Виды телескопов и их особенности. Основные характеристики телескопа

Астрономия приобретает все большую популярность среди любителей. Наблюдать за небесными телами становится проще ввиду огромного разнообразия приспособлений, использующихся для этих целей. Прежде всего речь идет о телескопах.

Об их особенностях, разновидностях, параметрах и правилах выбора пойдет речь ниже, а начать хотелось бы с того, что каждому прибору есть свое применение, нужно лишь перед покупкой четко сформулировать требования и задачи.

Актуальные вопросы

Выбор телескопа базируется на изучении множества параметров и технических характеристик, однако прежде, чем перейти к их анализу, необходимо решить базовые вопросы.

Что вы хотите увидеть

С помощью хорошего телескопа можно следить за:

Близкими объектами, расположенными в пределах солнечной системы (кометы, планеты, их спутники, солнце и так далее);

Далекими галактиками, туманностями;

Объектами, расположенными на земле.

Безусловно, универсального прибора, который позволил бы охватить все виды наблюдений, не найти, а значит, нужно решить, что будет для вас в приоритете.

Откуда планируете наблюдать

Наверняка вы замечали, что за городом небо выглядит по-особенному. Это видно без специализированного оборудования. Если же вы хотите сделать поездку невероятно интересной и романтичной, захватите с собой телескоп. Для этих целей подойдет модель, которая легко складывается, имеет компактный размер и помещается в сумку.

Для изучения небесных тел из окна квартиры подойдет прибор для близких исследований - в огнях мегаполиса практически нереально разглядеть далекие галактики и туманности.

Пожалуй, наилучшие условия созданы на даче. В таком случае телескоп может быть достаточно объемным, ведь нет необходимости все время перемещать его. Кроме того, вдали от городской иллюминации можно без труда рассмотреть далекие небесные тела, а значит, лучше приобретать прибор с максимальным приближением.

Теоретический базис

Для понимания того, как функционирует телескоп, стоит разобраться с его строением. В числе главных составляющих

. Тубус (труба) - основная часть телескопа, в которой находится объектив. Она может быть открытой или закрытой. Второй вариант предпочтителен, так как защищает телескоп от пыли. Кроме того, такая конструкция не подвержена влиянию потоков воздуха, которые могут существенно ухудшать качество изображения. Тубусы могут иметь разную длину и вес.

. Объектив - главная деталь телескопа, собирающая свет и детализирующая небесные тела.

. Искатель - уменьшенная копия подзорной трубы, которая используется для предварительного обнаружения небесного тела.

. Окуляры - это своего рода лупы, которые позволяют рассматривать предмет, попавший в объектив телескопа. Они характеризуются различными фокусным расстоянием и углом обзора. Для обычных - 40-55 град., широкоугольных и сверхширокоугольных 55-65 град. и 65-80 град. соответственно, ультраширокоугольных - 80 град. и выше. Наиболее комфортны окуляры с большим выносом зрачка.

. Монтировка - это «фундамент» телескопа, механизм, который позволяет наводить его на разные объекты, обеспечивая неподвижность. Монтировка может быть азимутальной (проста в использовании, не требует долгой настройки, имеет 2 оси, подходит для изучения наземных объектов, обзорных наблюдений за небесными телами) и экваториальной (универсальная, позволяет перемещать объектив по полярной оси, зачастую оснащается электрическим приводом и управляется с пульта).

В отдельную категорию выделяют монтировки Добсона, хотя на самом деле они относятся к азимутальным. Они обеспечивают наилучшую апертуру и при этом остаются достаточно компактными и доступными по цене. Наиболее дискуссионные механизмы - так называемые Go-To монтировки. Они создают компьютеризированное наблюдение за небесными телами, что вызывает негодование у многих астрономов, ведь истинное удовольствие приносит поиск объектов по картам и координатам. С другой стороны, автоматизированный подход существенно экономит время.

. Линза Барлоу - оптика, увеличивающая эффективное фокусное расстояние телескопа посредством уменьшения сходимости конуса светового пучка. Это полезный аксессуар, который чаще всего используется с короткофокусными устройствами.

Существует распространенное заблуждение касательно того, что работа телескопа основана на приближении объектов. Это не совсем верно. Принцип его функционирования - в сборе света и направлении его в фокус. Из этого следует, что главный критерий - площадь светоаккумулирующего элемента. Чем она больше, тем больше света собирает телескоп, что в конечном счете обеспечивает лучшую детализацию небесных тел. Именно размер линзы или зеркала влияет на качество изображения, а не сила телескопа или увеличение, хотя эти параметры также важны.

Апертура

Диаметр объектива телескопа - ключевой показатель, отвечающий за детализацию изображения. Чем больше апертура, тем ярче будут небесные тела, даже те, которые расположены совсем далеко и выглядят тускло. При использовании телескопа в городских условиях достаточно линзы или зеркала диаметром 120-150 мм. С таким устройством удастся понаблюдать за объектами Солнечной системы.

Разглядеть туманности и галактики позволит телескоп с апертурой от 200 мм и более. Самые большие модели (по диаметру объектива) идеально подходят для наблюдения за звездами вдали от города, где достаточно темно и нет преград для наслаждения небесными просторами. Такие устройства наиболее дорогие.

Фокусное расстояние

Одна из главных характеристик - расстояние между самим объективом и главным фокусом, измеряемое в миллиметрах. На основании фокусного расстояния окуляра и непосредственно телескопа рассчитывают увеличение (путем деления второго на первое). Предпочтение следует отдавать моделям с большим значением параметра. На телескопах с маленьким фокусным расстоянием труднее получить большое увеличение и обеспечить хорошее качество изображения.

Относительное отверстие

Рассматривая основные параметры, наряду с диаметром объектива и фокусным расстоянием, следует выделить еще один - относительное отверстие. Это величина, равная отношению фокусного к диаметру. Так, для телескопа с диаметром объектива 200 мм и фокусным расстоянием в 1200 мм, относительное отверстие составит 1/6. От этого значения и более телескоп считается быстрым, менее 1/9 - медленным, в диапазоне 1/6-1/9 - средним. При равной апертуре у телескопа с меньшим отверстием будет более длинный тубус, что, в свою очередь, увеличит габариты. Быстрые телескопы более требовательны к окулярам, в то время как с медленными и средними удается получить хорошее изображение при использовании среднестатистического широкоугольного окуляра.

Понятие термостабилизации

Четкий снимок возможен лишь в том случае, если предварительно привести прибор в температурный баланс с окружающей средой. Сколько времени потребуется для этого? Все зависит от параметров телескопа. Временной интервал (при иных равных условиях) увеличивается по мере увеличения апертуры.

Виды телескопов

Исходя из оптической схемы, все приборы делят на три группы:


Рефракторы. Устройства с линзовыми объективами до 120 мм, оптимальны для изучения Луны. Они дают хорошую детализацию и не требуют пошаговой настройки. Главный недостаток - появление хроматической аберрации. Устранить искажение позволит точный расчет параметров линз, расстояния между ними и оправы объектива. Для этих же целей рекомендуют низкодисперсные стекла.

Рефлекторы. Роль объектива в таком приборе выполняет вогнутое стекло. Световой поток отражается, затем собирается главным зеркалом. Устройство требует грамотной настройки, подходит для слежения за далекими небесными телами и туманностями. В числе наиболее популярных - системы Кассегрена и Ньютона.

Катадиоптрики. Это зеркально-линзовые устройства с коротким тубусом и неограниченной апертурой. Они объединили достоинства первых двух разновидностей. В таких моделях компенсированы искажения небесных тел. Телескопы подходят для астрографии и изучения глубокого космоса.

Телескопы для астрофотографии

Устройства, применяемые в астрофотографии, имеют специфические характеристики. В приоритете качество оптической схемы и грамотность настроек. Диаметр объектива должен быть максимальным. Даже при короткой выдержке можно получить качественный снимок за счет аккумуляции большего количества света. Рекомендуют использовать телескопы с экваториальной монтировкой, автоматический привод которых поможет удержать в поле зрения движущиеся тела.

Для астрофотографии подойдут приборы зеркально-линзового типа. У них больше длина фокуса, апертура, а значит, снимок получится более четким.

Детские телескопы

Астрономией интересуются не только взрослые, но и дети. Безусловно, основы выбора телескопов для них несколько отличаются от стандартных «взрослых» критериев. Первый прибор можно смело приобретать ребенку уже в возрасте 8-10 лет. Это должно быть простое устройство, с которым малыш справится самостоятельно.

Оптимален - рефрактор. Он надежен, не требователен в уходе и доступен по цене. Азимутальная монтировка позволит рассмотреть как небо, так и наземные объекты. Для этих целей будет достаточно объектива с апертурой 70 мм. У большинства производителей есть отдельные линейки для юных астрономов.

Распространенные ошибки

В сознании многих неопытных астрономов укрепилось не совсем корректное правило «больше - лучше». Крупногабаритные телескопы далеко не всегда дают хороший результат, в особенности в условиях квартирного использования. В такой ситуации стоит приобрести компактную модель, которую без труда можно будет перемещать в разные точки дома, выбирая оптимальное место для наблюдения.

Еще одна распространенная ошибка - покупка прибора «раз и навсегда». Универсальных устройств не бывает и не стоит пытаться купить телескоп на перспективу. Каждый прибор хорош для определенных целей. Пока вы только осваиваете процесс, стоит присмотреться и задуматься о покупке компактной модели, которая не требует настройки (например, рефрактор с диаметром 90-120 мм). Со временем можно четче сформировать свои потребности и купить более дорогую и функциональную модель телескопа.

Базовые знания о телескопах и их разновидности

Предлагаем Вашему вниманию краткое руководство, которое может помочь разобраться во всех типах моделей телескопов, доступных на сегодняшний день. Эти основы помогут Вам не только получить базовые знания о телескопах, но определится с тем, какой именно телескоп и с какой целью Вы хотите приобрести.

Цена на телескопы может быть абсолютно разной. Как правило, цены на доступные телескопы начинаются от 12 000 рублей или больше, хотя есть и очень простые модели, которые можно приобрести по цене ниже 7500 руб. Этот обзор будет посвящен именно относительно недорогим телескопам, поэтому начинающим астрономам будет особенно интересно ознакомиться с его содержанием.

Главное, что следует учесть при выборе телескопа, это наличие у него высококачественной оптики и устойчивого, плавно работающего крепления. Будь это большой телескоп или портативный маленький, прежде всего Вам нужно знать где и при каких условиях возможно его применение, и будете ли Вы использовать его на самом деле.

Диафрагма: наиболее важная особенность телескопа

Наиболее важной характеристикой телескопа является его диафрагма — диаметр его объектива или зеркала. Прежде всего, следует посмотреть на спецификации телескопа вблизи его фокусировочного узла, на передней части трубки или на коробке. Диаметр апертуры (D) будет выражаться либо в миллиметрах или (на импортных моделях) в дюймах (1 дюйм равен 25,4 мм). Желательно, чтобы телескоп имел диафрагму не менее 70 мм (2,8 дюйма), а лучше даже больше.

Большая диафрагма позволяет увидеть слабо различимые объекты и рассмотреть детали. Но хороший небольшой телескоп тоже может показать Вам очень многое — особенно, если Вы живете далеко от городских огней. Например, можно легко рассмотреть десятки галактик за пределами нашей галактики Млечного Пути через телескопы с диафрагмой всего лишь 80 мм (3.1 дюймов), но для этого нужно находиться в темноте, в отдалении от электрического освещения. Ведь для того, чтобы увидеть те же самые объекты в каком-нибудь городском дворе, потребуется телескоп с диафрагмой не менее 152 или даже 203 мм, как на изображении:

Впрочем, независимо от того, из какой точки Вы ведете наблюдение за небом, телескопы с достаточно высоким значением диафрагмы позволят разглядеть все намного лучше и четче.

Типы телескопов

При выборе телескопа Вам придется столкнуться с нелегким выбором. Дело в том, что существует три основных вида телескопов:

Рефракторы (линзовые) имеют объектив в передней части трубки – наиболее распространенный вид телескопов. Несмотря на низкие эксплуатационные расходы, они имеют достаточно высокую стоимость, которая значительно увеличивается пропорционально максимальному значению диафрагмы.

Рефлекторы (зеркальные) собирают свет с помощью зеркала в задней части основной трубы. Данный тип телескопов, как правило, наименее дорогой, но у него есть одна особенность – он требует периодической коррекции оптического выпрямления .

Составные (или зеркально-линзовые) телескопы, которые сочетают в себе технологию двух предыдущих, сделаны на основе комбинации линз и зеркал. Такие телескопы обычно имеют компактные трубы и относительно легкий вес. Однако, этот тип телескопов самый дорогостоящий. Существует две наиболее популярные конструкции составных телескопов: Шмидт-Кассегрена и Максутова-Кассегрена .

Степень фокусировки телескопа является ключом к определению такого понятия как “мощность” телескопа. Это фокусное расстояние объектива, разделенное на диаметр окуляра. Например, если телескоп имеет фокусное расстояние 500 мм и 25-мм окуляр, увеличение составляет 500/25, или в 20 раз. Большинство типов телескопов поставляется с одним или двумя окулярами, изменить степень увеличения можно путем смены окуляров с разными фокусными расстояниями.

Монтировка: наиболее недооцененный актив телескопа

После приобретения телескопа Вам будет необходимо установить его на крепкую опору. Обычно телескопы продают в комплекте с удобно упакованными треножниками и креплениями. Однако у телескопов меньших размеров часто просто есть монтажный блок, который позволяет прикрепить его к стандартному фото-штативу с одним винтом.

Внимание : Штатив, достаточно хороший для снимков вашей семьи не всегда может быть достаточно устойчивым для астрономии! Крепления, разработанные специально для телескопов, обычно воздерживаются от одно шнековых блоков крепления в пользу более крупных, более надежных колец или пластин.

Стандартные крепления позволяют осуществлять сферическое вращение телескопа влево и вправо, вверх и вниз, подобно тому, как это происходит на фото-штативах. Такие механизмы известны как альт — азимутальные (или просто Alt-AZ) крепления.

Более сложный механизм, предназначенный для отслеживания движения звезд, который поворачивается только по одной оси, называется экваториальная монтировка. Такие крепления, как правило, больше и тяжелее, чем альт — азимутальные конструкции. Чтобы использовать такой штатив правильно, Вам будет необходимо откалибровать его по Полярной звезде.

Современные и дорогостоящие типы монтировок оснащены небольшими двигателями, которые позволяют отслеживать небосклон при помощи пульта управления. Самые продвинутые модели этого типа, который также называют «Go To», имеют небольшой компьютер, который позволяет манипулировать телескопом. Так, после ввода текущей даты, времени и местоположения, телескоп не только сможет обозначить себя относительно небесных объектов, но и сделает цифровую индексацию оных, предоставив краткое описание. При должной настройке, пользование таким телескопом и монтировкой превратит Ваше наблюдение за небом в увлекательную экскурсию с обзором лучших небесных экспонатов. Минусом такого устройства может служить лишь сложный процесс калибровки, и достаточно высокая цена.

До середины XIX в. астрономия была уделом ученых, но позднее телескоп стал находить спрос у любителей. Французский ученый К. Фламмарион основал целое направление научно-популярной литературы, благодаря которой любители приобщились к астрономическим наблюдениям, и, естественно, появился спрос на промышленно изготовленные телескопы.

Существует три основных типа телескопов:

♦ рефлектор (от лат. reflecto - обращаю назад, отражаю) - отражательный телескоп, в котором изображения светил (звезд, планет, Солнца) создаются главным вогнутым зеркалом и вспомогательными выпуклыми или плоскими зеркалами;

♦ рефрактор-телескоп, в котором изображения светил (Солнца, звезд, планет) создаются преломлением световых лучей в линзовом объективе;

♦ катадиоптрический - зеркально-линзовый телескоп. Диапазон качества рефракторов самый широкий - от

самых простых до самых совершенных. Труба у этих телескопов длинная и относительно тонкая. В ее верхней части расположен линзовый объектив, который собирает и фокусирует попадающий в телескоп свет.

Рефракторы имеют надежную конструкцию, которая почти не требует никакого обслуживания. Герметичная труба телескопа предотвращает попадание пыли внутрь трубы и возникновение тепловых воздушных потоков в оптической системе, ухудшающих качество изображения. Но любительские рефракторы имеют небольшую апертуру 1 - от 60 до 130 мм, что бывает недостаточно для многих видов астрономических наблюдений.

На протяжении многих десятилетий лучшим любительским телескопом считался рефлектор. В этих телескопах для собирания и фокусирования света используется большое вогнутое зеркало; окуляр, в который смотрит наблюдатель, обычно расположен на боковой поверхности верхней части трубы телескопа.

У рефлекторов самая низкая стоимость единицы апертуры. Он достаточно прост в изготовлении. Оптическая система рефлектора состоит из двух зеркал, поэтому наблюдатель видит "правильное" изображение, т.е. не зеркально отраженное.

Но рефлекторы требуют дополнительного обслуживания, так как во время работы труба телескопа открыта, что приводит к появлению на оптической поверхности пыли. Необходима периодическая юстировка (настройка) оптической системы. Процедура эта несложная, но утомительная и заключается в регулировке винтов крепления зеркал. Во время наблюдений в открытой трубе телескопа могут возникать (из-за разницы температуры зеркала и окружающего воздуха) воздушные потоки, которые будут ухудшать качество изображения до тех пор, пока не произойдет выравнивания температур.

Катадиоптрические телескопы - зеркально-линзовые, так как в оптических системах этих телескопов используются как линзы, так и зеркала. Наиболее популярным в этом классе является телескоп системы Шмидта-Кассегрена. Он появился в продаже в 1970-х гг. и прочно удерживает свою нишу на рынке телескопов наряду с рефрактором и рефлектором, которые используются для астрономических наблюдений уже много десятилетий.

К достоинствам этого телескопа можно отнести его компактность, приспособленность для фотографических наблюдений. Катадиоптрические телескопы наилучшим образом подходят для занятия астрофотографией. В продаже имеются разработанные специально для монтировок таких телескопов электронные блоки управления приводом часового механизма, повышающие точность слежения за различными небесными объектами.

Однако телескопы Шмидта-Кассегрена уступают по резкости изображения рефлекторам с одинаковой апертурой. Особенно это заметно при наблюдении планет. Стоимость их также превышает стоимость рефлектора с равной апертурой. Кроме того, юстировку этих телескопов невозможно выполнить в домашних условиях.

Всех потребителей телескопов можно разделить условно на 4 группы:

♦ начинающие - не имеющие опыта наблюдений. В круг их интересов попадают любые объекты наблюдения, включая земные. Навыки работы с телескопом и поиска небесных объектов наблюдения минимальные;

♦ интересующиеся - имеют определенный опыт наблюдения различных небесных объектов с элементами формирующихся предпочтений в их выборе. Умеют работать со звездными картами и находить интересующие объекты на небе;

♦ квалифицированные - обладают самыми широкими познаниями в области астрономии. Уделяют очень большое внимание качеству инструмента и принадлежностей. Самые

придирчивые пользователи телескопов. Планируют свои наблюдения и умеют их обрабатывать;

♦ специалисты - обладают углубленными знаниями в области специализации. Очень требовательны к аппаратуре.

Практически все отечественные телескопы предназначены любителям, имеющим некоторые познания из области сферической астрономии и представление о склонении 1 и восхождении светил.

Телескоп выбирается исходя из оптической силы объектива, т.е. диаметра объектива, удобства монтировки или механизма крепления оптической трубы, которая служит для наведения телескопа на небесные объекты, и простоты обслуживания.

Чем больше диаметр объектива, тем больше света он соберет, тем более слабые по яркости объекты можно будет увидеть на фоне неба. Диаметр объектива или зеркала определяет максимальное практическое увеличение системы.

Удобная монтировка (или механическое крепление трубы) также очень существенна при выборе телескопа. Самый удобный тип монтировки - экваториальный, позволяющий вращением только вокруг одной оси компенсировать вращение Земли. Бывают еще азимутальные монтировки, которые требуют одновременного вращения телескопа по двум осям - вертикальной и горизонтальной. Этот тип монтировки удобен только при наличии компьютерного управления или при наблюдении наземных объектов.

Простота обслуживания также учитывается при выборе телескопа. Сюда входит мобильность всей системы, т.е. размеры, масса и необходимость периодической юстировки оптики, т.е. установки оптических элементов в расчетное положение.

Ассортимент телескопов, представленных сегодня на российском рынке, уже достаточно широк и дает свободу выбора для всех групп потребителей.

Среди российских производителей лидирующие позиции занимает Новосибирский приборостроительный завод. До недавнего времени линейка его телескопов ограничивалась классическим рефлектором на немецкой монтировке с диаметром зеркала 65 мм (ТАЛ), 80 мм (ТАЛ-М) и 110 мм (ТАЛ-1). Позже появились модификации с часовым приводом. Сейчас ассортимент этого предприятия значительно расширился за счет включения новых типов телескопов-рефракторов (ТАЛ-IOOR) и катадиоптрических (ТАЛ-200К).

Характеристики нескольких моделей телескопов Новосибирского завода приведена в табл...

Таблица Основные параметры телескопов марки ТАЛ

На российском рынке сегодня появились телескопы мировых лидеров фирм MEADE и CELESTRON, которые дали любителям недоступные ранее возможности - прекрасную оптику, компьютерное управление, цифровую съемку, мобильность. Этими телескопами могут пользоваться люди, не имеющие базовых знаний по астрономии.

С того времени, как любительская астрономия заявила о своем существовании, идеальными телескопами для новичков и более опытных наблюдателей считались рефракторы диаметром от 60 мм и рефлекторы от 110 мм.

Но никогда в телескопах этого класса не использовались достижения электроники и микропроцессорной технологии. Цифровые электронные телескопы MEADE новой серии DS стали одним из самых важных достижений в области любительской астрономической техники за последние 100 лет. Поиск небесных объектов при помощи компьютерной системы Autostar 493, подключенной к панели управления телескопа серии DS, максимально прост. Даже тот, кто никогда не имел дело с телескопами, может быстро освоить управление и найти на небе один из 1586 объектов, заложенных в память телескопа.

Практически все телескопы этой серии имеют отличное по четкости изображение, и выбор между той или иной моделью сводится только к внешним признакам и доступности по цене.

Для наиболее подготовленных наблюдателей фирма MEADE выпускает телескопы с компьютерным управлением серии LX 200.

В табл. приведены основные параметры телескопов серии DS.

Все оптические можно разделить по типу основного собирающего свет элемента на линзовые, зеркальные и комбинированные - зеркально-линзовые. Все системы обладают своими достоинствами и недостатками, и при выборе подходящей системы требуется учитывать несколько факторов – цели наблюдений, условия, требования к транспортабельности и весу, уровню аберраций, цене и т.п. Попробуем привести основные характеристики наиболее популярных на сегодня типов телескопов.

Рефракторы (линзовые телескопы)

Исторически первыми появились . Свет в таком телескопе собирается с помощью двояковыпуклой линзы, которая и является объективом телескопа. Ее действие основано на свойстве выпуклых линз преломлять световые лучи и собирать в определенной точке – фокусе. Поэтому часто линзовые телескопы называют рефракторами (от лат. refract - преломлять).

В рефракторе Галилея (созданном в 1609 г.) для того, чтобы собрать максимум звездного света и позволить человеческому глазу его увидеть, использовались две линзы. Первая линза (объектив) – выпуклая, она собирает свет и фокусирует его на определенном расстоянии, а вторая линза (играющая роль окуляра) – вогнутая, превращает сходящийся пучок световых лучей обратно в параллельный. Система Галилея дает прямое, неперевернутое изображение, однако сильно страдает от хроматической аберрации, портящей изображение. Хроматическая аберрация проявляется в виде ложной окраски границ и деталей объекта.

Более совершенным был рефрактор Кеплера (1611 г.), в котором в качестве окуляра выступала выпуклая линза, передний фокус которой совмещался с задним фокусом линзы-объектива. Изображение при этом получается перевернутым, но это несущественно для астрономических наблюдений, зато в точке фокуса внутри трубы можно поместить измерительную сетку. Предложенная Кеплером схема оказала сильное влияние на развитие рефракторов. Правда, она также не была свободна от хроматической аберрации, но ее влияние можно было уменьшить, увеличив фокусное расстояние объектива. Поэтому рефракторы того времени при скромных диаметрах объективов нередко имели фокусное расстояние в несколько метров и соответствующую длину трубы или обходились вообще без нее (наблюдатель держал окуляр в руках и "ловил" изображение, которое строил закрепленный на специальном штативе объектив).

Эти трудности рефракторов в свое время даже великого Ньютона привели к выводу о невозможности исправить хроматизм рефракторов. Но в первой половине XVIII в. появился ахроматический рефрактор .

Среди любительских инструментов наиболее распространены двухлинзовые рефракторы-ахроматы, но существуют и более сложные линзовые системы. Обычно объектив ахроматического рефрактора состоит из двух линз из разных сортов стекла, при этом одна собирающая, а вторая – рассеивающая, и это позволяет значительно уменьшить сферическую и хроматическую аберрации (присущие одиночной линзе искажения изображения). При этом труба телескопа остается сравнительно небольшой.

Дальнейшее совершенствование рефракторов привело к созданию апохроматов. В них влияние хроматической аберрации на изображение сведено к практически незаметной величине. Правда, достигается это за счет применения специальных типов стекол, которые дороги в производстве и обработке, поэтому и цена на такие рефракторы в несколько раз выше, чем на ахроматы одинаковой апертуры.

Как и у любой другой оптической системы, у рефракторов есть свои плюсы и минусы.

Достоинства рефракторов:

  • сравнительная простота конструкции, дающая простоту в использовании и надежность;
  • практически не требуется специальное обслуживание;
  • быстрая термостабилизация;
  • отлично подходит для наблюдений Луны, планет, двойных звезд, особенно при больших апертурах;
  • отсутствие центрального экранирования от вторичного или диагонального зеркала обеспечивает максимальный контраст изображения;
  • хорошая цветопередача в ахроматическом исполнении и отличная в апохроматическом;
  • закрытая труба исключает воздушные потоки, портящие изображение, и защищает оптику от пыли и загрязнений;
  • объектив изготавливается и юстируется производителем как единое целое и не требует регулировок пользователем.

Недостатки рефракторов:

  • наибольшая стоимость на единицу диаметра объектива в сравнении с рефлекторами или катадиоптриками;
  • как правило, больший вес и габариты в сравнении с рефлекторами или катадиоптриками одинаковой апертуры;
  • цена и громоздкость ограничивают наибольший практический диаметр апертуры;
  • как правило, менее подходят для наблюдений небольших и тусклых объектов далекого космоса из-за практических ограничений на апертуру.


Bresser Mars Explorer 70/700 – классический небольшой ахромат. Высококачественная оптика этой модели позволяет получать яркое и четкое изображение объекта, а входящие в комплект окуляры позволят установить увеличение вплоть до 260 крат. Эта модель телескопа с успехом используется для съемки поверхности Луны и дисков планет.


4-х линзовый рефрактор-ахромат (Пецваль). С сравнении с ахроматом имеет меньший хроматизм и большее полезное поле зрения. Система автонаведения. Подходит для астрофотографии. Сочетание короткого фокуса и большой апертуры делает с автонаведением Bresser Messier AR-152S одной из самых привлекательных моделей для наблюдения за крупными небесными объектами. Туманности, удаленные галактики предстанут пред вами во всей красе, а используя дополнительные фильтры, вы сможете изучать их в деталях. Мы рекомендуем использовать данный телескоп для лунных и планетарных наблюдений, изучения объектов глубокого космоса, астрофотографии.


Всем, кто желает постичь азы астрономии и наблюдений звезд и планет, мы рекомендуем телескоп-рефрактор Levenhuk Astro A101 60x700. Также этот телескоп удовлетворит более высокие запросы опытного наблюдателя, поскольку эта модель дает очень высокое качество изображения.


Для многих увлеченных астрономией людей крайне важно использовать каждую свободную минуту для интереснейших исследований. Однако, к сожалению, не всегда под рукой есть телескоп – многие из них столь тяжелы и громоздки, что носить их постоянно с собой не представляется возможным. С телескопом-рефрактором
Levenhuk Skyline 80х400 AZ Ваши представления об астрономических наблюдениях изменятся: теперь Вы сможете перевозить телескоп с собой в машине, в самолете, в поезде, то есть, куда бы Вы ни поехали, Вы везде сможете уделять время своему хобби.


Телескоп-рефрактор Orion GoScope 70 – портативный ахромат, который позволит изучать удаленные небесные тела с высокой четкостью. По сути, этот телескоп уже полностью собран и готов к работе, и помещен в специальный удобный рюкзак. Вам нужно только раздвинуть алюминиевую треногу и установить на нее телескоп.


Рефлекторы (зеркальные телескопы)

Или рефлектор (от лат. reflectio - отражать) – это телескоп, объектив которого состоит только из зеркал. Также как и выпуклая линза, вогнутое зеркало способно собирать свет в некоторой точке. Если поместить в этой точке окуляр, то можно будет увидеть изображение.

Одним из первых рефлекторов был рефлекторный телескоп Грегори (1663), который придумал телескоп с параболическим главным зеркалом. Изображение, которое можно наблюдать в подобный телескоп, оказывается свободным и от сферических, и от хроматических аберраций. Собранный большим главным зеркалом свет, отражается от небольшого эллиптического зеркала, закрепленного перед главным, и выводится к наблюдателю через отверстие в центре главного зеркала.

Разочаровавшись в современных ему рефракторах, И. Ньютон в 1667 г. начал разработку телескопа-рефлектора. Ньютон использовал металлическое главное зеркало (стеклянные зеркала с серебряным или алюминиевым покрытием появились позже) для собирания света, и небольшое плоское зеркальце для отклонения собранного светового пучка под прямым углом и вывода его сбоку трубы в окуляр. Таким образом, удалось справиться с хроматической аберрацией – вместо линз в этом телескопе используются зеркала, которые одинаково отражают свет с разными длинами волн. Главное зеркало рефлектора Ньютона может быть параболическим или даже сферическим, если его относительное отверстие сравнительно невелико. Сферическое зеркало гораздо проще изготовить, поэтому рефлектор Ньютона со сферическим зеркалом – это один из самых доступных типов телескопов, в том числе и для самостоятельного изготовления.

Схема, предложенная в 1672 г. Лореном Кассегреном , внешне напоминает рефлектор Грегори, однако имеет ряд существенных отличий – гиперболическое выпуклое вторичное зеркало и, как следствие, более компактный размер и меньшее центральное экранирование. Традиционный рефлектор Кассегрена нетехнологичен в массовом производстве (сложные поверхности зеркал – парабола, гипербола), а также имеет недоисправленную аберрацию комы, однако его модификации остаются популярными и в наше время. В частности, в телескопе Ричи-Кретьена применены гиперболические главное и вторичное зеркала, что дает ему возможность развивать большие поля зрения, свободные от искажений, и, что особенно ценно - для астрофотографии (прославленный орбитальный телескоп им. Хаббла спроектирон по этой схеме). Кроме того, на основе кассегреновского рефлектора позднее были разработаны популярные и технологичные катадиоптрические системы – Шмидта-Кассегрена и Максутова-Кассегрена.

В наше время рефлектором чаще всего называется именно телескоп, сделанный по схеме Ньютона . Имея малую сферическую аберрацию и полное отсутствие хроматизма, он, тем не менее, не полностью свободен от аберраций. Уже недалеко от оси начинает проявляться кома (неизопланатизм) – аберрация, связанная с неравностью увеличения разных кольцевых зон апертуры. Кома приводит к тому, что изображение звезды выглядит не как кружок, а как проекция конуса – острой и яркой частью к центру поля зрения, тупой и округлой в сторону от центра. Кома прямо пропорциональна удалению от центра поля зрения и квадрату диаметра объектива, поэтому особенно сильно она проявляется в так называемых "быстрых" (светосильных) Ньютонах на краю поля зрения. Для коррекции комы применяются специальные линзовые корректоры, устанавливаемые перед окуляром или фотокамерой.

Как наиболее доступный для самостоятельного изготовления рефлектор, "ньютон" часто выполняется на простой, компактной и практичной монтировке Добсона и в таком виде является наиболее портативным телескопом с учетом доступной апертуры. Причем производством "добсонов" занимаются не только любители, но и коммерческие производители, и телескопы могут иметь апертуры до полуметра и более.

Достоинства рефлекторов:

  • наименьшая стоимость на единицу диаметра апертуры в сравнении с рефракторами и катадиоптриками – большие зеркала проще производить, чем большие линзы;
  • сравнительно компактны и транспортабельны (особенно в добсоновском исполнении);
  • в силу сравнительно большой апертуры превосходно работают для наблюдений тусклых объектов далекого космоса – галактик, туманностей, звездных скоплений;
  • дают яркие изображения с малыми искажениями, отсутствует хроматическая аберрация.

Недостатки рефлекторов:

  • центральное экранирование и растяжки вторичного зеркала снижают контраст деталей изображения;
  • массивное стеклянное зеркало требует времени на термостабилизацию;
  • открытая труба не защищена от пыли и тепловых токов воздуха, портящих изображение;
  • требуется периодическая подстройка положений зеркал (юстировка или коллимация), склонная утрачиваться при транспортировке и эксплуатации.


Вы хотите приступить к астрономическим наблюдениям впервые? А может быть, у Вас уже есть богатый опыт таких исследований? В обоих случаях Вашим надежным помощником станет рефлектор Ньютона Bresser Venus 76/700 – телескоп, благодаря которому Вы всегда будете легко и без особых усилий получать изображения высокого качества и четкости. Вы в подробностях рассмотрите не только поверхность Луны, включая многие кратеры, увидите не только большие планеты Солнечной системы, но и некоторые далекие туманности, как, например, туманность в Орионе.


Телескоп Bresser Pollux 150/1400 EQ2 создан по схеме Ньютона. Это позволяет при сохранении высоких оптических характеристик (фокусное расстояние достигает 1400 мм) значительно уменьшить габаритные размера телескопа. Благодаря апертуре в 150 мм телескоп способен собирать большое количество света, что позволяет наблюдать достаточно слабые объекты. С Bresser Pollux Вы сможете наблюдать планеты Солнечной системы, туманности и звезды до 12.5 зв. вел., в том числе двойные. Максимально полезное увеличение составляет 300 крат.


Если Вас манят своей неизведанностью объекты, расположенные в глубинах космического пространства, то Вам, без сомнения, нужен телескоп, способный приблизить эти загадочные объекты и позволить подробно изучить их. Мы говорим о Levenhuk Skyline 130х900 EQ – телескопе-рефлекторе Ньютона, созданном как раз для исследования глубокого космоса.


Рефлектор Levenhuk SkyMatic 135 GTA – прекрасный телескоп для астрономов-любителей, которым требуется система автоматического наведения. Азимутальная монтировка, система автонаведения и большая светосила телескопа позволяют наблюдать Луну, планеты, а также большинство крупных объектов из каталога NGC и Месcье.


Телескоп SpaceProbe 130ST EQ можно назвать является короткофокусным вариантом модели SpaceProbe 130. Это тоже надежный и качественный рефлектор, установленный на экваториальную монтировку. Разница заключается в том, что благодаря более высокой светосиле 130ST EQ объекты далекого космоса станут более доступны. Также телескоп имеет более короткую трубу – всего лишь 61см, в то время как модель 130 EQ имеет 83см трубу.


Катадиоптрические (зеркально-линзовые) телескопы

(или катадиоптрические ) телескопы используют как линзы, так и зеркала для построения изображения и исправления аберраций. Среди катадиоптриков у любителей астрономии наиболее популярны два типа телескопов, основанных на кассегреновской схеме – Шмидт-Кассегрен и Максутов-Кассегрен.

В телескопах Шмидта-Кассегрена (Ш-К) главное и вторичное зеркала – сферические. Сферическая аберрация исправляется стоящей на входе в трубу полноапертурной коррекционной пластиной Шмидта. Эта пластина со стороны кажется плоской, но имеет сложную поверхность, изготовление которой и составляет главную трудность изготовления системы. Впрочем, американские компании Meade и Celestron успешно освоили производство системы Ш-К. Среди остаточных аберраций этой системы заметнее всего проявляются кривизна поля и кома, исправление которых требует применения линзовых корректоров, особенно при фотографировании. Главное достоинство – короткая труба и меньший вес, чем у ньютоновского рефлектора той же апертуры и фокусного расстояния. При этом отсутствуют растяжки крепления вторичного зеркала, а закрытая труба препятствует образованию воздушных потоков и защищает оптику от пыли.

Система Максутова-Кассегрена (М-К) была разработана советским оптиком Д. Максутовым и подобно Ш-К имеет сферические зеркала, а исправлением аберраций занимается полноапертурный линзовый корректор – мениск (выпукло-вогнутая линза). Поэтому такие телескопы еще называются менисковыми рефлекторами. Закрытая труба и отсутствие растяжек – также плюсы М-К. Подбором параметров системы можно скорректировать практически все аберрации. Исключение составляет так называемая сферическая аберрация высших порядков, но ее влияние невелико. Поэтому эта схема очень популярна и выпускается многими производителями. Вторичное зеркало может быть реализовано как отдельный блок, механически закрепленный на мениске, либо как алюминированный центральный участок задней поверхности мениска. В первом случае обеспечивается лучшее исправление аберраций, во втором – меньшая стоимость и вес, большая технологичность в массовом производстве и исключение возможности разъюстировки вторичного зеркала.

В целом, при одинаковом качестве изготовления система М-К способна дать немного более качественное изображение, чем Ш-К с близкими параметрами. Но большие телескопы М-К требуют больше времени на термостабилизацию, т.к. толстый мениск остывает значительно дольше пластины Шмидта, а также для М-К возрастают требования к жесткости крепления корректора, и весь телескоп получается тяжелее. Поэтому прослеживается применение для малых и средних апертур системы М-К, а для средних и больших – Ш-К.

Существуют также катадиоптрические системы Шмидта-Ньютона и Максутова-Ньютона , имеющие характерные черты упомянутых в названии конструкций и лучшее исправление аберраций. Но при этом габариты трубы остаются "ньютоновскими" (сравнительно крупными), а вес увеличивается, особенно в случае менискового корректора. Кроме того, к катадиоптрическим относятся системы с линзовыми корректорами, установленными перед вторичным зеркалом (система Клевцова, "сферические кассегрены" и т.п.).

Достоинства катадиоптрических телескопов:

  • высокий уровень коррекции аберраций;
  • универсальность – хорошо подходят и для наблюдений планет и Луны, и для объектов далекого космоса;
  • там, где есть закрытая труба, она минимизирует тепловые потоки воздуха и защищает от пыли;
  • наибольшая компактность при равной апертуре в сравнении с рефракторами и рефлекторами;
  • большие апертуры стоят значительно дешевле сравнимых рефракторов.

Недостатки катадиоптрических телескопов:

  • необходимости сравнительно долгой термостабилизации, особенно для систем с менисковым корректором;
  • большей стоимости, чем у рефлекторов равной апертуры;
  • сложности конструкции, затрудняющей самостоятельную юстировку инструмента.


Levenhuk SkyMatic 105 GT MAK - отличный телескоп с автонаведением, обладающий небольшими размерами и весом, но при этом имеющий высокое разрешение и дающий изображение высокого качества. Компактность конструкции достигнута благодаря использованию схемы Максутова-Кассегрена. Телескоп Levenhuk SkyMatic 105 GT MAK достаточно мощен для наблюдений деталей на дисках Луны и планет, а также способен показать компактные шаровые скопления и планетарные туманности.


Каждый астроном, будь то новичок или более опытный любитель, знает, какой азарт охватывает его при наблюдениях, как хочется полностью погрузиться в сказочный сюрреалистичный мир звезд, планет, комет, астероидов и других небесных тел, столь же загадочных, сколь и прекрасных. Но порой удовольствие от наблюдений бывает серьезно подпорчено, в частности, если телескоп "попался" тяжелый и громоздкий. Львиную долю времени в таком случае занимает переноска, сборка и настройка. Максутов-Кассегрен Orion StarMax 102mm EQ Compact Mak – один их самых компактных телескопов с 102 мм объективом, и он не позволит Вам тратить драгоценное наблюдательное время на что-то другое.


Телескоп Vixen VMC110L на монтировке Sphinx SXD - хороший выбор для астрофотографии. Оптика телескопа сочетает в себе компактность системы Кассегрена c большим фокусным расстоянием. Для исправления аберраций используется линзовый корректор, расположенный перед вторичным зеркалом. В дополнение стоит отметить надежную и жесткую монтировку с компьютерным наведением Sphinx SXD. Помимо настоящего компьютерного планетария в пульте управления с большим цветным экраном, она имеет функцию коррекции периодической ошибки, полярный искатель - основное, что необходимо для максимально точного наведения телескопа на объект фотографирования.


Смотрите также

Другие обзоры и статьи о телескопах и астрономии:

Обзоры оптической техники и аксессуаров:

Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:

Все об основах астрономии и «космических» объектах:

Визуально m т = 2 m ,1 + 5 lgD, зависит от диаметра D объектива.

Фотопластинка m = 5 lgD + klgt – 1 m

t – продолжительность экспозиции;

k 2, 1 – 3, 1 – зависит от чувствительности фотопластинки.

Для рефлектора m пред = 2,5 lg

D – диаметр зеркала объектива;

β – диаметр изображения звезды;

t- время экспозиции;

k- квантовый выход, равный отношению зарегистрированных фотонов к числу фотонов, пришедших на приемник;

S – яркость фона ночного неба.

Разрешающая способность – минимальное угловое расстояние двух объектов на пределе видимости.рад = 206 265 ʺ

Атмосфера снижает разрешающую способность .

При визуальных наблюдениях глаз наиболее чувствителен к излучению с λ 5500 Ǻ. φ = .

Недостатки и преимущества рефлекторов и рефракторов

    линзы и вогнутые зеркала обладают погрешностями – аберрациями.

    у линзы есть хроматическая аберрация, которую трудно уменьшить, у зеркал такой аберрации нет.

    линзы большого диаметра изготовить труднее, чем зеркало.

Фотографии телескопов

Рис 40. Телескоп – рефрактор Пулковской обсерватории.

Рис 41. Самый крупный в мире 6 – метровый телескоп –

рефлектор

Менисковый телескоп

Это зеркально – линзовый телескоп. В нем, недостатки сферического зеркала исправляются тонкой выпукло – вогнутой линзой малой кривизны. Эта линза называется мениск.

Ход лучей в оптических телескопах.

Рис 42. Схемы хода лучей в телескопах: а) рефрактор;

б) рефлектор; в) менисковый телескоп.

Телескопы: радиодиапазона, инфракрасные, рентгеновские и гаммадиапазонов электромагнитных волн. Нейтринные телескопы.

Радиотелескопы.

Основные части: антенна; чувствительный радиоприемник с усилителем.

Мощность космического радиоизлучения очень мала. Для нее введена специальная единица измерения «Ян» – в честь американского инженера К. Янского, впервые обнаружившего космического радиоизлучение в 1932 г.

1 Ян = 10 -26

В этих единицах измеряют спектральную плотность потока, в радиодиапазоне, т.е. количество энергии в единичном интервале частот, падающего на единичную площадку (1м 2), перпендикулярно к ней, за 1 секунду.

Рис 43. Антенна 300-метрового радиотелескопа в Аресибо, расположенная в чашеобразной долине

Рис 44. Радиотелескоп им. Аллена

Рис 45. Радиотелескоп РАТАН 600 (общий вид и фрагмент антенны)