кция и гипертрофия миокарда) и экстракардиальные (разгрузочные рефлексы Бейнбриджа и Китаева).

Экстракардиальные механизмы компенса­ции функции сердца. В отличие от острой сер­дечной недостаточности роль рефлекторных ме­ханизмов экстренной регуляции насосной фун­кции сердца при ХСН сравнительно невелика, поскольку нарушения гемодинамики развивают­ся постепенно на протяжении нескольких лет. Более или менее определенно можно говорить о рефлексе Бейнбриджа, который «включается» уже на стадии достаточно выраженной гиперволемии.

Особое место среди «разгрузочных» экстракар­диальных рефлексов занимает рефлекс Китае­ва, который «запускается» при митральном сте­нозе. Дело в том, что в большинстве случаев проявления правожелудочковой недостаточнос­ти связаны с застойными явлениями в большом круге кровообращения, а левожелудочковой - в малом. Исключение составляет стеноз митраль­ного клапана, при котором застойные явления в легочных сосудах вызваны не декомпенсацией левого желудочка, а препятствием току крови через левое атриовентрикулярное отверстие - так называемым «первым (анатомическим) барье­ром». При этом застой крови в легких способ­ствует развитию правожелудочковой недостаточ­ности, в генезе которой рефлекс Китаева играет важную роль.

Рефлекс Китаева - это рефлекторный спазм легочных артериол в ответ на повышение дав­ления в левом предсердии. В результате возни­кает «второй (функциональный) барьер», кото­рый первоначально играет защитную роль, пре­дохраняя легочные капилляры от чрезмерного переполнения кровью. Затем этот реф­лекс приводит к выраженному повышению дав­ления в легочной артерии - развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n.vagus, а эфферентное - симпатическим звеном вегетативной нервной системы. Негативной стороной данной приспо­собительной реакции является подъем давления в легочной артерии, приводящий к увеличению нагрузки на правое сердце.

Однако ведущую роль в генезе долговременной компенсации и декомпенсации нарушенной сердечной функции играют не рефлекторные, а нейрогуморальные механизмы, важнейшим из которых является активация симпатоадреналовой (САС) и ренин-ангиотензин-альдостероновой систем.

Интракардиальные механизмы компенса­ции функции сердца. К ним относятся компен­саторная гиперфункция и гипертрофия сердца. Эти механизмы являются неотъемлемыми ком­понентами большинства приспособительных ре­акций сердечно-сосудистой системы здорового организма, но в условиях патологии могут пре­вратиться в звено патогенеза ХСН.

Компенсаторная гиперфункция сердца (КГС) выступает как важный фактор ком­пенсации при пороках сердца, артериальной гипертензии, анемии, гипертонии малого круга и других заболеваниях. В отличие от физиологи­ческой гиперфункции она является длительной и непрерывной.

Увеличение внешней работы сердца, связан­ное с подъемом давления в аорте приводит к более выражен­ному возрастанию потребности миокарда в кис­лороде, чем перегрузка миокарда, вызванная повышением объема циркулирующей крови. Иными словами, для осуществления работы в условиях нагрузки давлением мышца сердца использует гораздо больше энергии, чем для выполнения той же работы, связанной с нагрузкой объемом, а сле­довательно, при стойкой артериальной гипертензии гипертрофия сердца развивается быстрее, чем при увеличении ОЦК. Например, при физичес­кой работе, высотной гипоксии, всех видах кла­панной недостаточности, артерио-венозных фи­стулах, анемии гиперфункция миокарда обеспе­чивается за счет увеличения минутного объема сердца. При этом систолическое напряжение миокарда и давление в желудочках возрастают незначительно и гипертрофия развивается мед­ленно. В то же время при гипертонической бо­лезни, гипертензии малого круга, стенозах кла­панных отверстий развитие гиперфункции свя­зано с повышением напряжения миокарда при незначительно измененной амплитуде сокраще­ний. В этом случае гипертрофия прогрессирует достаточно быстро.

Гипертрофия миокарда - это увеличение массы сердца за счет увеличения размеров кардиомиоцитов. Существуют три стадии ком­пенсаторной гипертрофии сердца.

Первая, ава­рийная, стадия характеризуется, прежде всего, увеличением интенсивности функционирования структур миокарда и, по сути, представляет со­бой компенсаторную гиперфункцию еще не ги­пертрофированного сердца. Интенсивность функ­ционирования структур (ИФС) - это механичес­кая работа, приходящаяся на единицу массы миокарда. Увеличение ИФС закономерно влечет за собой одновременную активацию энергообра­зования, синтеза нуклеиновых кислот и белка. Указанная активация синтеза белка происходит таким образом, что вначале увеличивается мас­са энергообразующих структур (митохондрий), а затем - масса функционирующих структур (миофибрилл). В целом увеличение массы миокарда приводит к тому, что ИФС постепенно возвра­щается к нормальному уровню.

Вторая стадия завершившейся гипертрофии характеризуется нормальной ИФС миокарда и, соответственно, нормальным уровнем энергооб­разования и синтеза нуклеиновых кислот и бел­ков в ткани сердечной мышцы. При этом по­требление кислорода на единицу массы миокар­да остается в границах нормы, а потребление кислорода сердечной мышцей в целом увеличе­но пропорционально возрастанию массы сердца. Увеличение массы миокарда в условиях ХСН происходит за счет активации синтеза нуклеи­новых кислот и белков.

Третья стадия прогрессирующего кардиосклерозаи декомпенсации характеризуется на­рушением синтеза белков и нуклеиновых кис­лот в миокарде. В результате нарушения синте­за РНК, ДНК и белка в кардиомиоцитах наблю­дается относительное уменьшение массы мито­хондрий, что ведет к торможению синтеза АТФ на единицу массы ткани, снижению насосной функции сердца и прогрессированию ХСН. Си­туация усугубляется развитием дистрофических и склеротических процессов, что способствует появлению признаков декомпенсации и тоталь­ной сердечной недостаточности, завершающей­ся гибелью пациента.

Компенсаторная гипер­функция, гипертрофия и последующая деком­пенсация сердца - это звенья единого процесса. Механизм декомпенсации гипертрофирован­ного миокарда включает следующие звенья:

1. Процесс гипертрофии не распространяется на коронарные сосуды, поэтому число капилляров на единицу объема миокарда в гипертрофи­рованном сердце уменьшается. Следовательно, кровоснабжение гипертрофированной сердечной мышцы оказывается недостаточным для выполнения механической работы.

2. Вследствие увеличения объема гипертро­фированных мышечных волокон уменьшается удельная поверхность клеток, в связи с этим ухудшаются условия для поступления в клетки питательных веществ и выделения из кардиомиоцитов продуктов метаболизма.

3. В гипертрофированном сердце нарушается соотношение между объемами внутриклеточных структур. Так, увеличение массы митохондрий и СПР отстает от увеличения размеров миофибрилл, что способствует ухудшению энергоснаб­жения кардиомиоцитов и сопровождается нару­шением аккумуляции Са 2 в СПР. Возникает Са 2+ -перегрузка кардиомиоцитов, что обеспечи­вает формирование контрактуры сердца и спо­собствует уменьшению ударного объема. Кроме того, Са 2+ -перегрузка клеток миокарда повыша­ет вероятность возникновения аритмий.

4. Проводящая система сердца и вегетативные нервные волокна, иннервирующие миокард, не подвергаются гипертрофии, что также способствует возникновению дисфункции гипертрофированного сердца.

5. Активируется апоптоз отдельных кардиомиоцитов, что способствует постепенному заме­щению мышечных волокон соединительной тка­нью (кардиосклероз).

В конечном итоге гипертрофия утрачивает приспособительное значение и перестает быть полезной для организма. Ослабление сократи­тельной способности гипертрофированного серд­ца происходит тем скорее, чем сильнее выраже­ны гипертрофия и морфологические изменения в миокарде.

Патогенез сердечной недостаточности пред­ставляется следующим образом.

Многочислен­ный ряд примеров патологии сердечной деятель­ности (кардиомиопатии, нарушения коронарной перфузии и др.) индуцирует кислородное голо­дание миокарда. Известно, что в условиях нор­мального кровоснабжения важным энергетичес­ким субстратом для сердечной мышцы являют­ся свободные жирные кислоты (СЖК), глюкоза и молочная кислота. Гипоксия приводит к на­рушению процессов аэробного окисления субстра­тов в цикле Кребса, к угнетению окисления НАДН в дыхательной цепи митохондрий. Все это способствует накоплению недоокисленных продуктов метаболизма СЖК и глюкозы (ацил-КоА, лактат). Усиленное образование ацил-КоА в кардиомиоцитах негативно сказывается на энергетическом метаболизме клетки. Дело в том, что ацил-КоА является ингибитором аденилат-транслоказы - фермента, который осуществляет транспорт АТФ из митохондрий в саркоплазму. Аккумуляция ацил-КоА приводит к нарушению этого транспорта, усугубляя энергетический де­фицит в клетке.

Единственным источником энергии для кардиомиоцитов становится анаэробный гликолиз, интенсивность которого в условиях гипоксии резко возрастает. Однако «коэффициент полез­ного действия» анаэробного гликолиза, по срав­нению с эффективностью энергопродукции в цикле Кребса, намного ниже. В силу этого анаэ­робный гликолиз не в состоянии полностью воз­местить энергетические потребности клетки. Так, при анаэробном расщеплении одной молекулы глюкозы образуются всего две молекулы АТФ, в то время как при окислении глюкозы до угле­кислого газа и воды - 32 молекулы АТФ. Не­хватка высокоэнергетических фосфатов (АТФ и креатинфосфата) приводит к нарушению энергозависимого процесса удаления ионов кальция из саркоплазмы кардиомиоцитов и возникнове­нию кальциевой перегрузки миокарда.

В норме увеличение вызывает образо­вание мостиков между цепочками актина и ми­озина, что является основой сокращения карди­омиоцитов. Вслед за этим происходит удаление избытка ионов кальция из саркоплазмы и раз­витие диастолы. Кальциевая перегрузка клеток миокарда при его ишемии ведет к остановке процесса сокращения - расслабления в стадии систолы, формируется контрактура миокарда - состояние, при котором кардиомиоциты переста­ют расслабляться. Возникшая зона асистолии характеризуется повышенным тканевым напря­жением, что ведет к сдавлению коронарных со­судов и связанному с этим усугублению дефици­та коронарного кровотока.

Ионы Са 2 + активируют фосфолипазу А 2 , кото­рая катализирует расщепление фосфолипидов. В результате этого образуются одна молекула СЖК и одна молекула лизофосфатида. Свобод­ные жирные кислоты обладают детергентоподобным действием и в случае избыточного их на­копления в миокарде могут повреждать мембра­ны кардиомиоцитов. Еще более выраженный кардиотоксический эффект оказывают лизофосфатиды. Особенно токсичен лизофосфатидилхолин, который может провоцировать аритмии. В настоящее время роль СЖК и лизофосфатидов в патогенезе ишемического повреждения сердца никем не оспаривается, однако молекулярная природа необратимого повреждения кардиомио­цитов не сводится только к накоплению этих веществ в клетках сердечной мышцы. Кардиотоксическими свойствами могут обладать и дру­гие продукты метаболизма, например активные формы кислорода.

Активными формами кислорода (АФК) на­зывают супероксидный радикал (0 2 ") и гидроксильный радикал НО, которые обладают высо­кой окислительной активностью. Источником АФК в кардиомиоцитах является дыхательная цепь митохондрий и прежде всего цитохромы, которые в условиях гипоксии переходят в вос­становленное состояние и могут быть донорами электронов, «передавая» их молекулам кисло­рода с образованием не молекулы воды, как это происходит в норме, а супероксидного радикала (O 2). Кроме того, образование свободных ради­калов катализируется ионами металлов с переменной валентностью (прежде всего, ионами железа), которые всегда присутствуют в клетке. Активные формы кислорода взаимодействуют с молекулами белков и полиненасыщенных жир­ных кислот, превращая их в свободные радика­лы. Вновь образованные радикалы могут, в свою очередь, взаимодействовать с другими молеку­лами белков и жирных кислот, индуцируя даль­нейшее образование свободных радикалов. Та­ким образом, реакция может принимать цепной и разветвленный характер. Образование гидроперекисей полиненасыщен­ных жирных кислот, входящих в молекулярную структуру мембранных фосфолипидов, способ­ствует изменению биологических свойств мемб­ран. В отличие от жирных кислот гидропереки­си являются водорастворимыми веществами, и появление их в структуре гидрофобного фосфолипидного матрикса клеточных мембран приво­дит к формированию пор, пропускающих ионы и молекулы воды. Кроме того, изменяется ак­тивность мембраносвязанных ферментов.

Процесс возникновения гидроперекисей жир­ных кислот является одним из звеньев перекисного окисления липидов, которое включает в себя еще свободнорадикальное образование альдеги­дов и кетонов. Все эти вещества получили на­звание продуктов ПОЛ. Согласно концепции Ф.З. Меерсона, продукты ПОЛ обладают кардиотоксическими свойствами, и накопление их в клет­ке приводит к повреждению сарколеммы, а так­же лизосомальных и митохондриальных мемб­ран. На заключительном этапе повреждения, предшествующем гибели клеток, особая роль отводится активации протеолитических фермен­тов. Обычно эти энзимы находятся в цитоплаз­ме кардиомиоцитов в неактивном состоянии или локализованы внутри лизосом, мембраны кото­рых изолируют их от структурных элементов клетки. В связи с этим в норме протеазы не ока­зывают цитотоксического действия. В условиях ишемии перегрузка кардиомиоцитов ионами кальция и закисление цитоплазмы за счет на­копления лактата приводят к активации внут­риклеточных протеаз. Кроме того, повышение проницаемости лизосомальных мембран под действием фосфолипаз и продуктов ПОЛ способству­ет выходу активных протеолитических фермен­тов в саркоплазму. Конечным звеном этой пато­генетической цепочки является некроз кардио­миоцитов в зоне ишемии и их «самопереварива­ние», которое получило название аутолиза.

Важно отметить, что первыми погибают толь­ко кардиомиоциты, отличающиеся высокой ин­тенсивностью энергетического метаболизма и, соответственно, повышенной потребностью в кислороде. В то же время фибробласты и клетки проводящей системы менее зависимы от достав­ки кислорода и сохраняют свою жизнеспособ­ность. Функциональная активность фибробластов обеспечивает процессы рубцевания.

Клетки проводящей системы, сохраняя жиз­неспособность в условиях кислородного голода­ния, существенно изменяют свои электрофизио­логические характеристики, что может способ­ствовать возникновению аритмий. В результате повреждения мембран и снижения образования АТФ изменяется активность К + -, Na + -АТФазы, что сопровождается усиленным поступлением натрия в кардиомиоциты и выходом из них ка­лия. Это увеличивает электрическую нестабиль­ность миокарда и способствует развитию арит­мий.

Гипоксическая сократительная дисфункция сердца усугубляется нарушением процессов нейрогуморальной регуляции функционального со­стояния миокарда. Сердечные боли, приступы аритмии и другие нарушения являются для орга­низма стрессором, т.е. воздействием чрезмерной силы, на которое организм, как и на любое стрессорное воздействие, реагирует активацией симпатоадреналовой системы.

В настоящее время установлено, что при хро­нической активации симпатоадреналовой систе­мы происходит постепенная Са2+-перегрузка кар­диомиоцитов и их контрактура, нарушается це­лостность сарколеммы. При гиперактивации адренергической системы формируется электричес­кая нестабильность миокарда. Последняя спо­собствует возникновению фибрилляции желудочков сердца, поэтому каждый третий пациент при ХСН погибает внезапно, иногда сердечная смерть наступает на фоне внешнего благополучия и по­ложительной клинической динамики течения ХСН.

Адренергическая тахикардия сопровождает­ся повышением потребности миокарда в кисло­роде, что наряду с Са-перегрузкой еще больше усугубляет энергетический дефицит в клетках миокарда. Включается защитно-приспособитель­ный механизм, получивший название «спячки» или гибернации кардиомиоцитов. Часть клеток перестает сокращаться и отвечать на внешние стимулы, потребляя при этом минимум энергии и экономя кислород для активно сокращающихся кардиомиоцитов. Таким образом, количество обеспечивающих насосную функцию сердца кле­ток миокарда может существенно уменьшиться, способствуя усугублению сердечной недостаточности.

Кроме того, гиперактивация симпатоадрена­ловой системы усиливает секрецию ренина поч­ками, выступая в роли стимулятора РААС. Об­разующийся ангиотензин-II способствует увеличению адренореактивности сердца и сосудов, усиливая тем самым кардиотоксическое действие катехоламинов. Одновременно этот пептид увеличивает перифе­рическое сопротивление кровеносных сосудов, что, безусловно, способствует увеличению пост­нагрузки на сердце и весьма негативно сказы­вается на гемодинамике. Кроме того, ангиотензин-II может самостоятельно или через актива­цию образования цитокинов стимулировать программируемую гибель кардиомиоцитов («апоптоз»). Наряду с отмеченным повышением уровня ангиотензина-II негативно сказывается на состоя­нии водно-солевого гомеостаза, поскольку этот пептид активирует секрецию альдостерона.

В результате в организме задерживается избыточ­ное количество воды и натрия. Задержка натрия повышает осмолярность крови, в ответ на кото­рую происходит активация секреции антидиу­ретического гормона, что приводит к уменьше­нию диуреза и еще большей гидратации орга­низма. В итоге повышается ОЦК и увеличивает­ся преднагрузка на сердце. Гиперволемия ведет к раздражению механорецепторов, локализован­ных в устье полых и легочных вен, «включает­ся» рефлекс Бейнбриджа, возникает рефлекторная тахикардия, что еще больше увеличивает нагрузку на миокард и потребность сердечной мышцы в кислороде.

Создается «порочный круг», разорвать кото­рый можно только с помощью определенных фармакологических воздействий. Ко всему это­му присоединяется повышение гидростатическо­го давления в микрососудистом русле, что спо­собствует выходу жидкой части крови в ткани и формированию отеков. Последние сдавливают ткани, что усугубляет нарушение микроцирку­ляции и еще больше усиливает тканевую гипок­сию. При дальнейшем прогрессировании недо­статочности кровообращения нарушаются и дру­гие виды обмена, в том числе и белковый, что приводит к дистрофическим изменениям в орга­нах и тканях, нарушению их функции. В ко­нечной стадии ХСН развиваются кахексия, мас­кируемая отеками, гипопротеинемия, появляют­ся признаки почечной и печеночной декомпен­сации.

ИШЕМИЯ МИОКАРДА.

Термин «ишемическая болезнь сердца» (ИБС) был предложен комитетом экс­пертов ВОЗ в 1962 г. ИБС - термин собирательный, включающий многообразные клинические формы и проявления, как острые, так и хрони­ческие, как обратимые (преходящие), так и нео­братимые, заканчивающиеся некрозом сердеч­ной мышцы. Ишемия миокарда (от греч. ischo -задерживать, останавливать и haemia - кровь) представляет собой такое состояние, при кото­ром нарушается кровообращение мышцы серд­ца, появляется местное «малокровие», вследствие чего развивается коронарная недостаточность, т. е. возникает несоответствие между потребностя­ми миокарда в кислороде, с одной стороны, и уровнем оксигенации кардиомиоцитов - с дру­гой. Заболевания, патогенетическую основу кото­рых составляет ишемическое повреждение сердечной мышцы (коронарная болезнь сердца, ин­фаркт миокарда, атеросклеротический кардио­склероз), являются основной причиной смерт­ности населения в современном обществе - по данным ВОЗ, 400-500 человек на 100 000 насе­ления в возрасте 50-54 лет.

Патогенез необратимых изменений миокардиоцитов при ишемии можно представить в следующем виде:

1. Снижение энергетики в миокардиоцитах приводит к дальнейшему угнетению гликолиза.

2. Повреждение плазматической мембраны вызывает повышение проницаемости с нарушением функции специфических мембранных насосов (К/Na-АТФазы, Са/Н-обменник и др.)

3. Нарастание внутриклеточного ацидоза влечет за собой денатурацию белка.

4. Функция митохондрий прогрессивно снижается.

5. Активируется лизосомальный аутофагоцитоз, вплоть до разрыва лизосом. Активируется универсальный механизм клеточной деструкции – накопление ионов Са и продуктов перекисного окисления липидов. Это обусловлено увеличением вхождения Са в миокардиоциты и нарушением работы саркоплазмотического ретикулума (СПР), что инициирует запуск «кальциевой триады»:

1) контрактуру миофибрилл;

2) нарушение функций митохондрий;

3) усиление активности миофибриллярных протеаз и митохондриальных фосфолипаз.

Наряду с «липидной триадой»: -

1) активация ПОЛ;

2) увеличение активности фосфолипаз;

3) детергентное действие жирных кислот

Это приводит к необратимым повреждениям клеток миокарда.

Выделяют 3 периода тотальной ишемии миокарда:

1. Латентный период, в течение которого функции сердца не изменяются; он совпадает по времени с периодом аэробного метаболизма. В норме этих запасов хватает на 1-20 секунд.

2. Период выживания – тот предел, когда реперфузия или реоксигенация приводит к быстрому восстановлению функции сердца до исходного уровня. Биохимически, это переход на анаэробный метаболизм. Время этой фазы при гипотермии – 5 минут.

3. Период возможности оживления – время от начала ишемии до предела обратимых изменений. Длительность от 20 до 40 минут

Поскольку ишемия миокарда может вызываться достаточно большим количеством причин и иметь различные клинические формы, было введено понятие «ишемическая болезнь сердца», которая включает в себя все виды атеросклеротического поражения сердца:

1. Стенокардия.

2. Инфаркт миокарда.

3. Промежуточные формы коронарной недостаточности.

4. Кардиосклероз.

5. Аневризма сердца.

6. Внезапная сердечная смерть.

По аналогии с сердечной недостаточностью выделяют коронарную недостаточность – состояние, обусловленное неспособностью коронарного кровотока обеспечить метаболические потребности миокарда в кислороде вследствие спазма, тромбоза, эмболии коронарных сосудов. Коронарная недостаточность может быть:

1. Абсолютной – обусловлена истинным снижением объёмного кровотока сердца.

2. Относительной – при неизменном кровотоке, но снижении функциональных возможностей миокарда из-за падения парциального давления кислорода.

Дата добавления: 2015-09-03 | Просмотры: 743 | Нарушение авторских прав


| | | | | 6 | | | | | | | | | | | | | | | | |