Если линза собирающая то фокусное расстояние. Линза

Линзами называют прозрачные тела, ограниченные с двух сторон сферическими поверхностями.

Линзы бывают двух типов выпуклыми (собирающими) или вогнутыми (рассеивающими). У выпуклой линзы середина толще чем края, у вогнутой наоборот середина тоньше чем края.
Ось проходящая через центр линзы, перпендикулярная линзе, называется главной оптической осью.


Лучи идущие параллельно главной оптической оси преломляются проходя через линзу и собираются в одной точке, называемой точкой фокуса линзы или просто фокус линзы (для собирающей линзы). В случае рассеивающей линзы, лучи идущие параллельно главной оптической оси рассеиваются и расходятся в сторону от оси, но продолжения этих лучей пересекаются в одной точке, называемой точкой мнимого фокуса.


OF - фокусное расстояние линзы (OF=F просто обозначают буквой F).
Оптическая сила линзы - это величина, обратная ее фокусному расстоянию. , измеряется в диоптриях [дптр].
Например если фокусное расстояние линзы равно 20 см (F=20см=0,2м) то ее оптическая сила D=1/F=1/0,2=5 дптр
Для построения изображения с помощью линзы используют следующие правила:
- луч прошедший через центр линзы не преломляется;
- луч идущий параллельно главной оптической оси преломившись пройдет через точку фокуса;
- луч прошедший через точку фокуса после преломления пойдет параллельно главной оптической оси;

Рассмотрим классические случаи: а) предмет АВ находится за двойным фокусом d>2F.


изображение: действительное, уменьшенное, перевернутое.


изображение: мнимое, уменьшенное, прямое.

Б) предмет АВ находится между фокусом и двойным фокусом F

изображение: действительное, увеличеное, перевернутое.


В) предмет АВ находится между линзой и фокусом d

изображение: мнимое, увеличеное, прямое.


изображение: мнимое, уменьшеное, прямое.

Г) предмет АВ находится на двойном фокусе d=F


изображение: действительное, равное, перевернутое.



где F - фокусное расстояние линзы, d - расстояние от предмета до линзы, f - расстояние от линзы до изображения.


Г - увеличение линзы, h - высота предмета, H - высота изображения.

Задание огэ по физике: С помощью собирающей линзы получено мнимое изображение предмета. Предмет по отношению к линзе расположен на расстоянии
1)меньшем фокусного расстояния
2)равном фокусному расстоянию
3)большем двойного фокусного расстояния
4)большем фокусного и меньшем двойного фокусного расстояния
Решение: Мнимое изображение предмета с помощью собирающей линзы можно получить только в случае когда предмет по отношению к линзе расположен на расстоянии меньшем фокусного расстояния. (см рисунок выше)
Ответ: 1
Задание огэ по физике фипи: На рисунке изображён ход луча, падающего на тонкую линзу с фокусным расстоянием F. Ходу прошедшего через линзу луча соответствует пунктирная линия


Решение: Луч 1 проходит через фокус, значит до этого он шел параллельно главной оптической оси, луч 3 параллелен главной оптической оси, значит до этого он прошел через фокус линзы (слева от линзы), луч 2 находится между ними.
Ответ: 2
Задание огэ по физике фипи: Предмет находится от собирающей линзы на расстоянии, равном F. Каким будет изображение предмета?
1) прямым, действительным
2) прямым, мнимым
3) перевернутым, действительным
4) изображения не будет
Решение: луч прошедший через точку фокуса попав в линзу идет параллельно главной оптической оси, получить изображения предмета находящегося в точке фокуса невозможно.
Ответ: 4
Задание огэ по физике фипи: Школьник проводит опыты с двумя линзами, направляя на них параллельный пучок света. Ход лучей в этих опытах показан на рисунках. Согласно результатам этих опытов, фокусное расстояние линзы Л 2

1) больше фокусного расстояния линзы Л 1
2) меньше фокусного расстояния линзы Л 1
3) равно фокусному расстоянию линзы Л 1
4) не может быть соотнесено с фокусным расстоянием линзы Л 1
Решение: после прохождения через линзу Л 2 лучи идут параллельно, следовательно фокусы двух линз совпали, из рисунка видно, что фокусное расстояние линзы Л2 меньше фокусного расстояния линзы Л 1
Ответ: 2
Задание огэ по физике фипи: На рисунке изображены предмет S и его изображение S′, полученное с помощью

1) тонкой собирающей линзы, которая находится между предметом и его изображением
2) тонкой рассеивающей линзы, которая находится левее изображения
3) тонкой собирающей линзы, которая находится правее предмета
4) тонкой рассеивающей линзы, которая находится между предметом и его изображением
Решение: соеденив предмет S и его изображение S′ найдем где находится центр линзы, так как изображение S′ выше чем предмет S, значит изображение увеличенное. Собирающая линза дает увеличенное изображение S′. (см выше в теории)
Ответ: 3
Задание огэ по физике фипи: Предмет находится от собирающей линзы на расстоянии, меньшем 2F и большем F. Какими по сравнению с размерами предмета будут размеры изображения?
1) меньшими
2) такими же
3) большими
4) изображения не будет
Решение: Смотрите выше пункт б) предмет АВ находится между фокусом и двойным фокусом.
Ответ: 3
Задание огэ по физике фипи: После прохождения оптического прибора, закрытого на рисунке ширмой, ход лучей 1 и 2 изменился соответственно на 1" и 2". За ширмой находится

1) собирающая линза
2) рассеивающая линза
3) плоское зеркало
4) плоскопараллельная стеклянная пластина
Решение: лучи, после прохождения оптического прибора, расходятся, а это возможно только после прохождения лучей через рассеивающую линзу.
Ответ: 2
Задание огэ по физике фипи: На рисунке изображены оптическая ось ОО 1 тонкой линзы, предмет А и его изображение А 1 , а также ход двух лучей, участвующих в образовании изображения.

Согласно рисунку фокус линзы находится в точке
1) 1, причём линза является собирающей
2) 2, причём линза является собирающей
3) 1, причём линза является рассеивающей
4) 2, причём линза является рассеивающей
Решение: луч, идущий параллельно главной оптической оси, после прохождения сквозь линзу, преломляется и проходит через точку фокуса. На рисунке видно, что это точка 2 и линза собирающая.
Ответ: 2
Задание огэ по физике фипи: Ученик исследовал характер изображения предмета в двух стеклянных линзах: оптическая сила одной линзы D 1 = –5 дптр, другой D 2 = 8 дптр – и сделал определённые выводы. Из приведённых ниже выводов выберите два правильных и запишите их номера.
1) Обе линзы собирающие.
2) Радиус кривизны сферической поверхности первой линзы равен радиусу кривизны сферической поверхности второй линзы.
3) Фокусное расстояние первой линзы по модулю больше, чем второй.
4) Изображение предмета, созданное и той, и другой линзой, всегда прямое.
5) Изображение предмета, созданное первой линзой, всегда мнимое, изображение, а созданное второй линзой мнимое только в том случае, когда предмет находится между линзой и фокусом.
Решение: Знак минус показывает что первая линза рассеивающая, а вторая собирающая, следовательно изображение предмета, созданное первой линзой, всегда мнимое, изображение, а созданное второй линзой мнимое только в том случае, когда предмет находится между линзой и фокусом. Фокусное расстояние первой линзы по модулю больше, чем фокусное расстояние второй линзы. Из формулы для оптической силы линзы F=1/D, тогда F 1 =0,2 м. F 2 =0,125 м.
Ответ: 35
Задание огэ по физике фипи: В какой из точек будет находиться изображение точечного источника S, создаваемое собирающей линзой с фокусным расстоянием F?

1) 1
2) 2
3) 3
4) 4
Решение:

Ответ: 1
Задание огэ по физике фипи: Может ли двояковыпуклая линза рассеивать пучок параллельных лучей? Ответ поясните.
Решение: Может, если показатель преломления окружающей среды будет больше показателя преломления линзы.
Задание огэ по физике фипи: На рисунке изображены тонкая рассеивающая линза и три предмета: А, Б и В, расположенные на оптической оси линзы. Изображение какого(-их) предмета(-ов) в линзе, фокусное расстояние которой F, будет уменьшенным, прямым и мнимым?

1) только А
2) только Б
3) только В
4) всех трёх предметов
Решение: Тонкая рассеивающая линза, всегда дает уменьшенное, прямое и мнимое изображение, при любом расположении предмета.
Ответ: 4
Задание огэ по физике (фипи): Предмет, находящийся между фокусным и двойным фокусным расстоянием линзы, переместили ближе к двойному фокусу линзы. Установите соответствие между физическими величинами и их возможными изменениями при приближении предмета к двойному фокусу линзы.
Для каждой величины определите соответствующий характер изменения:
1) увеличивается
2) уменьшается
3) не изменяется
Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
Решение: Если предмет находится между фокусом и двойным фокусом то его изображение увеличиное и находится за двойным фокусом, при приближении к двойному фокусу размеры будут уменьшаться и изображение станет ближе к линзе, так как, если тело находится на двойном фокусном расстоянии то изображение равно самому себе и находится на двойном фокусе.
Ответ: 22
Задание демонстрационного варианта ОГЭ 2019: На рисунке изображены три предмета: А, Б и В. Изображение какого(-их) предмета(-ов) в тонкой собирающей линзе, фокусное расстояние которой F, будет уменьшенным, перевёрнутым и действительным?

1) только А
2) только Б
3) только В
4) всех трёх предметов
Решение: Изображение будет уменьшенным, перевёрнутым и действительным если предмет находится за двойным фокусом d>2F (см. теорию выше). Предмет А находится за двойным фокусом.

Существует два условно разных типа задач:

  • задачи на построение в собирающей и рассеивающей линзах
  • задачи на формулу для тонкой линзы

Первый тип задач основан на фактическом построении хода лучей от источника и поиска пересечения преломлённых в линзах лучей. Рассмотрим ряд изображений, полученных от точечного источника, который будем помещать на различных расстояниях от линз. Для собирающей и рассеивающей линзу существуют рассмотренные (не нами) траектории распространения луча (рис. 1) от источника .

Рис.1. Собирающая и рассеивающая линзы (ход лучей)

Для собирающей линзы (рис. 1.1) лучи:

  1. синий. Луч, идущий вдоль главной оптической оси, после преломления проходит через передний фокус.
  2. красный. Луч, идущий через передний фокус, после преломления распространяется параллельно главной оптической оси.

Пересечение любых из этих двух лучей (чаще всего выбирают лучи 1 и 2) дают ().

Для рассеивающей линзы (рис. 1.2) лучи:

  1. синий. Луч, идущий параллельно главной оптической оси, преломляется так, что продолжения луча проходит через задний фокус.
  2. зелёный. Луч, проходящий через оптический центр линзы, не испытывает преломления (не отклоняется от первоначального направления).

Пересечение продолжений рассмотренных лучей даёт ().

Аналогично , получим набор изображений от предмета, расположенного на различных расстояниях от зеркала. Введём те же обозначения: пусть — расстояние от предмета до линзы, — расстояние от изображения до линзы, — фокусное расстояние (расстояние от фокуса до линзы).

Для собирающей линзы :

Рис. 2. Собирающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе проходят через фокус, то точка фокуса и является точкой пересечения преломлённых лучей, тогда она же и есть изображение источника (точечное, действительное ).

Рис. 3. Собирающая линза (источник за двойным фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Для визуализации изображения введём описание предмета через стрелку. Точка пересечения преломившихся лучей — изображение (уменьшенное, действительное, перевёрнутое ). Положение — между фокусом и двойным фокусом.

Рис. 4. Собирающая линза (источник в двойном фокусе)

того же размера, действительное, перевёрнутое ). Положение — ровно в двойном фокусе.

Рис. 5. Собирающая линза (источник между двойным фокусом и фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Точка пересечения преломившихся лучей — изображение (увеличенное, действительное, перевёрнутое ). Положение — за двойным фокусом.

Рис. 6. Собирающая линза (источник в фокусе)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). В этом случае, оба преломлённых луча оказались параллельными друг другу, т.е. точка пересечения отражённых лучей отсутствует. Это говорит о том, что изображения нет .

Рис. 7. Собирающая линза (источник перед фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Однако преломлённые лучи расходятся, т.е. сами преломлённые лучи не пересекутся, зато могут пересечься продолжения этих лучей. Точка пересечения продолжений преломлённых лучей — изображение (увеличенное, мнимое, прямое ). Положение — по ту же сторону, что и предмет.

Для рассеивающей линзы построение изображений предметов практически не зависит от положения предмета, так что ограничимся произвольным положением самого предмета и характеристикой изображения.

Рис. 8. Рассеивающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе должны проходить через фокус (свойство фокуса), однако после преломления в рассеивающей линзе лучи должны расходится. Тогда в фокусе сходятся продолжения преломившихся лучей. Тогда точка фокуса и является точкой пересечения продолжений преломлённых лучей, т.е. она же и есть изображение источника (точечное, мнимое ).

  • любое другое положение источника (рис. 9).

Приборы и принадлежности : оптическая скамья, осветитель с матовым или молочным стеклом, ползушка с линзой, экран, собирающая и рассеивающая линзы, линейка с миллиметровыми делениями.

Цель работы : определение фокусного расстояния собирающей линзы.

Краткая теория

Ввиду малости световых волн (диапазон видимого спектра 400-700 нм), оказывается возможным выделить из широкого потока света сравнительно узкую ее часть без существенного нарушения прямолинейности распространения, вследствие дифракции. Такой прямолинейно распространяющийся узкий пучок света называется световым лучом. Световыми лучами можно управлять с помощью линз, зеркал, призм и т.д.

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Линия, проходящая через центры этих поверхностей, называется главной оптической осью . В дальнейшем мы будем иметь в виду лучи, проходящие вблизи главной оптической оси (параксиальные лучи). Все лучи, параллельные главной оптической оси, пересекаются в одной и той же точке оси F - главном фокусе . Точка линзы (точка O на рис. 1), проходя через которую лучи не изменяют своего направления, называется оптическим центром линзы . Расстояние между главным фокусом и оптическим центром называется главным фокусным расстоянием .

В формулах, связывающих геометрические параметры оптической системы, принято правило знаков, согласно которому линейные размер считается отрицательным, если отрезок, его выражающий, располагается по ту сторону линзы, откуда распространяется свет и положительным, если отрезок лежит в стороне, куда распространяется свет. В первом случае значение величины входит в формулу со знаком минус (например: s = -|s| на рис. 1), во втором - со знаком плюс (s 1 = |s 1 | ). Таким образом, все отрезки в оптической системе являются алгебраическими величинами.

На рис. 1 показаны основные точки оптической системы и даны основные определения: AA 1 - главная оптическая ось; F и F 1 - передний и задний фокусы оптической системы; f и f 1 - переднее и заднее фокусные расстояния; s и s 1 - расстояния от линзы до предмета и до изображения; y и y 1 - поперечные размеры предмета и изображения.

Величину Φ=1/f 1 называют оптической силой линзы , которую измеряют в диоптриях (дптр): 1 дтпр = 1 м -1 . Величину β = y 1 /y называют линейным или поперечным увеличением линзы . Можно показать, что β = s 1 /s .

Фокусное расстояние можно вычислить по формуле:

где f 1 - заднее фокусное расстояние, n - показатель преломления вещества линзы; R 1 и R 2 - радиусы сферических поверхностей линзы.

Плоскость, проходящая через главный фокус перпендикулярно главной оптической оси, называется фокальной плоскостью . В точках этой плоскости (побочных фокусах), пересекаются пучки параллельных лучей, идущих под некоторым углом к главной оптической оси.

Определение знака фокусного расстояния подчиняется правилу знаков. При построение изображений, получаемых с помощью собирающих линз, пользуются фокусами от линзы со стороны, противоположной предмету. Поэтому фокусное расстояние собирающей линзы имеет положительное значение. При построении мнимых изображений, получаемых с помощью рассеивающих линз, используется фокус, лежащий от линзы по туже сторону, что и предмет. Поэтому фокусное расстояние рассеивающей линзы имеет отрицательное значение.

Описание аппаратуры и метода измерений

Горизонтальная оптическая скамья составлена из двух параллельных металлических стержней, свободно входящих своими концами в трубки, благодаря чему скамья может быть раздвинута на необходимую длину. Так как стержни и трубки имеют различную толщину, то прибор снабжен ползунками двойного рода: одни предназначены для стержней, другие для трубок.

На одном из концов скамьи установлен экран с круглым осветителем, на котором изображена стрелка, служащая предметом. Отверстие со стрелкой освещается фонарем, снабженным матовым стеклом.

Изображение A 1 B 1 (A 2 B 2) предмета AB , полученное с помощью линзы, рассматривается на экране, помещенном на противоположном конце скамьи. Линзы устанавливаются на такой высоте, при которой перекресток оказывается лежащим на уровне главной оптической оси линзы. Плоскость экрана должна быть перпендикулярна этой оси. Расстояние между приборами измеряется при помощи линейки с миллиметровыми делениями, прикрепленной к скамье.

Главное фокусное расстояние линзы можно определить непосредственно, измеряя расстояние от линзы до предмета и до изображения, воспользовавшись затем уравнением (1).

Однако величины s и s 1 измерить точно нельзя, в силу того, что в общем случае оптический центр линзы не совпадает с центром симметрии и найти его положение трудно.


Рис. 2

Поэтому мы будем пользоваться более совершенным методом, называемым методом Бесселя. Сущность этого метода заключается в следующем. Если расстояние L от предмета до экрана больше 4f , то всегда можно найти два таких положения линзы (рис. 2), при котором на экране получается отчетливые изображения предмета: в одном случае - рис. 2a) - увеличенное, в другом - рис. 2b) - уменьшенное.

В первом положении линзы можно выразить фокусное расстояние, пользуясь формулой (1), соблюдая при этом правило знаков (обозначения указаны на рис.2):

(2)

Аналогично для второго положения:

(3)

Каждая из сумм в знаменателе правой части равенства (2) и (3) равна расстоянию L между предметом и экраном, поэтому:

В таком случае должны быть равны и числители правой части равенств (2) и (3)

(5)

Однако совместное существование равенств (4) и (5) возможно лишь при условии, если s=t , s 1 =t 1 или s=t 1 , t=s 1 . Первое невозможно по условию опыта. Следовательно, остается в силе лишь второе условие.

Обозначим расстояние между оптическими центрами линзы в I и II положениях через l . Тогда из рис. 2 видно, что

Расстояние

Воспользовавшись формулой (2), выразим фокусное расстояние линзы:

Задача, таким образом, сводится к измерению перемещения любой точки линзы или даже подставки, на которой линза закреплена.

Порядок выполнения работы

  • Установить предмет и экран на расстоянии L (по указанию преподавателя), поместить между ними линзу и, передвигая её, добиться получения на экране вполне отчетливого изображения (например, увеличенного). Отметить по шкале положение линзы или какой-нибудь точки ползунка относительно экрана (или предмета)
  • Передвигая линзу, добиться второго отчетливого изображения предмета (уменьшенного) и вновь отметить положение линзы на шкале.
  • Измерить расстояние l между отметками, соответствующими двум положениям линзы.
  • Установки и измерения повторить 5 раз.
  • Изменить расстояние L между экраном и предметом.
  • Все результаты измерения занести в таблицу 1.

N опыта l , см Δl , см L , см ΔL , см
Среднее
Таблица 1

Определение главного фокусного расстояния рассеивающей линзы

Приборы и принадлежности : оптическая скамья, осветитель с матовым стеклом, ползушка с рассеивающей линзой, линейка с миллиметровыми делениями.

Цель работы : определение фокусного расстояния рассеивающей линзы.

Описание метода


Рис. 3

Если на пути лучей, выходящих из точки М и сходящихся после преломления в линзе BB в точке D (рис. 3), поставить рассевающую линзу СС так, чтобы её расстояние от точки D было меньше её фокусного расстояния, то изображение точки М удалиться от линзы ВВ , переместившись в точку Е .

Основываясь на принципе обратимости световых лучей в системах линз, мы можем рассматривать лучи, изображенные на рис. 3, как выходящие из точки Е и собирающиеся в точке М . Тогда точка D будет мнимым изображением точки Е после преломления лучей в рассевающей линзе СС .

Обозначая расстояния точек Е и D от линзы до СС соответственно через s и s" можно, пользуясь формулой (1), вычислить фокусное расстояние рассеивающей линзы, учитывая при этом, что, согласно правилу знаков, числовые значения s и s" войдут в формулу (1) со знаком минус.

Порядок выполнения работы

  • Поместить на оптическую скамью линзу и экран. Передвигая экран, добиться отчетливого изображения предмета.
  • Установить между собирающей линзой и экраном рассеивающую линзу и, смещая экран в сторону свободного конца скамьи, убедиться в возможности получения при данном расположении приборов отчетливого действительного изображения с рассеивающей линзой.
  • После этого снять рассеивающую линзу и, вновь передвигая экран, получить резкое изображение с одной собирающей линзой.
  • Изменить расстояние МD , соответствующее первому положению экрана. Сдвинуть экран и установить вновь. Произвести повторное измерение. Установку экрана и измерения повторить 5 раз.
  • Поставить на скамью рассеивающую линзу и, сдвигая экран, вновь получите резкое изображение предмета.
  • Измерить расстояния от предмета до рассеивающей линзы и нового положения экрана. Установку и измерения повторить 5 раз.

Обработка результатов измерений

N опыта L 0 , см ΔL 0 , см L 1 , см ΔL 1 , см L 2 , см ΔL 2 , см
Среднее
Таблица 2

Контрольные вопросы

  • Что называется главным фокусным расстоянием линзы?
  • В чем состоит правило знаков?
  • Напишите формулу тонкой линзы.
  • Объясните способ Бесселя. В чем его преимущество?
  • В чем заключается принцип обратимости световых лучей?

Литература

  • Савельев И.В. Курс общей физики. - М.: Наука, 1998, т. 4, §3.6, §3.7, §3.8.
  • Иродов И.Е. Волновые процессы. Основные законы. - М.: Лаборатория Базовых Знаний, 1999, §3.3

Рассмотрим теперь, другой случай, имеющий большое практическое значение. Большинство линз, которыми — мы пользуемся, имеет не одну, а две поверхности раздела. К чему это приводит? Пусть имеется стеклянная линза, ограниченная поверхностями с разной кривизной (фиг. 27.5). Рассмотрим задачу о фокусировании пучка света из точки О в точку О’. Как это сделать? Сначала используем формулу (27.3) для первой поверхности, забыв о второй поверхности. Это позволит нам установить, что испускаемый в точке О свет будет казаться сходящимся или расходящимся (в зависимости от знака фокусного расстояния) из некоторой другой точки, скажем О’. Решим теперь вторую часть задачи. Имеется другая поверхность между стеклом и воздухом, и лучи подходят к ней, сходясь к точке О’. Где они сойдутся на самом деле? Снова воспользуемся той же формулой! Находим, что они сойдутся к точке О». Таким образом можно пройти, если необходимо, через 75 поверхностей, последовательно применяя одну и ту же формулу и переходя от одной поверхности к другой!

Имеются еще более сложные формулы, которые могут нам помочь в тех редких случаях нашей жизни, когда нам почему-то нужно проследить путь света через пять поверхностей. Однако если уж это необходимо, то лучше последовательно перебрать пять поверхностей, чем запоминать кучу формул, ведь может случиться, что нам вообще не придется возиться с поверхностями!

Во всяком случае, принцип расчета таков: при переходе через одну поверхность мы находим новое положение, новую точку фокуса и рассматриваем ее как источник для следующей

поверхности и т. д. Часто в системах бывает несколько сортов стекла с разными показателями n 1 , n 2 , … ; поэтому для конкретного решения задачи нам нужно обобщить формулу (27.3) на случай двух разных показателей n 1 , n 2 . Нетрудно показать, что обобщенное уравнение (27.3) имеет вид

Особенно прост случай, когда поверхности близки друг к другу и ошибками из-за конечной толщины можно пренебречь. Рассмотрим линзу, изображенную, на фиг. 27.6, и поставим такой вопрос: каким условиям должна удовлетворять линза, чтобы пучок из О фокусировался в О’? Пусть свет проходит точно через край линзы в точке Р. Тогда (пренебрегая временно толщиной линзы Т с показателем преломления n 2) излишек времени на пути ОРО’ будет равен (n 1 h 2 /2s) + (n 1 h 2 /2s’). Чтобы уравнять время на пути ОРО’ и время на прямолинейном пути, линза должна обладать в центре такой толщиной Т, чтобы она задерживала свет на нужное время. Поэтому толщина линзы T должна удовлетворять соотношению

Можно еще выразить Т через радиусы обеих поверхностей R 1 и R 2 . Учитывая условие 3 (приведенное на стр. 27), мы находим для случая R 1 < R 2 (выпуклая линза)

Отсюда получаем окончательно

Отметим, что, как и раньше, когда одна точка находится на бесконечности, другая будет расположена на расстоянии, которое мы называем фокусным расстоянием f. Величина f определяется равенством

где n = n 2 /n 1 .

В противоположном случае, когда s стремится к бесконечности, s’ оказывается на фокусном расстоянии f’. Для нашей линзы фокусные расстояния совпадают. (Здесь мы встречаемся еще с одним частным случаем общего правила, по которому отношение фокусных расстояний равно отношению показателей преломления тех двух сред, где лучи фокуси-руются. Для нашей оптической системы оба показателя одинаковы, а поэтому фокусные расстояния равны.)

Забудем на время формулу для фокусного. расстояния. Если вы купили линзу с неизвестными радиусами кривизны и каким-то показателем преломления, то фокусное расстояние можно просто измерить, собирая в фокус лучи, идущие от удаленного источника. Зная f, удобнее переписать нашу формулу сразу в терминах фокусного расстояния

Давайте посмотрим теперь, как работает эта формула и что из нее получается в разных случаях. Во-первых, если одно из расстояний s и s’ бесконечно, другое равно f. Это условие означает, что параллельный пучок света фокусируется на расстоянии f и может использоваться на практике для определения f. Интересно также, что обе точки движутся в одну сторону. Если одна идет направо, то и вторая движется в ту же сторону. И наконец, если s и s’ одинаковы, то каждое из них равно 2f.