Нарушения фвд i iii степени. Проявление рестриктивных нарушений дыхания: причины, диагностика

Рестриктивная дыхательная недостаточность может быть вызвана: 1. заболеваниями плевры, ограничивающими экскурсию легкого (экссудативный плеврит, гидроторакс, пневмоторакс, фиброторакс и др.);

2. уменьшением объема функционирующей паренхимы легкого (ателектазы, пневмонии, резекция легкого и др.);

3. воспалительной или гемодинамически обусловленной инфильтрацией легочной ткани, ведущей к увеличению «жесткости» легочной паренхимы (пневмония, интерстициальный или альвеолярный отек легких при левожелудочковой сердечной недостаточности и др.);

4. пневмосклерозом различной этиологии;

5. поражениями грудной клетки (деформации, кифосколиоз) и дыхательных мышц (миозиты).

Следует заметить, что при многих заболеваниях органов дыхания имеет место сочетание рестриктивных и обструктивных расстройств, а также нарушение процессов перфузии легких и диффузии газов через альвеолярно-капиллярную мембрану. Тем не менее всегда бывает важно оценить преобладающие механизмы нарушения легочной вентиляции, получив объективные обоснования назначения той или иной патогенетической терапии. Таким образом возникают следующие задачи:

1. Диагностика нарушений функции внешнего дыхания и объективная оценка тяжести дыхательной недостаточности.

2. Дифференциальная диагностика обструктивных и рестриктивных расстройств легочной вентиляции.

3. Обоснование патогенетической терапии дыхательной недостаточности.

4. Оценка эффективности проводимого лечения.

Эти задачи решаются как при исследовании ФВД, включающем спирографию и пневмотахографию, так и с использованием более сложных методов, позволяющих изучать показатели механики дыхания и газообмена в легких.

Спирография - метод графической регистрации изменения легочных объемов при выполнении различных дыхательных маневров, с помощью которого определяют показатели легочной вентиляции, легочные объемы и емкости (емкость включает несколько объемов).

Пневмотахография - метод графической регистрации потока (объемной скорости движения воздуха) при спокойном дыхании и при выполнении определенных маневров. Современное спирометрическое оборудование (спирометры) позволяет определять спирографические и пневмотахометрические показатели. В связи с этим все чаще результаты исследования функции внешнего дыхания объединяются одним названием - «спирометрия».

Смешанные нарушения вентиляции легких. Чисто обструктивные и рестриктивные наруше-ния вентиляции легких возможны лишь теоре-тически. Практически всегда имеется определен-ная комбинация обоих видов нарушения венти-ляции.

Поражение плевры приводят к развитию ре-стриктивных нарушений вентиляции легких вследствие следующих причин: 1) болей в груд-ной клетке; 2) гидроторакса; 3) гемоторакса; 4) пневмоторакса; 5) плевральных шварт.

Под влиянием боли происходит ограничение дыхательной экскурсии грудной клетки. Боли возникают при воспалении плевры (плеврит), опухолях, ранениях, травмах, при межреберной невралгии и др.

Гидроторакс — жидкость в плевральной поло-сти, вызывающая компрессию легкого, ограни-чение его расправления (компрессионный ателектаз). При экссудативном плеврите в плевраль-ной полости определяется экссудат, при легоч-ных нагноениях, пневмониях экссудат может быть гнойным; при недостаточности правых от-делов сердца в плевральной полости накаплива-ется транссудат. Транссудат в плевральной по-лости может обнаруживаться также при отеч-ном синдроме различной природы.

Гемоторакс — кровь в плевральной полости. Это может быть при ранениях грудной клетки, опухолях плевры (первичных и мета-статических). При поражениях грудного прото-ка в плевральной полости определяется хилез-ная жидкость (содержит липоидные вещества и по внешнему виду напоминает молоко). В ряде случаев в плевре может накапливаться так на-зываемая псевдохилезная жидкость — мутная белесоватая жидкость, не содержащая липоид-ных веществ. Природа этой жидкости неизвест-на.

Пневмоторакс — газ в плевральной области. Различают спонтанный, травматический и ле-чебный пневмоторакс. Спонтанный пневмоторакс возникает внезапно. Первичный спонтанный пневмоторакс может развиваться у практически здорового человека при физическом напряжении или в покое. Причины этого вида пневмоторак-са не всегда ясны. Чаще всего он обусловлен разрывом мелких субплевральных кист. Вторич-ный спонтанный пневмоторакс развивается тоже внезапно у больных на фоне обструктивных и необструктивных заболеваний легких и связан с распадом легочной ткани (туберкулез, рак лег-ких, саркоидоз, инфаркт легких, кистозная ги-поплазия легких и др.). Травматический пневмоторакс связан с нарушением целостности грудной стенки и плевры, ранением легкого. Лечебный пневмоторакс в последние годы используется редко. При попадании воздуха в плевральную полость развивается ателектаз лег-ких, выраженный тем больше, чем больше газа находится в плевральной полости.

Пневмоторакс может быть ограниченным, если в плевральной полости имеются сращения висцерального и париетального листков плевры в результате перенесенного воспалительного про-цесса. Если воздух в плевральную полость по-ступает без ограничения, происходит полный коллапс легкого. Двухсторонний пнев-моторакс имеет очень неблагоприятный прогноз. Если доступ воздуха в полости ничем не ограни-чен, возникает полный коллапс левого и правого легкого, что является, безусловно, смертель-ным патологическим состоянием. Однако и час-тичный пневмоторакс имеет серьезный прогноз, так как при этом нарушается не только дыха-тельная функция легких, но также функция сер-дца и сосудов. Пневмоторакс может быть кла-панным, когда на вдохе воздух попадает в плев-ральную полость, а во время выдоха патологи-ческое отверстие закрывается. Давление в плев-ральной полости становится положительным, и оно нарастает, сдавливая функционирующее лег-кое и нарушая более значительно функцию сер-дца и сосудов. В таких случаях нарушения вен-тиляции легких и кровообращения быстро на-растают и могут привести к гибели пациента, если ему не будет оказана квалифицированная помощь.

Состояние, когда в плевральной полости на-ходятся и жидкость и газ, называют гидропнев-мотораксом. Это бывает при прорыве абсцесса легких в бронх и плевральную полость.

Плевральные шварты являются следствием воспалительного поражения плевры. Выражен-ность нашвартований может быть различной: от умеренной до так называемого панцирного лег-кого.

Нарушения вентиляционной способности легких, в основе которых лежит повышение сопротивления движению воздуха по дыхательным путям, т. е. нарушения бронхиальной проходимости. Нарушения бронхиальной проходимости могут быть обусловлены рядом причин: спазмом бронхов, отечно-воспалительными изменениями бронхиального дерева (отек и гипертрофия слизистой, воспалительная инфильтрация бронхиальной стенки и др.), гиперсекрецией со скоплением в просвете бронхов патологического содержимого, коллапсом мелких бронхов при утрате легкими эластических свойств, эмфиземой легких, трахеобронхиальной дискинезией, спадением крупных бронхов во время выдоха. При хронической неспецифической патологии легких часто встречается обструктивный вариант нарушений.

Основным элементом обструкции является затруднение акта выдоха. На спирограмме это проявляется в снижении объемной скорости форсированного выдоха, что сказывается в первую очередь на таком показателе, как ОФВ1.

Нарушения вентиляции легких

Жизненная емкость легких при обструкции долгое время остается нормальной, в этих случаях тест Тиффно (ОФВ1/ЖЕЛ) оказывается сниженным примерно в той же мере (на столько же процентов), что и ОФВь При длительной обструкции, при затяжных астматических состояниях, сопровождающихся острым вздутием легких, особенно при эмфиземе легких, обструкция приводит к увеличению остаточного объема легких. Причины увеличения ООЛ при обструктивном синдроме кроются в неодинаковых условиях движения воздуха по бронхам на вдохе и выдохе. Поскольку сопротивление на выдохе всегда больше, чем на вдохе, выдох затягивается, удлиняется, опорожнение легких затрудняется, поступление воздуха в альвеолы начинает превышать изгнание его из альвеол, что и ведет к увеличению ООЛ. Увеличение ООЛ может происходить без снижения ЖЕЛ, за счет увеличения общей емкости легких (ОЕЛ). Однако часто, особенно у пожилых пациентов, возможности увеличения ОЕЛ невелики, тогда начинается увеличение ООЛ за счет снижения ЖЕЛ. В этих случаях спирограмма приобретает характерные особенности: низкие показатели объемной скорости форсированного выдоха (ОФВ1 и МОС) сочетаются с малым объемом ЖЕЛ. Относительный показатель, индекс Тиффно, в этих случаях теряет свою информативность и может оказаться близким к норме (при значительном уменьшении ЖЕЛ) и даже вполне нормальным (при резком уменьшении ЖЕЛ).

Немалые трудности в спирографической диагностике представляет распознавание смешанного варианта, когда сочетаются элементы обструкции и рестрикции. При этом на спирограмме имеет место уменьшение ЖЕЛ на фоне низких объемных скоростей форсированного выдоха, т. е. такая же картина, как при далеко зашедшей обструкции. Дифференциальной диагностике обструктивного и смешанного варианта может помочь измерение остаточного объема и общей емкости легких: при смешанном варианте низкие значения ОФВ| и ЖЕЛ сочетаются с уменьшением ОЕЛ (или с нормальной ОЕЛ); при обструктивном варианте ОЕЛ увеличивается. Во всех случаях заключение о наличии факторов, ограничивающих расправление легкого на фоне обструктивной патологии, должно делаться с осторожностью.

В основе рестриктивных (от лат. restrictio

вызывают снижение площади дыхательной поверхности или (и) снижение растяжимости легких. Такими причинами являются: пневмонии, доброкачественные и злокачественные опухоли, туберкулез, резекция легкого, ателектазы, альвеолиты, пневмосклерозы, отек легкого (альвеолярный или интерстициальный), нарушение образования сурфактанта в легких, повреждение эластина легочного интерстиция (например, при действии табачного дыма).

ФВД – нарушения вентиляционной функции легких по смешанному, обструктивно-рестриктивному типу.

При уменьшении образования или разрушении сурфактанта уменьшается способность легких к растяжению во время вдоха, что сопровождается увеличением эластического сопротивления легких. В результате глубина вдохов уменьшается, а ЧД увеличивается. Возникает поверхностное частое дыхание (тахипноэ).

ПОСМОТРЕТЬ ЕЩЕ:

Рестриктивные нарушения дыхания

В основе рестриктивных (от лат. restrictio –ограничение) нарушений вентиляции легких лежит ограничение их расправления в фазе вдоха в результате действия внутрилегочных и внелегочных причин. В основе лежат изменения вязкоэластических свойств легочной ткани.

Внутрилегочные причины рестриктивного типа альвеолярной гиповентиляции

Внелегочные причины рестриктивного типа альвеолярной гиповентиляции приводят к ограничению величины экскурсий грудной клетки и к снижению дыхательного объема (ДО). Такими причинами являются: патология плевры, диафрагмы, нарушение подвижности грудной клетки и нарушения иннервации дыхательной мускулатуры.

Особое значение в развитии внелегочных форм рестриктивных нарушений внешнего дыхания имеет плевральная полость, скопление в ней экссудата или транссудата (при гидротораксе), попадание в нее воздуха (пневмоторакс), накопление в ней крови (гемоторакс).

Растяжимость (податливость) легких (∆V/∆P) – величина, характеризующая изменение объема легких на единицу транспульмонального давления, она является основным фактором, определяющим предел максимального вдоха. Растяжимость – величина, обратно пропорциональная эластичности.

Нарушение вентиляции легких

Для гиповентиляционных нарушений рестриктивного типа характерно уменьшение статических объемов (ЖЕЛ, ФОЕ, ОЕЛ) и снижение движущей силы экспираторного потока. Функция воздухоносных путей остается нормальной, следовательно, скорость воздушного потока не претерпевает изменений. Хотя ФЖЕЛ и ОФВ1 снижаются, отношение ОФВ1/ФЖЕЛ% в пределах нормальных значений или повышено. При рестриктивных легочных расстройствах снижена растяжимость легких (∆V/∆P) и эластическая отдача легких. Поэтому объемная скорость форсированного выдоха СОС25-75(усредненная величина за определенный период измерений от 25% до 75% ФЖЕЛ) снижается и в отсутствии обструкции воздухоносных путей. ОФВ1, характеризующий объемную скорость выдоха, и максимальная скорость выдоха при рестриктивных нарушениях снижается за счет уменьшения всех легочных объемов (ЖЕЛ, ФОЕЛ, ОЕЛ).

Гиповентиляционные расстройства дыхания часто возникают вследствие нарушения функционирования дыхательного центра, механизмов регуляции дыхания. Они, вследствие нарушения деятельности дыхательного центра, сопровождаются грубыми нарушениями ритмогенеза, формированием патологических типов дыхания, развитием апноэ.

Выделяют несколько форм нарушения деятельности дыхательного центра в зависимости от расстройства афферентации.

1. Дефицит возбуждающих афферентных влияний на дыхательный центр (при незрелости хеморецепторов у недоношенных новорожденных; при отравлениях наркотическими средствами или этанолом, при синдроме Пиквика).

2. Избыток тормозных афферентных влияний на дыхательный центр (например, при сильных болевых ощущениях, сопровождающих акт дыхания, что отмечается при плевритах, травмах грудной клетки).

3. Непосредственное повреждение дыхательного центра при поражении мозга – травматическом, метаболическом, циркуляторном (атеросклероз сосудов мозга, васкулиты), токсическом, нейроинфекционном, воспалительном; при опухолях и отеке мозга; передозировке наркотических веществ, седативных препаратов и др.

4. Дезинтеграция автоматической и произвольной регуляции дыхания (при формировании мощных потоков афферентной импульсации: болевой, психогенной, хеморецепторной, барорецепторной и др.

ПОСМОТРЕТЬ ЕЩЕ:

32.3.1. Обструктивные нарушения вентиляции легких

Рестриктивные нарушения дыхания

В основе рестриктивных (от лат.

restrictio –ограничение) нарушений вентиляции легких лежит ограничение их расправления в фазе вдоха в результате действия внутрилегочных и внелегочных причин. В основе лежат изменения вязкоэластических свойств легочной ткани.

Внутрилегочные причины рестриктивного типа альвеолярной гиповентиляции вызывают снижение площади дыхательной поверхности или (и) снижение растяжимости легких. Такими причинами являются: пневмонии, доброкачественные и злокачественные опухоли, туберкулез, резекция легкого, ателектазы, альвеолиты, пневмосклерозы, отек легкого (альвеолярный или интерстициальный), нарушение образования сурфактанта в легких, повреждение эластина легочного интерстиция (например, при действии табачного дыма). При уменьшении образования или разрушении сурфактанта уменьшается способность легких к растяжению во время вдоха, что сопровождается увеличением эластического сопротивления легких. В результате глубина вдохов уменьшается, а ЧД увеличивается. Возникает поверхностное частое дыхание (тахипноэ).

Внелегочные причины рестриктивного типа альвеолярной гиповентиляции приводят к ограничению величины экскурсий грудной клетки и к снижению дыхательного объема (ДО). Такими причинами являются: патология плевры, диафрагмы, нарушение подвижности грудной клетки и нарушения иннервации дыхательной мускулатуры.

Особое значение в развитии внелегочных форм рестриктивных нарушений внешнего дыхания имеет плевральная полость, скопление в ней экссудата или транссудата (при гидротораксе), попадание в нее воздуха (пневмоторакс), накопление в ней крови (гемоторакс).

Растяжимость (податливость) легких (∆V/∆P) – величина, характеризующая изменение объема легких на единицу транспульмонального давления, она является основным фактором, определяющим предел максимального вдоха. Растяжимость – величина, обратно пропорциональная эластичности. Для гиповентиляционных нарушений рестриктивного типа характерно уменьшение статических объемов (ЖЕЛ, ФОЕ, ОЕЛ) и снижение движущей силы экспираторного потока. Функция воздухоносных путей остается нормальной, следовательно, скорость воздушного потока не претерпевает изменений. Хотя ФЖЕЛ и ОФВ1 снижаются, отношение ОФВ1/ФЖЕЛ% в пределах нормальных значений или повышено. При рестриктивных легочных расстройствах снижена растяжимость легких (∆V/∆P) и эластическая отдача легких. Поэтому объемная скорость форсированного выдоха СОС25-75(усредненная величина за определенный период измерений от 25% до 75% ФЖЕЛ) снижается и в отсутствии обструкции воздухоносных путей. ОФВ1, характеризующий объемную скорость выдоха, и максимальная скорость выдоха при рестриктивных нарушениях снижается за счет уменьшения всех легочных объемов (ЖЕЛ, ФОЕЛ, ОЕЛ).

Гиповентиляционные расстройства дыхания часто возникают вследствие нарушения функционирования дыхательного центра, механизмов регуляции дыхания. Они, вследствие нарушения деятельности дыхательного центра, сопровождаются грубыми нарушениями ритмогенеза, формированием патологических типов дыхания, развитием апноэ.

Выделяют несколько форм нарушения деятельности дыхательного центра в зависимости от расстройства афферентации.

1. Дефицит возбуждающих афферентных влияний на дыхательный центр (при незрелости хеморецепторов у недоношенных новорожденных; при отравлениях наркотическими средствами или этанолом, при синдроме Пиквика).

2. Избыток тормозных афферентных влияний на дыхательный центр (например, при сильных болевых ощущениях, сопровождающих акт дыхания, что отмечается при плевритах, травмах грудной клетки).

3. Непосредственное повреждение дыхательного центра при поражении мозга – травматическом, метаболическом, циркуляторном (атеросклероз сосудов мозга, васкулиты), токсическом, нейроинфекционном, воспалительном; при опухолях и отеке мозга; передозировке наркотических веществ, седативных препаратов и др.

4. Дезинтеграция автоматической и произвольной регуляции дыхания (при формировании мощных потоков афферентной импульсации: болевой, психогенной, хеморецепторной, барорецепторной и др.

При инструментальной диагностике пульмонологических заболеваний часто исследуется функция внешнего дыхания. Такое обследование включает такие методы, как:

  • спирография;
  • пневмотахометрия;
  • пикфлоуметрия.

В более узком смысле под исследованием ФВД понимают два первых метода, осуществляемых одновременно с помощью электронного аппарата – спирографа.

В нашей статье мы поговорим о показаниях, подготовке к перечисленным исследованиям, интерпретации полученных результатов. Это поможет пациентам с заболеваниями органов дыхания сориентироваться в необходимости той или иной диагностической процедуры и лучше понять полученные данные.

Немного о нашем дыхании

Дыхание –жизненный процесс, в результате которого организм из воздуха получает кислород, необходимый для жизни, и выделяет углекислый газ, образующийся при обмене веществ. Дыхание имеет такие этапы: внешнее (с участием ), перенос газов эритроцитами крови и тканевое, то есть обмен газами между эритроцитами и тканями.

Перенос газов исследуют с помощью пульсоксиметрии и анализа газового состава крови. Об этих методах мы тоже немного поговорим в нашей теме.

Исследование вентиляционной функции легких доступно и проводится практически повсеместно при болезнях органов дыхания. Оно основано на измерении легочных объемов и скорости воздушных потоков при дыхании.

Дыхательные объемы и емкости

Жизненная емкость легких (ЖЕЛ) – наибольший объем воздуха, выдыхаемый после самого глубокого вдоха. Практически этот объем показывает, сколько воздуха может «поместиться» в легкие при глубоком дыхании и участвовать в газообмене. При уменьшении этого показателя говорят о рестриктивных нарушениях, то есть уменьшении дыхательной поверхности альвеол.

Функциональная жизненная емкость легких (ФЖЕЛ) измеряется как и ЖЕЛ, но только во время быстрого выдыхания. Ее величина меньше ЖЕЛ за счет спадения в конце быстрого выдоха части воздухоносных путей, в результате чего некоторый объем воздуха остается в альвеолах «невыдохнутым». Если ФЖЕЛ больше или равна ЖЕЛ, пробу рассматривают как неверно выполненную. Если ФЖЕЛ меньше ЖЕЛ на 1 литр и больше, это говорит о патологии мелких бронхов, которые спадаются слишком рано, не давая воздуху выйти из легких.

Во время выполнения маневра с быстрым выдохом определяют и другой очень важный параметр – объем форсированного выдоха за 1 секунду (ОФВ1). Он снижается при обструктивных нарушениях, то есть при препятствиях для выхода воздуха в бронхиальном дереве, в частности, при и тяжелой . ОФВ1 сравнивают с должной величиной или используют его отношение к ЖЕЛ (индекс Тиффно).

Снижение индекса Тиффно менее 70% говорит о выраженной .

Определяется показатель минутной вентиляции легких (МВЛ) – количество воздуха, пропускаемое легкими при максимально быстром и глубоком дыхании за минуту. В норме оно составляет от 150 литров и больше.

Исследование функции внешнего дыхания

Оно используется для определения легочных объемов и скоростей. Дополнительно нередко назначаются функциональные пробы, регистрирующие изменения этих показателей после действия какого-либо фактора.

Показания и противопоказания

Исследование ФВД проводится при любых болезнях бронхов и легких, сопровождающихся нарушением бронхиальной проходимости и/или уменьшением дыхательной поверхности:

  • хронический бронхит;
  • и другие.

Исследование противопоказано в следующих случаях:

  • дети младше 4 – 5 лет, которые не могут правильно выполнить команды медсестры;
  • острые инфекционные заболевания и лихорадка;
  • тяжелая стенокардия, острый период инфаркта миокарда;
  • высокие цифры артериального давления, недавно перенесенный инсульт;
  • застойная сердечная недостаточность, сопровождающаяся одышкой в покое и при незначительной нагрузке;
  • психические нарушения, не позволяющие правильно выполнить инструкции.

Функция внешнего дыхания: как проводится исследование

Процедура проводится в кабинете функциональной диагностики, в положении сидя, желательно утром натощак или не раньше чем через 1,5 часа после еды. По назначению врача могут быть отменены , которые постоянно принимает пациент: бета2-агонисты короткого действия – за 6 часов, бета-2 агонисты продленного действия – за 12 часов, длительно действующие теофиллины – за сутки до обследования.

Исследование функции внешнего дыхания

Нос пациенту закрывают специальным зажимом, чтобы дыхание осуществлялось только через рот, с помощью одноразового или стерилизуемого мундштука (загубника). Обследуемый дышит некоторое время спокойно, не заостряя внимания на процессе дыхания.

Затем пациенту предлагают сделать спокойный максимальный вдох и такой же спокойный максимальный выдох. Так оценивается ЖЕЛ. Для оценки ФЖЕЛ и ОФВ1 пациент делает спокойный глубокий вдох и как можно быстрее выдыхает весь воздух. Эти показатели записываются трижды с небольшим интервалом.

В конце исследования проводится довольно утомительная регистрация МВЛ, когда пациент в течение 10 секунд дышит максимально глубоко и быстро. В это время может возникнуть небольшое головокружение. Оно не опасно и быстро проходит после прекращения пробы.

Многим больным назначаются функциональные пробы. Самые распространенные из них:

  • проба с сальбутамолом;
  • проба с физической нагрузкой.

Менее часто назначается проба с метахолином.

При проведении пробы с сальбутамолом после регистрации исходной спирограммы пациенту предлагают сделать ингаляцию сальбутамола – бета2 агониста короткого действия, расширяющего спазмированные бронхи. Спустя 15 минут исследование повторяют. Также можно применять ингаляцию М-холинолитика ипратропия бромида, в этом случае повторно исследование проводят через 30 минут. Введение можно осуществлять не только с помощью дозированного аэрозольного ингалятора, но в некоторых случаях с использованием спейсера или .

Проба считается положительной при увеличении показателя ОФВ1 на 12% и больше при одновременном увеличении его абсолютного значения на 200 мл и больше. Это означает, что выявленная исходно бронхиальная обструкция, проявившаяся снижением ОФВ1, является обратимой, и после ингаляции сальбутамола проходимость бронхов улучшается. Это наблюдается при .

Если при исходно сниженном показателе ОФВ1 проба отрицательная, это говорит о необратимой бронхиальной обструкции, когда бронхи не реагируют на расширяющие их лекарства. Такая ситуация наблюдается при хроническом бронхите и нехарактерна для астмы.

Если же после ингаляции сальбутамола показатель ОФВ1 уменьшился, это парадоксальная реакция, связанная со спазмом бронхов в ответ на ингаляцию.

Наконец, если проба положительная на фоне исходного нормального значения ОФВ1, это говорит о гиперреактивности бронхов или о скрытой бронхиальной обструкции.

При проведении теста с нагрузкой пациент выполняет упражнение на велоэргометре или беговой дорожке 6 – 8 минут, после чего проводят повторное исследование. При снижении ОФВ1 на 10% и больше говорят о положительной пробе, которая свидетельствует об астме физического усилия.

Для диагностики бронхиальной астмы в пульмонологических стационарах используется также провокационная проба с гистамином или метахолином. Эти вещества вызывают спазм измененных бронхов у больного человека. После ингаляции метахолина проводят повторные измерения. Снижение ОФВ1 на 20% и больше свидетельствует о гиперреактивности бронхов и о возможности бронхиальной астмы.

Как интерпретируются результаты

В основном на практике врач функциональной диагностики ориентируется на 2 показателя – ЖЕЛ и ОФВ1. Чаще всего их оценивают по таблице, предложенной Р. Ф. Клемент и соавторами. Приводим общую таблицу для мужчин и женщин, в которой даны проценты от нормы:

Например, при показателе ЖЕЛ 55% и ОФВ1 90% врач сделает заключение о значительном снижении жизненной емкости легких при нормальной бронхиальной проходимости. Такое состояние характерно для рестриктивных нарушений при пневмонии, альвеолите. При хронической обструктивной болезни легких, напротив, ЖЕЛ может быть, например, 70% (легкое снижение), а ОФВ1 – 47% (резко снижено), при этом проба с сальбутамолом будет отрицательной.

Об интерпретации проб с бронхолитиками, нагрузкой и метахолином мы уже поговорили выше.

Функция внешнего дыхания: еще один способ оценки

Используется и другой способ оценки функции внешнего дыхания. При этом способе врач ориентируется на 2 показателя – форсированной жизненной емкости легких (ФЖЕЛ, FVC) и ОФВ1. ФЖЕЛ определяется после глубокого вдоха при резком полном выдохе, продолжающемся как можно дольше. У здорового человека оба эти показателя составляют более 80% от нормальных.

Если ФЖЕЛ более 80% от нормы, ОФВ1 менее 80% от нормы, а их соотношение (индекс Генцлара, не индекс Тиффно!) менее 70%, говорят об обструктивных нарушениях. Они связаны преимущественно с нарушением проходимости бронхов и процесса выдоха.

Если оба показателя составляют менее 80% от нормы, а их соотношение более 70%, это признак рестриктивных нарушений – поражений самой легочной ткани, препятствующих полному вдоху.

Если значения ФЖЕЛ и ОФВ1 менее 80% от нормы, и их соотношение составляет менее 70%, это комбинированные нарушения.

Чтобы оценить обратимость обструкции, смотрят на величину ОФВ1/ФЖЕЛ после ингаляции сальбутамола. Если она остается менее 70% – обструкция необратимая. Это признак хронической обструктивной болезни легких. Для астмы характерна обратимая бронхиальная обструкция.

Если выявлена необратимая обструкция, необходимо оценить ее тяжесть. для этого оценивают ОФВ1 после ингаляции сальбутамола. При его величине больше 80% от нормы говорят о легкой обструкции, 50 – 79% – умеренной, 30 – 49% – выраженной, менее 30% от нормы – резко выраженной.

Исследование функции внешнего дыхания особенно важно для определения степени тяжести бронхиальной астмы до начала лечения. В дальнейшем для самоконтроля больные с астмой должны дважды в день проводить пикфлоуметрию.

Это метод исследования, помогающий определить степень сужения (обструкции) дыхательных путей. Проводится пикфлоуметрия с помощью небольшого аппарата – пикфлоуметра, оснащенного шкалой и мундштуком для выдыхаемого воздуха. Наибольшее применение пикфлоуметрия получила для .

Как проводится пикфлоуметрия

Каждый больной с астмой должен проводить пикфлоуметрию дважды в день и записывать результаты в дневник, а также определять средние значения за неделю. Кроме того, он должен знать свой лучший результат. Снижение средних показателей свидетельствует об ухудшении контроля за течением болезни и начале обострения. При этом необходимо обратиться к врачу или увеличить , если пульмонолог заранее объяснил, как это сделать.

График ежедневной пикфлоуметрии

Пикфлоуметрия показывает максимальную скорость, достигнутую в течение выдоха, которая хорошо соотносится со степенью бронхиальной обструкции. Проводится она в положении сидя. Сначала пациент спокойно дышит, затем производит глубокий вдох, берет в губы мундштук аппарата, держит пикфлоуметр параллельно поверхности пола и максимально быстро и интенсивно выдыхает.

Процесс повторяется через 2 минуты, затем еще раз через 2 минуты. В дневник записывается лучший из трех показателей. Измерения делаются после пробуждения и перед отходом ко сну, в одно и то же время. В период подбора терапии или при ухудшении состояния можно проводить дополнительное измерение и в дневные часы.

Как интерпретировать данные

Нормальные показатели для этого метода определяются индивидуально для каждого больного. В начале регулярного использования, при условии ремиссии заболевания, находится лучший показатель пиковой скорости выдоха (ПСВ) за 3 недели. Например, он равен 400 л/с. Умножив это число на 0,8, получим минимальную границу нормальных значений для данного пациента – 320 л/мин. Все, что больше этого числа, относится к «зеленой зоне» и говорит о хорошем контроле над астмой.

Теперь умножаем 400 л/с на 0,5 и получаем 200 л/с. Это верхняя граница «красной зоны» – опасного снижения бронхиальной проходимости, когда необходима срочная помощь врача. Значения ПСВ между 200 л/с и 320 л/с находятся в пределах «желтой зоны», когда необходима коррекция терапии.

Эти значения удобно начертить на графике самоконтроля. Так будет хорошо понятно, насколько контролируется астма. Это позволит вовремя обратиться к врачу при ухудшении состояния, а при длительном хорошем контроле позволит постепенно уменьшить дозировку получаемых лекарств (также лишь по назначению пульмонолога).

Пульсоксиметрия помогает определить, сколько кислорода переносится гемоглобином, находящимся в артериальной крови. В норме гемоглобин захватывает до 4 молекул этого газа, при этом насыщение артериальной крови кислородом (сатурация) равно 100%. При снижении количества кислорода в крови сатурация снижается.

Для определения этого показателя применяются небольшие приборы – пульсоксиметры. Они похожи на своеобразную «прищепку», которая надевается на палец. В продаже имеются портативные аппараты этого типа, их может приобрести любой больной, страдающий хроническими легочными заболеваниями, для контроля за своим состоянием. Пульсоксиметры широко используют и врачи.

Когда проводится пульсоксиметрия в стационаре:

  • во время кислородной терапии для контроля ее эффективности;
  • в отделениях интенсивной терапии при ;
  • после тяжелых оперативных вмешательств;
  • при подозрении на – периодической остановки дыхания во сне.

Когда можно использовать пульсоксиметр самостоятельно:

  • при обострении астмы или другого легочного заболевания, чтобы оценить тяжесть своего состояния;
  • при подозрении на ночное апноэ – если пациент храпит, у него имеется ожирение, сахарный диабет, гипертоническая болезнь или снижение функции щитовидной железы – гипотиреоз.

Норма насыщения кислородом артериальной крови составляет 95 – 98%. При снижении этого показателя, измеренного в домашних условиях, необходимо обратиться к врачу.

Исследование газового состава крови

Это исследование проводится в лаборатории, изучается артериальная кровь больного. В ней определяют содержание кислорода, углекислого газа, сатурацию, концентрацию некоторых других ионов. Исследование проводится при тяжелой дыхательной недостаточности, кислородной терапии и других неотложных состояниях, преимущественно в стационарах, прежде всего в отделениях интенсивной терапии.

Кровь берется из лучевой, плечевой или бедренной артерии, затем место пункции придавливается ватным шариком на несколько минут, при пункции крупной артерии накладывается давящая повязка, чтобы избежать кровотечения. Наблюдают за состоянием больного после пункции, особенно важно вовремя заметить отек, изменение цвета конечности; пациент должен сообщить медперсоналу, если у него появится онемение, покалывание или другие неприятные ощущения в конечности.

Нормальные показатели газов крови:

Снижение РО 2 , О 2 СТ, SaO 2 , то есть содержания кислорода, в сочетании с повышением парциального давления углекислого газа может говорить о таких состояниях:

  • слабость дыхательных мышц;
  • угнетение дыхательного центра при заболеваниях мозга и отравлениях;
  • закупорка дыхательных путей;
  • бронхиальная астма;
  • пневмония;

Снижение этих же показателей, но при нормальном содержании углекислого газа бывает при таких состояниях:

  • интерстициальный фиброз легких.

Снижение показателя О 2 СТ при нормальном давлении кислорода и сатурации характерно для выраженной анемии и снижения объема циркулирующей крови.

Таким образом, мы видим, что и проведение этого исследования, и интерпретация результатов довольно сложны. Анализ газового состава крови необходим для принятия решения о серьезных лечебных манипуляциях, в частности, искусственной вентиляции легких. Поэтому делать его в амбулаторных условиях не имеет смысла.

О том, как проводится исследование функции внешнего дыхания, смотрите на видео:

Диффузионная недостаточность дыхания встречается при:

  1. утолщении альвеолярно-капиллярной мембраны (отечность);
  2. уменьшении площади альвеолярной мембраны;
  3. уменьшении времени контакта крови с альвеолярным воздухом;
  4. увеличении слоя жидкости на поверхности альвеол.


Типы расстройств ритма дыхательных движений

Наиболее часто встречающейся формой расстройств дыхательных движений является одышка. Различают инспираторную одышку, характеризующуюся затруднением вдоха, и экспираторную одышку с затруднением выдоха. Известна также смешанная форма одышки. Еще она бывает постоянной или приступообразной. В происхождении одышки зачастую играют роль не только заболевания органов Е дыхания, но и сердца, почек, системы кроветворения.
Вторая группа расстройств ритма дыхания - периодическое дыхание, т.е. групповой ритм, нередко чередующийся с остановками или со вставочными глубокими вдохами. Периодическое дыхание подразделяется на основные типы и варианты.

Основные типы периодического дыхания:

  1. Волнообразное.
  2. Неполный ритм Чейн-Стокса.
  3. Ритм Чейн-Стокса.
  4. Ритм Биота.


Варианты:

  1. Тонусные колебания.
  2. Глубокие вставочные вдохи.
  3. Альтернирующие.
  4. Сложные аллоритмии.

Выделяют следующие группы терминальных типов периодического дыхания.

  1. Большое дыхание Куссмауля.
  2. Апнейстическое дыхание.
  3. Гаспинг-дыхание.

Имеется и еще одна группа нарушений ритма дыхательных движений - диссоциированное дыхание.

Сюда включают:

  1. парадоксальные движения диафрагмы;
  2. асимметрию правой и левой половины грудной клетки;
  3. блок дыхательного центра по Пейнеру.

Одышка
Под одышкой понимается нарушение частоты и глубины дыхания, сопровождаемое чувством недостатка воздуха.
Одышка представляет собой реакцию системы внешнего дыхания, обеспечивающую повышенное снабжение организма кислородом и выведение избытка углекислоты (рассматривается как защитно-приспособительная). Наиболее эффективна одышка в форме увеличения глубины дыхания в сочетании с его учащением. Субъективные ощущения не всегда сопровождают одышку, поэтому ориентироваться следует на объективные показатели.

{module директ4}

Различают три степени недостаточности:

  • I степень - возникает только при физическом напряжении;
  • II степень - в покое обнаруживаются отклонения легочных объемов;
  • III степень - характеризуется одышкой в покое и сочетается с избыточной вентиляцией, артериальной гипоксемией и накоплением недоокисленных продуктов обмена.

Дыхательная недостаточность и одышка как ее проявление -следствие при нарушения вентиляции и соответствующей недостаточной оксигенации крови в легких (при ограничении альвеолярной вентиляции, стенозе дыхательных путей, нарушениях кровообращения в легких).
Перфузионные расстройства имеют место при аномальных сосудистых и интракардиальных шунтах, заболеваниях сосудов.
Одышку вызывают и другие факторы - уменьшение церебрального кровотока, общая анемия, токсические и психические влияния.
Одно из условий формирования одышки - сохранение достаточно высокой рефлекторной возбудимости дыхательного центра. Отсутствие одышки при глубоком наркозе рассматривают как проявление торможения, создающегося в дыхательном центре в связи со снижением лабильности.
Ведущие звенья патогенеза одышки: артериальная гипоксемия, метаболический ацидоз, функциональные и органические поражения ЦНС, повышение обмена веществ, нарушение транспорта крови, затруднение и ограничение движений грудной клетки.

Нереспираторные функции легких
Основу нереспираторных функций легких составляют метаболические процессы, специфичные для органовдыхания. Метаболические функции легких заключаются в их участии в синтезе, депонировании, активации и разрушении различных биологически активных веществ (БАВ). Способность легочной ткани регулировать уровень ряда БАВ в крови получила название «эндогенный легочной фильтр» или «легочной барьер».

По сравнению с печенью легкие более активны в отношении метаболизма БАВ, так как:

  1. их объемный кровоток в 4 раза больше печеночного;
  2. только через легкие (за исключением сердца) проходит вся кровь, что облегчает метаболизм БАВ;
  3. при патологии с перераспределением кровотока («централизация кровообращения»), например, при шоке, легкие могут иметь решающее значение в обмене БАВ.

В ткани легких обнаружено до 40 типов клеток, из которых наибольшее внимание привлекают клетки, обладающие эндокринной активностью. Их называют клетками Фейтера и Кульчицкого, нейроэндокринными клетками или клетками АПУД-системы (апудоцитами). Метаболическая функция легких тесно связана с газотранспортной.
Так, при нарушениях легочной вентиляции (чаще гиповентиляции), нарушениях системной гемодинамики и кровообращения в легких отмечается повышенная метаболическая нагрузка.

Исследование метаболической функции легких при их разнообразной патологии позволило выделить три типа метаболических сдвигов:

  • 1-й тип характеризуется повышением уровня БАВ в ткани, сопровождающимся увеличением активности ферментов их катаболизма (при острых стрессовых ситуациях - начальная стадия гипоксической гипоксии, ранняя фаза острого воспаления и др.);
  • 2-му типу свойственно увеличение содержания БАВ, сочетающееся со снижением активности катаболических ферментов в ткани (при повторном воздействии гипоксической гипоксии, затянувшемся воспалительном бронхолегочном процессе);
  • 3-й тип (обнаруживается реже) характеризуется дефицитом БАВ в легких, сочетающимся с подавлением активности катаболических ферментов (в патологически измененной ткани легкого при длительных сроках течения бронхоэктатической болезни).

Метаболическая функция легких оказывает существенное влияние на систему гемостаза, которая, как известно, принимает участие не только в поддержании жидкого состояния крови в сосудах и в процессе тромбообразования, но и влияет на гемореологические показатели (вязкость, агрегационную способность клеток крови, текучесть), гемодинамику и проницаемость сосудов.
Наиболее типичная форма патологии, протекающей с активацией свертывающей системы, - так называемый синдром «шокового легкого», характеризующийся диссеминированной внутрисосудистой коагуляцией крови. Синдром «шокового легкого» в основных чертах моделируется введением животным адреналина, обеспечивающего отек легочной ткани, образование геморрагических очагов, а также активацию калликреин-кининовой системы крови.

Обструктивные вентиляционные нарушения возникают вследствие: 1. сужения просвета мелких бронхов, особенно бронхиол за счет спазма (бронхиальная астма; астматический бронхит); 2. сужения просвета за счет утолщения стенок бронхов (воспалительный, аллергический, бактериальный отек, отек при гиперемии, сердечной недостаточности); 3. наличия на покрове бронхов вязкой слизи при увеличении ее секреции бокаловидными клетками бронхиального эпителия, или слизисто-гнойной мокроты 4. сужения вследствие рубцовой деформации бронха; 5. развития эндобронхиальной опухоли (злокачественной, доброкачественной); 6. сдавления бронхов извне; 7. наличия бронхиолитов.

Рестриктивные вентиляционные нарушения имеют следующий причины:

1. фиброз легких (интерстициальный фиброз, склеродермия, бериллиоз, пневмокониозы и т. д.);

2. большие плевральные и плевродиафрагмальные сращения;

3. экссудативный плеврит, гидроторакс;

4. пневмоторакс;

5. обширные воспаления альвеол;

6. большие опухоли паренхимы легкого;

7. хирургическое удаление части легкого.

Клинические и функциональные признаки обструкции:

1. Ранняя жалоба на одышку при ранее допустимой нагрузке или во время “прстуды”.

2. Кашель, чаще со скудным отделением мокроты, вызывающий после себя на некоторое время ощущение тяжелого дыхания (вместо облегчения дыхания после обычного кашля с отделением мокроты).

3. Перкуторный звук не изменен или вначале приобретает тимпанический оттенок над задне-боковыми отделами легких (повышение воздушности легких).

4. Аускультация: сухие свистящие хрипы. Последние, по Б. Е. Вотчалу, следует активно выявлять при форсированном выдохе. Аускультация хрипов при форсированном выдохе ценна в плане суждения о распространении нарушения бронхиальной проходимости по легочным полям. Дыхательные шумы изменяются в следующей полседовательности: везикулярное дыхание - жесткое везикулярное - жесткое неопределенное (заглушает хрипы)- ослабленное жесткое дыхание.

5. Более поздними признаками являются удлинение фазы выдоха, участие в дыхании вспомогательной мускулатуры; втяжение межреберных промежутков, опущение нижней границы легких, ограничение подвижности нижнего края легких, появление коробочного перкуторного звука и расширение зоны его распространения.

6. Снижение форсированных легочных проб (индекса Тиффно и максимальной вентиляции).

В терапии обструктивной недостаточности ведущее место занимают препараты бронходилатирующего ряда.

Клинические и функциональные признаки рестрикции.

1. Одышка при физической нагрузке.

2. Учащенное неглубокое дыхание (короткое - быстрый вдох и быстрый выдох, называемый феноменом “ захлапывающейся двери”).

3. Экскурсия грудной клетки ограничена.

4. Перкуторный звук укороченный с тимпаническим оттенком.

5. Нижняя граница легких стоит выше обычного.

6. Подвижность нижнего края легких ограничена.

7. Дыхание ослабленное везикулярное, хрипы трескучие или влажные.

8. Уменьшение жизненной емкости легких (ЖЕЛ), общей емкости легких (ОЕЛ), снижение дыхательного объема (ДО)и эффективной альвеолярной вентиляции.

9. Часто имеются нарушения равномерности распределения вентиляционно-перфузионных соотношений в легких и диффузные нарушения.

Раздельная спирография Раздельная спирография или бронхоспирография позволяет определить функцию каждого легкого, а следовательно, резервные и компенсаторные возможности каждого из них.

С помощью двухпросветной трубки, вводимой в трахею и бронхи, и снабженной раздувными манжетами для обтурации просвета между трубкой и слизистой бронха, имеется возможность получить воздух из каждого легкого и записать с помощью спирографа кривые дыхания правого и левого легкого раздельно.

Проведение раздельной спирографии показано для определения функциональных показателей у больных, подлежащих хирургическим вмешательствам на легких.

Несомненно, что более четкое представление о нарушении бронхиальной проходимости дает запись кривых скорости воздушного потока при форсированном выдохе (пик-флуориметрия).

Пневмотахометрия - является методом определения скорости движения и мощности струи воздуха при форсированном вдохе и выдохе с помощью пневмотахометра. Испытуемый после отдыха, сидя, делает максимально быстро глубокий выдох в трубку (при этом нос отключен при помощи носового зажима). Данный метод, главным образом, используется для подбора и оценки эффективности действия бронходилататоров.

Средние величины для мужчин - 4.0-7.0 л/л для женщин - 3.0-5.0 л/с При пробах с введением бронхоспазмолитических средств можно отдифференцировать ьронхоспазм от органических поражений бронхов. Мощность выдоха уменьшается не только при бронхоспазме, но также, хотя и в меньшей степени, у больных со слабостью дыхательной мускулатуры и с резкой ригидностью грудной клетки.

Общая плетизмография (ОПГ) - это метод прямого измерения величины бронхиального сопротивления R при спокойном дыхании. Метод основан на синхронном измерении скорости воздушного потока (пневмотахограммы)и колебаний давления в герметичной кабине, куда помещается больной. Давление в кабине изменяется синхронно колебаниям альвеолярного давления, о котором судят по коэффициенту пропорциональности между объемом кабины и объемом газа в легких. Плетизмографически лучше выявляются небольшие степени сужения бронхиального дерева.

Оксигемометрия - это бнскровное определение степени насыщения кислородом артериальной крови. Эти показания оксигемометра можно зарегистрировать на движущейся бумаге в виде кривой - оксигемограммы. В основе действия оксигемометра лежит принцип фотометрического определения спектральных особенностей гемоглобина. Большинство оксигемометров и оксигемографов не определяют абсолютной величины насыщения артериальной крови кислородом, а дают возможность только следить за изменениями насыщения крови кислородом. В практических целях оксигемометрия применяется для функциональной диагностики и оценки эффективности лечения. В целях диагностики оксигемометрия применяется для оценки состояния функции внешнего дыхания и кровообращения. Так, степень гипоксемии определяется с помощью различных функциональных проб. К ним относятся - переключение дыхания больного с воздуха на дыхание чистым кислородом и, наоборот, проба с задержкой дыхания на вдохе и на выдохе, проба с физической дозированной нагрузкой и др.



/ 13
ХудшийЛучший

Состояние организма, при котором система внешнего дыхания не обеспечивает нормального газового состава артериальной крови или его поддержание на нормальном уровне достигается за счет чрезмерного функционального напряжения этой системы. Таким образом, в понятии «дыхательная недостаточность» дыхание рассматривается лишь как внешнее дыхание, т. е. как процесс газообмена между атмосферой и кровью легочных капилляров, в результате которого происходит артериализация смешанной венозной крови. В то же время нормальная по газовому составу артериальная кровь еще не свидетельствует об отсутствии дыхательной недостаточности, так как за счет напряжения компенсаторных механизмов системы дыхания газы крбви долгое время остаются в пределах нормы и декомпенсация наступает лишь при II-III степени дыхательной недостаточности. Термин «легочная недостаточность» иногда употребляют как синоним «дыхательной недостаточности», однако легкое как орган не исчерпывает всех процессов, обеспечивающих внешнее дыхание, и в этом смысле употребление понятия «дыхательная недостаточность», или «недостаточность внешнего дыхания», является более правильным, так как оно охватывает и некоторые внелегочные механизмы недостаточности, например связанные с поражением дыхательной мускулатуры. Дыхательная недостаточность часто сочетается с сердечной недостаточностью. Такое сочетание отражают термины «легочно-сердечная» и «сердечно-легочная недостаточность». Иногда выделяют «рестриктивную» и «обструктивную» формы дыхательной недостаточности. Следует иметь в виду, что рестрикция и обструкция есть типы нарушения вентиляционной способности легких и характеризует лишь состояние аппарата вентиляции. Поэтому правильнее при анализе причин хронической дыхательной недостаточности выделять (по Н, Н. Канаеву) 5 групп факторов, приводящих к нарушению внешнего дыхания:

1 Поражение бронхов и респираторных структур легких:

а) поражение бронхиального дерева: повышение тонуса гладкой мускулатуры бронхов (бронхоспазм), отечно-воспалительные изменения бронхиального дерева, нарушение опорных структур мелких бронхов, снижение тонуса крупных бронхов (гипотоническая дискинезия);

б) поражение респираторных структур (инфильтрация легочной ткани, деструкция легочной ткани, дистрофия легочной ткани, пневмосклероз);

в) уменьшение функционирующей легочной паренхимы (недоразвитие легкого, сдавление и ателектаз легкого, отсутствие части легочной ткани после операции).

2. Поражение костномышечного каркаса грудной клетки и плевры (ограничение подвижности ребер, ограничение подвижности диафрагмы, плевральные сращения).

3. Поражение дыхательной мускулатуры (центральный и периферический паралич дыхательной мускулатуры, дегенеративнодистрофические изменения дыхательных мышц).

4. Нарушение кровообращения в малом круге (редукция сосудистого русла легких, спазм легочных артериол, застой крови в малом круге).

5. Нарушение регуляции дыхания (угнетение дыхательного центра, дыхательные неврозы, нарушение местных регуляторных отношений).

Основным клиническим критерием дыхательной недостаточности является одышка. В зависимости от ее выраженности при различном физическом напряжении принято различать 3 степени дыхательной недостаточности. При I степени одышка возникает при физических нагрузках, превышающих повседневные, цианоз обычно не выявляется, утомляемость наступает быстро, но вспомогательная дыхательная мускулатура в дыхании не участвует. При II степени одышка возникает при выполнении большинства привычных повседневных нагрузок, цианоз выражен нерезко, утомляемость выраженная, при нагрузке включается вспомогательная мускулатура дыхания. При III степени одышка отмечается уже в покое, цианоз и утомляемость резко выражены, постоянно в дыхании участвует вспомогательная мускулатура.

Функционально-диагностическое исследование, даже если оно включает лишь общую спирографию и исследование газов крови, может оказать клиницисту существенную помощь в уточнении степени дыхательной недостаточности. При отсутствии нарушений вентиляционной способности легких наличие у больного дыхательной недостаточности маловероятно. Умеренные (а иногда и значительные) обструктивные нарушения чаще всего бывают связаны с дыхательной недостаточностью I степени. Значительная обструкция позволяет предполагать I или II степень, а резкая обструкция - II или III степень дыхательной недостаточности. Рестриктивные нарушения сравнительно мало сказываются на газотранспортной функции системы внешнего дыхания. Значительная и даже резкая рестрикция чаще всего сопровождается лишь дыхательной недостаточностью II степени. Гипоксемия в покое чаще всего свидетельствует о недостаточности дыхания или кровообращения. Умеренная гипоксемия может говорить о I степени дыхательной недостаточности, резкая гипоксемия - свидетельство более тяжелых ее степеней. Стойкая гиперкапния почти всегда сопровождает II-III степень дыхательной недостаточности.

Острая дыхательная недостаточность (ОДН) характеризуется быстрым развитием состояния, при котором легочный газообмен становится недостаточным для обеспечения организма необходимым количеством кислорода. Наиболее частые причины ОДН: закупорка дыхательных путей инородным телом, аспирация рвотных масс, крови или других жидкостей; бронхо - или ларингоспазм; отек, ателектаз или коллапс легкого; тромбоэмболия в системе легочной артерии; дисфункция дыхательной мускулатуры (полиомиелит, столбняк, травмы спинного мозга, последствия воздействия фосфорорганических веществ или миорелаксантов); угнетение дыхательного центра при отравлениях наркотиками, снотворными или при черепно-мозговой травме; массивные острые воспалительные процессы в легочной паренхиме; синдром шокового легкого; резкий болевой синдром, препятствующий нормальному осуществлению дыхательных экскурсий.

В оценке тяжести ОДН, связанной с нарушением вентиляции, важное значение имеет исследование парциального давления СО 2 и О 2 в артериальной крови.

Терапия ОДН требует интенсивных реанимационных мероприятий, направленных иа устранение причин, вызвавших гиповентиля-цию, стимуляцию активного самостоятельного дыхания, анестезию в случаях тяжелых травматических повреждений, искусственную вентиляцию легких (в том числе вспомогательную), оксигенотерапию и коррекцию КОС.

Дыхательная недостаточность

Дыхательная недостаточность (ДН) – неспособность дыхательной системы поддерживать нормальный газовый состав крови в покое либо при нагрузке. ДН характеризуется снижением напряжения кислорода меньше 80 мм.рт.ст. и повышением напряжения углекислого газа больше 45 мм.рт.ст. ДН проявляется респираторной гипоксией, а также респираторным ацидозом. Выделяют комплекс ДН, при котором изменение газового состава крови возникает только при напряжении и декомпенсации, когда изменение газового состава наблюдается в покое, бывает: острое и хроническое.

По патогенезу делят на:

    Нарушение альвеолярной вентиляции

    Нарушение диффузии газов в легких

    Нарушение перфузии крови по сосудам легких

    Нарушение перфузионно-вентиляционных соотношений

1.Нарушение альвеолярной вентиляции

    Нарушение нервной регуляции .

Возникают:

    При повреждении или угнетении дыхательного центра из-за травмы, кровоизлияния, опухоли, абсцессов, под действием биодепрессантов.

    При нарушении функции спинальных мотонейронов из-за травм спинного мозга, опухоли, полиомиелита.

    При повреждении межреберных и диафрагмальных нервов из-за травм невритов, авитаминозов и т.д.

    При нарушении нервно-мышечной передачи, при ботулизме, миастении, действии миорелаксантов.

    При повреждении дыхательной мускулатуры – межреберных мышц и диафрагмы.

При данной форме дыхательной недостаточности нарушается работа дыхательной мускулатуры, из-за чего снижаются МОД, ДО, быстро развивается гипоксия и компенсация невозможна, поэтому данная форма ДН приводит к развитию асфиксии.

    Обструктивные нарушения

При закупорке дыхательных путей. Может возникнуть на уровне магистральных дыхательных путей и на уровне мелких бронхов.

Обструкция магистральных дыхательных путей возникает при: ларингоспазме, отеке гортани, инородных телах гортани, трахеи и бронхов.

Обструкция мелких бронхов возникает при бронхоспазме, при отеке, при гиперсекреции слизи.

При обструкции в большей степени затрудняется фаза выдоха. Это приводит к развитию экспираторной одышки. При этом глубина дыхания увеличивается, а частота – снижается. При сильной обструкции в легких увеличивается остаточный объем, что может привести к развитию острой эмфиземы.

Компенсация обструктивных нарушений осуществляется за счет усиления работы дыхательной мускулатуры. Однако недостатком данной компенсации является то, что интенсивно работающая дыхательная мускулатура потребляет большое количество кислорода, что усугубляет гипоксию.

    Рестрективные нарушения

Рестрикция – это нарушение расширения легких в фазу вдоха. Рестрективные нарушения могут возникать в результате внутрилегочных и внелегочных причин. К первым относятся:

    Фиброз легких (развивается в результате туберкулеза, саркоидоза, хронических пневмоний, аутоиммунных заболеваний).

    Дистресс-синдром новорожденных (возникает из-за нарушения синтеза сурфактанта – наблюдается чаще всего у недоношенных) и взрослых (развивается при разрушении сурфактанта, что может случиться при шоке, при вдыхании токсических веществ и при воспалительных процессах в легких).

Внелегочные причины: пневмоторакс или скопление воздуха в грудной клетке и плевральной полости – при травмах, гидроторакс – скопление жидкости в плевральной полости – в виде экссудата при экссудативных плевритах.

При рестрективных нарушениях страдает фаза вдоха, развивается инспираторная одышка, До снижается, частота дыхания увеличивается, дыхание становится частым, но поверхностным. Учащение дыхания является компенсаторным механизмом поддержания объема дыхания. Недостатком этой компенсации является то, что в альвеолы попадает мало воздуха, а большая его часть вентилирует анатомически мертвое пространство дыхательных путей.

2.Нарушение диффузии газов в легких

M = KS / П

M – диффузия, K – коэффициент диффузии газов (зависит от проницаемости альвеолярно-капиллярной мембраны), S – суммарная площадь диффузионной поверхности, L – длина диффузионного пути, Δ П – градиент концентрации кислорода и углекислого газа между альвеолярным воздухом и кровью.

Таким образом причинами нарушения диффузии является увеличение диффузионного пути газа, уменьшение суммарной площади диффузионной поверхности и снижение проницаемости альвеолярно-капиллярной мембраны.

Диффузионных путь состоит из стенки альвеолы, капилляра и интерстициального пространства между ними. Увеличение диффузионного пути возникает при фиброзах легких (туберкулез, саркоидоз), а также при скоплении жидкости в интерстициальном пространстве, что наблюдается при отеке легких. Эти же причины влияют и на снижение проницаемости альвеолярно-капиллярной мембраны и на уменьшение суммарной площади диффузной поверхности легких. Возникают при всех вида рестрективных нарушений.

3.Нарушение перфузии крови по сосудам легких

Возникает при нарушении кровообращения в малом круге. Причины:

    Недостаточное поступление крови в малый круг кровообращения из-за стеноза клапанов или устья легочного ствола (из-за тромбоэмболии легочных артерий)

    Увеличение давления в малом круге кровообращения, из-за чего развивается легочная гипертензия и склерозируются сосуды легких. Это возникает при открытом артериальном протоке (Баталов проток), при дефектах межпредсердной и межжелудочковой перегородок

    При застое крови в малом круге кровообращения, что возникает при левожелудочковой сердечной недостаточности и приводит к отеку легких.

4.Нарушение перфузионно-вентиляционных соотношений

Развивается при увеличении в легких функционально мертвого пространства (совокупность альвеол, которые хорошо перфузируются, но плохо вентилируются). Это происходит при диффузных поражениях легочной ткани и множественных ателектазах. При этом увеличивается количество перфузируемых альвеол (при хронической эмфиземе, обструктивных и рестрективных заболеваниях).

Одышка

Это субъективные ощущения нехватки воздуха, сопровождающиеся объективным нарушением частоты и глубины дыхания.

1. Инспираторная одышка . Проявляется затруднением фазы вдоха. Наблюдается при рестрективных нарушениях альвеолярной вентиляции.

2. Экспираторная одышка . Проявляется затруднением фазы выдоха. Наблюдается при обструктивных нарушениях фазы вентиляции.

3. Смешанная одышка . Нарушаются фазы вдоха и выдоха.

Основную роль в формировании одышки выполняют проприорецепторы дыхательной мускулатуры, раздражение которых возникает при усилении работы дыхательной мускулатуры. При этом сигнал поступает в дыхательный центр, так же активизируется стресс-реакция, и информация поступает в лимбическую систему, где и формируется ощущение нехватки воздуха либо невозможности осуществлять полноценное дыхание. Кроме того, в формировании одышки играют роль и другие рецепторы: хеморецепторы синокаротидной зоны и дуги аорты, которые реагируют на гипоксию и гипокапнию; рецепторы растяжения бронхов и рецепторы спадения альвеол реагируют на обструктивные и рестрективные нарушения; а также интерстициальные J-рецепторы, которые активизируются при повышении давления в интерстициальном пространстве, что бывает при отеке.

Патологические типы дыхания

Гиперпноэ – глубокое дыхании, которое развивается при обструкции, при повышении тонуса сипматической системы, при ацидозе. Разновидностью гиперпноэ является большое ацидотическое дыхание Куссмауля, которое наблюдается при диабетическом кетоацидозе.

Тахипноэ – это увеличение частоты дыхания. Возникает при рестрективных нарушениях при нарушении тонуса симпатической системы.

Брадипноэ – редкое дыхание. Возникает при обструкции, при угнетении дыхательного центра, при повышении системного артериального давления, при алкалозе.

Апноэ – отсутствие дыхания. Может быть кратковременным при периодических формах дыхания, может быть полная остановка дыхания.

Апнейстическое дыхание – характеризуется длинным судорожным вдохом, прерывается коротким выдохом, возникает при раздражении инспираторного отдела дыхательного центра из-за кровоизлияния.

Агональное дыхание – единичные вдохи, чередующиеся с периодами апноэ разной длительности, возникает при нарушении поступления афферентных импульсов в дыхательный центр и характеризуются остаточно угасающей активностью самого дыхательного центра.

Периодическое дыхание Чейн-Стокса . Характеризуется нарастающими по силе дыхательными движениями, которые чередуются с периодами апноэ. Возникает при гиперкапнии либо при нарушении чувствительности дыхательного центра к углекислому газу.

Дыхание Биота – характеризуется периодами апноэ, после которых следуют одинаковые по амплитуде дыхательные движения, наблюдается при различных поражениях ЦНС.

Асфиксия – удушье, форма дыхательной недостаточности, возникает при тотальной обструкции дыхательных путей, либо при выраженном нарушении нервной регуляции и – дыхательной мускулатуры.

В течение асфиксии выделяют две стадии:

    Компенсация (происходит выраженная симпато-адреналовой системы, что сопровождается возбуждением, паникой и страхом, попытками освободить дыхательные пути и совершить дыхательные движения). Характерны: централизация кровообращения, тахикардия и увеличение АД.

    Декомпенсация (из-за снижения парциального давления кислорода в крови происходит угнетение ЦНС, что приводит к потере сознания, судорогам, остановке дыхания, падению систолического артериального давления, брадикардии, что приводит к смерти).

Рестриктивный тип (от лат. restrictio - ограничение) гиповентиляции наблюдается при ограничении расправления легких. Причинные механизмы таких ограничений могут лежать внутри легких или вне их.

Внутрилегочные формы обусловлены возрастанием эластического сопротивления легких. Это происходит при обширных пневмониях, пневмофиброзе, ателектазах и других патологических состояниях. Большое значение для развития рестриктивного типа ограничения расправлению легких имеет дефицит сурфактанта. К этому приводят многие факторы, начиная от нарушения легочной гемодинамики, вируса гриппа до повреждающего воздействия табачного дыма, повышенной концентрации кислорода, вдыхания различных газов.

Рестриктивные расстройства дыхания внелегочного происхождения возникают при ограничении экскурсии грудной клетки. Это может быть следствием легочной патологии (плевриты) или грудной клетки (переломы ребер, чрезмерное окостенение реберных хрящей, невриты, сдавление грудной клетки). Поражение костно-мышечного каркаса грудной клетки и плевры препятствует расправлению легких и уменьшает их воздухонаполненность. При этом число альвеол сохраняется таким же, как в норме.

С одной стороны, рост сопротивления растяжению во время вдоха требует большей работы дыхательных мышц. С другой - для поддержания должного объема МОД при уменьшение величины вдоха необходимо увеличить частоту дыхательных движений, что происходит за счет укорочения выдоха, то есть дыхание становится более частым и поверхностным. В развитии поверхностного дыхания принимают участие и различные рефлексы. Так, при раздражении ирритантных и юкстамедуллярных рецепторов может быть тахипное, но уже за счет укорочения вдоха. Такой же эффект может быть и при раздражении плевры.

Гипервентиляция

Выше рассматривались нарушения дыхания гиповентиляционного типа. Они чаще всего приводят лишь к уменьшению поступления кислорода в кровь. Значительно реже при этом происходит недостаточное выведение углекислого газа. Это обусловлено тем, что СО 2 более чем в двадцать раз легче проходит через аэрогематический барьер.

Другое дело гипервентиляция. При начале ее происходит лишь некоторое увеличение кислородной емкости крови за счет небольшого роста парциального давления кислорода в альвеолах. Но зато возрастает выведение углекислого газа и может развиваться респираторный алкалоз . Для его компенсации может изменяться электролитный состав крови со снижением в крови уровня кальция, натрия и калия.

Гипокапния может привести к снижению утилизации кислорода, так как при этом кривая диссоциации оксигемоглобина сдвигается влево. Это скажется в первую очередь на функции тех органов, которые забирают большее количество кислорода из протекающей крови: на сердце и головном мозге. Кроме того не следует забывать, что гипервентиляция осуществляется за счет интенсификации работы дыхательных мышц, которые при резком ее усилении могут потреблять до 35% и больше всего кислорода.

Результатом гипервентиляционной гипокапнии может быть повышение возбудимости коры головного мозга. В условиях продолжительной гипервентиляции возможны эмоциональные и поведенческие расстройства, а при значительной гипокапнии может наступить потеря сознания. Одним из характерных признаков выраженной гипокапнии, при снижении РаСО 2 до 20-25 мм рт.ст., является появление судорог и спазма скелетных мышц. Это обусловлено во многом нарушением обмена кальция и магния между кровью и скелетными мышцами.

Обструктивный бронхит . В генезе обструкции бронхов ведущая роль принадлежит отеку слизистой в результате воспаления и чрезмерной секреции слизи. При бронхитах происходит изолированное нарушение проходимости дыхательных путей. Неоднородность механических свойств легких выступает в качестве одного из наиболее характерных проявлений обструктивной патологии. Зоны с различным бронхиальным сопротивлением и величиной растяжимости имеют разные временные характеристики, поэтому при одном и том же плевральном давлении процесс их опорожнения и заполнения воздухом происходит с различной скоростью. В результате неизбежно нарушается распределение газов и характер вентиляции в различных отделах легких.

Вентиляция зон с низкими временными характеристиками при учащении дыхания значительно ухудшается и вентилируемый объем уменьшается. Это проявляется снижением растяжимости легких. Прилагаемые больным усилия, ускоряя и учащая дыхание, приводят к еще большему увеличению вентиляции хорошо вентилируемых зон и к дальнейшему ухудшению вентиляции плохо вентилируемых отделов легких. Возникает своего рода порочный круг.

При дыхании невентилируемые зоны подвергаются компрессии и декомпрессии, на что уходит значительная доля энергии дыхательной мускулатуры. Возрастает так называемая неэффективная работа дыхания. Сдавление на выдохе и растяжение на вдохе "воздушного пузыря" приводят к изменению объема грудной клетки, который не обеспечивает возвратно-поступательного движения воздуха в легкие и из них. Постоянная хроническая перегрузка дыхательной мускулатуры приводит к снижению их сократительной способности и нарушению нормального режима функционирования. Об ослаблении дыхательной мускулатуры у таких больных свидетельствует также снижение способности развивать большие дыхательные усилия.

Из-за одновременно происходящего сокращения кровеносных сосудов снижается общий кровоток через спавшуюся часть легкое. Компенсаторной реакцией этого является направление крови в вентилируемые отделы легких, где происходит хорошее насыщение крови кислородом. Зачастую через такие отделы легких проходит до 5/6 всей крови. В результате суммарный коэффициент вентиляционно-перфузионного соотношения падает весьма умеренно, и даже при полном выпадении вентиляции целого легкого в аортальной крови наблюдается лишь незначительное уменьшение насыщения кислородом.

Обструктивный бронхит, проявляя себя сужением бронхов (а это приводит к увеличению бронхиального сопротивления), обусловливает снижение объемной скорости выдоха за 1 секунду. При этом ведущее значение в патологическом затруднении дыхания принадлежит обструкции малых бронхиол. Эти участки бронхов легко закрываются при: а) сокращении гладких мышц в их стенке, б) накоплении воды в стенке, в) появлении слизи в просвете. Существует мнение, что хроническая форма обструктивного бронхита формируется только тогда, когда возникает стойкая обструкция, длящаяся не менее 1 года и не ликвидирующаяся под влиянием бронхолитических средств.

Нервно-рефлекторные и гуморальные механизмы регуляции мышц бронхов. В связи с относительно слабой иннервацией бронхиол со стороны симпатической нервной системы рефлекторное влияние их (при выполнении мышечной работы, при стрессах) не велико. В большей мере может проявляться влияние парасимпатического отдела (n. vagus). Их медиатор ацетилхолин приводит к некоторому (относительно умеренному) спазму бронхиол. Иногда парасимпатическое влияние реализуется при раздражении некоторых рецепторов самих легких (см. далее), при окклюзии малых легочных артерий микроэмболами. Но парасимпатическое влияние может быть более выраженным при возникновении бронхоспазма при некоторых патологических процессах, например, при бронхиальной астме.

Если влияние медиатора симпатических нервов НА не столь значимо, то гормональный путь, обусловленный воздействием через кровь А и НА надпочечников, через β-адренорецепторы вызывает расширение бронхиального дерева. Биологически активные соединения, образующиеся в самих легких, такие как гистамин, медленнодействующая анафилактическая субстанция, высвобождающиеся из тучных клеток при аллергических реакциях, являются мощными факторами приводящими к спазму бронхов.

Бронхиальная астма . При бронхиальной астме в обструкции бронхов ведущую роль играет активное сужение вследствие спазма гладкой мускулатуры . Поскольку гладкомышечная ткань представлена главным образом в крупных бронхах, то бронхоспазм выражается преимущественно их сужением. Однако это не единственный механизм бронхиальной обструкции. Большое значение имеет аллергический отек слизистой бронхов, который соп­ровождается нарушением проходимости бронхов более мелкого калибра. Нередко наблюдается скопление в бронхах вязкого, трудно отделяемого стекловидного секрета (дискриния), при этом обструкция может приобретать чисто обтурационный характер. Кроме того нередко присоединяется и воспалительная инфильтрация слизистой с утолщением базальной мембраны эпителия.

Бронхиальное сопротивление повышается как при вдохе, так и при выдохе. При развитии астматического приступа нарушения дыхания могут нарастать с угрожающей стремительностью.

У больных бронхиальной астмой чаще, чем при другой патологии легких, наблюдается альвеолярная гипервентиляция как проявление нарушений центральной регуляции дыхания. Она имеет место, как в фазу ремиссии, так и при наличии даже выраженной бронхообструкции. Во время приступа удушья нередко бывает фаза гипервентиляции, которая при нарастании астматического состояния сменяется фазой гиповентиляции.

Уловить этот переход чрезвычайно важно, поскольку выраженность дыхательного ацидоза является одним из важнейших критериев тяжести состояния больного, что и определяет врачебную тактику. При повышении РаСO 2 выше 50-60 мм рт.ст. возникает необходимость проведения экстренной интенсивной терапии.

Артериальная гипоксемия при бронхиальной астме, как правило не достигает тяжелой степени. В фазу ремиссии и при легком течение может возникать умеренно выраженная артериальная гипоксемия. Лишь во время приступа РаО 2 может снижаться до 60 мм рт.ст. и ниже, что также оказывается важным критерием в оценке состояния больного. Основным механизмом развития гипоксемии является нарушение вентиляционно-перфузионных отношений в легких. Поэтому артериальная гипоксемия может наблю­даться и при отсутствии гиповентиляции.

Слабые движения диафрагмы, перерастяжение легких и большие колебания внутриплеврального давления приводят к тому, что во время приступа существенно страдает и кровообращение. Кроме тахикардии и выраженного цианоза на вдохе может резко снижаться систолическое давление.

Как было указано ранее при астме диаметр бронхиол при выдохе становится меньше, чем при вдохе, что происходит от спадения бронхиол вследствие усиления выдоха, сдавливающего дополнительно бронхиолы снаружи. Поэтому больной может вдыхать без затруднения, а выдыхать с большим трудом. При клиническом обследовании можно обнаружить наряду с уменьшением объема выдоха и снижение скорости максимального выдоха.

Хронические неспецифические заболевания легких (ХНЗЛ). Главной особенностью ХНЗЛ является преимущественно бронхогенный генез их развития. Именно это и определяет тот факт, что при всех формах данной патологии ведущим синдромом являются нарушения бронхиальной проходимости. Обструктивными болезнями легких страдают 11-13% людей. В так называемых развитых странах смертность от данного типа патологий за каждые 5 лет удваивается. Основная причина данной ситуации заключается в курении и загрязнении окружающей среды (см. раздел "Экология").

Характер ХНЗЛ, выраженность их, также как и другие механизмы нарушений внешнего дыхания, имеют свои особенности.

Если в норме отношение альвеолярной вентиляции к минутному объему дыхания составляет 0,6-0,7, то при тяжелом хроническом бронхите оно может снижаться до 0,3. Поэтому для поддержания должного объема альвеолярной вентиляции необходимо значительное увеличение минутного объема дыхания. Кроме того наличие артериальной гипоксемии и обусловленного этим метаболического ацидоза требует компенсаторного усиления вентиляции легких.

Увеличение растяжимости легких объясняет сравнительно редкое и глубокое дыхание, склонность к гипервентиляции у больных эмфизематозного типа хронического бронхита. Напротив, при бронхитическом типе снижение растяжимости легких обусловливает менее глубокое и более частое дыхание, что с учетом увеличения мертвого дыхательного пространства создает предпосылки для развития гиповентиляционного синдрома. Не случайно, что из всех показателей механики дыхания наиболее тесная корреляция РаСО 2 установлена именно с растяжимостью легких, тогда как с бронхиальным сопротивлением такая связь практически отсутствует. В патогенезе гиперкапнии при этом значительное место, наряду с нарушениями механики дыхания, принадлежит снижению чувствительности дыхательного центра.

Своеобразные различия отмечаются и со стороны кровообращения в малом круге. Бронхитическому типу свойственно раннее развитие легочной гипертензии и "легочного сердца". Несмотря на это, минутный объем кровообращения, как в состоянии покоя, так и при нагрузке значительно больше, чем при эмфизематозном типе. Это объясняется тем, что при эмфизематозном типе из-за малой объемной скорости кровотока, даже при меньшей выраженности артериальной гипоксемии тканевое дыхание страдает больше, чем при бронхитическом, при котором, даже при наличии артериальной гипоксемии, но достаточном объемном кровотоке, значительно лучше происходит обеспечение тканей организма O 2 . Следовательно, эмфизематозный тип можно определить как гипоксический, а бронхитический - как гипоксемический.

При наличии бронхиальной обструкции закономерно отмечается увеличение ООЛ и его отношения к ЖЕЛ. ЖЕЛ чаще всего остается в пределах нормы, хотя могут отмечаться ее отклонения, как в сторону снижения, так и увеличения. Как правило, возрастает неравномерность вентиляции. Диффузионные нарушения обычно наблюдаются примерно в половине случаев. Несомненна в ряде случаев роль снижения диффузионной способности легких в патогенезе артериальной гипоксемии при данном заболевании, однако ведущее значение в ее развитии принадлежит нарушениям вентиляционно-перфузионных отношений в легких и анатомическому шунтированию венозной крови в артериальное русло, минуя легочные капилляры.

На ранних стадиях заболевания выраженность артериальной гипоксемии невелика. Наиболее характерным сдвигом кислотно-основного состояния крови является метаболический ацидоз, обусловленный прежде всего интоксикацией организма. Гиповентиляция, дыхательные нарушения кислотно-основного состояния крови и выраженная артериальная гипоксемия свойственны далеко зашедшей стадии патологического процесса, в клинической картине которой доминируют уже не бронхоэктазы, а тяжелый бронхит.

Хронический бронхит. Наиболее распространенной формой бронхолегочной патологии среди ХНЗЛ является хронический бронхит. Это периодически обостряющийся хронический воспалительный процесс, протекающий с преимущественным поражением дыхательных путей диффузного характера. Одним из частых проявлений этого заболевания является генерализованная бронхиальная обструкция.

Углубленное функциональное исследование позволяет у больных необструктивным бронхитом выявить начальные нарушения дыхания. Методы, используемые для этих целей, можно разделить на 2 группы. Одни позволяют оценить показатели механической негомогенности легких: снижение объемных скоростей воздушного потока, при форсированном выдохе второй половины ЖЕЛ, снижение растяжимости легких по мере учащения дыхания, изменение показателей равномерности вентиляции и др. Другая группа позволяет оценить нарушения легочного газообмена: снижение РаO 2 , рост альвеолярно-артериального градиента РO 2 , капнографические нарушения вентиляционно-перфузионных отношений и др. Именно это и обнаруживается у больных с умеренно выраженной патологией легких (необструктивный бронхит, бронхит курильщика) и сочетаются с увеличением ОО легких и емкости экспираторного закрытия воздухоносных путей.

Ателектазы . Основные причины появления их две: обструкция бронхов и нарушение синтеза сурфактантов . При обструкции бронхов в неаэрируемых альвеолах в связи с поступлением из них в кровоток газов развивается их коллапс. Снижение давления способствует поступлению в альвеолы жидкости. Результатом таких изменений является механическое сдавление кровеносных сосудов и снижение кровотока через данные отделы легких. К тому же развивающаяся здесь гипоксия со своей стороны приводит к развитию вазоконстрикции. Результатом возникающегося перераспределения крови между интактным легким и пораженным ателектатическими процессами будет улучшение газотранспортной функции крови.

Усиливается ателектаз и вследствие снижения образования сурфактантов, которые в норме препятствуют действию сил поверхностного натяжения легких.

Назначение сурфактанта, покрывающего – внутреннюю поверхность альвеол и снижающего в 2-10 раз поверхностное напряжение, обеспечивает сохнанение альвеол от спадения. Однако при некоторых патологических состояниях (не говоря уже о новорожденных недоношенных детях) количество сурфактанта снижается настолько, что поверхностное натяжение альвеолярной жидкости оказывается в несколько раз выше нормы, что приводит к исчезновению альвеол – и в первую очередь самых маленьких. Это происходит не только при, так называемой, болезни гиалиновых хрящей , но и при длительном нахождении рабочих в запыленной атмосфере. Последнее приводит к появлению ателектазов легких.

4.1.16. Нарушения дыхания при туберкулезе легких .

Эта патология чаще всего развивается в верхних долях легких, там где обычно снижена и аэрация, и кровообращение. Нарушения дыхания выявляются у большинства больных активным туберкулезом легких, у значительного числа больных в неактивной фазе и у многих лиц, излеченных от него.

Непосредственными причинами развития нарушений дыхания у больных активным туберкулезом легких являются специфические и неспецифические изменения легочной ткани, бронхов и плевры, а также туберкулезная интоксикация. При неактивных формах туберкулеза и у излеченных лиц в качестве причины нарушений дыхания выступают специфические и, главным образом, неспецифические изменения легочной ткани, бронхов и плевры. Неблагоприятное влияние на дыхание могут оказывать и нарушения гемодинамики в малом и большом кругах кровообращения, а также регуляторные расстройства токсического и рефлекторного происхождения.

Среди проявлений дыхательных нарушений у больных наиболее часто отмечается снижение вентиляционной способности легких, частота и выраженность которой нарастают по мере увеличения распространенности туберкулезного процесса и степени интоксикации. Примерно в одинаковой степени встречаются 3 типа нарушений вентиляции: ограничительный, обструктивный и смешанный.

В основе рестриктивных нарушений лежит уменьшение растяжимости легочной ткани, обусловленное фиброзными изменениями легких и снижением поверхностно-активных свойств легочных сурфактантов. Большое значение имеют также свойственные туберкулезному процессу изменения легочной плевры.

В основе обструктивных вентиляционных нарушений лежат анатомические изменения бронхов и перибронхиальной легочной ткани, а также функциональный компонент бронхообструкции - бронхоспазм. Возрастание бронхиального сопротивления возникает уже в первые месяцы заболевания туберкулезом и прогрессирует по мере увеличения его продолжительности. Наиболее высокое бронхиальное сопротивление определяется у больных фиброзно-кавернозным туберкулезом и у пациентов с обширными инфильтратами и диссеминацией в легких.

Бронхоспазм выявляется примерно у половины больных активным туберкулезом легких. Частота его обнаружения и выраженность нарастают при прогрессировании туберкулезного процесса, увеличении длительности заболевания и возраста больных. Наименьшая выраженность бронхоспазма отмечается у больных свежим ограниченным тубер­кулезом легких без распада. Большая выраженность характерна для пациентов со свежими деструктивными процессами, а наиболее тяжелые нарушения бронхиальной проходимости встречаются при фиброзно-ка­вернозном туберкулезе легких.

В целом при туберкулезе легких ограничительные нарушения вентиляции имеют большее значение, чем при неспецифических заболеваниях. Частота и выраженность обструктивных нарушений, напротив, несколько меньше. Тем не менее, доминирующим является нарушения бронхиальной проходимости. Они обусловлены, главным образом, метатуберкулезными неспецифическими изменениями бронхов, которые закономерно возникают при длительно существующем специфическом процессе. Кроме того, у ряда больных туберкулез легких развивается на фоне длительно текущего неспецифического воспалительного процесса, чаще всего, хронического бронхита, который и определяет характер и выраженность имеющихся нарушений дыхания.

Рост эластического и неэластического (преимущественно бронхиального) сопротивления дыханию приводит к увеличению энергетической стоимости вентиляции. Увеличения работы дыхания не отмечено только у больных с очаговым туберкулезом легких. При инфильтративном и ограниченном диссеминированном процессе работа дыхания, как правило, увеличена, а при распространенном диссеминированном и фиброзно-кавернозном процессах еще более возрастает.

Другим проявлением возникающих при туберкулезе поражений легочной паренхимы, бронхов и плевры является неравномерность венти­ляции. Она обнаруживается у больных, как в активной, так и в неактивной фазе заболевания. Неравномерность вентиляции способствует возникновению несоответствия между вентиляцией и кровотоком в легких. Избыточная относительно кровотока вентиляция альвеол приводит к увеличению функционального мертвого дыхательного пространства, снижению доли альвеолярной вентиляции в общем объеме вентиляции легких, увеличению альвеолярно-артериального градиента РO 2 , что наблюдается у больных с ограниченным и распространенным туберкулезом легких. Зоны с низким отношением вентиляция/кровоток ответственны за развитие артериальной гипоксемии, что является веду­щим механизмом снижения РаO 2 у больных.

У преобладающего числа больных гематогенно-диссеминированным и фиброзно-кавернозным туберкулезом легких обнаруживается снижение диффузионной способности легких. Ее снижение прогрессирует с увеличением распространенности рентгенологически выявляемых изменений в легких и выраженности вентиляционных нарушений по ограничительному типу. Снижение диффузионной способности легких происходит в связи с уменьшением объема функционирующей легочной ткани, соответствующим уменьшением поверхности газообмена и нарушением проницаемости для газов аэрогематического барьера.

Артериальная гипоксемия у таких больных выявляется преимущественно при физической нагрузке и значительно реже - в условиях покоя. Выраженность ее колеблется в широких пределах, у больных фиброзно-кавернозным туберкулезом легких насыщение артериальной крови O 2 может снижаться до 70 % и менее. Наиболее выраженная гипоксемия наблюдается при хронических процессах большой протяженности, сочетающихся с обструктивным бронхитом и эмфиземой легких, при развитии резко выраженных и прогрессирующих вентиляционных нарушений.

Среди причин развития артериальной гипоксемии ведущую роль играет вентиляционно-перфузионные нарушения. Другой причиной возможного развития гипоксемии является нарушение условий диффузии O 2 в легких. В качестве третьего возможного механизма артериальной гипоксемии может быть внутрилегочное шунтирование сосудов малого и большого кругов кровообращения.

Для того чтобы легкие человека могли нормально работать, необходимо соблюдение нескольких важных условий. Во-первых, возможность свободного прохождения воздуха по бронхам до самых маленьких альвеол. Во-вторых, достаточное количество альвеол, которые могут поддерживать газообмен и в-третьих, возможность увеличения объёма альвеол во время акта дыхания.

По классификации принято выделять несколько типов нарушения вентиляции легких:

  • Рестриктивный
  • Обструктивный
  • Смешанный

Рестриктивный тип связан с уменьшением объёма легочной ткани, что случается при следующих заболеваниях: плеврит, пневмофиброз, ателектаз и других. Возможны также внелегочные причины нарушения вентиляции.

Обструктивный тип связан с нарушением проводимости воздуха по бронхам, что может случиться при бронхоспазме или при другом структурном поражении бронха.

Смешанный тип выделяют при сочетании нарушений по двум вышеуказанным типам.

Способы диагностики нарушения вентиляции легких

Для диагностики нарушения вентиляции легких по тому или иному типу проводят целый ряд исследований для оценки показателей (объёма и ёмкости), которые характеризуют вентиляцию легких. Прежде чем остановиться подробнее на некоторых исследованиях, рассмотрим эти основные параметры.

  • Дыхательный объём (ДО) – количество воздуха, которое поступает в легкие за 1 вдох при спокойном дыхании.
  • Резервный объём вдоха (РОвд) – такой объём воздуха, который можно максимально вдохнуть после спокойного вдоха.
  • Резервный объём выдоха (РОвыд) – количество воздуха, которое можно дополнительно выдохнуть после спокойного выдоха.
  • Емкость вдоха – определяет способность легочной ткани к растяжению (сумма ДО и РОвд)
  • Жизненная емкость легких (ЖЕЛ) - объём воздуха, который можно максимально вдохнуть после глубокого выдоха (сумма ДО, РОвд и РОвыд).

А также ряд других показателей, объёмов и емкостей, на основании которых доктор может сделать вывод о нарушении вентиляции легких.

Спирометрия

Спирометрия – такой вид исследования, который основывается на выполнении ряда дыхательных тестов при участии пациента, для того чтобы оценить степень различных легочных расстройств.

Цели и задачи спирометрии:

  • оценка степени тяжести и диагностика патологии легочной ткани
  • оценка динамики заболевания
  • оценка эффективности используемой терапии заболевания

Ход процедуры

Во время выполнения исследования пациент в положении сидя вдыхает и выдыхает воздух с максимальной силой в специальный аппарат, кроме этого фиксируются показатели вдоха и выдоха при спокойном дыхании.

Все эти параметры регистрируются с помощью компьютерных устройств на специальной спирограмме, которую расшифровывает доктор.

На основании показателей спирограммы можно определить, по какому типу - обструктивному или рестриктивному, произошло нарушение вентиляции легких.

Пневмотахография

Пневмотахография – метод исследования, при котором записывают скорость движения и объёма воздуха на вдохе и выдохе.

Запись и интерпретация этих параметров позволяет выявить заболевания, которые сопровождаются нарушением проходимости бронхов на ранних стадиях, например бронхиальную астму, бронхоэктатическую болезнь и другие.

Ход процедуры

Пациент сидит перед специальным прибором, к которому его подключают при помощи загубника, как и при спирометрии. Затем пациент делает несколько последовательных глубоких вдохов и выдохов и так несколько раз. Датчики регистрируют эти параметры и строят специальную кривую, на основании которой у пациента выявляют нарушения проводимости по бронхам. Современные пневмотахографы помимо этого оснащены различными устройствами, с помощью которых можно регистрировать дополнительные показатели функции дыхания.

Пикфлоуметрия

Пикфлоуметрия - метод, с помощью которого определяют, с какой скоростью пациент может выдохнуть. Этот способ применяется для того, чтобы оценить насколько сужены воздухоносные пути.

Ход процедуры

Пациент в положении сидя выполняет спокойный вдох и выдох, после этого глубоко вдыхает и максимально выдыхает воздух в загубник пикфлоуметра. Через несколько минут он повторяет эту процедуры. Затем происходит запись максимального из двух значений.

КТ легких и средостения

Компьютерная томография легких – метод рентгенологического исследования, который позволяет получить послойные срезы-картинки и на их основе создать объёмное изображение органа.

С помощью этой методики можно провести диагностику таких патологических состояний как:

  • хроническая эмболия легких
  • профессиональные заболевания легких, связанные с вдыханием частиц угля, кремния, асбеста и других
  • выявить опухолевые поражения легких, состояние лимфатических узлов и наличие метастазов
  • выявить воспалительные заболевания легких (пневмония)
  • и многие другие патологические состояния

Бронхофонография

Бронхофонография – метод, который основан на анализе дыхательных шумов, записанных во время дыхательного акта.

Когда меняется просвет бронхов или упругость их стенок, тогда нарушается бронхиальная проводимость и создается турбулентное движение воздуха. В результате этого образуются различные шумы, которые можно зарегистрировать с помощью специальной аппаратуры. Такой способ часто применяют в детской практике.

Кроме всех вышеперечисленных методов для диагностики нарушения вентиляции легких и причин, которые вызвали эти нарушения, используют также бронходилатационные и бронхопровокационные тесты с различными препаратами, исследование состава газов в крови, фибробронхоскопию, сцинтиграфию легких и другие исследования.

Лечение

Лечение таких патологических состояний решает несколько основных задач:

  • Восстановление и поддержка необходимой для жизни вентиляции легких и оксигенации крови
  • Лечение болезни, которая явилась причиной развития нарушения вентиляции (пневмония, инородное тело, бронхиальная астма и другие)

Если причиной послужили инородное тело или закупорка бронха слизью, то эти патологические состояния достаточно просто устранить с помощью фибробронхоскопии.

Однако более частыми причинами такой патологии являются хронические заболевания легочной ткани, например хроническая обструктивная болезнь легких, бронхиальная астма и другие.

Такие заболевания лечатся длительно с применением комплексной медикаментозной терапии.

При выраженных признаках кислородного голодания проводят кислородные ингаляции. Если пациент дышит самостоятельно, то при помощи маски или носового катетера. Во время коматозного состояния выполняется интубация и искусственная вентиляция легких.

Помимо этого выполняются различные мероприятия для улучшения дренажной функции бронхов, например антибиотикотерапия, массаж, физиотерапия, лечебная физкультура при отсутствии противопоказаний.

Грозным осложнением многих нарушений является развитие дыхательной недостаточности различной степени тяжести, которая может приводить к летальному исходу.

Для того чтобы предупредить развитие дыхательной недостаточности при нарушениях вентиляции легких, необходимо попытаться во время диагностировать и устранить возможные факторы риска, а также держать под контролем проявления уже имеющейся хронической патологии легких. Только своевременная консультация специалиста и грамотно подобранное лечение поможет избежать негативных последствий в будущем.

Вконтакте

Для диагностики дыхательной недостаточности используют ряд современных методов исследования, позволяющих составить представление о конкретных причинах, механизмах и тяжести течения дыхательной недостаточности, сопутствующих функциональных и органических изменениях внутренних органов, состоянии гемодинамики, кислотно-основного состояния и т.п. С этой целью определяют функцию внешнего дыхания, газовый состав крови, дыхательный и минутный объемы вентиляции, уровни гемоглобина и гематокрита, сатурацию крови кислородом, артериальное и центральное венозное давление, ЧСС, ЭКГ, при необходимости - давления заклинивания легочной артерии (ДЗЛА), проводят ЭхоКГ и др. (А.П. Зильбер).

Оценка функции внешнего дыхания

Важнейшим методом диагностики дыхательной недостаточности служит оценка функции внешнего дыхания ФВД), основные задачи которой можно сформулировать следующим образом:

  1. Диагностика нарушений функции внешнего дыхания и объективная оценка тяжести дыхательной недостаточности.
  2. Дифференциальная диагностика обструктивных и рестриктивных расстройств легочной вентиляции.
  3. Обоснование патогенетической терапии дыхательной недостаточности.
  4. Оценка эффективности проводимого лечения.

Эти задачи решают с помощью ряда инструментальных и лабораторных методов: пирометрии, спирографии, пневмотахометрии, тестов на диффузионную способность легких, нарушение вентиляционно-перфузионных отношений и др. Объем обследований определяется многими факторами, в том числе тяжестью состояния больного и возможностью (и целесообразностью!) полноценного и всестороннего исследования ФВД.

Наиболее распространенными методами исследования функции внешнего дыхания служат спирометрия и спирография. Спирография обеспечивает не только измерение, но графическую регистрацию основных показателей вентиляции при спокойном и формованном дыхании, физической нагрузке, проведении фармакологических проб. В последние годы использование компьютерных спирографических систем значительно упростило и ускорило проведение обследования и, главное, позволило проводить измерение объемной скорости инспираторного и экспираторного потоков воздуха как функции объема легких, т.е. анализировать петлю поток-объем. К таким компьютерным системам относятся, например, спирографы фирм «Fukuda» (Япония) и «Erich Eger» (Германия) и др.

Методика исследования . Простейший спирограф состоит из наполненного воздухом »двнжпого цилиндра, погруженного в емкость с водой и соединенного с регистрируемым устройством (например, с откалиброванным и вращающимся с определенной скоростью барабаном, на котором записываются показания спирографа). Пациент в положении сидя дышит через трубку, соединенную с цилиндром с воздухом. Изменения объема легких при дыхании регистрируют по изменению объема цилиндра, соединенного с вращающимся барабаном. Исследование обычно проводят в двух режимах:

  • В условиях основного обмена - в ранние утренние часы, натощак, после 1-часового отдыха в положении лежа; за 12-24 ч до исследования должен быть отменен прием лекарств.
  • В условиях относительного покоя - в утреннее или дневное время, натощак или не ранее, чем через 2 ч после легкого завтрака; перед исследованием необходим отдых в течение 15 мин в положении сидя.

Исследование проводят в отдельном слабо освещенном помещении с температурой воздуха 18-24 С, предварительно ознакомив пациента с процедурой. При проведении исследования важно добиться полного контакта с пациентом, поскольку его негативное отношение к процедуре и отсутствие необходимых навыков могут в значительной степени изменить результаты и привести к неадекватной оценке полученных данных.

Основные показатели легочной вентиляции

Классическая спирография позволяет определить:

  1. величину большинства легочных объемов и емкостей,
  2. основные показатели легочной вентиляции,
  3. потребление кислорода организмом и эффективность вентиляции.

Различают 4 первичных легочных объема и 4 емкости. Последние включают два или более первичных объемов.

Легочные объемы

  1. Дыхательный объем (ДО, или VT - tidal volume) - это объем газа, вдыхаемого и выдыхаемого при спокойном дыхании.
  2. Резервный объем вдоха (РО вд, или IRV - inspiratory reserve volume) - максимальный объем газа, который можно дополнительно вдохнуть после спокойного вдоха.
  3. Резервный объем выдоха (РО выд, или ERV - expiratory reserve volume) - максимальный объем газа, который можно дополнительно выдохнуть после спокойного выдоха.
  4. Остаточный объем легких (OOJI, или RV - residual volume) - объем гада, остающийся в легких после максимального выдоха.

Легочные емкости

  1. Жизненная емкость легких (ЖЕЛ, или VC - vital capacity) представляет собой сумму ДО, РО вд и РО выд, т.е. максимальный объем газа, который можно выдохнуть после максимального глубокого вдоха.
  2. Емкость вдоха (Евд, или 1С - inspiratory capacity) - это сумма ДО и РО вд, т.е. максимальный объем газа, который можно вдохнуть после спокойного выдоха. Эта емкость характеризует способность легочной ткани к растяжению.
  3. Функциональная остаточная емкость (ФОЕ, или FRC - functional residual capacity) представляет собой сумму ООЛ и PO выд т.е. объем газа, остающегося в легких после спокойного выдоха.
  4. Общая емкость легких (ОЕЛ, или TLC - total lung capacity) - это общее количество газа, содержащегося в легких после максимального вдоха.

Обычные спирографы, широко распространенные в клинической практике, позволяют определить только 5 легочных объемов и емкостей: ДО, РО вд, РО выд. ЖЕЛ, Евд (или, соответственно, VT, IRV, ERV, VC и 1С). Для нахождения важнейшего показателя ленной вентиляции - функциональной остаточной емкости (ФОЕ, или FRC) и расчета остаточного объема легких (ООЛ, или RV) и общей емкости легких (ОЕЛ, или TLC) необходимо применять специальные методики, в частности, методы разведения гелия, смывания азота или плетизмографии всего тела (см. ниже).

Основным показателем при традиционной методике спирографии является жизненная емкость легких (ЖЕЛ, или VC). Чтобы измерить ЖЕЛ, пациент после периода спокойного дыхания (ДО) производит вначале максимальный вдох, а затем, возможно, полный выдох. При этом целесообразно оценить не только интегральную величину ЖЕЛ) и инспираторную и экспираторную жизненную емкость (соответственно, VCin,VCex), т.е. максимальный объем воздуха, который можно вдохнуть или выдохнугь.

Второй обязательный прием, используемый при традиционной спирографии, это проба с определением форсированной (экспираторной) жизненной емкости легких ОЖЕЛ, или FVC - forced vital capacity expiratory), позволяющая определить наиболее (формативные скоростные показатели легочной вентиляции при форсированном выдоxe, характеризующие, в частности, степень обструкции внутрилегочных воздухоносных путей. Как и при выполнении пробы с определением ЖЕЛ (VC), пациент производит максимально глубокий вдох, а затем, в отличие от определения ЖЕЛ, выдыхает воздух максимально возможной скоростью (форсированный выдох). При этом регистрируется споненциальная постепенно уплощающаяся кривая. Оценивая спирограмму этого экспираторного маневра, рассчитывают несколько показателей:

  1. Объем форсированного выдоха за одну секунду (ОФВ1, или FEV1 - forced expiratory volume after 1 second) - количество воздуха, выведенного из легких за первую секунду выдоха. Этот показатель уменьшается как при обструкции воздухоносных путей (за счет увеличения бронхиального сопротивления), так и при рестриктивных нарушениях (за счет уменьшения всех легочных объемов).
  2. Индекс Тиффно (ОФВ1/ФЖЕЛ, %) - отношение объема форсированного выдоха за первую секунду (ОФВ1 или FEV1) к форсированной жизненной емкости легких (ФЖЕЛ, или FVC). Это основной показатель экспираторного маневра с форсированным выдохом. Он существенно уменьшается при бронхообструктивном синдроме, поскольку замедление выдоха, обусловленное бронхиальной обструкцией, сопровождается уменьшением объема форсированного выдоха за 1 с (ОФВ1 или FEV1) при отсутствии или незначительном уменьшении общего значения ФЖЕЛ (FVC). При рестриктивных нарушениях индекс Тиффно практически не изменяется, так как ОФВ1 (FEV1) и ФЖЕЛ (FVC) уменьшаются почти в одинаковой степени.
  3. Максимальная объемная скорость выдоха на уровне 25%, 50% и 75% форсированной жизненной емкости легких (МОС25%, МОС50%, МОС75%, или MEF25, МЕF50, MEF75 - maximum expiratory flow at 25%, 50%, 75% of FVC). Эти показатели рассчитывают путем деления соответствующих объемов (в литрах) форсированного выдоха (на уровне 25%, 50% и 75% от общей ФЖЕЛ) на время достижения этих объемов при форсированном выдохе (в секундах).
  4. Средняя объемная скорость выдоха на уровне 25~75% от ФЖЕЛ (СОС25-75%. или FEF25-75). Этот показатель в меньшей степени зависит от произвольного усилия пациента и более объективно отражает проходимость бронхов.
  5. Пиковая объемная скорость форсированного выдоха (ПОС выд, или PEF - peak expiratory flow) - максимальная объемная скорость форсированного выдоха.

На основании результатов спирографического исследования рассчитывают также:

  1. число дыхательных движений при спокойном дыхании (ЧДД, или BF - breathing freguency) и
  2. минутный объем дыхания (МОД, или MV - minute volume) - величину общей вентиляции легких в минуту при спокойном дыхании.

Исследование отношения «поток-объем»

Компьютерная спирография

Современные компьютерные спирографические системы позволяют автоматически анализировать не только приведенные выше спирографические показатели, но и отношение поток-объем, т.е. зависимость объемной скорости потока воздуха во время вдоха и выдоха от величины легочного объема. Автоматический компьютерный анализ инспираторной и экспираторной части петли поток-объем - это наиболее перспективный метод количественной оценки нарушений легочной вентиляции. Хотя сама по себе петля поток-объем содержит в основном ту же информацию, что и простая спирограмма, наглядность отношения между объемной скоростью потока воздуха и объемом легкого позволяет более подробно изучить функциональные характеристики как верхних, так и нижних воздухоносных путей.

Основным элементом всех современных спирографических компьютерных систем является пневмотахографический датчик, регистрирующий объемную скорость потока воздуха. Датчик представляет собой широкую трубку, через которую пациент свободно дышит. При этом в результате небольшого, заранее известного, аэродинамического сопротивления трубки между ее началом и концом создается определенная разность давлений, прямо пропорциональная объемной скорости потока воздуха. Таким образом удается зарегистрировать изменения объемной скорости потока воздуха во время доха и выдоха - ппевмотахограмму.

Автоматическое интегрирование этого сигнала позволяет получить также традиционные спирографические показатели - значения объема легких в литрах. Таким образом, в каждый момент времени в запоминающее устройство компьютера одновременно поступает информация об объемной скорости потока воздуха и об объеме легких в данный момент времени. Это позволяет построить на экране монитора кривую поток-объем. Существенным преимуществом подобного метода является то, что прибор работает открытой системе, т.е. обследуемый дышит через трубку по открытому контуру, не испытывая дополнительного сопротивления дыханию, как при обычной спирографии.

Процедура выполнения дыхательных маневров при регистрации кривой поток-объем и напоминает запись обычной сопрограммы. После некоторого периода сложного дыхания пациент производит максимальный вдох, в результате чего регистрируется инспираторная часть кривой поток-объем. Объем легкого в точке «3» соответствует общей емкости легких (ОЕЛ, или TLC). Вслед за этим пациент производит форсированный выдох, и на экране монитора регистрируется экспираторная часть кривой поток-объем (кривая «3-4-5-1»), В начале форсированного выдоха («3-4») объемная скорость потока воздуха быстро возрастает, достигая пика (пиковая объемная скорость - ПОС выд, или PEF), а затем линейно убывает вплоть до окончания форсированного выдоха, когда кривая форсированного выдоха возвращается к исходной позиции.

У здорового человека форма инспираторной и экспираторной частей кривой поток-объем существенно отличаются друг от друга: максимальная объемная скорость во время вдоха достигается примерно на уровне 50% ЖЕЛ (МОС50%вдоха > или MIF50), тогда как во время форсированного выдоха пиковый экспираторный поток (ПОСвыд или PEF) возникает очень рано. Максимальный инспираторный поток (МОС50% вдоха, или MIF50) примерно в 1,5 раза больше максимального экспираторного потока в середине жизненной емкости (Vmax50%).

Описанную пробу регистрации кривой поток-объем проводят несколько раз до стечения совпадающих результатов. В большинстве современных приборов процедура сбора наилучшей кривой для дальнейшей обработки материала осуществляется автоматически. Кривую поток-объем распечатывают вместе с многочисленными показателями легочной вентиляции.

С помощью пневмотохогрофического датчика регистрируется кривая объемной скорости потока воздуха. Автоматическое интегрирование этой кривой дает возможность получить кривую дыхательных объемов.

Оценка результатов исследования

Большинство легочных объемов и емкостей, как у здоровых пациентов, так и у больных с заболеваниями легких, зависят от целого ряда факторов, в том числе от возраста, пола, размеров грудной клетки, положения тела, уровня тренированности и т.п. Например, жизненная емкость легких (ЖЕЛ, или VС) у здоровых людей с возрастом уменьшается, тогда как остаточный объем легких (ООЛ, или RV) возрастает, а общая емкость легких (ОЕЛ, или ТLС) практически не изменяется. ЖЕЛ пропорциональна размерам грудной клетки и, соответственно, росту пациента. У женщин ЖЕЛ в среднем на 25% ниже, чем у мужчин.

Поэтому с практической точки зрения нецелесообразно сравнивать получаемые во время спирографического исследования величины легочных объемов и емкостей: едиными «нормативами», колебания значений которых в связи с влиянием вышеуказанных и других факторов весьма значительны (например, ЖЕЛ в норме может колебаться от 3 до 6 л).

Наиболее приемлемым способом оценки получаемых при исследовании спирографических показателей является их сопоставление с так называемыми должными величинами, которые были получены при обследовании больших групп здоровых людей с учетом их возраста, пола и роста.

Должные величины показателей вентиляции определяют по специальным формулам или таблицам. В современных компьютерных спирографах они рассчитываются автоматически. Для каждого показателя приводят границы нормальных значений в процентах по отношению к расчетной должной величине. Например, ЖЕЛ (VС) или ФЖЕЛ (FVС) считают сниженной, если ее фактическое значение меньше 85% от расчетной должной величины. Снижение ОФВ1 (FЕV1) констатируют, если фактическое значение этого показателя меньше 75% от должной величины, а уменьшение ОФВ1/ФЖЕЛ (FЕV1/FVС) - при фактическом значении меньше 65% от должной величины.

Границы нормальных значений основных спирографических показателей (в процентах по отношению к расчетной должной величине).

Показатели

Условная норма

Отклонения

Умеренные

Значительные

ОФВ1/ФЖЕЛ

Кроме того, при оценке результатов спирографии необходимо учитывать некоторые дополнительные условия, при которых проводилось исследование: уровни атмосферного давления, температуры и влажности окружающего воздуха. Действительно, объем выдыхаемого пациентом воздуха обычно оказывается несколько меньше, чем тот, который тот же воздух занимал в легких, поскольку его температура и влажность, как правило, выше, чем окружающего воздуха. Чтобы исключить различия в измеряемых величинах, связанные с условиями проведения исследования, все легочные объемы, как должные (расчетные), так и фактические (измеренные у данного пациента), приводятся для условий, соответствующих их значениям при температуре тела 37°С и полном насыщении водяными парами (система BTPS - Body Temperature, Pressure, Saturated). В современных компьютерных спирографах такая поправка и пересчет легочных объемов в системе BTPS производятся автоматически.

Интерпретация результатов

Практический врач должен хорошо представлять истинные возможности спирографического метода исследования, ограниченные, как правило, отсутствием информации о значениях остаточного объема легких (ООЛ), функциональной остаточной емкости (ФОЕ) и общей емкости легких (ОЕЛ), что не позволяет проводить полноценный анализ структуры ОЕЛ. В то же время спирография дает возможность составить общее представление о состоянии внешнего дыхания, в частности:

  1. выявить снижение жизненной емкости легких (ЖЕЛ);
  2. выявить нарушения трахеобронхиальной проходимости, причем при использовании современного компьютерного анализа петли поток-объем - на наиболее ранних стадиях развития обструктивного синдрома;
  3. выявить наличие рестриктивных расстройств легочной вентиляции в тех случаях, когда они не сочетаются с нарушениями бронхиальной проходимости.

Современная компьютерная спирография позволяет получать достоверную и полную информацию о наличии бронхообструктивного синдрома. Более или менее надежное выявление рестриктивных расстройств вентиляции с помощью спирографического метода (без применения газоаналитических методов оценки структуры ОЕЛ) возможно только в относительно простых, классических случаях нарушения растяжимости легких, когда они не сочетаются с нарушенной бронхиальной проходимости.

Диагностика обструктивного синдрома

Главным спирографическим признаком обструктивного синдрома является замедление форсированного выдоха за счет увеличения сопротивления воздухоносных путей. При регистрации классической спирограммы кривая форсированного выдоха становится растянутой, уменьшаются такие показатели, как ОФВ1 и индекс Тиффно (ОФВ1/ФЖЕЛ, или FEV,/FVC). ЖЕЛ (VC) при этом или не изменяется, или незначительно уменьшается.

Более надежным признаком бронхообструктивного синдрома является уменьшение индекса Тиффно (ОФВ1/ФЖЕЛ, или FEV1/FVC), поскольку абсолютная величина ОФВ1 (FEV1) может уменьшаться не только при бронхиальной обструкции, но и при рестриктивных расстройствах за счет пропорционального уменьшения всех легочных объемов и емкостей, в том числе ОФВ1 (FEV1) и ФЖЕЛ (FVC).

Уже па ранних стадиях развития обструктивного синдрома снижается расчетный показатель средней объемной скорости на уровне 25-75% от ФЖЕЛ (СОС25-75%)- О" является наиболее чувствительным спирографическим показателем, раньше других указывающим на повышение сопротивления воздухоносных путей. Однако его расчет требует достаточно точных ручных измерений нисходящего колена кривой ФЖЕЛ, что не всегда возможно по классической спирограмме.

Более точные и падежные данные могут быть получены при анализе петли поток-объем с помощью современных компьютерных спирографических систем. Обструктивные расстройства сопровождаются изменениями преимущественно экспираторной части петли поток-объем. Если у большинства здоровых людей эта часть петли напоминает треугольник с почти линейным снижением объемной скорости потока воздуха па протяжении выдоха, то у больных с нарушениями бронхиальной проходимости наблюдается своеобразное «провисание» экспираторной части петли и уменьшение объемной скорости потока воздуха при всех значениях объема легких. Нередко, вследствие увеличения объема легких, экспираторная часть петли сдвинута влево.

Снижаются такие спирографические показатели, как ОФВ1 (FЕV1), ОФВ1/ФЖЕЛ (FEV1/FVС), пиковая объемная скорость выдоха (ПОС выд, или РЕF), МОС25% (МЕF25), МОС50% (МЕF50), МОС75% (МЕF75) и СОС25-75% (FЕF25-75).

Жизненная емкость легких (ЖЕЛ) может оставаться неизмененной или уменьшатся даже при отсутствии сопутствующих рестриктивных расстройств. При этом важно оценить также величину резервного объема выдоха (РО выд), который закономерно уменьшается при обструктивном синдроме, особенно при возникновении раннего экспираторного закрытия (коллапса) бронхов.

По мнению некоторых исследователей, количественный анализ экспираторной части петли поток-объем позволяет также составить представление о преимущественном су жеиии крупных или мелких бронхов. Считается, что для обструкции крупных бронхов характерно снижение объемной скорости форсированного выдоха преимущественно в начальной части петли, в связи с чем резко уменьшаются такие показатели, как пиковая объемная скорость (ПОС) и максимальная объемная скорость на уровне 25% от ФЖЕЛ (МОС25%. или МЕF25). При этом объемная скорость потока воздуха в середине и конце выдоха (МОС50% и МОС75%) также снижается, но в меньшей степени, чем ПОС выд и МОС25%. Наоборот, при обструкции мелких бронхов выявляют преимущественно снижение МОС50%. МОС75%, тогда как ПОС выд нормальна или незначительно снижена, а МОС25% снижена умеренно.

Однако следует подчеркнуть, что эти положения в настоящее время представляются достаточно спорными и не могут быть рекомендованы для использования в широкой клинической практике. Во всяком случае, имеется больше оснований считать, что неравномерность уменьшения объемной скорости потока воздуха при форсированном выдохе скорее отражает степень бронхиальной обструкции, чем ее локализацию. Ранние стадии сужения бронхов сопровождаются замедлением экспираторного потока воздуха в конце и середине выдоха (снижение МОС50%, МОС75%, СОС25-75% при малоизмененных значениях МОС25%, ОФВ1/ФЖЕЛ и ПОС), тогда как при выраженной обструкции бронхов наблюдается относительно пропорциональное снижение всех скоростных показателей, включая индекс Тиффно (ОФВ1/ФЖЕЛ), ПОС и МОС25%.

Представляет интерес диагностика обструкции верхних воздухоносных путей (гортань, трахея) с помощью компьютерных спирографов. Различают три типа такой обструкции:

  1. фиксированная обструкция;
  2. переменная внегрудная обструкция;
  3. переменная внутригрудная обструкция.

Примером фиксированной обструкции верхних воздухоносных путей является стеноз лани, обусловленный наличием трахеостомы. В этих случаях дыхание осуществляется через жесткую относительно узкую трубку, просвет которой на вдохе и выдохе не изменяется. Такая фиксированная обструкция ограничивает поток воздуха как на вдохе, так и на выдохе. Поэтому экспираторная часть кривой напоминает по форме инспираторную; объемные скорости вдоха и выдоха значительно уменьшены и почти равны друг другу.

В клинике, однако, чаще приходится сталкиваться с двумя вариантами переменной обструкции верхних воздухоносных путей, когда просвет гортани или трахеи меняется время вдоха или выдоха, что ведет к избирательному ограничению соответственно инспираторного или экспираторного потоков воздуха.

Переменная внегрудная обструкция наблюдается при различного рода стенозах гортани (отек голосовых связок, опухоль и т.д.). Как известно, во время дыхательных движений просвет внегрудных воздухоносных путей, особенно суженных, зависит от соотношения внутритрахеального и атмосферного давлений. Во время вдоха давление в трахее (так же как и виутриальвеолярное и внутриплевральное) становится отрицательным, т.е. ниже атмосферного. Это способствует сужению просвета внегрудных воздухоносных путей и значительному ограничению ипспираториого потока воздуха и уменьшению (уплощению) инспираторной части петли поток-объем. Во время форсированного выдоха внутритрахеальное давление становится значительно выше атмосферного, в связи с чем диаметр воздухоносных путей приближается к нормальному, а экспираторная часть петли поток-объем изменяется мало. Переменная внутригрудная обструкция верхних воздухоносных путей наблюдается и опухолях трахеи и дискинезии мембранозной части трахеи. Диаметр утри грудных воздухоносных путей во многом определяется соотношением внутритрахеального и внутриплеврального давлений. При форсированном выдохе, когда внутриплевральное давление значительно увеличивается, превышая давление в трахее, внутригрудные воздухоносные пути сужаются, и развивается их обструкция. Во время вдоха давление в трахее несколько превышает отрицательное внутриплевральное давление, а степень сужения трахеи уменьшается.

Таким образом, при переменной внутригрудной обструкции верхних воздухоносных путей происходит избирательное ограничение потока воздуха на выдохе и уплощение инспираторной части петли. Ее инспираторная часть почти не изменяется.

При переменной внегрудной обструкции верхних воздухоносных путей наблюдается избирательное ограничение объемной скорости потока воздуха преимущественно на вдохе, при внутригрудной обструкции - на выдохе.

Следует также заметить, что в клинической практике достаточно редко встречаются случаи, когда сужение просвета верхних воздухоносных путей сопровождается уплощением только инспираторной или только экспираторной части петли. Обычно выявляет ограничение потока воздуха в обе фазы дыхания, хотя во время одной из них этот процесс значительно более выражен.

Диагностика рестриктивных нарушений

Рестриктивные нарушения легочной вентиляции сопровождаются ограничением наполнения легких воздухом вследствие уменьшения дыхательной поверхности легкого, выключения части легкого из дыхания, снижения эластических свойств легкого и грудной клетки, а также способности легочной ткани к растяжению (воспалительный или гемодинамический отек легкого, массивные пневмонии, пневмокониозы, пневмосклероз и т.н.). При этом, если рестриктивные расстройства не сочетаются с описанными выше нарушениями бронхиальной проходимости, сопротивление воздухоносных путей обычно не возрастает.

Основное следствие рестриктивных (ограничительных) расстройств вентиляции, выявляемых при классической спирографии - это почти пропорциональное уменьшение большинства легочных объемов и емкостей: ДО, ЖЕЛ, РО вд, РО выд, ОФВ, ОФВ1 и т.д. Важно, что, в отличие от обструктивного синдрома, снижение ОФВ1 не сопровождается уменьшением отношения ОФВ1/ФЖЕЛ. Этот показатель остается в пределах нормы или даже несколько увеличивается за счет более значительного уменьшения ЖЕЛ.

При компьютерной спирографии кривая поток-объем представляет собой уменьшенную копию нормальной кривой, в связи с общим уменьшением объема легких смещенную вправо. Пиковая объемная скорость (ПОС) экспираторного потока ОФВ1 снижены, хотя отношение ОФВ1/ФЖЕЛ нормальное или увеличено. В связи ограничением расправления легкого и, соответственно, уменьшением его эластической тяги потоковые показатели (например, СОС25-75%» МОС50%, МОС75%) в ряде случаев также могут быть снижены даже при отсутствии обструкции воздухоносных путей.

Наиболее важными диагностическими критериями рестриктивных расстройств вентиляции, позволяющими достаточно надежно отличить их от обструктивных расстройств, являются:

  1. почти пропорциональное снижение легочных объемов и емкостей, измеряемых при спирографии, а также потоковых показателей и, соответственно, нормальная или малоизмененная форма кривой петли поток-объем, смещенной вправо;
  2. нормальное или даже увеличенное значение индекса Тиффно (ОФВ1/ФЖЕЛ);
  3. уменьшение резервного объема вдоха (РО вд) почти пропорционально резервному объему выдоха (РО выд).

Следует еще раз подчеркнуть, что для диагностики даже «чистых» рестриктивных расстройств вентиляции нельзя ориентироваться только па снижение ЖЕЛ, поскольку пот показатель при выраженном обструктивном синдроме также может существенно уменьшаться. Более надежными дифференциально-диагностическими признаками являются отсутствие изменений формы экспираторной части кривой поток-объем (в частности, нормальные или увеличенные значения OФB1/ФЖЕЛ), а также пропорциональное уменьшение РО вд и РО выд.

Определение структуры общей емкости легких (ОЕЛ, или TLC)

Как было указано выше, методы классической спирографии, а также компьютерная обработка кривой поток-объем позволяют составить представление об изменениях только пяти из восьми легочных объемов и емкостей (ДО, РОвд, РОвыд, ЖЕЛ, Евд, или, соответственно - VT, IRV, ERV, VC и 1С), что дает возможность оценить преимущественно степень обструктивных расстройств легочной вентиляции. Рестриктивные расстройства могут быть достаточно надежно диагностированы только в том случае, если они не сочетаются с нарушением бронхиальной проходимости, т.е. при отсутствии смешанных расстройств легочной вентиляции. Тем не менее, в практике врача чаще всего встречаются именно такие смешанные нарушения (например, при хроническом обструктивном бронхите или бронхиальной астме, осложненными эмфиземой и пневмосклерозом и т.п.). В этих случаях механизмы нарушения легочной вентиляции могут быть выявлены только с помощью анализа структуры ОЕЛ.

Для решения этой проблемы необходимо использовать дополнительные методы определения функциональной остаточной емкости (ФОЕ, или FRC) и рассчитывать показатели остаточного объема легких (ООЛ, или RV) и общей емкости легких (ОЕЛ, или TLC). Поскольку ФОЕ - это количество воздуха, остающегося в легких после максимального выдоха, ее измеряют только непрямыми методами (газоаналитическими или с применением плетизмографии всего тела).

Принцип газоаналитических методов заключается в том, что в легкие либо вводя i инертный газ гелий (метод разведения), либо вымывают содержащийся в альвеолярном воздухе азот, заставляя пациента дышать чистым кислородом. В обоих случаях ФОЕ вычисляют, исходя из конечной концентрации газа (R.F. Schmidt, G. Thews).

Метод разведения гелия . Гелий, как известно, является инертным и безвредным для организма газом, который практически не проходит через альвеолярно-капиллярную мембрану и не участвует в газообмене.

Метод разведения основан на измерении концентрации гелия в замкнутой емкости спирометра до и после смешивания газа с легочным объемом. Спирометр та крытого типа с известным объемом (V сп) заполняют газовой смесью, состоящей из кислорода и гелия. При этом объем, который занимает гелий (V сп), и его исходная концентрация (FHe1) также известны. После спокойного выдоха пациент начинает дышать из спирометра, и гелий равномерно распределяется между объемом легких (ФОЕ, или FRC) и объемом спирометра (V сп). Через несколько минут концентрация гелия в общей системе («спирометр-легкие») снижается (FНе 2).

Метод вымывания азота . При использовании этого метода спирометр заполняют кислородом. Пациент в течение нескольких минут дышит в замкнутый контур спирометра, при этом измеряют объем выдыхаемого воздуха (газа), начальное содержание азота в легких и его конечное содержание в спирометре. ФОЕ (FRC) рассчитывают, используя уравнение, аналогичное таковому для метода разведения гелия.

Точность обоих приведенных методов определения ФОЕ (РЯС) зависит от полноты смешивания газов в легких, которое у здоровых людей происходит в течение нескольких минут. Однако при некоторых заболеваниях, сопровождающихся выраженной неравномерностью вентиляции (например, при обструктивной легочной патологии), уравновешивание концентрации газов занимает длительное время. В этих случаях измерение ФОЕ (FRC) описанными методами может оказаться неточным. Этих недостатков лишен более сложный в техническом отношении метод плетизмографии всего тела.

Плетизмография всего тела . Метод плетизмографии всего тела - это один из наиболее информативных и сложных методов исследования, используемый в пульмонологии для определения легочных объемов, трахеобронхиального сопротивления, эластических свойств легочной ткани и грудной клетки, а также для оценки некоторых других параметров легочной вентиляции.

Интегральный плетизмограф представляет собой герметично закрытую камеру объемом 800 л, в которой свободно размещается пациент. Обследуемый дышит через пневмотахографическую трубку, соединенную со шлангом, открытым в атмосферу. Шланг имеет заслонку, которая позволяет в нужный момент автоматически перекрывать поток воздуха. Специальными барометрическими датчиками измеряется давление в камере (Ркам) и в ротовой полости (Ррот). последнее при закрытой заслонке шланга равно внутри альвеолярному давлению. Ппевмотахограф позволяет определить поток воздуха (V).

Принцип действия интегрального плетизмографа основан на законе Бойля Мориошта, согласно которому при неизменной температуре сохраняется постоянство отношения между давлением (Р) и объемом газа (V):

P1хV1 = Р2хV2, где P1- исходное давление газа, V1 - исходный объем газа, Р2 - давление после изменения объема газа, V2 - объем после изменения давления газа.

Пациент, находящийся внутри камеры плетизмографа, производит вдох и спокойный выдох, после чего (па уровне ФОЕ, или FRC) заслонку шланга закрывают, и обследуемый предпринимает попытку «вдоха» и «выдоха» (маневр «дыхания») При таком маневре «дыхания» внутриальвеолярное давление изменяется, и обратно пропорционально ему изменяется давление в замкнутой камере плетизмографа. При попытке «вдоха» с закрытой заслонкой объем грудной клетки увеличивается,ч то приводит, с одной стороны, к уменьшению внутриальвеолярного давления, а с другой - к соответствующему увеличению давления в камере плетизмографа (Р кам). Наоборот, при попытке «выдоха» альвеолярное давление увеличивается, а объем грудной клетки и давление в камере уменьшаются.

Таким образом, метод плетизмографии всего тела позволяет с высокой точностью рассчитывать внутригрудной объем газа (ВГО), который у здоровых лиц достаточно точно соответствует величине функциональной остаточной емкости легких (ФОН, или КС); разница ВГО и ФОБ обычно не превышает 200 мл. Однако следует помнить, что при нарушении бронхиальной проходимости и некоторых других патологических »стояниях ВГО может значительно превышать величину истинного ФОБ за счет увеличения числа невентилируемых и плохо вентилируемых альвеол. В этих случаях целесообразно комбинированное исследование с помощью газоаналитических методов метода плетизмографии всего тела. Кстати, разность ВОГ и ФОБ является одним из важных показателей неравномерности вентиляции легких.

Интерпретация результатов

Основным критерием наличия рестриктивных расстройств легочной вентиляции шляется значительное снижение ОЕЛ. При «чистой» рестрикции (без сочетания бронхиальной обструкцией) структура ОЕЛ существенно не изменяется, или наблюдался некоторое уменьшение отношения ООЛ/ОЕЛ. Если рестриктивные расстройства юани кают на фоне нарушений бронхиальной проходимости (смешанный тип вентиляционных нарушений), вместе с отчетливым снижением ОЕЛ наблюдается существенное изменение ее структуры, характерное для бронхообструктивного синдрома: увеличение ООЛ/ОЕЛ (более 35%) и ФОЕ/ОЕЛ (более 50%). При обоих вариантах рестриктивных расстройств ЖЕЛ значительно уменьшается.

Таким образом, анализ структуры ОЕЛ позволяет дифференцировать все три варианта вентиляционных нарушений (обструктивный, рестриктивный и смешанный), тогда как оценка только спирографических показателей не дает возможности достоверно отличить смешанный вариант от обструктивного, сопровождающегося снижением ЖЕЛ).

Основным критерием обструктивного синдрома является изменение структуры ОЕЛ, в частности увеличение ООЛ/ОЕЛ (больше 35%) и ФОЕ/ОЕЛ (больше 50%). Для «чистых» рестриктивных расстройств (без сочетания с обструкцией) наиболее характерно уменьшение ОЕЛ без изменения ее структуры. Смешанный тип вентиляционных нарушений характеризуется значительным снижением ОЕЛ и увеличением отношений ООЛ/ОЕЛ и ФОЕ/ОЕЛ.

Определение неравномерности вентиляции легких

У здорового человека существует определенная физиологическая неравномерность вентиляции разных отделов легких, обусловленная различиями механических свойств воздухоносных путей и легочной ткани, а также наличием так называемого вертикально градиента плеврального давления. Если пациент занимает вертикальное положение, в конце выдоха плевральное давление в верхних отделах легкого оказывается более отрицательным, чем в нижних (базальных) отделах. Разница может достигать 8 см водного столба. Поэтому перед началом очередного вдоха альвеолы верхушек легких растянуты больше, чем альвеолы нижиебазальпых отделов. В связи с этим во время вдоха в альвеолы базальных отделов поступает больший объем воздуха.

Альвеолы нижних базальных отделов легких в норме вентилируются лучше, чем области верхушек, что связано с наличием вертикального градиента внутриплеврального давления. Тем не менее, в норме такая неравномерность вентиляции не сопровождается заметным нарушением газообмена, поскольку кровоток в легких также неравномерен: базальные отделы перфузируются лучше, чем верхушечные.

При некоторых заболеваниях органов дыхания степень неравномерности вентиляции может значительно возрастать. Наиболее частыми причинами такой патологической неравномерности вентиляции являются:

  • Заболевания, сопровождающиеся неравномерным повышением сопротивления воздухоносных путей (хронический бронхит, бронхиальная астма).
  • Заболевания с неодинаковой региональной растяжимостью легочной ткани (эмфизема легких, пневмосклероз).
  • Воспаления легочной ткани (очаговые пневмонии).
  • Заболевания и синдромы, сочетающиеся с локальным ограничением расправления альвеол (рестриктивные), - экссудативный плеврит, гидроторакс, пневмосклероз и др.

Нередко различные причины сочетаются. Например, при хроническом обструктивном бронхите, осложненном эмфиземой и пневмосклерозом, развиваются региональные нарушения бронхиальной проходимости и растяжимости легочной ткани.

При неравномерной вентиляции существенно увеличивается физиологическое мертвое пространство, газообмен в котором не происходит или ослаблен. Это является одной из причин развития дыхательной недостаточности.

Для оценки неравномерности легочной вентиляции чаще используют газоаналитические и барометрические методы. Так, общее представление о неравномерности вентиляции легких можно получить, например, анализируя кривые смешивания (разведения) гелия или вымывания азота, которые используют для измерения ФОЕ.

У здоровых людей смешивание гелия с альвеолярным воздухом или вымывание из него азота происходит в течение трех минут. При нарушениях бронхиальной проходимости количество (объем) плохо вентилируемых альвеол резко увеличивается, в связи с чем время смешивания (или вымывания) значительно возрастает (до 10-15 минут), что и является показателем неравномерности легочной вентиляции.

Более точные данные можно получить при использовании пробы на вымывание азота при одиночном вдохе кислорода. Пациент производит максимальный выдох, а затем максимально глубоко вдыхает чистый кислород. Затем он осуществляет медленный выдох в замкнутую систему спирографа, снабженного прибором для определения концентрации азота (азотографом). На протяжении всего выдоха непрерывно измеряется объем выдыхаемой газовой смеси, а также определяется изменяющаяся концентрация азота в выдыхаемой газовой смеси, содержащей азот альвеолярного воздуха.

Кривая вымывания азота состоит из 4-х фаз. В самом начале выдоха в спирограф поступает воздух из верхних воздухоносных путей, на 100% состоящий п.» кислорода, заполнившего их во время предшествующего вдоха. Содержание азота в этой порции выдыхаемого газа равно нулю.

Вторая фаза характеризуется резким возрастанием концентрации азота, что обусловлено вымыванием этого газа из анатомического мертвого пространства.

Во время продолжительной третьей фазы регистрируется концентрация азота альвеолярного воздуха. У здоровых людей эта фаза кривой плоская - в виде плато (альвеолярное плато). При наличии неравномерной вентиляции во время этой фазы концентрация азота увеличивается за счет газа, вымываемого из плохо вентилируемых альвеол, которые опустошаются в последнюю очередь. Таким образом, чем больше подъем кривой вымывания азота в конце третьей фазы, тем более выраженной оказывается неравномерность легочной вентиляции.

Четвертая фаза кривой вымывания азота связана с экспираторным закрытием мелких воздухоносных путей базальных отделов легких и поступлением воздуха преимущественно из верхушечных отделов легких, альвеолярный воздух в которых содержит азот более высокой концентрации.

Оценка вентиляционно-перфузионного отношения

Газообмен в легких зависит не только от уровня общей вентиляции и степени ее неравномерности в различных отделах органа, но и от соотношения вентиляции и перфузии па уровне альвеол. Поэтому величина вентиляционно-перфузионного отношения ВПО) является одной из важнейших функциональных характеристик органов дыхания, определяющей в конечном итоге уровень газообмена.

В норме ВПО для легкого в целом составляет 0,8-1,0. При снижении ВПО ниже 1,0 перфузия плохо вентилируемых участков легких приводит к гипоксемии (снижению оксигенации артериальной крови). Повышение ВПО больше 1,0 наблюдается при сохраненной или избыточной вентиляции зон, перфузия которых значительно снижена, что может привести к нарушению выведения СО2 - гиперкапнии.

Причины нарушения ВПО:

  1. Все заболевания и синдромы, обусловливающие неравномерную вентиляцию легких.
  2. Наличие анатомических и физиологических шунтов.
  3. Тромбоэмболия мелких ветвей легочной артерии.
  4. Нарушение микроциркуляции и тромбообразование в сосудах малого круга.

Капнография. Для выявления нарушений ВПО предложено несколько методов, из которых одним из наиболее простых и доступных является метод капнографии. Он основан па непрерывной регистрации содержания СО2 в выдыхаемой смеси газов с помощью специальных газоанализаторов. Эти приборы измеряют поглощение углекислым газом инфракрасных лучей, пропускаемых через кювету с выдыхаемым газом.

При анализе капнограммы обычно рассчитывают три показателя:

  1. наклон альвеолярной фазы кривой (отрезка ВС),
  2. величину концентрации СО2 в конце выдоха (в точке С),
  3. отношение функционального мертвого пространства (МП) к дыхательному объему (ДО) - МП/ДО.

Определение диффузии газов

Диффузия газов через альвеолярно-капиллярную мембрану подчиняется закону Фика, согласно которому скорость диффузии прямо пропорциональна:

  1. градиенту парциального давления газов (О2 и СО2) по обе стороны мембраны (Р1 - Р2) и
  2. диффузионной способности альвеолярно-каииллярпой мембраны (Dm):

VG= Dm х (Р1 - Р2), где VG - скорость переноса газа (С) через альвеолярно-капиллярную мембрану, Dm - диффузионная способность мембраны, Р1 - Р2 - градиент парциального давления газов по обе стороны мембраны.

Для вычисления диффузионной способности легких ФО для кислорода необходимо измерить поглощение 62 (VO 2) и средний градиент парциального давления O 2 . Значения VO 2 измеряют при помощи спирографа открытого или закрытого типа. Для определения градиента парциального давления кислорода (Р 1 - Р 2) применяют более сложные газоаналитические методы, поскольку в клинических условиях измерить парциальное давление O 2 в легочных капиллярах трудно.

Чаще используют определение диффузионной способности легких пе для O 2 , а для окиси углерода (СО). Поскольку СО в 200 раз более активно связывается с гемоглобином, чем кислород, его концентрацией в крови легочных капилляров можно пренебречь Тогда для определения DlСО достаточно измерить скорость прохождения СО через альвеолярно-капиллярную мембрану и давление газа в альвеолярном воздухе.

Наиболее широко в клинике применяют метод одиночного вдоха. Обследуемый вдыхает газовую смесь с небольшим содержанием СО и гелия, и на высоте глубокого вдоха на 10 секунд задерживает дыхание. После этого определяют состав выдыхаемого газа, измеряя концентрацию СО и гелия, и рассчитывают диффузионную способность легких для СО.

В норме DlСО, приведенный к площади тела, составляет 18 мл/мин/мм рт. ст./м2. Диффузионную способность легких для кислорода (DlО2) рассчитывают, умножая DlСО на коэффициент 1,23.

Наиболее часто снижение диффузионной способности легких вызывают следующие заболевания.

  • Эмфизема легких (за счет уменьшения площади поверхности альвеолярно-капиллярного контакта и объема капиллярной крови).
  • Заболевания и синдромы, сопровождающиеся диффузным поражением паренхимы легких и утолщением альвеолярно-капиллярной мембраны (массивные пневмонии, воспалительный или гемодинамический отек легких, диффузный пневмосклероз, альвеолиты, пневмокониозы, муковисцидоз и др.).
  • Заболевания, сопровождающиеся поражением капиллярного русла легких (васкулиты, эмболии мелких ветвей легочной артерии и др.).

Для правильной интерпретации изменений диффузионной способности легких необходимо учитывать показатель гематокрита. Повышение гематокрита при полицитемии и вторичном эритроцитозе сопровождается увеличением, а его уменьшение при анемиях - снижением диффузионной способности легких.

Измерение сопротивления воздухоносных путей

Измерение сопротивления воздухоносных путей является диагностически важным параметром легочной вентиляции. Придыхании воздух движется по воздухоносным путям под действием градиента давления между полостью рта и альвеолами. Во время вдоха расширение грудной клетки приводит к снижению виутриплеврального и, соответственно, внутриальвеолярного давления, которое становится ниже давления в ротовой полости (атмосферного). В результате поток воздуха направляется внутрь легких. Во время выдоха действие эластической тяги легких и грудной клетки направлено на увеличение внутриальвеолярного давления, которое становится выше давления в ротовой полости, в результате чего возникает обратный поток воздуха. Таким образом, градиент давления (∆P) является основной силой, обеспечивающей перенос воздуха по воздухоносным путям.

Вторым фактором, определяющим величину потока газа по воздухоносным путям, является аэродинамическое сопротивление (Raw) которое, в свою очередь, зависит от просвета и длины воздухоносных путей, а также от вязкости газа.

Величина объемной скорости потока воздуха подчиняется закону Пуазейля: V = ∆P / Raw, где

  • V - объемная скорость ламинарного потока воздуха;
  • ∆P - градиент давления в ротовой полости и альвеолах;
  • Raw - аэродинамическое сопротивление воздухоносных путей.

Отсюда следует, что для вычисления аэродинамического сопротивления воздухоносных путей необходимо одновременно измерить разность между давлением в полости рта в альвеолах (∆P), а также объемную скорость потока воздуха.

Существует несколько методов определения Raw, основанных на этом принципе:

  • метод плетизмографии всего тела;
  • метод перекрытия воздушного потока.

Определение газов крови и кислотно-основного состояния

Основным методом диагностики острой дыхательной недостаточности является исследование газов артериальной крови, которое включает измерение РаО2, РаСО2 и pH. Можно также измерить насыщение гемоглобина кислородом (сатурация кислородом) и некоторые другие параметры, в частности содержание буферных оснований (ВВ), стандартного бикарбоната (SB) и величины избытка (дефицита) оснований (ВЕ).

Показатели РаО2 и РаСО2 наиболее точно характеризуют способность легких осуществлять насыщение крови кислородом (оксигенацию) и выводить углекислый газ (вентиляцию). Последняя функция определяется также по величинам pH и ВЕ.

Для определения газового состава крови у больных с острой дыхательной недостаточностью, находящихся в отделениях реанимации, используют сложную инвазивную методику получения артериальной крови с помощью пункции крупной артерии. Чаще проводят пункцию лучевой артерии, поскольку при этом ниже риск развития осложнении. На кисти имеется хороший коллатеральный кровоток, который осуществляется локтевой артерией. Поэтому даже при повреждении лучевой артерии во время пункции или эксплуатации артериального катетера кровоснабжение кисти сохраняется.

Показаниями для пункции лучевой артерии и установки артериального катетера служат:

  • необходимость частого измерения газового состава артериальной крови;
  • выраженная гемодинамическая нестабильность на фоне острой дыхательной недостаточности и необходимость постоянного мониторинга показателей гемодинамики.

Противопоказанием к постановке катетера служит отрицательный тест Allen. Для проведения теста локтевую и лучевую артерии пережимают пальцами так, чтобы превратить артериальный кровоток; кисть руки через некоторое время бледнеет. После этого локтевую артерию освобождают, продолжая пережимать лучевую. Обычно окраска кисти быстро (в течение 5 секунд) восстанавливается. Если этого не происходит то кисть остается бледной, диагностируют окклюзию локтевой артерии, результат теста считают отрицательным, и пункцию лучевой артерии не производят.

В случае положительного результата теста ладонь и предплечье больного фиксируют. После подготовки операционного поля в дистальных отделах лучевой гости пальпируют пульс на лучевой артерии, проводят в этом месте анестезию и пунктируют артерию под углом 45°. Катетер продвигают вверх до появления в игле крови. Иглу вынимают, оставляя в артерии катетер. Для предупреждения избыточного кровотечения проксимальный отдел лучевой артерии на 5 минут прижимают пальцем. Катетер фиксируют к коже шелковыми швами и закрывают стерильной повязкой.

Осложнения (кровотечения, окклюзия артерии тромбом и инфекция) при установлении катетера развиваются относительно редко.

Кровь для исследования предпочтительней набирать в стеклянный, а не в пластиковый шприц. Важно, чтобы образец крови не контактировал с окружающим воздухом, т.е. набор и транспортировку крови следует проводить в анаэробных условиях. В противном случае, попадание в образец крови окружающего воздуха приводит к определению уровня РаО2.

Определение газов крови следует проводить не позже, чем через 10 минут после поучения артериальной крови. В противном случае продолжающиеся в образце крови метаболические процессы (инициируемые главным образом активностью лейкоцитов) существенно изменяют результаты определения газов крови, снижая уровень РаО2 и pН, и увеличивая РаСО2. Особенно выраженные изменения наблюдаются при лейкозах и при выраженном лейкоцитозе.

Методы оценки кислотно-основного состояния

Измерение рН крови

Величину рН плазмы крови можно определить двумя методами:

  • Индикаторный метод основан на свойстве некоторых слабых кислот или оснований, используемых в качестве индикаторов, диссоциировать при определенных значениях рН, изменяя при этом цвет.
  • Метод рН-метрии позволяет более точно и быстро определять концентрацию водородных ионов с помощью специальных полярографических электродов, па поверхности которых при погружении в раствор создается разность потенциалов, зависящая от рН исследуемой среды.

Один из электродов - активный, или измеряющий, выполнен из благородного металла (платины или золота). Другой (референтный) служит электродом сравнения. Платиновый электрод отделен от остальной системы стеклянной мембраной, проницаемой только для ионов водорода (Н +). Внутри электрод заполнен буферным раствором.

Электроды погружают в исследуемый раствор (например, кровь) и поляризуют от источника тока. В результате в замкнутой электрической цепи возникает ток. Поскольку платиновый (активный) электрод дополнительно отделен от раствора электролита стеклянной мембраной, проницаемой только для ионов Н + , величина давления на обеих поверхностях этой мембраны пропорциональна рН крови.

Чаще всего кислотно-основное состояние оценивают методом Аструпа на аппарате микроАструп. Определяют показатели ВВ, ВЕ и РаСО2. Две порции исследуемой артериальной крови приводят в равновесие с двумя газовыми смесями известного состава, различающимися по парциальному давлению СО2. В каждой порции крови измеряют рН. Значения рН и РаСО2 в каждой порции крови наносят в виде двух точек па номограмму. Через 2 отмеченные на номограмме точки проводят прямую до пересечения со стандартными графиками ВВ и ВЕ и определяют фактические значения этих показателей. Затем измеряют рН исследуемой крови и находят на полученной прямой точку, соответствующую этой измеренной величине рН. По проекции этой точки на ось ординат определяют фактическое давление СО2 в крови (РаСО2).

Прямое измерение давления СО2 (РаСО2)

В последние годы для прямого измерения РаСО2 в небольшом объеме используют модификацию полярографических электродов, предназначенных для измерения рН. Оба электрода (активный и референтный) погружены в раствор электролитов, который отделен от крови другой мембраной, проницаемой только для газов, но не для ионов водорода. Молекулы СО2, диффундируя через эту мембрану из крови, изменяют рН раствора. Как было сказано выше, активный электрод дополнительно отделен от раствора NаНСОз стеклянной мембраной, проницаемой только для ионов Н + . После погружения электродов в исследуемый раствор (например, кровь) величина давления на обеих поверхностях этой мембраны пропорциональна рН электролита (NaНCO3). В свою очередь, рН раствора NаНСОз зависит от концентрации СО2 в кропи. Таким образом, величина давления в цепи пропорциональна РаСО2 крови.

Полярографический метод используют также для определения РаО2 в артериальной крови.

Определение ВЕ по результатам прямого измерения рН и РаСО2

Непосредственное определение рН и РаСО2 крови позволяет существенно упростить методику определения третьего показателя кислотно-основного состояния - избытка оснований (ВЕ). Последний показатель можно определять по специальным номограммам. После прямого измерения рН и РаСО2 фактические значения этих показателей откладывают па соответствующих шкалах номограммы. Точки соединяют прямой линией и продолжают ее до пересечения со шкалой ВЕ.

Такой способ определения основных показателей кислотно-основного состояния не требует уравновешивать кровь с газовой смесью, как при использовании классического метода Аструпа.

Интерпретация результатов

Парциальное давление О2 и СО2 в артериальной крови

Значения РаО2 и РаСО2 служат основными объективными показателями дыхательной недостаточности. У здорового взрослого человека, дышащего комнатным воздухом с концентрацией кислорода 21% (FiО 2 = 0,21) и нормальным атмосферным давлением (760 мм рт. ст.), РаО2 составляет 90-95 мм рт. ст. При изменении барометрического давления, температуры окружающей среды и некоторых других условий РаО2 у здорового человека может достигать 80 мм рт. ст.

Более низкие значения РаО2 (меньше 80 мм рт. ст.) можно считать начальным проявлением гипоксемии, особенно па фоне острого или хронического поражения легких, грудной клетки, дыхательных мышц или центральной регуляции дыхания. Уменьшение РаО2 до 70 мм рт. ст. в большинстве случаев свидетельствует о компенсированной дыхательной недостаточности и, как правило, сопровождается клиническими признаками снижения функциональных возможностей системы внешнего дыхания:

  • небольшой тахикардией;
  • одышкой, дыхательным дискомфортом, появляющимися преимущественно при физической нагрузке, хотя в условиях покоя частота дыханий не превышает 20-22 в минуту;
  • заметным снижением толерантности к нагрузкам;
  • участием в дыхании вспомогательной дыхательной мускулатуры и т.п.

На первый взгляд, эти критерии артериальной гипоксемии противоречат определению дыхательной недостаточности Е. Campbell: «дыхательная недостаточность характеризуется снижением РаО2 ниже 60 мм рт. ст...». Однако, как уже отмечалось, это определение относится к декомпенсированной дыхательной недостаточности, проявляющейся большим количеством клинических и инструментальных признаков. Действительно, уменьшение РаО2 ниже 60 мм рт. ст., как правило, свидетельствует о выраженной декомпенсированной дыхательной недостаточности, и сопровождается одышкой в покое, увеличением числа дыхательных движений до 24 - 30 в минуту, цианозом, тахикардией, значительным давлением дыхательных мышц и т.д. Неврологические расстройства и признаки гипоксии других органов обычно развиваются при РаО2 ниже 40-45 мм рт. ст.

РаО2 от 80 до 61 мм рт. ст., особенно на фоне острого или хронического поражения легких и аппарата внешнего дыхания, следует расценивать как начальное проявление артериальной гипоксемии. В большинстве случаев оно указывает на формирование легкой компенсированной дыхательной недостаточности. Уменьшение РаО 2 ниже 60 мм рт. ст. свидетельствует об умеренной или тяжелой докомпенсированной дыхательной недостаточности, клинические проявления которой выражены ярко.

В норме давление СО2 в артериальной крови (РаСО 2) составляет 35-45 мм рт. Гиперкапиию диагностируют при повышении РаСО2 больше 45 мм рт. ст. Значения РаСО2 больше 50 мм рт. ст. обычно соответствуют клинической картине выраженной вентиляционной (или смешанной) дыхательной недостаточности, а выше 60 мм рт. ст. - служат показанием к проведению ИВЛ, направленной на восстановление минутного объема дыхания.

Диагностика различных форм дыхательной недостаточности (вентиляционной, паренхиматозной и др.) основана на результатах комплексного обследования больных - клинической картине заболевания, результатах определения функции внешнего дыхания, рентгенографии органов грудной клетки, лабораторных исследований, в том числе оценки газового состава крови.

Выше уже отмечены некоторые особенности изменения РаО 2 и РаСО 2 при вентиляционной и паренхиматозной дыхательной недостаточности. Напомним, что для вентиляционной дыхательной недостаточности, при которой в легких нарушается, прежде всего, процесс высвобождения СО 2 из организма, характерна гиперкапния (РаСО 2 больше 45-50 мм рт. ст.), нередко сопровождающаяся компенсированным или декомпенсированным дыхательным ацидозом. В то же время прогрессирующая гиповентиляция альвеол закономерно приводит к снижению оксигенации альвеолярного воздуха и давления О 2 в артериальной крови (РаО 2), в результате чего развивается гипоксемия. Таким образом, развернутая картина вентиляционной дыхательной недостаточности сопровождается как гиперкапнией, так и нарастающей гипоксемией.

Ранние стадии паренхиматозной дыхательной недостаточности характеризуются снижением РаО 2 (гипоксемией), в большинстве случаев сочетающейся с выраженной гипервентиляцией альвеол (тахипноэ) и развивающимися в связи с этим гипокапнией и дыхательным алкалозом. Если это состояние купировать не удается, постепенно появляются признаки прогрессирующего тотального снижения вентиляции, минутного объема дыхания и гиперкапнии (РаСО 2 больше 45-50 мм рт. ст.). Это указывает па присоединение вентиляционной дыхательной недостаточности, обусловленной утомлением дыхательных мышц, резко выраженной обструкцией воздухоносных путей или критическим падением объема функционирующих альвеол. Таким образом, для более поздних стадий паренхиматозной дыхательной недостаточности характерны прогрессирующее снижение РаО 2 (гипоксемии) в сочетании с гиперкапнией.

В зависимости от индивидуальных особенностей развития заболевания и преобладания тех или иных патофизиологических механизмов дыхательной недостаточности возможны и другие сочетания гипоксемии и гиперкапнии, которые обсуждаются в последующих главах.

Нарушения кислотно-основного состояния

В большинстве случаев для точной диагностики респираторного и нереспираторного ацидоза и алкалоза, а также для оценки степени компенсации этих нарушений вполне достаточно определить рН крови, рСО2, ВЕ и SB.

В период декомпенсации наблюдается снижение рН крови, а при алкалозе - ений кислотно-основного состояния определить достаточно просто: при ацидего повышение. Так же легко по лабораторным показателям определитъ респираторный и нереспираторный тип этих нарушений: изменения рС0 2 и ВЕ при каждом из этих двух типов разнонаправленные.

Сложнее обстоит дело с оценкой параметров кислотно-основного состояния в период компенсации его нарушений, когда рН крови не изменено. Так, снижение рСО 2 и ВЕ может наблюдаться как при нереспираторном (метаболическом) ацидозе, так и при респираторном алкалозе. В этих случаях помогает оценка общей клинической ситуации, позволяющая понять, являются ли соответствующие изменения рСО 2 или ВЕ первичными или вторичными (компенсаторными).

Для компенсированного респираторного алкалоза характерно первичное повышение РаСО2, по сути являющееся причиной этого нарушения кислотно-основного состояния, этих случаях соответствующие изменения ВЕ вторичны, то есть отражают включение различных компенсаторных механизмов, направленных на уменьшение концентрации оснований. Напротив, для компенсированного метаболического ацидоза первичными являются изменения ВЕ, о сдвиги рСО2 отражают компенсаторную гипервентиляцию легких (если она возможна).

Таким образом, сопоставление параметров нарушений кислотно-основного состояния с клинической картиной заболевания в большинстве случаев позволяет достаточно надежно диагностировать характер этих нарушений даже в период их компенсации. Установлению правильного диагноза в этих случаях может помочь также оценка изменений электролитного состава крови. При респираторном и метаболическом ацидозе часто наблюдаются гипернатриемия (или нормальная концентрация Nа +) и гиперкалиемия, а при респираторном алкалозе - гипо- (или нормо) натриемия и гипокалиемия

Пульсоксиметрия

Обеспечение кислородом периферических органов и тканей зависит не только от абсолютных значений давления Д 2 в артериальной крови, по и от способности гемоглобина связывать кислород в легких и выделять его в тканях. Эта способность описывается S-образной формой кривой диссоциации оксигемоглобина. Биологический смысл такой формы кривой диссоциации заключается в том, что области высоких значений давления О2 соответствует горизонтальный участок этой кривой. Поэтому даже при колебаниях давления кислорода в артериальной крови от 95 до 60-70 мм рт. ст. насыщение (сатурация) гемоглобина кислородом (SaО 2) сохраняется па достаточно высоком уровне. Так, у здорового молодого человека при РаО 2 = 95 мм рт. ст. сатурация гемоглобина кислородом составляет 97%, а при РаО 2 = 60 мм рт. ст. - 90%. Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует об очень благоприятных условиях для выделения кислорода в тканях.

Под действием некоторых факторов (повышение температуры, гиперкапния, ацидоз) происходит сдвиг кривой диссоциации вправо, что указывает на уменьшение сродства гемоглобина к кислороду и на возможность его более легкого высвобождение в тканях На рисунке видно, что в этих случаях для поддержания сатурации гемоглобина кисло родом па прежнем уровне требуется большее РаО 2 .

Сдвиг кривой диссоциации оксигемоглобина влево указывает на повышенное сродство гемоглобина к О 2 и меньшее его высвобождение в тканях. Такой сдвиг происходит иод действием гипокапнии, алкалоза и более низких температур. В этих случаях высокая сатурация гемоглобина кислородом сохраняется даже при более низких значениях РаО 2

Таким образом, величина сатурации гемоглобина кислородом при дыхательной недостаточности приобретает для характеристики обеспечения периферических тканей кислородом самостоятельное значение. Наиболее распространенным неинвазивным методом определения этого показателя является пульсоксиметрия.

Современные пульсоксиметры содержат микропроцессор, соединенный с датчиком, содержащим светоизлучающий диод и светочувствительный сенсор, расположенный напротив светоизлучающего диода). Обычно используют 2 длины волны излучения: 660 им (красный свет) и 940 нм (инфракрасный). Сатурацию кислородом определяют по поглощению красного и инфракрасного света, соответственно, восстановленным гемоглобином (Нb) и оксигемоглобином (НbJ 2). Результат отображается как SаО2 (сатурация, полученная при пульсоксиметрии).

В норме сатурация кислородом превышает 90%. Этот показатель снижается при гипоксемии и снижении РаO 2 меньше 60 мм рт. ст.

При оценке результатов пульсоксиметрии следует иметь в виду достаточно большую ошибку метода, достигающую ±4-5%. Следует также помнить о том, что результаты косвенного определения сатурации кислородом зависят от множества других факторов. Например, от наличия па ногтях у обследуемого лака. Лак поглощает часть излучения анода с длиной волны 660 нм, тем самым занижая значения показателя SаO 2 .

На показания пульсоксиметра влияют сдвиг кривой диссоциации гемоглобина, возникающих под действием различных факторов (температуры, рН крови, уровня РаСО2), пигментация кожи, анемия при уровне гемоглобина ниже 50-60 г/л и др. Например, небольшие колебания рН приводят к существенным изменениям показателя SаО2, при алкалозе (например, дыхательном, развившемся на фоне гипервентиляции) SаО2 оказывается завышена, при ацидозе - занижена.

Кроме того, эта методика не позволяет учитывать появление в периферической кропи патологических разновидностей гемоглобина - карбоксигемоглобина и метгемоглобина, которые поглощают свет той же длины волны, что и оксигемоглобин, что приводит к завышению значений SаО2.

Тем не менее в настоящее время пульсоксиметрию широко используют в клинической практике, в частности, в отделениях интенсивной терапии и реанимации для простого ориентировочного динамического контроля за состоянием насыщения гемоглобина кислородом.

Оценка гемодинамических показателей

Для полноценного анализа клинической ситуации при острой дыхательной недостаточности необходимо динамическое определение ряда гемодинамических параметров:

  • артериального давления;
  • частоты сердечных сокращений (ЧСС);
  • центрального венозного давления (ЦВД);
  • давления заклинивания легочной артерии (ДЗЛА);
  • сердечного выброса;
  • мониторинг ЭКГ (в том числе для своевременного выявления аритмий).

Многие из этих параметров (АД, ЧСС, SаО2, ЭКГ и т.п.) позволяют определять современное мониторное оборудование отделений интенсивной терапии и реанимации. Тяжелым больным целесообразно катетеризировать правые отделы сердца с установкой временного плавающего внутрисердечного катетера для определения ЦВД и ДЗЛА.