Создание и испытание новых лекарственных препаратов. Создание лекарственных препаратов Открытие и разработка лекарственных препаратов

Алгоритм создания нового лекарственного средства

Обычно разработка нового лекарственного препарата включает в себя следующие стадии:

1. задумка;

2. лабораторный синтез;

3. биоскрининг;

4. клинические испытания;

Поиск новых лекарственных средств развивается по следующим направлениям:

I. Химический синтез препаратов

А. Направленный синтез:

1) воспроизведение биогенных веществ;

2) создание антиметаболитов;

3) модификация молекул соединений с известной биологической активностью;

4) изучение структуры субстрата, с которым взаимодействует лекарственное средство;

5) сочетание фрагментов структур двух соединений с необходимыми свойствами;

6) синтез, основанный на изучении химических превращений веществ в организме (пролекарства; средства, влияющие на механизмы биотрансформации веществ).

Б. Эмпирический путь:

1) случайные находки; 2) скрининг.

II. Получение препаратов из лекарственного сырья и выделение индивидуальных веществ:

1) животного происхождения;

2) растительного происхождения;

3) из минералов.

III. Выделение лекарственных веществ, являющихся продуктами жизнедеятельности грибов и микроорганизмов; биотехнология (клеточная и генная инженерия)

В настоящее время лекарственные средства получают главным образом посредством химического синтеза. Один из важных путей направленного синтеза заключается в воспроизведении биогенных веществ, образующихся в живых организмах, либо их антагонистов. Так, например, были синтезированы адреналин, норадреналин, у-аминомасляная кислота, простагландины, ряд гормонов и другие физиологически активные соединения. Один из наиболее распространенных путей изыскания новых лекарственных средств - химическая модификация соединений с известной биологической активностью. В последнее время активно применяется компьютерное моделирования взаимодействия вещества с субстратом типа рецепторов, ферментов и так далее, поскольку структура различных молекул в организме хорошо установлена. Компьютерное моделирование молекул, использование графических систем и соответствующих статистических методов позволяют составить достаточно полное представление о трехмерной структуре фармакологических веществ и распределении их электронных полей. Такая суммарная информация о физиологически активных веществах и субстрате должна способствовать эффективному конструированию потенциальных лигандов с высокими комплементарностью и аффинитетом. Помимо направленного синтеза, до сих пор сохраняет определенное значение эмпирический путь получения лекарственных средств. Одной из разновидностей эмпирического поиска является скрининг (довольно трудоемкая проверка действия лекарственного средства на крысах, потом на людях).

При фармакологическом исследовании потенциальных препаратов подробно изучается фармакодинамика веществ: их специфическая активность, длительность эффекта, механизм и локализация действия. Важным аспектом исследования является фармакокинетика веществ: всасывание, распределение и превращение в организме, а также пути выведения. Специальное внимание уделяется побочным эффектам, токсичности при однократном и длительном применении, тератогенности, канцерогенности, мутагенности. Необходимо сравнивать новые вещества с известными препаратами тех же групп. При фармакологической оценке соединений используют разнообразные физиологические, биохимические, биофизические, морфологические и другие методы исследования.

Большое значение имеет изучение эффективности веществ при соответствующих патологических состояниях (экспериментальная фармакотерапия). Так, лечебное действие противомикробных веществ испытывают на животных, зараженных возбудителями определенных инфекций, противобластомные средства - на животных с экспериментальными и спонтанными опухолями.

Результаты исследования веществ, перспективных в качестве лекарственных препаратов, передают в Фармакологический комитет МЗ РФ, в который входят эксперты разных специальностей (в основном фармакологи и клиницисты). Если Фармакологический комитет считает проведенные экспериментальные исследования исчерпывающими, предлагаемое соединение передают в клиники, имеющие необходимый опыт исследования лекарственных веществ.

Клиническое исследование - научное исследование эффективности, безопасности и переносимости медицинской продукции (в том числе лекарственных средств) у людей. Существует международный стандарт «Надлежащая клиническая практика». В Национальном стандарте Российской Федерации ГОСТР 52379-2005 «Надлежащая клиническая практика» указан полный синоним этого термина - клиническое испытание, который, однако, менее предпочтителен из-за этических соображений.

Основой проведения клинических исследований (испытаний) является документ международной организации «Международной конференции по гармонизации» (МКГ). Этот документ называется «Guideline for Good Clinical Practice» («Описание стандарта GCP»; Good Clinical Practice переводится как «Надлежащая клиническая практика»).

Обычно, кроме врачей, в области клинических исследований работают и другие специалисты по клиническим исследованиям.

Клинические исследования должны проводиться в соответствии с основополагающими этическими принципами Хельсинкской декларации, стандартом GCP и действующими нормативными требованиями. До начала клинического исследования должна быть проведена оценка соотношения предвидимого риска с ожидаемой пользой для испытуемого и общества. Во главу угла ставится принцип приоритета прав, безопасности и здоровья испытуемого над интересами науки и общества. Испытуемый может быть включен в исследование только на основании добровольного информированного согласия (ИС), полученного после детального ознакомления с материалами исследования. Это согласие заверяется подписью пациента (испытуемого, волонтёра).

Клиническое исследование должно быть научно обосновано, подробно и ясно описано в протоколе исследования. Оценка соотношения рисков и пользы, а также рассмотрение и одобрение протокола исследования и другой документации, связанной с проведением клинических исследований, входят в обязанности Экспертного Совета Организации / Независимого Этического Комитета (ЭСО/НЭК). После получения одобрения от ЭСО/НЭК можно приступать к проведению клинического исследования.

В большинстве стран клиническое испытание новых лекарственных веществ обычно проходит 4 фазы.

1-я фаза. Проводится на небольшой группе здоровых добровольцев. Устанавливаются оптимальные дозировки, которые вызывают желаемый эффект. Целесообразны также фармакокинетические исследования, касающиеся всасывания веществ, периода их «полужизни», метаболизма. Рекомендуется, чтобы такие исследования выполняли клинические фармакологи.

2-я фаза. Проводится на небольшом количестве больных (обычно до 100-200) с заболеванием, для лечения которого предлагается данный препарат. Детально исследуются фармакодинамика (включая плацебо) и фармакокинетика веществ, регистрируются возникающие побочные эффекты. Эту фазу апробации рекомендуется проводить в специализированных клинических центрах.

3-я фаза. Клиническое (рандомизированное контролируемое) испытание на большом контингенте больных (до нескольких тысяч). Подробно изучаются эффективность (включая «двойной слепой контроль») и безопасность веществ. Специальное внимание обращают на побочные эффекты, в том числе аллергические реакции, и токсичность препарата. Проводится сопоставление с другими препаратами этой группы. Если результаты проведенного исследования положительные, материалы представляются в официальную организацию, которая дает разрешение на регистрацию и выпуск препарата для практического применения. В нашей стране это Фармакологический комитет МЗ РФ, решения которого утверждаются министром здравоохранения.

4-я фаза. Широкое исследование препарата на максимально большом количестве больных. Наиболее важны данные о побочных эффектах и токсичности, которые требуют особенно длительного, тщательного и масштабного наблюдения. Кроме того, оцениваются отдаленные результаты лечения. Полученные данные оформляются в виде специального отчета, который направляется в ту организацию, которая давала разрешение на выпуск препарата. Эти сведения важны для дальнейшей судьбы препарата (его применения в широкой медицинской практике).

Качество препаратов, выпускаемых химико-фармацевтической промышленностью, обычно оценивают с помощью химических и физико-химических методов, указанных в Государственной фармакопее. В отдельных случаях, если строение действующих веществ неизвестно или химические методики недостаточно чувствительны, прибегают к биологической стандартизации. Имеется в виду определение активности лекарственных средств на биологических объектах (по наиболее типичным эффектам).

Согласно всемирно признанному информационному ресурсу «Википедия», в России в настоящее время в основном исследуются новые лекарства в области лечения рака, на втором месте лечение болезней эндокринной системы. Таким образом, в наше время создание новых лекарств полностью контролируется государством и управляемыми им институтами.

Разработка новых лекарственных средств осуществляется совместными усилиями многих отраслей науки, при этом основная роль принадлежит специалистам в области химии, фармакологии, фармации. Создание нового лекарственного средства представляет собой ряд последовательных этапов, каждый из которых должен отвечать определенным положениям и стандартам, утвержденным государственными учреждениями Фармакопейным Комитетом, Фармакологическим Комитетом, Управлением МЗ РФ по внедрению новых лекарственных средств.

Процесс создания новых лекарственных средств выполняется в соответствии с международными стандартами GLP (Good Laboratory Practice Качественная лабораторная практика), GMP (Good Manufacturing Practice Качественная производственная практика) и GCP (Good Clinical Practice Качественная клиническая практика).

Знаком соответствия разрабатываемого нового лекарственного средства этим стандартам является официальное разрешение процесса их дальнейшего исследования IND (Investigation New Drug).

Получение новой активной субстанции (действующего вещества или комплекса веществ) идет по трем основным направлениям.

Известно, что в процессе создания новых лекарственных средств, как правило, имеет место наличие двух основных определяющих факторов - объективного и субъективного. Каждый из этих факторов по-своему важен, но только при наличии однонаправленности их силовых векторов можно достичь конечной цели любого фармацевтического изыскания - получения нового лекарственного средства.

Субъективный фактор определяется прежде всего желанием исследователя заниматься научной проблемой, его эрудицией, квалификацией и научным опытом. Объективная же сторона процесса связана с выделением приоритетных и перспективных научно-исследовательских направлений, способных повлиять на уровень качества жизни (т.е. на QoL-индекс), а также с коммерческой привлекательностью.

Детальное рассмотрение субъективного фактора в конечном итоге сводится к поиску ответа на один из наиболее интригующих философских вопросов: какое место было отведено Его Величеству Случаю в том, что именно этот исследователь (или группа исследователей) оказался в нужное время и в нужном месте, чтобы иметь отношение к разработке того или иного конкретного препарата? Одним из ярких исторических примеров значимости этого фактора является история открытия А. Флемингом антибиотиков и лизоцима. В связи с этим заведующий лабораторией, в которой работал Флеминг, писал: «Несмотря на все мое уважение к отцу английских антибиотиков, должен заметить, что ни один уважающий себя лаборант, а тем более ученый-бактериолог, никогда не позволил бы себе иметь для проведения экспериментов чашку Петри такой чистоты, в которой бы могла завестись плесень». И если учесть тот факт, что создание пенициллина пришлось на 1942 год, т.е. на самый разгар Второй мировой войны и, следовательно, на пик инфекционных осложнений от огнестрельных ранений в госпиталях, когда человечество как никогда нуждалось в появлении высокоэффективного антибактериального препарата, невольно приходит мысль о провидении.

Что же касается объективного фактора, то его понимание в большей степени поддается логическому причинно-следственному анализу. А это значит, что на этапе разработки нового препарата на первый план выступают критерии, определяющие направления научных изысканий. Первостепенным фактором в этом процессе является острая медицинская необходимость или возможность разработать новое либо улучшить старое лечение, что в конечном итоге сможет повлиять на качество жизни. Наглядный пример — разработка новых эффективных противоопухолевых, сердечно-сосудистых, гормональных препаратов, средств борьбы с ВИЧ-инфекцией. Своевременно будет напомнить, что показателем уровня качества жизни являются физическое и эмоциональное состояние человека, интеллектуальная деятельность, чувство благополучия и удовлетворенности жизнью, социальная активность и степень ее удовлетворения. Следует отметить, что QoL-индекс напрямую связан с тяжестью заболевания, которая и определяет финансовые затраты общества на госпитализацию, уход за больными, стоимость курса терапии, лечение хронической патологии.

Коммерческая привлекательность препарата обусловлена уровнем заболеваемости конкретной патологией, степенью ее тяжести, величиной расходов на лечение, величиной выборки пациентов, страдающих данным заболеванием, длительностью курса терапии, возрастом больных и т.д. Кроме того, существует ряд нюансов, связанных с материально-техническими и финансовыми возможностями разработчика и будущего производителя. Это определяется тем, что, во-первых, большую часть средств, выделенных на научные исследования, разработчик тратит на поддержание завоеванных и наиболее сильных позиций на рынке (где он уже, как правило, является лидером); во-вторых, во главу угла разработки нового препарата ставится соотношение между предполагаемыми затратами и реальными цифрами прибыли, которую разработчик рассчитывает получить от продажи препарата, а также временным соотношением этих двух параметров. Так, если в 1976 г. фармацевтические компании тратили на исследования и выпуск нового препарата в среднем около 54 млн $, то уже в 1998 г. — почти 597 млн $.

Процесс разработки и продвижения на рынок нового препарата составляет в среднем 12-15 лет. Рост затрат на разработку новых лекарственных средств связан с ужесточением требований общества к качеству и безопасности фармацевтических средств. Кроме того, если сравнивать расходы на исследования и разработки в фармацевтической промышленности с другими видами прибыльного бизнеса, в частности с радиоэлектроникой, то оказывается, что они больше в 2 раза, а в сравнении другими отраслями промышленности — в 6 раз.

Методология изыскания новых лекарственных средств

В недалеком прошлом основным методом изыскания новых лекарственных средств был элементарный эмпирический скрининг уже имеющихся или вновь синтезированных химических соединений. Естественно, «чистого» эмпирического скрининга в природе быть не может, так как любое исследование в конечном итоге базируется на ранее накопленном фактическом, экспериментальном и клиническом материале. Ярким историческим примером такого скрининга является поиск противосифилитических средств, проведенный П. Эрлихом среди 10 тысяч соединений мышьяка и закончившийся созданием препарата сальварсан.

Современные высокотехнологические подходы подразумевают использование НTS-метода (High Through-put Screening), т.е. метода эмпирического конструирования нового высокоэффективного лекарственного соединения. На первом этапе с помощью высокоскоростной компьютерной технологии сотни тысяч веществ проверяются на активность относительно исследуемой молекулы (чаще всего под этим подразумевается молекулярная структура рецептора). На втором этапе происходит непосредственное моделирование структурной активности с помощью специальных программ типа QSAR (Quantitative Structure Activity Relationship). Конечный итог этого процесса — создание вещества, обладающего высочайшим уровнем активности при минимальных побочных эффектах и материальных затратах. Моделирование может протекать по двум направлениям. Первое - конструирование идеального «ключа» (т.е. медиатора), подходящего под естественный природный «замок» (т.е. рецептор). Второе - конструирование «замка» под имеющийся естественный «ключ». Научные подходы, применяющиеся для этих целей, базируются на разнообразных технологиях, начиная с методов молекулярной генетики и ЯМР и заканчивая непосредственным компьютерным моделированием активной молекулы в трехмерном пространстве с помощью программ типа CAD (Computer Assisted Design). Однако в конечном итоге процесс конструирования и синтеза потенциальных биологически активных веществ основывается все-таки на интуиции и опыте исследователя.

Как только перспективное химическое соединение синтезировано, а его структура и свойства установлены, приступают к доклиническому этапу испытаний на животных. Он включает описание процесса химического синтеза (приводятся данные о структуре и чистоте препарата), экспериментальную фармакологию (т.е. фармакодинамику), изучение фармакокинетики, метаболизма и токсичности.

Выделим основные приоритеты доклинического этапа. Для фармакодинамики — это исследование специфической фармакологической активности препарата и его метаболитов (включая определение скорости, продолжительности, обратимости и дозозависимости эффектов на модельных опытах in vivo , лиганд-рецепторные взаимодействия, влияние на основные физиологические системы: нервную, костно-мышечную, мочеполовую и сердечно-сосудистую); для фармакокинетики и метаболизма — это изучение всасывания, распределения, связывания с белками, биотрансформации и выведения (включая расчеты констант скорости элиминации (Kel), абсорбции (Ka), экскреции (Kex), клиренса препарата, площади под кривой концентрация-время и т.д.); для токсикологии — это определение острой и хронической токсичности (не менее чем на двух видах экспериментальных животных), канцерогенности, мутагенности, тератогенности.

Опыт показывает, что во время тестирования примерно половина веществ-кандидатов отбраковывается именно вследствие низкой стабильности, высокой мутагенности, тератогенности и т.д. Доклинические исследования, так же как и клинические, условно можно разделить на четыре фазы (этапа):

Доклинические исследования (I этап) (Отбор перспективных субстанций)

1. Оценка патентных возможностей и подача заявления на получение патента.

2. Основной фармакологический и биохимический скрининг.

3. Аналитическое изучение активной субстанции.

4. Токсикологические исследования с целью определения максимально переносимых доз.

Доклинические исследования (II этап) (Фармакодинамика/кинетика у животных)

1. Детальные фармакологические исследования (основное действие, нежелательные реакции, длительность действия).

2. Фармакокинетика (всасывание, распределение, метаболизм, выведение).

Доклинические исследования (III этап) (Оценка безопасности)

1. Острая токсичность (однократное введение двум видам животных).

2. Хроническая токсичность (многократное введение двум видам животных).

3. Исследование токсичности по действию на репродуктивную систему (фертильность, тератогенность, пери- и постнатальная токсичность).

4. Исследование мутагенности.

5. Воздействие на иммунную систему.

6. Кожно-аллергические реакции.

Доклинические исследования (IV этап) (Ранняя техническая разработка)

1. Синтез в условиях производства.

2. Разработка аналитических методов для определения препарата, продуктов распада и возможного загрязнения.

3. Синтез препарата, меченного радиоактивными изотопами для фармакокинетического анализа.

4. Исследование стабильности.

5. Производство лекарственных форм для клинических исследований.

После того, как на основании необходимых доклинических исследований получены доказательства безопасности и терапевтической эффективности препарата, а также возможности проведения контроля качества, разработчики оформляют и направляют заявку в разрешающие и регулирующие инстанции на право выполнения клинических испытаний. В любом случае, прежде чем разработчик получит разрешение на проведение клинических испытаний, он должен представить в разрешительные органы заявку, содержащую следующую информацию: 1) данные о химическом составе лекарственного препарата; 2) отчет о результатах доклинических исследований; 3) процедуры получения вещества и контроль качества на производстве; 4) любую другую имеющуюся информацию (в том числе клинические данные из других стран, если таковые имеются); 5) описание программы (протокола) предлагаемых клинических исследований.

Таким образом, испытания среди людей можно начинать только в том случае, если соблюдены следующие основные требования: информация о доклинических испытаниях убедительно показывает, что препарат может быть использован при лечении данной конкретной патологии; план клинических испытаний разработан адекватно и, следовательно, клинические испытания могут обеспечить надежную информацию об эффективности и безопасности препарата; препарат достаточно безопасен для испытания на людях и испытуемые не будут подвергнуты неоправданному риску.

Схематично переходный этап от доклинических исследований к клиническим можно представить следующим образом:

Программа клинических испытаний нового лекарственного средства на человеке состоит из четырех фаз. Первые три проводятся до регистрации препарата, а четвертая, которая называется пострегистрационной, или постмаркетинговой, проводится после того, как препарат зарегистрирован и разрешен к применению.

1-я фаза клинических испытаний. Часто эта фаза называется также медико-биологической, или клинико-фармакологической, что более адекватно отражает ее цели и задачи: установить переносимость и фармакокинетические характеристики препарата на человеке. Как правило, в 1-й фазе клинических испытаний (КИ) принимают участие здоровые добровольцы в количестве от 80 до 100 человек (в наших условиях обычно 10-15 молодых здоровых мужчин). Исключение составляют испытания противоопухолевых препаратов и средств борьбы со СПИДом из-за их высокой токсичности (в данных случаях испытания сразу же проводятся на больных этими заболеваниями). Следует отметить, что на 1-й фазе КИ отсеивается в среднем около 1/3 веществ-кандидатов. Фактически 1-я фаза КИ должна ответить на главный вопрос: стоит ли продолжать работу над новым препаратом, и если да, то каковы будут предпочтительные терапевтические дозы и способы введения?

2-я фаза клинических испытаний — первый опыт применения нового препарата для лечения конкретной патологии. Часто эту фазу называют пилотными, или пристрелочными, исследованиями, так как полученные в ходе этих испытаний результаты позволяют обеспечить планирование более дорогих и обширных исследований. Во 2-ю фазу включаются как мужчины, так и женщины в количестве от 200 до 600 человек (в том числе женщины детородного возраста, если они предохраняются от беременности и проведены контрольные тесты на беременность). Условно эту фазу подразделяют на 2а и 2б. На первом этапе фазы решается задача определения уровня безопасности препарата на отобранных группах пациентов с конкретным заболеванием или синдромом, который необходимо лечить, тогда как на втором этапе выбирается оптимальный уровень дозы препарата для последующей, 3-й фазы. Естественно, что испытания 2-й фазы являются контролируемыми и подразумевают наличие контрольной группы, которая не должна существенно отличаться от опытной (основной) ни по полу, ни по возрасту, ни по исходному фоновому лечению. Следует подчеркнуть, что фоновое лечение (если это возможно) должно быть прекращено за 2-4 недели до начала испытания. Кроме того, группы должны формироваться с использованием рандомизации, т.е. способом случайного распределения с применением таблиц случайных чисел.

3-я фаза клинических испытаний - это клинические исследования безопасности и эффективности препарата в условиях, приближенных к тем, в которых он будет использоваться в случае его разрешения к медицинскому применению. То есть в ходе 3-й фазы изучают значимые взаимодействия между исследуемым препаратом и другими лекарственными средствами, а также влияние возраста, пола, сопутствующих заболеваний и т.д. Как правило, это слепые плацебо-контролируемые исследования, в процессе которых проводят сравнение курсов лечения со стандартными препаратами. Естественно, в данной фазе КИ принимает участие большое количество пациентов (до 10 тыс. чел.), что позволяет уточнить особенности действия препарата и определить относительно редко встречающиеся побочные реакции при длительном его применении. При проведении 3-й фазы КИ анализируются также фармакоэкономические показатели, использующиеся в дальнейшем для оценки уровня качества жизни пациентов и их обеспеченности медицинской помощью. Информация, полученная в результате исследований 3-й фазы, является основополагающей для принятия решения о регистрации лекарства и возможности его медицинского применения.

Таким образом, рекомендация препарата к клиническому использованию считается обоснованной, если он более эффективен; обладает лучшей переносимостью, чем известные препараты; более выгоден экономически; имеет более простую и удобную методику лечения; повышает эффективность уже существующих лекарственных средств при комбинированном лечении. Тем не менее, опыт разработки лекарственных средств показывает, что только около 8 % препаратов, получивших разрешение на разработку, допускаются к медицинскому применению.

4-я фаза клинических испытаний - это так называемые постмаркетинговые, или пострегистрационные, исследования, проводимые после получения разрешения регуляторных органов на медицинское применение препарата. Как правило, КИ идут по двум основным направлениям. Первое — усовершенствование схем дозирования, сроков лечения, изучение взаимодействия с пищей и другими лекарствами, оценка эффективности в различных возрастных группах, сбор дополнительных данных, касающихся экономических показателей, изучение отдаленных эффектов (в первую очередь влияющих на снижение или повышение уровня смертности пациентов, получающих данный препарат). Второе — изучение новых (не зарегистрированных) показаний для назначения препарата, методов его применения и клинических эффектов при комбинации с другими лекарственными средствами. Следует заметить, что второе направление 4-й фазы рассматривается как испытание нового препарата на ранних фазах изучения.

Схематично все вышесказанное представлено на рисунке.

Виды и типы клинических испытаний: план, дизайн и структура

Основным критерием в определении вида клинических испытаний является наличие или отсутствие контроля. В связи с этим все КИ можно разделить на неконтролируемые (несравнительные) и контролируемые (с наличием сравнительного контроля). В то же время судить о причинно-следственной связи между каким-либо воздействием на организм и ответной реакцией можно только на основании сравнения с результатами, полученными в контрольной группе.

Естественно, результаты неконтролируемых и контролируемых исследований качественно отличаются. Однако это не означает, что неконтролируемые исследования вообще не нужны. Как правило, они предназначены для выявления связей и закономерностей, которые затем доказываются контролируемыми исследованиями. В свою очередь, неконтролируемые исследования оправданы на 1-й и 2-й фазах испытаний, когда изучается токсичность у человека, определяются безопасные дозы, проводятся «пилотные» исследования, чисто фармакокинетические, а также длительные постмаркетинговые испытания, направленные на выявление редких побочных эффектов.

В то же время испытания 2-й и 3-й фаз, направленные на доказательство определенного клинического эффекта и анализ сравнительной эффективности различных методов лечения, по определению должны быть сравнительными (т.е. имеющими контрольные группы). Таким образом, наличие контрольной группы является основополагающим моментом для сравнительного (контролируемого) исследования. В свою очередь, контрольные группы классифицируются по типу назначения лечения и по способу отбора. По типу назначения лечения группы подразделяют на подгруппы, получающие плацебо, не получающие лечение, получающие различные дозы препарата или различные режимы лечения и получающие иной активный препарат. По способу отбора больных в контрольную группу различают отбор с рандомизацией из той же популяции и «внешний» («исторический»), когда популяция отличается от популяции данного испытания. Для сведения к минимуму погрешности при формирования групп используют также метод слепого исследования и рандомизацию со стратификацией.

Рандомизацией называется способ назначения испытуемых в группы методом случайной выборки (желательно с использованием компьютерных кодов на основании последовательности случайных чисел), тогда как стратификация - это процесс, который гарантирует равномерное распределение испытуемых по группам с учетом факторов, существенно влияющих на исход заболевания (возраст, избыточный вес, анамнез и т.д.).

Слепое исследование предполагает, что испытуемый не знает о методе лечения. При двойном слепом методе о проводимом лечении не знает и исследователь, но знает монитор. Существует и так называемый метод «тройного ослепления», когда о методе лечения не знает и монитор, но знает только спонсор. Немалое влияние на качество проведения исследования оказывает комплаентность , т.е. строгость следования режиму испытания со стороны испытуемых.

Так или иначе, для качественного проведения клинических исследований необходимо наличие грамотно составленного плана и дизайна испытания с четким определением критериев включения/исключения в исследование и клинической релевантности (значимости).

Элементы дизайна стандартного клинического исследования представлены следующим образом: наличие медицинского вмешательства; наличие группы сравнения; рандомизация; стратификация; использование маскировки. Однако, несмотря на наличие в дизайне целого ряда общих моментов, его структура будет различаться в зависимости от целей и фазы клинического испытания. Ниже представлена структура наиболее часто применяемых в клинических испытаниях типовых моделей исследования.

1) Схема модели исследования в одной группе: все исследуемые получают одно и то же лечение, однако его результаты сравниваются не с результатами контрольной группы, а с результатами исходного состояния для каждого пациента или с результатами контроля по архивной статистике, т.е. испытуемых не рандомизируют. Следовательно, данная модель может использоваться на 1-й фазе исследований или служить дополнением к другому типу исследований (в частности, для оценки антибиотикотерапии). Таким образом, основным недостатком модели является отсутствие группы контроля.

2) Схема модели исследования в параллельных группах: испытуемые двух или более групп получают различные курсы лечения или различные дозы лекарственных средств. Естественно, в этом случае проводится рандомизация (чаще со стратификацией). Данный вид модели считается наиболее оптимальным для определения эффективности схем лечения. Следует отметить, что большинство клинических испытаний проводится в параллельных группах. Более того, регулирующие органы отдают предпочтение именно этому типу КИ, поэтому основные исследования 3-й фазы тоже проводят в параллельных группах. Недостатком данного вида испытаний является то, что они требуют большего количества пациентов и, следовательно, больших затрат; длительность проведения исследований по этой схеме значительно увеличивается.

3) Схема перекрестной модели: испытуемых рандомизируют в группы, в которых проводят одинаковое курсовое лечение, но с различной последовательностью. Как правило, между курсами требуется ликвидационный (отмывочный, washout) период, равный пяти периодам полувыведения, для того чтобы пациенты смогли вернуться к исходным показателям. Обычно «перекрестные модели» используются при изучении фармакокинетики и фармакодинамики, поскольку они более выгодны экономически (требуют меньшего числа пациентов), а также в случаях, когда клинические условия относительно постоянны в течение периода исследования.

Таким образом, на протяжении всего этапа клинических испытаний, начиная с момента планирования и заканчивая интерпретацией полученных данных, одно из стратегических мест занимает статистический анализ. Учитывая многообразие нюансов и специфику проведения КИ, трудно обойтись без специалиста по специфическому биологическому статистическому анализу.

Биоэквивалентные клинические исследования

Врачам-клиницистам хорошо известно, что препараты, имеющие одни и те же активные вещества, но выпускаемые различными фирмами-производителями (так называемые препараты-генерики), существенно отличаются по своему терапевтическому эффекту, а также по частоте и выраженности побочных явлений. В качестве примера можно привести ситуацию с диазепамом для парентерального введения. Так, неврологи и реаниматологи, работавшие в 70—90-х годах, знают, что для того, чтобы купировать судороги или провести вводный наркоз, пациенту достаточно было ввести в/в 2-4 мл седуксена (т.е. 10—20 мг диазепама), выпускаемого фирмой «Гедеон Рихтер» (Венгрия), тогда как для достижения того же клинического эффекта порой недостаточно было и 6-8 мл реланиума (т.е. 30—40 мг диазепама), выпускаемого фирмой «Польфа» (Польша). Для купирования абстинентного синдрома из всех «диазепамов» для парентерального введения наиболее пригодным являлся апаурин производства фирмы KRKA (Словения). Такого рода феномен, а также значительные экономические выгоды, связанные с производством препаратов-генериков, легли в основу разработки и стандартизации биоэкивалентных исследований и связанных с ними биологических и фармакокинетических понятий.

Следует дать определение ряду терминов. Биоэквивалентность - это сравнительная оценка эффективности и безопасности двух препаратов при одинаковых условиях введения и в одинаковых дозах. Один их этих препаратов является эталоном, или препаратом сравнения (как правило, это широко известное оригинальное лекарственное средство или препарат-генерик), а другой — исследуемый препарат. Основным параметром, который изучают в биоэквивалентных клинических исследованиях, является биологическая доступность (биодоступность) . Чтобы понять значимость этого феномена, можно вспомнить ситуацию, достаточно часто встречающуюся при проведении антибиотикотерапии. Перед назначением антибиотиков определяют чувствительность к ним микроорганизмов in vitro . К примеру, чувствительность к цефалоспоринам in vitro может оказаться на порядок (т.е. в 10 раз) выше, нежели к обыкновенному пенициллину, тогда как при проведении терапии in vivo клинический эффект оказывается выше у того же пенициллина. Таким образом, биодоступность — это скорость и степень накопления активной субстанции в месте ее предполагаемого действия в организме человека.

Как было сказано выше, проблема биоэквивалентности лекарственных препаратов имеет большое клиническое, фармацевтическое и экономическое значение. Во-первых, одно и то же лекарственное средство выпускается различными фирмами с применением различных вспомогательных веществ, в различных количествах и по различным технологиям. Во-вторых, применение препаратов-генериков во всех странах связано с существенной разницей в стоимости между оригинальными препаратами и генерическими лекарственными средствами. Так, общая стоимость продаж генериков в Великобритании, Дании, Нидерландах на рынке рецептурных лекарственных средств составила в 2000 г. 50-75% всех продаж. Здесь же уместно будет привести определение препарата-генерика в сравнении с оригинальным лекарственным средством: генерик - это лекарственный аналог оригинального препарата (произведенный другой фирмой, не являющейся патентодержателем), срок действия патентной защиты которого уже закончился. Характерно, что генерическое лекарственное средство содержит идентичное оригинальному препарату действующее вещество (активную субстанцию), но отличается вспомогательными (неактивными) ингредиентами (наполнителями, консервантами, красителями и т.д.).

Проведен ряд конференций с целью разработки и стандартизации документов по оценке качества генерических препаратов. В итоге приняты правила по проведению исследований биоэквивалентности. В частности, для ЕС это «Государственные правила по медицинской продукции в Европейском Союзе» (последняя редакция принята в 2001 г.); для США подобные правила были приняты в последней редакции 1996 г.; для России - 10.08.04 г. вступил в силу приказ МЗ РФ «О проведении качественных исследований биоэквивалентности лекарственных средств»; для РБ - это Инструкция № 73-0501 от 30.05.01 г. «По регистрационным требованиям и правилам проведения эквивалентности генерических лекарственных средств».

Учитывая ряд положений из этих основополагающих документов, можно констатировать, что лекарственные препараты считаются биоэквивалентными, если они фармацевтически эквивалентны, а их биодоступность (т.е. скорость и степень абсорбции активного вещества) одинакова и после назначения они в одинаковой дозе могут обеспечить должную эффективность и безопасность.

Естественно, выполнение исследований по биоэквивалентности должно соответствовать принципам GCP. Однако проведение клинических испытаний по биоэквивалентности имеет ряд особенностей. Во-первых, исследования должны выполняться с участием здоровых, предпочтительно некурящих добровольцев обоего пола в возрасте 18-55 лет, с представлением точных критериев включения/исключения и иметь соответствующий дизайн (контролируемых, перекрестных клинических исследований с рандомизированным распределением добровольцев). Во-вторых, минимальное число испытуемых — не менее 12 человек (обычно 12-24). В-третьих, возможность участвовать в исследовании должна подтверждаться стандартными лабораторными тестами, сбором анамнеза и общеклинического обследования. Причем как до, так и в процессе испытания могут проводиться специальные медицинские обследования, зависящие от особенностей фармакологических свойств изучаемого препарата. В-четвертых, для всех испытуемых должны быть созданы соответствующие стандартные условия на период проведения исследований, в том числе стандартная диета, исключение приема других лекарственных средств, одинаковый двигательный режим и режим дня, режим физической активности, исключение алкоголя, кофеина, наркотических веществ и концентрированных соков, время пребывания в исследовательском центре и время окончания испытания. Причем необходимо исследование биодоступности как при введении однократной дозы изучаемого препарата, так и при достижении стабильного состояния (т.е. стабильной концентрации препарата в крови).

Из фармакокинетических параметров, используемых для оценки биодоступности, обычно определяют максимум концентрации лекарственного вещества (C max); время достижения максимального эффекта (T max отражает скорость всасывания и наступления терапевтического эффекта); площадь под фармакокинетической кривой (AUC - area under concentration - отражает количество вещества, поступившего в кровь после однократного введения препарата).

Естественно, методы, используемые для определения биодоступности и биоэквивалентности, должны быть точными, надежными и воспроизводимыми. По регламенту ВОЗ (1994, 1996) определено, что два препарата считаются биоэквивалентными, если они имеют схожие фармакокинетические показатели и различия между ними не превышают 20%.

Таким образом, исследование биоэквивалентности позволяет сделать обоснованное заключение о качестве, эффективности и безопасности сравниваемых препаратов на основании меньшего объема первичной информации и в более сжатые сроки, чем при проведении других видов КИ.

При выполнении исследований по изучению эквивалентности двух препаратов в клинических условиях встречаются ситуации, когда лекарственное средство или его метаболит не могут быть определены в плазме крови или моче количественно. В этом случае оценивается фармакодинамическая эквивалентность. В то же время условия, в которых проводятся эти исследования, должны строго соответствовать требованиям GCP. Это, в свою очередь, означает, что при планировании, проведении и оценке результатов должны соблюдаться следующие требования: 1) измеряемая реакция должна представлять собой фармакологический или терапевтический эффект, подтверждающий эффективность или безопасность лекарственного средства; 2) методика должна быть валидирована с точки зрения точности, воспроизводимости, специфичности и достоверности; 3) реакция должна измеряться количественным двойным слепым методом, а результаты должны записываться с помощью соответствующего прибора с хорошим воспроизведением (если такие измерения невозможны, регистрация данных проводится по шкале визуальных аналогов, а обработка данных потребует специального непараметрического статистического анализа (к примеру, использование критерия Манна-Уитни, Уилкоксона и т.д.); 4) при высокой вероятности плацебо-эффекта рекомендуется включение в схему лечения плацебо; 5) дизайн исследования должен быть перекрестным или параллельным.

С биоэквивалентностью тесно связаны такие понятия, как фармацевтическая и терапевтическая эквивалентность.

Фармацевтическая эквивалентность подразумевает ситуацию, когда сравниваемые препараты содержат одинаковое количество одного и того же активного вещества в одной и той же лекарственной форме, соответствуют одним и тем же сопоставимым стандартам и применяются одинаковым способом. Фармацевтическая эквивалентность не обязательно предполагает терапевтическую эквивалентность, так как различия в наполнителях и в процессе производства могут обусловливать различия в эффективности препарата.

Под терапевтической эквивалентностью понимают такую ситуацию, когда препараты фармацевтически эквивалентны, а их воздействие на организм (т.е. фармакодинамические, клинические и лабораторные эффекты) одинаково.

Литература

1. Белых Л.Н. Математические методы в медицине. - М.: Мир, 1987.

2. Вальдман А.В . Экспериментальная и клиническая фармакокинетика: сб. тр. НИИ фармакологии АМН СССР. - М.: Медицина, 1988.

3. Лойд Э. Справочник по прикладной статистике. - М., 1989.

4. Мальцев В.И . Клинические испытания лекарств.— 2-е изд. - Киев: Морион, 2006.

5. Рудаков А.Г . Справочник по клиническим испытаниям / пер. с англ. - Brookwood Medical Publication Ltd., 1999.

6. Соловьев В.Н., Фирсов А.А., Филов В.А. Фармакокинетика (руководство). - М.: Медицина, 1980.

7. Стефанов О.В. Доклінічні дослідження лікарських засобів (метод. рекомендации). - Киів, 2001.

8. Стьюпер Э. Машинный анализ связи химической структуры и биологической активности. - М.: Мир, 1987.

9. Darvas F., Darvas L . // Quantitative structure-activity analysis / ed. by R.Franke et al. - 1998. - Р. 337-342.

10. Dean P.M . // Trends Pharm. Sci. - 2003. - Vol. 3. - P. 122-125.

11. Guideline for Good Clinical Trials. - ICN Harmonized Tripartite Guideline, 1998.

Медицинские новости. - 2009. - №2. - С. 23-28.

Внимание! Статья адресована врачам-специалистам. Перепечатка данной статьи или её фрагментов в Интернете без гиперссылки на первоисточник рассматривается как нарушение авторских прав.

]

Рис. 3.1 Процесс разработки и оценки лекарства для вывода на рынок США.

Между моментами создания нового лекарства и демонстрации его клинической эффективности и адекватной безопасности можно выделить несколько этапов (рис. 3.1). Этап первоначальной разработки обычно состоит в определении терапевтической дели (заболевание или состояние) или целевой молекулы, например рецептора, фермента и др., и последующем обнаружении основного химического соединения, т.е. вещества с характерным эффектом, необходимым для нового лекарства. В современных программах разработки лекарств чаще определяется целевая молекула, которая является ключевым звеном патологического процесса, и осуществляется поиск синтетических и природных соединений, действующих на эту молекулу. В дальнейшем пытаются разработать более подходящие соединения. Получение таких соединений - многократный процесс, включающий синтез похожих химических производных основного соединения. При разработке новых аналогов, чтобы получить требуемую эффективность, используют анализ взаимосвязи структура-активность (SAR или QSAR при количественной оценке).

Описание к рис. 3.1 Процесс разработки и оценки лекарства для вывода на рынок США. Некоторые требования для препаратов, используемых для лечения жизнеугрожающих заболеваний, могут отличаться

Некоторые аналоги препаратов становятся объектами крупномасштабных фармакологических и токсикологических исследований для определения характеристик лекарств, которые могут получить одобрение для клинических исследований с участием пациентов. После серии клинических наблюдений полученные данные подаются в регулирующий орган для получения разрешения на реализацию нового лекарства. После этого с помощью различных методов собирают результаты клинического применения препарата. Этот процесс называют постмаркетинговыми наблюдениями (см. Принятие фармакотерапевтического решения), которые регулируют менее строго, чем процедуры, необходимые до получения регистрации.

Эксперименты на животных обеспечивают основу клинических наблюдений

Сведения о фармакологических эффектах лекарства in vitro и in vivo используют для предварительного заключения о его терапевтической ценности. Эти данные нужны для обоснования исследований на людях, поскольку без них не будет базы для оценки ожидаемой пользы и приемлемого риска нежелательных эффектов. Доклиническими исследованиями называют эксперименты in vitro и на животных, используемые для определения действия лекарства на уровне молекулы, клетки, определенной ткани или органа, оценки фармакологических свойств и изучения потенциальных терапевтических эффектов на животных моделях заболеваний человека. Исследования на животных также помогают изучить метаболизм и распределение лекарства в организме и разработать основные показания. Клинические исследования не могут быть продолжены, если не доказана безопасность лекарства. Для оценки возможной токсичности нового лекарства необходимы следующие исследования на животных:

  • токсикологические исследования in vitro для оценки генетической и биохимической токсичности ;
  • оценка острой токсичности с изучением физиологических систем (сердечно-сосудистая, центральная нервная, желудочно-кишечный тракт), кожи и слизистых (острое раздражение и возбуждение);
  • оценка подострой и хронической токсичности;
  • оценка канцерогенности;
  • оценка репродуктивной токсичности;
  • оценка генетической токсичности.

При изучении острой токсичности оценивают эффекты, возникающие через несколько часов или дней после однократного введения. При изучении хронической токсичности рассматривают эффекты после введения повторных доз в течение нескольких недель или месяцев.

Однако надежность данных, полученных на животных, для прогнозирования клинических результатов зависит от уровня клинической релевантности модели. Например, модель пневмонии, вызванной золотистым стафилококком, хорошо прогнозируема. Инфицирование организма одинаково и у людей, и у животных. Иммунологический ответ против бактерий и легочная патология у животных и человека очень схожи. Напротив, животные модели других заболеваний только косвенно имитируют заболевания человека и менее предсказуемы. Обычно возможность разработки животной модели связана с пониманием патофизиологии конкретного заболевания. В указанном примере непосредственная причина пневмонии хорошо известна, в то время как точная этиология многих заболеваний не определена.

Изучение лекарства в клинике состоит из нескольких этапов

Клинические исследования начинаются после того, как собрано достаточное количество данных после исследований на животных в качестве обоснования для оценки нового лекарства в клинике и получения необходимого официального разрешения. Этапы разработки лекарства обозначают как фаза I, фаза II и фаза III. Фаза IV является этапом пост-маркетинговых наблюдений и других пострегистрационных клинических исследований (см. рис. 3.1).

Фаза I включает первые клинические исследования с участием людей . Эти исследования проводят под очень строгим наблюдением, обычно они являются открытыми или одинарными слепыми (табл.3.2) и определяют наименьшую допустимую дозу по токсичности. Дальнейшие исследования проводят с меньшими дозами. Обычно в таких исследованиях участвуют молодые здоровые мужчины. В дальнейшем их заменяют группой больных. Также в эту фазу получают первичные данные о фармакокинетике.

Фаза II начинается после определения диапазона допустимых доз и рассматривается как доказательство концепции . Этот этап проходит с участием больных, у которых новое лекарство должно проявить свой потенциальный эффект. Основная цель состоит в получении доказательств того, что новое лекарство эффективно, т.е. обладает эффектами, полученными в доклинических исследованиях. Иногда конечной точкой клинических наблюдений фазы II является собственно терапия, в других случаях используют заместительные конечные точки исследований. Заместительная конечная точка прогнозирует или предположительно прогнозирует истинную конечную точку. Например, изучение лекарства при сердечной недостаточности может иметь истинную конечную точку при увеличении толерантности к нагрузке или выживаемости. Заместительная конечная точка для того же лекарства может быть уменьшением периферического сопротивления сосудов и улучшением сердечного выброса. Для лекарства, которое может предотвращать тромбообразование при ангиопластике, заместительной конечной точкой может быть ингибирование агрегации тромбоцитов, а истинной конечной точкой - уменьшение рестеноза.

Заместительная конечная точка наиболее удобна, когда она тесно связана с истинной конечной точкой. Так, например, заместительной конечной точкой является снижение артериального давления. Целью лечения гипертензии является снижение неблагоприятных сердечно-сосудистых реакций организма и почечной недостаточности как последствий гипертензии. Таким образом, снижение артериального давления - это заместительная конечная точка для уменьшения последствий гипертензии.

Другие цели фазы II состоят в определении фармакокинетики лекарства и связи между эффектом и концентрацией вещества в плазме, если это возможно. Также изучается влияние заболеваний печени и почек на выведение лекарства из организма, фармакокинетические и фармакодинамические взаимодействия нового лекарства с другими средствами , с которыми их могут назначать совместно.

Исследования в фазу II могут быть одинарными или двойными слепыми, параллельными или перекрестными, с использованием случайных выборок пациентов. В этнически разнородных популяциях, например в США, в фармакокинетических исследованиях иногда изучают особенности метаболизма лекарств у разных этнических групп. Этническая однородность является грубым усреднением генетической классификации. Возможно, в будущем более корректный подход к оценке путей метаболизма и клинических результатов будет состоять в классификации пациентов по их генетической предрасположенности к метаболизму лекарств. Тогда будет возможно предсказать, для какого генотипа лекарство будет более полезно, а для какого - токсично. Этот раздел фармакологии называют фармакогенетикой.

В фазу III устанавливают эффективность и безопасность нового лекарства . Если возможно, проводят контролируемые рандомизированные двойные слепые исследования, которые всегда параллельны. Планируемая модель и размер всех клинических наблюдений, особенно фазы III, основывают на статистических действиях, например рандомизации процедур, чтобы после окончания исследования получить веское заключение. Кроме того, популяционные исследования фазы III должны усреднять целевую популяцию для данного лекарства. В исследовании должны участвовать пациенты с различными проявлениями изучаемого заболевания. Распределение по этническим группам и полу должно отражать таковое в популяции. Наибольшее внимание уделяют изучению детей, за исключением случаев, когда это нецелесообразно, например при изучении лекарств для лечения таких заболеваний у пожилых, как болезнь Альцгеймера.

Разработка лекарств является длительным процессом

  • Время от подачи заявки на регистрацию до его получения составляет от 6 мес до нескольких лет, чаще 1-2 года
  • Процесс разработки лекарства до регистрации обычно занимает 6-10 лет

Таблица 3.2 Клинические исследования, терминология

Термин

Определение

Контрольная группа

Стандартная терапия (или плацебо при отсутствии стандартов), с которой сравнивают эффективность нового препарата

Рандомизированное исследование

Пациенты, участвующие в исследовании, имеют одинаковую возможность быть включенными в опытную или контрольную группу, а факторы, которые могут повлиять на результаты, одинаково распределены между двумя группами

Двойное слепое исследование

Ни врач, ни пациент не знают, получает ли данный пациент опытное или контрольное средство, что помогает избежать субъективизма

Одинарное слепое исследование

Врач знает, какой препарат назначен данному пациенту, но пациент не знает

Открытое исследование

Противоположно двойному слепому: и врач, и пациент знают, какое средство (опытное или контрольное)назначено и в какой дозе

Параллельные исследования

Одновременно оценивают как минимум две схемы, но пациенту назначают только один вид терапии

Перекрестные исследования

Пациенты получают каждый вид лечения последовательно и таким образом выступают в качестве контрольной группы для самих себя. Например, если лечение А оценивают относительно лечения В, то некоторые пациенты получают сначала А, потом В, а другие наоборот - сначала В, потом А. Так оценивают эффекты лекарственной терапии, а не порядка назначений

Конечная точка

Измеряют для оценки эффекта лекарства (например, нормализация артериального давления - конечная точка для оценки антигипертензивных средств, уменьшение боли - конечная точка для оценки анальгетиков)

Заместительная конечная точка

Результат лечения, который прогнозирует истинную цель терапии, не являясь этой целью (например, снижение размера опухоли в качестве заместителя выживаемости)

ОБЩАЯ РЕЦЕПТУРА.»

1.Определение предмета фармакология и ее задачи.

2.Этапы развития фармакологии.

3.Методы изучения фармакологии в России.

4.Пути изыскания лекарственных средств.

5.Перспективы развития фармакологии.

7.Понятие о лекарственных препаратах, лекарственных веществах и лекарственных формах.

8.Классификация препаратов по силе действия,

по консистенции и по применению.

9.Понятие о галеновых и новогаленовых препаратах.

10.Понятие о государственной фармакологии.

Фармакология изучает действие лекарственных препаратов на организм .

1.Изыскание новых лекарственных средств и доведение их до практической медицины.

2.Усовершенствование существующих лекарств (получение препаратов с менее выраженными побочными действиями)

3.Поиск лекарств с новым лечебным действием.

4.Изучение средств народной медицины.

Лекарство должно быть: эффективным, безвредным и иметь преимущество перед препаратами данной группы.

ЭТАПЫ РАЗВИТИЯ ФАРМАКОЛОГИИ.

1- этап - эмперический (первобытнообщинный)

Случайные открытия - случайные находки.

2- этап - эмперико- мистический (рабовладельческий)

Появление первых лекарственных форм

(ароматные воды,)

Гиппократ, Парацельс, Гален.

3- этап - религиозно - схоластический или феодальный.

4- этап - научная фармакология, конец У111 начало 1Хвека.

1- этап - допетровский

В 1672 году была открыта вторая аптека, где имелась таксировка (взималась плата).

При Петре 1 было открыто 8 аптек.

2- этап - дореволюционный

3- этап - современный

Формируется научная фармакология. Конец ХУ111 в.и связан этот этап с открытием медицинских факультетов при университетах.

МЕТОДЫ ИЗУЧЕНИЯ.

1.Описательный. Нестор Максимович

2.Экспериментальный:г.Тарту была открыта первая лаборатория.

Основоположники: Нелюбин, Иовский, Дыбковский, Догель.

3.Экспериментально- клинический. Появляются первые клиники.



Боткин, Павлов, Кравков.

4.Экспериментально - клинический.На патологически измененных органах.

академик Павлов и Кравков они же являются основоположниками

Российской фармакологии.

академик Павлов - изучение пищеварения, ВНС, ССС.

Кравков - (ученик Павлова) - издал первый учебник по фармакологии,

который переиздавался 14 раз.

5.Экспериментально - клинический на патологических измененных органах

с учетом дозы.

Николаев и Лихачев - ввели понятие дозы.

В 1920 году был открыт ВНИХФИ.

В 1930 году был открыт ВИЛР.

В 1954 году был открыт НИИ фармакологии и химии терапии при АМН.

С 1954 года начинается «золотой век» фармакологии.

В 1978 году при нашем заводе «Медпрепаратов» -НИИА. (Биосинтез)

ПРИНЦИПЫ СОЗДАНИЯ НОВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ.

Полученные лекарства аналогичны тем, которые существуют в живом

организме (например, адреналин).

2.Создание новых препаратов на основе известных биологически

активных веществ.

3.Имперический путь. Случайные открытия, находки.

4.Получение препаратов из продуктов грибов и микроорганизмов

(антибиотики).

5. Получение препаратов из лекарственных растений.

ПЕРСПЕКТИВЫ РАЗВИТИЯ ФАРМАКОЛОГИИ.

1.Повысить уровень и эффективность диспансеризации.

2.Поднять уровень и качество медицинского обслуживания.

3.Создать и повысить производство новых лекарственных средств для лечения онкологических больных, больных сахарным диабетом, ССС.

4.Повысить качество подготовки кадров среднего и высшего звена.

Общая рецептура –

это раздел фармакологии, изучающий правила выписывания, приготовления и отпуска лекарств больным.

РЕЦЕПТ - это письменное обращение врача, с просьбой о приготовлении

и отпуске лекарства больному.

Согласно приказу № 110 МЗ РОССИИ от 2007 года №148-1 У/-88 существует три формы рецептурных бланков.

ФОРМА 107/У- Можно выписывать: одно ядовитое или не более двух простых или сильнодействующих.

На простые и сильнодействующие рецепт действителен в течение двух месяцев, а сильнодействующие и спиртосодержащие - в течение 10 дней.

ФОРМА 148/У- Выписывается в двух экземплярах с обязательным заполнением под копирку, для отпуска лекарств бесплатно или на льготных условиях.

Отличие формы №2 от формы №3

ФОРМА №1. 1.Штамп поликлиники или код.

2.Дата выписки рецепта.

3.Ф.И.О. больного, возраст.

4.Ф.И.О. врача.

5.Выписывается препарат.

6.Печать и подпись.

Рецепт является юридическим документом

ФОРМА №2. 1.Штамп и шифр.

2.Указано: бесплатно.

3.Эти рецепты имеют свой номер.

4.Указывается номер пенсионного удостоверения.

5.Выписывается только одно лекарственное вещество.

ФОРМА №3. Рецепт выписывается на специальных бланках из муаровой бумаги, розового цвета, на свету видны волны, т.е. этот бланк нельзя подделать.

Это бланк особого учета, имеет розовый цвет, водяные знаки и серию

Отличие от формы №3 от других бланков соответствующих форм.

1.Каждый бланк имеет свою серию и № (например, ХГ - №5030)

2.На рецептурном бланке ставится № истории болезни или амбулаторной

3.Бланки хранятся в сейфах, они закрываются и ставится печать т.е. опечатываются. Ведется учет рецептурных бланков в специальном журнале, который пронумерован, прошнурован и скреплен печатью.

4.Ответственный за хранение проведен приказом по больнице или по поликлинике.

5.На наркотики выписывается только одно вещество, выписывается только самим врачом и заверяется главным врачом или зав. отделением.

ПРАВИЛА ВЫПИСЫВАНИЯ РЕЦЕПТОВ:

Рецепт выписывается только шариковой ручкой, не допускаются исправления и зачеркивания. Выписывается только на латинском языке.

Твердые лекарственные вещества выписываются в граммах (например: 15,0),

· жидкие вещества обозначаются в мл.,

· спирт этиловый в чистом виде отпускаются с аптечного склада ангро т.е. по весу. и поэтому для учета выписывается в рецептах по массе, т.е в граммах

Допускаются общепринятые сокращения. (см. приказ)

Сигнатура пишется на русском или на национальном языке. Указывается способ применения.

НЕЛЬЗЯ: в сигнатуре писать такие выражения как:

внутренне

или применение известно.

В каждой аптеке имеется журнал неправильно выписанных рецептов.

ЛЕКАРСТВЕННОЕ ВЕЩЕСТВО - это вещество, используемое для лечения,

профилактики и диагностики заболеваний.

ЛЕКАРСТВЕННЫЙ ПРЕПАРАТ - это препарат, (л.ф.) имеющий в своем составе одно или несколько лекарственных веществ и выпускаемый в определенной лекарственной форме.

ЛЕКАРСТВЕННАЯ ФОРМА - это форма лекарственного препарата, делающая его удобным для применения.

Тема: КЛАССИФИКАЦИЯ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ ПО

СИЛЕ ДЕЙСТВИЯ.

1.Ядовитые и наркотические. (список А. порошки)

Обозначаются (Venena «А»), хранятся в штанглассах, этикетка - черная,

белыми буквами написано название препарата. Хранят согласно приказу №328 от 23.08.1999 года в сейфах, под замком оборудованном звуковой или световой сигнализацией, на ночь опечатывается. Ключ находится у ответственного за учет наркотических веществ.

На внутренней стороне дверки сейфа указывается список А - ядовитых лекарственных препаратов с указанием высшей разовой дозы и высшей суточной дозы.. Внутри сейфа выделено отдельное место, где хранятся особо ядовитые вещества (сулема, мышьяк).

2.Сильнодействующие

(Heroica «Б»)

Этикетка на штанглассах - белая, названия веществ написаны красными буквами, хранятся в обычных шкафах.

3.Препараты общего действия.

Размещаются также в обычных шкафах.

Этикетка - белая, написаны черными буквами.

КЛАССИФИКАЦИЯ ПО КОНСИСТЕНЦИИ.

Делятся на:

1.Твердые.

КЛАССИФИКАЦИЯ ПО СПОСОБУ ПРИМЕНЕНИЯ:

1.Для наружного применения.

2.Для внутреннего применения.

3.Для инъекций.

По способу изготовления жидких лекарственных форм выделяют в особую группу лекарственные препараты, которые называются – галеновыми

ГАЛЕНОВЫ ПРЕПАРАТЫ - это спиртовые вытяжки из лекарственного сырья, содержащие вместе с действующими веществами и балластные вещества. - (вещества не оказывают лечебного действия и также не вредны для организма)

НОВОГАЛЕНОВЫ ПРЕПАРАТЫ :- это препараты максимально очищены

от балластных веществ. В своем составе, в основном, содержат чистые действующие вещества.

ДЕЙСТВУЮЩИЕ ВЕЩЕСТВА -это химически чистые вещества определенной направленности терапевтического действия.

БАЛЛАСТНЫЕ ВЕЩЕСТВА - понижают или повышают эффект терапевтического действия не принося вред здоровью

ГОСУДАРСТВЕННАЯ ФАРМАКОПЕЯ - это сборник общих государственных стандартов, определяющих качество, эффективность и безопасность лекарственных препаратов. Она содержит статьи по определению качественного и количественного содержания веществ в лекарственных формах.

Создание лекарственного препарата - длительный процесс, включающий несколько основных этапов - от прогнозирования до реализации в аптеке (рис. 2.1).


Good Laboratory Practice (GLP) - надлежащая лабораторная практика (правила доклинических исследований безопасности и эффективности будущего ЛС)
Good Manufacturing Practice (GMP) - надлежащая производственная практика (правила организации производства и контроля качества ЛС)
Good Pharmacy Practice (GPP) - надлежащая фармацевтическая (аптечная) деятельность

Good Education Practice (GEP) - надлежащая образовательная практика

Рис. 2.1. Периоды «жизни» лекарственного средства


Основой прогнозирования биологической активности лекарственного вещества является установление связи между фармакологическим действием (биологической активностью) и структурой с учетом физико-химических свойств лекарственного вещества и биологических сред (рис. 2.2).

Как видно из рисунка, химическое соединение для проявления биологической активности должно обладать целым рядом физико-химических параметров, соответствующих аналогичным характеристикам биологических сред. Только в случае оптимального сочетания таких свойств химическое соединение может рассматриваться как «претендент» на участие в фармакологическом скрининге.

Перечисленные физико-химические параметры лекарственного вещества являются функцией его структуры. Количественную оценку биологической активности органических соединений позволяет осуществить уже упомянутый ранее Q S AR(ККСА) - метод.

Рассмотрим отдельные примеры, демонстрирующие основные пути создания лекарственных средств.

Модификация структур известных лекарственных средств. Наглядным примером является получение синтетических анестетиков - новокаина (прокаина), дикаина (тетракаина), являющихся структурными аналогами природного алкалоида кокаина. Кокаин - дициклическое соединение, в состав которого входят пирролидиновое и пиперидиновое кольца. Все три вещества относятся к фармакологической группе местных анестетиков, обратимо блокирующих проведение нервного импульса.

В формулах кокаина, новокаина и дикаина можно выделить аналогичные группы: ароматическое кольцо (липофильная группа), соединенное через эфирную группу с ионизируемой группой - третичным амином (гидрофильная группа):


В настоящее время фармакологи считают эталоном местных анестетиков лидокаин, также синтетическое ЛС. В отличие от рассмотренных выше молекула лидокаина вместо эфирной содержит амидную группу:

Другим примером создания ЛС путем модификации известных препаратов является получение новых ЛС группы пенициллинов, цефалоспоринов, сульфаниламидов (см. соответствующие подразд. ч. 2).

Копирование известных физиологически активных веществ. В качестве примера приведем разработку полного химического синтеза антибиотика левоми- цетина. Сначала левомицетин (хлорамфеникол)


был выделен из культуральной жидкости Streptomyces venezuelae. В настоящее время в промышленности его получают 10-стадийным синтезом из стирола.

Как следует из приведенных примеров, оба рассмотренных подхода близки по своей сути. Однако следует подчеркнуть, что в отличие от местных анестетиков при копировании природного левомицетина небольшие изменения в его структуре ведут к уменьшению или полной потере активности этого антибиотика (см. разд. III).

Поиск антиметаболитов (антагонистов естественных метаболитов). Испытания in vitro антибактериальных свойств красного красителя пронтозила продемонстрировали его неэффективность. Однако in vivo пронтозил проявлял высокую активность против гемолитического стрептококка. Оказалось, что пронтозил в организме превращался в активное ЛВ - сульфаниламид. За всю историю развития сульфаниламидных препаратов на фармацевтическом рынке появилось около 150 различных его модификаций.

Сульфаниламиды являются структурными геометрическими аналогами и-аминобензойной кислоты и нарушают синтез фолиевой кислоты: фермент, ответственный за синтез последней, использует не саму аминобензойную кислоту, а ее имитатор - сульфаниламид. Фолиевая кислота необходима для синтеза пуриновых оснований и последующего синтеза нуклеиновых кислот. Появление в среде производных сульфаниловой кислоты приводит к прекращению роста бактериальных клеток.


Из представленных ниже формул наглядно видно, что сульфаниламиды являются антиметаболитами и-аминобензойной кислоты.

г /СООН

СН2СН2СООН.

Фрагмент глутаминовой кислоты

Фрагмент птероевой кислоты

Фолиевая кислота

Исследование метаболизма лекарств. Некоторые ЛС обладают способностью метаболизироваться в организме человека с образованием более активных веществ. Широко применяемый для лечения гипертонической болезни препарат группы ингибиторов ангиотензинпревращающего фермента престариум (пе- риндоприл) является предшественником лекарства. В организме он метаболи- зируется в более активный метаболит - периндоприлат.

Некоторые ЛС, например, антидепрессант имипрамин превращается в организме в более активный антидепрессант дезипрамин, также применяющийся как ЛС.

Наркотический анальгетик кодеин и полусинтетический наркотик героин метаболизируются в морфин, природный алкалоид опия.

Использование в терапии новых свойств уже известных лекарственных препаратов. Было обнаружено, что p-адреноблокаторы, адреномиметические вещества, обладают гипотензивным свойством. Широко применяемый аспирин (ацетилсалициловая кислота) может оказывать не только противовоспалительное, анальгезирующее, жаропонижающее, но и антиагрегационное действие и назначается при ишемической болезни сердца и наличии ряда факторов ИБС.

Создание комбинированных препаратов. Одновременное действие компонентов бисептола (бактрима) - триметоприма и сульфаметоксазола характеризуется синергизмом, т.е. усилением действия при их комбинировании. Это позволяет использовать лекарственные вещества в более низких дозах и тем самым снизить их токсичность. Сочетание указанных ЛВ обеспечивает высокую бактерицидную активность в отношении грамположительных и грамотрицатель- ных микроорганизмов, в том числе бактерий, устойчивых к сульфаниламидным препаратам.

Копирование известных лекарственных препаратов. Поиск оригинальных лекарственных субстанций не всегда выгоден, так как требует больших экономических затрат и делает их недоступными для потребителя. Поэтому многие фармацевтические фирмы для создания ЛС используют субстанции, у которых закончился период патентной защиты. Эти препараты называют дженериками (generics) (см. подразд. 2.6).