Когда начнут выращивать органы из стволовых клеток. Технология выращивания искусственных органов на основе стволовых клеток

Исследователи преодолели барьер в создании искусственных сперматозоидов. Синтетические люди стали реальностью?

Ученые приблизились к воссозданию естественного процесса , посредством которого организм создает сперму из стволовых клеток. Исследование проводилось в рамках работы, которая в конечном итоге может обеспечить новые методы лечения бесплодия.

Выступая на ежегодной конференции Progress Education Trust в Лондоне, Азим Сурани, глава исследования, заявил, что он и его коллеги прошли значительную веху на пути к производству спермы в лабораторных условиях. Считается, что команда достигла половины пути развития стволовых клеток до незрелых клеток спермы.

Исследовании намекает, что в один прекрасный день можно будет производить сперму и яйцеклетки из стволовых клеток или из тех же клеток кожи, спасибо .

Раньше ученые использовали стволовые клетки для создания жизнеспособной мышиной спермы, которая затем использовалась для производства здорового потомства.

Мы не можем быть абсолютно уверены, что новые клетки это полноценные сперматозоиды. В лабораторных камерах есть таймеры развития, поэтому вы должны позволить им развиваться в соответствии с их внутренним временем.Азим Сурани, глава исследования.

Существуют опасения по поводу использования искусственно созданных сперматозоидов и яйцеклеток, поскольку любые генетические изъяны потенциально передаются всем будущим поколениям. Что является несущественным, при развитии и одобрении технологии .

Команда Сурани пытается тщательно отслеживать длительный путь развития, который происходит в организме. Главная проблема это сроки развития клеток. Если у мышей процесс проходит за несколько недель, с человеком – все намного сложнее.

В недавнем исследовании его команда показала, что они могут достичь примерно четырехнедельной отметки развития сперматозоида человека. Но ученые стремятся продлить это на восьминедельный этап отчетливого формирования клетки.
С этой целью команда разработала миниатюрные искусственные яйцеклетки, называемые гонадальными органоидами, которые содержат гонадальные клетки (также выращенных в лаборатории), заключенные в гель.

ДНК в зародышевых клетках должна пройти процесс, известный как «стирание». Избавление от химических меток, которые были встроены в родительскую ДНК, через воздействие окружающей среды. Большинство из этих так называемых эпигенетических маркеров очищаются сразу, после оплодотворения яйцеклетки. Это ограничивает степень влияния жизненного опыта родителей на биологию детей. Однако второй, более тщательный, сброс данных происходит, когда эмбриональные стволовые клетки превращаются в яйцеклетку или сперму.

Сейчас проблема состоит в том, чтобы выращиваемые в лаборатории сперматозоиды и яйцеклетки в точности повторяли путь развития естественных клеток организма. При удачном преодолении проблемы, искусственные клетки станут доступными для решения проблем с бесплодием, или для полноценного выращивания искусственных людей.

Искусственные человеческие органы скоро станут выращивать в строящейся при Военно-медицинской академии имени Кирова клинике в Санкт-Петербурге. Решение о строительстве клиники принял министр обороны. Многопрофильный центр планируют оснастить самым современным оборудованием, которое позволит самым подробным образом изучать стволовые клетки. Научно-технический отдел, который займётся клеточными технологиями, уже сформирован.

«Основным направлением работы отдела станет создание биологического банка и создание возможностей для выращивания искусственных органов, - говорит начальник отдела организации научной работы и подготовки научно-педагогических кадров академии Евгений Ивченко. - Российские учёные давно работают над искусственными органами».

Два года назад завотделом Федерального научного центра трансплантологии и искусственных органов имени академика В.И. Шумакова Мурат Шагидулин сообщил о создании искусственного аналога печени, пригодного для пересадки. Учёные смогли получить искусственную печень и протестировать её в доклинических условиях. Орган вырастили на основе бесклеточного каркаса печени, из которой заранее по специальной технологии удалили все ткани. Остались только белковые структуры кровеносных сосудов и других компонентов органа. Каркас засеяли аутологичными клетками костного мозга и печени. Эксперименты на животных показали: если выращенный элемент имплантировали в печень или брызжейку тонкой кишки, он способствовал регенерации тканей и давал полное восстановление функции повреждённого органа. Животные представляли собой модели острой и хронической печёночной недостаточности. И выращенный элемент позволял увеличить выживаемость в два раза. Спустя год после имплантации все животные были ещё живы. Между тем в контрольной группе умерло около 50% особей. Через семь дней после имплантации в основной группе биохимические показатели функции печени уже были на уровне нормы. По прошествии 90 дней после пересадки в брызжейку тонкой кишки учёные нашли там жизнеспособные гепатоциты и новые сосуды, которые проросли через каркас элемента.

«Исследования в области создания таких сложных биоинженерных органов, как печень, почки, лёгкие и сердце, в последние годы ведутся в ведущих научных лабораториях США и Японии, но дальше стадии изучения на животной модели они пока не продвинулись, - комментирует заведующий отделом экспериментальной трансплантологии и искусственных органов Центра Мурат Шагидулин. - Наши опыты на животных прошли хорошо. Спустя три месяца после трансплантации в телах животных обнаружили здоровые клетки печени и новые кровеносные сосуды. Это говорило о протекавшем процессе регенерации пересаженной печени и том, что она прижилась».

Японские учёные из Университета Йокогамы сумели вырастить печень размером в несколько миллиметров. Они смогли сделать это благодаря индуцированным плюрипотентным стволовым клеткам (iPSCs). Выращенная печень работает как полноценный орган. По словам руководителя исследовательской группы профессора Хидэки Танигути, минипечень справляется с переработкой вредных веществ столь же эффективно, что и реальный человеческий орган. Учёные надеются начать клинические испытания искусственной печени в 2019 г. Новые, созданные в лаборатории органы, будут пересаживать пациентам с тяжёлыми заболеваниями печени для поддержания её нормальных функций.

Несколько ранее японские учёные лабораторным путём почти приблизились к новейшему открытию - созданию полностью функционирующих почек, способных заменить настоящие. До этого прототипы искусственной почки создавались. Но им не удавалось нормально выводить мочу (раздувались от давления). Однако японцы исправили ситуацию. Специалисты уже вполне успешно пересаживают искусственные почки свиньям и крысам.
Доктор Такаси Йооко и его коллеги из Медицинской школы Университета Дзинкей использовали стволовые клетки, но не просто вырастили ткани почки, а вырастили и дренажную трубку, и мочевой пузырь. В свою очередь, крысы, а потом и свиньи, были инкубаторами, в которых уже развивалась и росла эмбриональная ткань. Когда новую почку соединили с существовавшим в теле животных мочевым пузырем, система заработала в целом. Моча шла из пересаженной почки в пересаженный мочевой пузырь, и лишь после этого она попадала в мочевой пузырь животного. Как показали наблюдения, система работала и через восемь недель после трансплантации.

По словам учёных, в перспективе, возможно, удастся создать и полноценные имплантаты голосовых связок для людей. Исследователи собрали фрагменты ткани четырёх людей, страдающих проблемами с голосовыми связками. Этим пациентам связки были удалены. Была также забрана ткань у одного умершего донора. Специалисты изолировали, очистили и вырастили клетки слизистой оболочки в особой трёхмерной структуре, имитирующей среду тела человека. Примерно за две недели клетки срослись и сформировали ткань, напоминающую по эластичности и клейкости реальные голосовые связки. Потом специалисты присоединили полученные голосовые связки к искусственной трахее и пропустили через них увлажнённый воздух. Когда воздух доходил до связок, ткани вибрировали и продуцировали звук, как бы это происходило при нормальных условиях в организме. В ближайшее время врачи ждут закрепления полученного результата на нуждающихся в нём людях.

Ученый-медик за работой

Уже много лет ученые всего мира работают над созданием работающих тканей и органов из клеток. Чаще всего практикуется выращивание новых тканей из стволовых клеток. Эта технология отрабатывается уже много лет и стабильно приносит успехи. Но полностью обеспечить необходимое количество органов пока невозможно, так как вырастить орган для конкретного пациента можно только из его стволовых клеток.

Ученым из Великобритании удалось то, что до сих пор не получалось никому – перепрограммировать клети и вырастить из них работающий орган. Это позволит в обозримом будущем обеспечить органами для пересадки всех, кому это будет необходимо.

Выращивание органов из стволовых клеток

Выращивание органов из стволовых клеток знакомо медикам уже давно. Стволовые клетки являются прародительницами всех клеток организма. Они могут заменить собой любые поврежденные клетки и предназначаются для восстановления организма. Максимальное количество этих клеток бывает у детей после рождения, а с возрастом их количеством снижается. Поэтому постепенно возможности организма к самовосстановлению снижаются.

В мире создано уже немало полноценно функционирующих органов из стволовых клеток, например, в 2004-и в Японии создали из них капилляры и кровеносные сосуды. А в 2005-м американским ученым удалось создать клетки головного мозга. В 2006-м в Швейцарии были созданы клапаны человеческого сердца из стволовых клеток. В том же 2006-м в Британии создали ткани печени. До сегодняшнего дня ученые имели дело практически со всеми тканями организма, выращивали даже зубы.

Очень любопытный эксперимент был проведен в США – там вырастили новое сердце на каркасе от старого. Донорское сердце очистили от мышц и нарастили новые мышцы из стволовых клеток. Это полностью исключается возможность отторжения донорского органа, так как он становится «своим». Кстати, есть предположения, что в качестве каркаса, можно будет использовать сердце свиньи, которое анатомически очень похоже на человеческое.

Новый способ выращивания органов для пересадки (Видео)

Главный недостаток существующего метода выращивания органов – необходимость для их производства собственных стволовых клеток пациента. Далеко не у каждого пациента можно забрать стволовые клетки и тем более не у всех есть готовые замороженные клетки. Но недавно исследователям из Университета Эдинбурга удалось перепрограммировать клетки организма таким образом, чтобы они позволяли выращивать из них необходимые органы. По прогнозам широкое применение данной технологии станет возможным примерно через 10 лет.

Еще вчера казалось, что производство запасных органов для нашего хрупкого тела - занятная фантастика, которая, кто знает, может, и реализуется в далеком будущем. А сегодня мы беседуем с человеком, благодаря которому выращивание новых органов стало реальностью и спасением для первых пациентов. Не менее удивительным кажется, что самые новаторские операции по трансплантации созданных в лаборатории органов и самые передовые исследования в области регенеративной медицины проводятся не где-нибудь, а у нас в Краснодаре

Паоло Маккиарини часто произносит слово «фантастика», когда хочет что-нибудь похвалить. Темпераментный, как герой итальянского фильма, он легко переходит от отчаянных восклицаний вроде «Все хотят моей смерти!» (это о коллегах-завистниках) к бурному восхищению перспективами исследований, сулящих спасение новых жизней.

Мы с Паоло ужинаем в одном из ресторанов Олимпийской деревни в Сочи - здесь проходит конференция «Генетика старения и долголетия», на которую со всего мира съехались крупнейшие специалисты в области борьбы со старением.

Несмотря на украинские события, от участия никто не отказался, а что касается Маккиарини, ему и границу пересекать не пришлось. Вообще-то он ученый планетарного масштаба - чуть ли не потенциальный лауреат Нобелевской премии.

Но уже несколько лет Маккиарини руководит Центром регенеративной медицины Кубанского медицинского университета. Переманить профессора в Краснодар сумели с помощью мегагранта правительства РФ в 150 миллионов рублей. На эти деньги и был создан центр.

Здесь мне не надо гоняться за пожертвованиями и можно сосредоточиться на спасении пациентов. Кстати, записывайте - я обращаюсь к мистеру Путину: прошу выдать мне русский паспорт, как Депардье! - смеется Маккиарини.

В обмен на новое сердце для него?

Политику здесь на конференции воспринимают под довольно необычным углом зрения.

У нас есть пациент из Крыма, который ждет трансплантации трахеи с 2011 года, - рассказывает Паоло. - Я несколько раз его смотрел, но прооперировать не мог: ему пришлось бы платить за это, больница не может принять бесплатно иностранного гражданина. Но сейчас Россия захватила… ой, то есть присоединила Крым, и мы сможем сделать ему операцию бесплатно - вот этому я очень рад! В начале июня будем оперировать.

Как выращивают органы

Технология производства трахеи, разработанная Маккиарини, - гордость и главное достижение регенеративной хирургии, новаторского направления медицины, которое занимается выращиванием органов. В 2008 году он первым в мире провел операцию по пересадке пациентке трахеи, выращенной из ее собственных стволовых клеток на донорском каркасе в биореакторе, в 2009-м осуществил другую уникальную операцию: на этот раз орган был сформирован внутри тела пациента без использования биореактора. Наконец, в 2011 году провел первую операцию по трансплантации человеческого органа, целиком выращенного в лаборатории на искусственном каркасе, то есть без использования донорских органов.

В Россию Маккиарини впервые приехал в 2010-м - по приглашению фонда «Наука за продление жизни» провел в Москве мастер-класс по регенеративной медицине. Вскоре он сделал первую в России операцию по трансплантации трахеи девушке, которая после автомобильной катастрофы не могла разговаривать и даже ходить из-за проблем с дыханием. Девушка выздоровела, Маккиарини выиграл мегагрант и стал проводить свои операции у нас в стране, все время добавляя в них что-то новое. Так, недавно он вместе с искусственной трахеей пересадил пациентке часть гортани.

Как можно вырастить орган отдельно от самого человека? - не могу я взять в толк.

Вообще говоря, это невозможно. Из клеток взрослого человека целый орган вырастить не получится. Помимо клеток нужно кое-что еще - донорский орган или искусственный каркас.

Вначале мы делали так: брали орган донора - человека или животного (обычно свиньи) и освобождали его от генетического материала, то есть от клеток. Для этого орган помещали в специальную жидкость, растворяющую мышечные ткани и другие клетки, чтобы остался лишь каркас из соединительной ткани, сетка волокон. У любого органа есть каркас, придающий ему форму, - называется внеклеточный матрикс. Каркас очищенного от клеток органа, взятого у свиньи, не отторгается иммунной системой человека, но там все равно есть проблемы: можно случайно занести вирус, ну, и у многих людей это вызывает неприятие, например у мусульман. Так что лучше всего было использовать каркас человеческого сердца, взятого у погибшего донора.

Но в 2011 году мы освоили технологию, не требующую доноров вообще, - создание синтетического каркаса. Он производится по размерам пациента, это такая трубка из упругого и пластичного нанокомпозитного материала. Это настоящий прорыв: синтетический каркас освобождает нас от доноров - а для детей, например, их чаще всего и не найти, - снимает вопросы биоэтики и делает операцию намного более доступной.

Но как из этой трубки сделать живой работающий орган?

В биореакторе!

Это что-то вроде биопринтера?

Нет, - смеется Маккиарини, - биопринтер позволяет производить простые ткани, сосуды например, но не сложные органы. А биореактор - это устройство, в котором созданы оптимальные условия для роста и размножения клеток. Он обеспечивает им питание, дыхание, отводит продукты обмена. В биореакторе мы засеиваем на каркас мононуклеары - клетки пациента, выделенные из костного мозга. Это такой вид стволовых клеток, способных превратиться в специализированные клетки разных органов. Каркас в течение 48 часов обрастает этими клетками, а мы побуждаем их превратиться в клетки трахеи. И орган готов, его можно пересаживать пациенту. Организм его не отторгает, ведь он выращен из клеток самого пациента.

Мозг, сердце и пенис

Вы ведь не собираетесь ограничиваться трахеей?

Следующими будут пищевод и диафрагма. Сейчас мы испытываем их на животных. А потом вырастим первое работающее сердце - видимо, в коллаборации с Техасским институтом сердца.

На Кубани есть питомник обезьян для медицинских исследований - если все получится, мы будем испытывать на них работу выращенного в лаборатории сердца. Вообще говоря, здесь многие такие вещи сделать гораздо проще, чем в Европе или США. Так что через несколько лет эта технология дойдет до клиники. Есть хорошие шансы, что первое человеческое сердце будет выращено в России.

А какие органы требуются чаще всего?

Ко мне часто обращаются со странными запросами. Однажды президент, кажется, Всемирного общества гомосексуалистов попросил сделать ему пенис.

Второй пенис - интересная мысль!

Да нет, единственный, почему-то его не было. Но я не смог ему помочь, ничего в пенисах не понимаю. И матку просили сделать. Люди ведь хотят не только продления жизни, и несчастны они не только из-за болезней - им не дают покоя всякие безумные желания.

Но мы не занимаемся всеми этими модными вещами. Что мы действительно пытались сделать - это вырастить яички, потому что очень много детей страдает раком яичек или их врожденными аномалиями. Но, к сожалению, стволовые клетки не получается превратить в клетки яичек, и мы вынуждены были остановить эти исследования.

А вообще, конечно, мы стараемся работать над тем, что больше всего нужно нашим пациентам. Вот Елена Губарева сейчас делает очень важный проект по выращиванию диафрагмы. Если все получится, это спасет тысячи детей, которые рождаются без диафрагмы и умирают из-за этого.

Какие органы сложнее всего будет вырастить?

Сердце, печень, почки. То есть вырастить их нетрудно - сегодня вполне реально создать любые органы и ткани. А вот заставить их нормально функционировать, вырабатывать необходимые организму вещества очень сложно. Выращенные в лаборатории, они перестают работать уже через несколько часов. Проблема в том, что мы недостаточно хорошо понимаем, как они работают.

Но, может, нам и не нужно будет их выращивать - я мечтаю о том, чтобы использовать стволовые клетки для восстановления работоспособности этих органов. Можно ведь стимулировать процессы регенерации в самом организме. Это просто фантастически привлекательное и дешевое решение: любой человек даже в самой бедной стране имеет собственные стволовые клетки, и не нужно никаких операций по трансплантации органов!

Много нужно времени, чтобы вырастить человеческий орган?

Зависит от его сложности. Трахею мы выращиваем за 3-4 дня, для сердца потребуется 3 недели.

А мозг можно вырастить?

Да, я мечтаю поймать некоторых политиков и заменить им мозг. И яйца заодно. Но если серьезно, выращивание мозга входит в мои планы.

Да ведь в мозгу главное - бесчисленные связи между нейронами, как их воссоздать?

Все обычно переусложняют эту проблему, все гораздо проще. Речь, конечно, не о замене всего мозга. Допустим, я подстрелил вас. У вас ранение в голову, вы потеряли часть мозга, но выжили. А если заменить эту нефункционирующую часть субстратом, функция которого - вызывать рост нейронов, притягивая их из других частей мозга? Тогда поврежденная часть со временем восстановится, постепенно вовлекаясь в деятельность мозга и обрастая связями. Это могло бы полностью изменить жизнь тысяч пациентов!

Мечты и разочарования

Как к вашим успехам относятся коллеги?

Ох, сложная это тема, - грустнеет Маккиарини. - Когда вы делаете что-то совсем новое, впервые в истории, вас всегда ругают. И пройдет столько времени, прежде чем люди примут то, что вы делаете! Меня до сих пор критикуют, и жестко, ведь я делаю безумные, небывалые вещи. Люди бывают очень ревнивы к успеху коллег: меня много атаковали, пытались максимально осложнить мне работу, иногда очень грязными способами.

Что самое сложное в вашей работе и жизни?

В моей жизни? Да у меня нет частной жизни. Все так запущено! Самое сложное - отнюдь не наука, а эти атаки коллег, их ревность. Если б они хотя бы делали это с уважением! Нет, тотальное неуважение, никаких человеческих отношений, только конкуренция. Я опубликовал десятки статей в ведущих научных журналах, но мне по-прежнему заявляют, что у меня нет доказательств, что наши методы работают. Они готовы критиковать все на свете, даже как я в туалет хожу.

У меня столько проблем из-за этой ревности, на меня все время адски давят. Наверное, это цена, которую должен заплатить каждый первопроходец. Но ведь мы спасем жизни - это так прекрасно, это стоит любых атак… Стойте, я хочу тирамису! Тирамису! Тирамису! И американо, пожалуйста.

О чем вы мечтаете?

В личном плане? Сесть в лодку и уплыть подальше от всех. И больше никаких контактов с этим миром. Только я и моя собака - мне достаточно. А в профессиональном плане мечтаю о том, чтобы спасать людей без трансплантации органов - путем клеточной терапии. Вау! Это было бы фантастически, просто фантастически здорово!

Когда технология выращивания органов станет массово доступной в развитых странах?

Технология выращивания трахеи уже отработана почти до совершенства. Если мы будем продолжать клинические испытания в Краснодаре, года через два накопится достаточно доказательств, что этот метод безопасен и эффективен, и его начнут применять в других местах. Это зависит от числа пациентов прежде всего, ну, и от многих других вещей. А я буду заниматься пищеводом, диафрагмой, сердцем… Думаю, прогресс будет быстрым, особенно в России. Запасайтесь терпением и ждите - сами все увидите.

Интересно, а новое тело для моего мозга можно будет вырастить?

Это еще зачем?

Чтобы продлить жизнь и молодость, конечно.

Не понимаю, зачем вам опять молодое тело, чтобы покорить тысячи девушек? Скучно же жить слишком долго.

Что-то мне пока не становится скучно, скорей наоборот.

Ну не знаю. Меня уже тошнит от этой жизни! Вы, русские, всегда призываете всех бороться со старением. Вы философы и мечтатели, вам кажутся ужасно важными чисто философские проблемы.

Да что ж тут философского, что может быть естественней любви к жизни?

Вы хотите бороться с природой, а я считаю, наши тела уже совершенны. Посмотрите на себя. Нет, лучше не на себя, а на девушек - природа сотворила их совершенными, кто я такой, чтобы бороться с ней?

Вы уже боретесь, делая операции.

Надо же, какой необычный у нас разговор начался. Такие только в России случаются…

Мы спорили еще долго - пока нас не выставили из закрывающегося ресторана.

Кого еще удалось сманить в Россию с помощью мегагрантов

Цель программы мегагрантов - привлечь ведущих мировых ученых в российские вузы. Уже состоялось четыре таких конкурса. Первый прошел в 2010-м, последний - в 2014 году. В резуль-тате мегагранты получили 163 российских и зарубежных ученых. Среди них немало знаменитостей, есть даже несколько нобелевских лауреатов. «РР» знакомит с некоторыми из них

Сидней Альтман

Лауреат Нобелевской премии по химии 1989 года, профессор Йеля, займется разработкой антибактериальных и антивирусных препаратов в Институте химической биологии и фундаментальной медицины СО РАН в Новосибирске.

Йорн Тиде

Известный немецкий специалист в области морской геологии и глубоководного бурения, возглавил лабораторию «Палеогеография и геоморфология полярных стран и Мирового океана» на факультете географии и геоэкологии СПбГУ, которая занимается изучением изменений климата в Арктике и обоснованием права России на арктический шельф.

Рональд Инглхарт

Политолог и социолог из США, профессор Мичиганского университета, занимается сравнением ценностных ориентиров в разных странах; в России работает в Высшей школе экономики.

Симомура Осаму

Лауреат Нобелевской премии по химии 2008 года, создатель зеленых светящихся кроликов и поросят, исследует биолюминесценцию в красноярском Сибирском федеральном университете.

Антонио Луке Лопес

Физик, изобретатель и миллионер, профессор Мадридского университета, занимается в питерском физтехе разработкой новых типов солнечных батарей.

Марио Биаджоли

Профессор факультета исследований науки и технологий в Калифорнийском университете в Дэвисе, руководит исследованиями социологии научного и технологического предпринимательства в Европейском университете в Санкт-Петербурге.

Павел Певзнер

Директор программы по биоинформатике и системной биологии в Университете Калифорнии (Сан-Диего), директор Национального центра по вычислительной масс-спектрометрии, создает уникальную для России лабораторию алгоритмической биологии, где ученые займутся чтением геномов.

Прежде, чем приступить к обсуждению темы статьи, хочу сделать небольшой экскурс, что представляет собой организм человека. Это поможет понять, как важна работа любого звена в сложной системе человеческого организма, что может произойти при сбое, и как современная медицина пытается решить проблемы, если какой-либо орган выходит из строя.

Организм человека как биологическая система

Человеческий организм – это сложная биологическая система, имеющая особую структуру и наделенная специфическими функциями. Внутри этой системы различают несколько уровней организации. Высшая интеграция – это организменный уровень. Далее по нисходящей идут системный, органный, тканевой, клеточный и молекулярный уровни организации. От согласованной работы всех уровней системы зависит слаженная работа всего организма человека.
Если какой-то орган или система органов работает неправильно, то нарушения касаются и более низших уровней организации, таких как ткани и клетки.

Молекулярный уровень – это первый кирпичик. Как следует из названия, весь организм человека, как и всего живого, состоит из бесчисленного множества молекул.

Клеточный уровень можно себе представить как разнообразный компонентный состав молекул, образующих разные клетки.

Клетки, объединенные в разные по морфологии и функционированию ткани, образуют тканевой уровень.

В состав органов человека входят разнообразные ткани. Они обеспечивают нормальное функционирование какого-либо органа. Это – органный уровень организации.

Следующий уровень организации – системный. Определенные анатомически объединенные органы выполняют более сложную функцию. Например, пищеварительная система, состоящая из различных органов, обеспечивает переваривание поступающей в организм пищи, всасывание продуктов пищеварения и выведение неиспользованных остатков.
И высший уровень организации – организменный уровень. Все системы и подсистемы организма работают, как хорошо настроенный музыкальный инструмент. Согласованная работа всех уровней достигается благодаря механизму саморегуляции, т.е. поддержки на определенном уровне различных биологических показателей. При малейшем дисбалансе в работе какого-либо уровня организм человека начинает работать с перебоями.

Что такое стволовые клетки?

Термин «стволовые клетки» был введен в науку русским гистологом А. Максимовым в 1908 году. Стволовые клетки (СК) – это неспециализированные клетки. Их еще рассматривают как незрелые клетки. Они имеются практически у всех многоклеточных, включая человека. Путем деления клетки себя воспроизводят. Они способны превращаться в специализированные клетки, т.е. из них могут образовываться различные ткани и органы.

Самое большое количество СК у младенцев и детей, в юности количество стволовых клеток в организме уменьшается в 10 раз, а зрелому возрасту – в 50 раз! Значительное уменьшение числа СК в ходе старения, а также тяжелых заболеваний уменьшает возможности организма к самовосстановлению. Отсюда следует неприятный вывод: жизнедеятельность многих важных систем органов снижается.

Стволовые клетки и будущее медицины

Ученые- медики давно обратили внимание на пластичность СК и теоретическую возможность выращивать из них различные ткани и органы человеческого организма. Работы по изучению свойств СК начались во второй половине прошлого века. Как всегда, первые исследования проводились на лабораторных животных. К началу нашего века начались попытки, использовать СК для выращивания тканей и органов человека. Хочу рассказать о наиболее интересных результатах в этом направлении.

Японским ученым в 2004 г. удалось вырастить в лабораторных условиях капиллярные кровеносные сосуды из СК.

В следующем году американским исследователям из университета штата Флорида удалось вырастить из СК клетки головного мозга. Ученые заявили, что такие клетки способны вживляться в головной мозг, и их можно использовать при лечении таких заболеваний, как болезни Паркинсона и Альцгеймера.

В 2006 швейцарские ученые из университета Цюриха вырастили в своей лаборатории клапаны сердца человека. Для этого эксперимента использовались СК из околоплодной жидкости. Доктор С. Хёрстрап полагает, что эта методика может быть использована для выращивания сердечных клапанов для еще не родившегося ребенка, у которого обнаружены дефекты сердца. После рождения младенцу можно пересадить новые клапаны, выращенные из стволовых клеток околоплодной жидкости.

В том же году американские медики вырастили в лабораторных условиях целый орган – мочевой пузырь. СК были взяты у человека, для которого выращивался этот орган. Доктор Э. Атала, директор института регенеративной медицины, рассказал, что клетки и специальные вещества помещаются в особую форму, которая остается в инкубаторе в течение нескольких недель. После этого готовый орган пересаживается пациенту. Такие операции делаются сейчас в обычном режиме.

В 2007 на международном медицинском симпозиуме в Иокагаме были представлен доклад японских специалистов из университета Токио об удивительном научном эксперименте. Из единственной стволовой клетки, взятой из роговицы и помещенной в питательную среду, удалось вырастить новую роговицу. Ученые намеревались приступить к клиническим исследованиям и в дальнейшем применять эту технологию при лечении глаз.

Японцам принадлежит пальма первенства в выращивании зуба из единственной клетки. СК пересадили на коллагеновый каркас и начали эксперимент. После выращивания зуб выглядел как естественный и имел все составляющие, включая дентин, сосуды, эмаль и т.д. Зуб был трансплантирован лабораторной мыши, прижился и функционировал нормально. Японские ученые видят большие перспективы применения этого метода в выращивании зуба из одной СК с последующей пересадкой его хозяину клетки.

Японским медикам из университета Киото удалось получить из СК ткани почек, надпочечников и фрагмент почечного канальца.

Ежегодно во всем мире миллионы людей умирают от заболеваний сердца, головного мозга, почек, печени, мышечной дистрофии и т.д. В их лечении могут помочь стволовые клетки. Однако, существует один момент, который может затормозить применение стволовых клеток в медицинской практике – это отсутствие международной законодательной базы: откуда можно брать материал, сколько его можно хранить, как должны взаимодействовать пациент и его доктор при использовании СК.

Вероятно, проведение медицинских экспериментов и разработка такого закона должны идти параллельно.