Плутоний применение. Оружейный плутоний: применение, производство, утилизация

Существует 15 известных изотопов плутония. Самый важный из них – Pu-239 с периодом полураспада 24360 лет. Удельная масса плутония составляет 19,84 при температуре 25оС. Металл начинает плавиться при температуре 641оС, закипает при 3232оС. Его валентность бывает 3, 4, 5 или 6.

У металла серебристый оттенок, и он желтеет при взаимодействии с кислородом. Плутоний – химический реактивный металл и легко растворяется в концентрированной соляной , в хлорной кислоте, в йодисто-водородной кислоте. При -распаде металл выделяет энергию тепла.

Плутоний - открытый вторым по счету трансурановый актинид. В природе этот металл можно обнаружить в небольших количествах в уранических рудах.

Плутоний ядовит и требует аккуратного обращения. Наиболее расщепляемый изотоп плутония использовался в качестве в ядерном оружии. В частности, его применяли в бомбе, которая была сброшена на японский город Нагасаки.

Это радиоактивный яд, накапливающийся в костном мозге. При проведении экспериментов над людьми в целях изучения плутония произошло несколько несчастных случаев, некоторые с летальным исходом. Важно, чтобы плутоний не достиг критической массы. В растворе плутоний быстрее образует критическую массу, чем в твердом состоянии.

Атомное число 94 означает, что все атомы плутония имеют 94 . На воздухе на поверхности металла образуется оксид плутония. Этот оксид пирофорный, поэтому тлеющий плутоний будет мерцать, как зола.

Существует шесть аллотропных форм плутония. Седьмая форма появляется при высоких температурах.

В водном растворе плутоний меняет цвет. На поверхности металла появляются различные оттенки по мере его окисления. Процесс окисления нестабилен, и цвет плутония может внезапно меняться.

В отличие от большинства веществ, плутоний уплотняется, когда плавится. В расплавленном состоянии этот элемент более вязкий, чем другие металлы.

Металл применяется в радиоактивных изотопах в термоэлектрических генераторах, на которых работают космические корабли. В медицине его применяют при производстве электронных стимуляторов для сердца.

Вдыхание паров плутония опасно для здоровья. В некоторых случаях это может спровоцировать рак легких. У вдыхаемого плутония металлический привкус.

Плутоний (латинское Plutonium, обозначается символом Pu) — радиоактивный химический элемент с атомным номером 94 и атомным весом 244,064. Плутоний является элементом III группы периодической системы Дмитрия Ивановича Менделеева, относится к семейству актиноидов. Плутоний - тяжелый (плотность при нормальных условиях 19,84 г/см³) хрупкий радиоактивный металл серебристо-белого цвета.

Плутоний не имеет стабильных изотопов. Из ста возможных изотопов плутония синтезированы двадцать пять. У пятнадцати из них изучены ядерные свойства (массовые числа 232-246). Четыре нашли практическое применение. Наиболее долгоживущие изотопы - 244Pu (период полураспада 8,26.107 лет), 242Pu (период полураспада 3,76 105 лет), 239Pu (период полураспада 2,41 104 лет), 238Pu (период полураспада 87,74 года) - α-излучатели и 241Pu (период полураспада 14 лет) - β-излучатель. В природе плутоний встречается в ничтожных количествах в урановых рудах (239Pu); он образуется из урана под действием нейтронов, источниками которых являются реакции, протекающие при взаимодействии α-частиц с легкими элементами (входящими в состав руд), спонтанное деление ядер урана и космическое излучение.

Девяносто четвертый элемент открыт группой американских ученых - Гленом Сиборгом (Glenn Seaborg), Кеннеди (Kennedy), Эдвином Макмилланом (Edwin McMillan) и Артуром Уолхом (Arthur Wahl) в 1940 году в Беркли (в Калифорнийском университете) при бомбардировке мишени из окиси урана (U3O8) сильно ускоренными ядрами дейтерия (дейтронами) из шестидесятидюймового циклотрона. В мае 1940 свойства плутония были предсказаны Льюисом Тернером (Louis Turner).

В декабре 1940 года был открыт изотоп плутония Pu-238, с периодом полураспада ~90 лет, через год - более важный Pu-239 с периодом полураспада ~24 000 лет.

Эдвин Макмиллан в 1948 году предложил назвать химический элемент плутонием в честь открытия новой планеты Плутон и по аналогии с нептунием, который был назван в честь открытия Нептуна.

Металлический плутоний (изотоп 239Pu) используется в ядерном оружии и служит в качестве ядерного топлива энергетических реакторов, работающих на тепловых и особенно на быстрых нейтронах. Критическая масса для 239Pu в виде металла составляет 5,6 кг. Кроме всего прочего изотоп 239Pu является исходным веществом для получения в ядерных реакторах трансплутониевых элементов. Изотоп 238Pu применяют в малогабаритных ядерных источниках электрического тока, используемых в космических исследованиях, а также в стимуляторах сердечной деятельности человека.

Плутоний-242 важен как «сырье» для сравнительно быстрого накопления высших трансурановых элементов в ядерных реакторах. δ-стабилизированные сплавы плутония применяются при изготовлении топливных элементов, так как они обладают лучшими металлургическими свойствами по сравнению с чистым плутонием, который при нагревании претерпевает фазовые переходы. Оксиды плутония используются в качестве энергетического источника для космической техники и находят свое применение в ТВЭЛах.

Все соединения плутония являются ядовитыми, что является следствием α-излучения. Альфа-частицы представляют серьезную опасность в том случае, если их источник находится в теле зараженного, они повреждают окружающие элемент ткани организма. Гамма-излучение плутония не опасно для организма. Стоит учесть, что разные изотопы плутония обладают разной токсичностью, например типичный реакторный плутоний в 8-10 раз токсичнее чистого 239Pu, так как в нем преобладают нуклиды 240Pu, который является мощным источником альфа-излучения. Плутоний самый радиотоксичный элемент из всех актиноидов, однако, считается далеко не самым опасным элементом, так радий почти в тысячу раз опаснее самого ядовитого изотопа плутония - 239Pu.

Биологические свойства

Плутоний концентрируется морскими организмами: коэффициент накопления этого радиоактивного металла (отношение концентраций в организме и во внешней среде) для водорослей составляет 1000-9000, для планктона - приблизительно 2300, для морских звёзд - около 1000, для моллюсков - до 380, для мышц, костей, печени и желудка рыб - 5, 570, 200 и 1060 соответственно. Наземные растения усваивают плутоний в основном через корневую систему и накапливают его до 0,01 % от своей массы. В организме человека девяносто четвертый элемент задерживается преимущественно в скелете и печени, откуда почти не выводится (особенно из костей).

Плутоний высокотоксичен, причем его химическая опасность (как любого другого тяжелого металла) выражается значительно слабее (с химической точки зрения он также ядовит как свинец.) в сравнении с его радиоактивной токсичностью, которая является следствием альфа-излучения. Причем α-частицы обладают относительно малой проникающей способностью: для 239Pu пробег α-частиц в воздухе составляет 3,7 см, а в мягкой биологической ткани 43 мк. Поэтому α-частицы представляют серьезную опасность в том случае, если их источник находится в теле зараженного. При этом они повреждают окружающие элемент ткани организма.

В тоже время γ-лучи и нейтроны, которые плутоний также испускает и которые способны проникать в тело снаружи, не очень опасны, ведь их уровень слишком мал для того, чтобы причинить вред здоровью. Плутоний относится к группе элементов с особо высокой радиотоксичностью. В тоже время разные изотопы плутония обладают разной токсичностью, например типичный реакторный плутоний в 8-10 раз токсичнее чистого 239Pu, так как в нем преобладают нуклиды 240Pu, который является мощным источником альфа-излучения.

При поступлении элемента вместе с водой и пищей плутоний менее ядовит, чем такие вещества как кофеин, некоторые витамины, псевдоэфедрин и множество растений и грибов. Это объясняется тем, что данный элемент плохо всасывается ЖКТ, даже при поступлении в виде растворимой соли, эта самая соль связывается содержимым желудка и кишечника. Однако поглощение 0,5 грамма плутония в мелкораздробленном или растворенном состоянии может привести к смерти от острого облучения пищеварительной системы за несколько дней или недель (для цианида это значение составляет 0,1 грамма).

С точки зрения ингаляции плутоний - это рядовой токсин (примерно соответствует парам ртути). При ингаляции плутоний обладает канцерогенными свойствами и способен вызвать рак лёгких. Так при вдыхании ста миллиграмм плутония в виде частиц оптимального для удержания в легких размера (1-3 микрона) ведет к смерти от отека легких за 1-10 дней. Доза в двадцать миллиграмм приводит к смерти от фиброза примерно за месяц. Меньшие дозы приводят к хроническому канцерогенному отравлению. Опасность ингаляционного проникновения плутония в организм увеличивается вследствие того, что плутоний склонен к образованию аэрозолей.

Несмотря на то, что это металл, он весьма летуч. Непродолжительное нахождение металла в помещении значительно увеличивает его концентрацию в воздухе. Попавший в лёгкие плутоний частично оседает на поверхности лёгких, частично переходит в кровь, а затем в лимфу и вещество костного мозга. Большая часть (примерно 60 %) попадает в костную ткань, 30 % в печень и всего 10 % выводится естественным путем. Количество попавшего в организм плутония зависит от величины аэрозольных частиц и растворимости в крови.

Попадающий тем или иным путем в человеческий организм плутоний схож по свойствам с трехвалентным железом, поэтому, проникая в систему кровообращения, плутоний начинает концентрироваться в тканях, содержащих железо: костный мозг, печень, селезёнка. Организм воспринимает плутоний, как железо, следовательно, белок трансферина забирает плутоний вместо железа, в результате чего останавливается перенос кислорода в организме. Микрофаги растаскивают плутоний по лимфоузлам. Попавший в организм плутоний выводится из него очень долго - на протяжении 50 лет из организма выведется всего 80 %. Период полувыведения из печени составляет 40 лет. Для костной ткани период полувыведения плутония составляет 80-100 лет, фактически, концентрация девяносто четвертого элемента в костях постоянна.

На протяжении Второй мировой войны и после её окончания учёные, работавшие в Манхэттенском проекте, а также ученые Третьего рейха и другие научно-исследовательские организации, проводили эксперименты с использованием плутония на животных и людях. Результаты исследований на животных показали, что несколько миллиграммов плутония на килограмм ткани - смертельная доза. Применение плутония на людях заключалось в том, что хронически больным пациентам внутримышечно вводили обычно 5 мкг плутония. В итоге было установлено, что смертельная доза для пациента равна одному микрограмму плутония, и что плутоний более опасен, чем радий, и склонен к накапливанию в костях.

Как известно, плутоний - элемент практически отсутствующий в природе. Однако порядка пяти тонн его выделилось в атмосферу в результате ядерных испытаний в период 1945-1963 гг. Суммарное же количество плутония, выброшенного в атмосферу из-за ядерных испытаний до 1980-х годов, оценивается в 10 тонн. По некоторым оценкам, почва в Соединенных Штатах Америки содержит в среднем 2 милликюри (28 мг) плутония на км2 от выпадения радиоактивных осадков, а нахождение плутония в Тихом океане повышено по сравнению с общим распространением ядерных материалов на земле.

Последнее явление связано с проведением ядерных испытаний США на территории Маршалловых Островов в Тихоокеанском полигоне в середине 1950-х годов. Время нахождения плутония в поверхностных водах океана составляет от 6 до 21 года, однако, даже по прошествии этого срока, плутоний выпадает на дно вместе с биогенными частицами, из которых он восстанавливается в растворимые формы в результате микробного разложения.

Мировое загрязнение девяносто четвертым элементом связано не только с ядерными испытаниями, но и с авариями на производствах и технике, взаимодействующей с этим элементом. Так в январе 1968 года самолет B-52 ВВС США, несший на борту четыре ядерных заряда, потерпел крушение на территории Гренландии. В результате взрыва произошло разрушение зарядов и утечка плутония в океан.

Другой случай радиоактивного загрязнения окружающей среды в результате аварии произошел с советским космическим аппаратом «Космос-954» 24 января 1978 года. В результате неконтролируемого схода с орбиты спутник с ядерным источником энергии на борту упал на территорию Канады. В результате аварии в окружающую среду попало более килограмма плутония-238, распространившегося на территорию площадью около 124 000 м².

Самый страшный пример аварийной утечки радиоактивных веществ в окружающую среду - авария на Чернобыльской АЭС, которая произошла 26 апреля 1986 года. В результате разрушения четвертого энергоблока в окружающую среду было выброшено 190 тонн радиоактивных веществ (в том числе и изотопы плутония) на площадь около 2200 км².

Попадание плутония в окружающую среду связано не только с техногенными происшествиями. Известны случаи утечки плутония, как из лабораторных, так и из заводских условий. Известно более двадцати аварийных случаев утечки из лабораторий 235U и 239Pu. На протяжении 1953-1978 гг. аварийные случаи привели к потере от 0,81 (Маяк, 15 марта 1953 г.) до 10,1 кг (Томск, 13 декабря 1978 г.) 239Pu. Происшествия на промышленных предприятиях суммарно привели к смерти двух человек в городе Лос-Аламос (21 августа 1945 г. и 21 мая 1946 г.) из-за двух случаев аварий и потерь 6,2 кг плутония. В городе Саров в 1953 и 1963 гг. примерно 8 и 17,35 кг попало за пределы ядерного реактора. Один из них привел к разрушению ядерного реактора в 1953 году.

При делении ядра 238Pu нейтронами происходит выделение энергии в размере 200 МэВ, что в 50 миллионов раз больше, чем при протекании самой известной экзотермической реакции: C + O2 → CO2. «Сгорая» в ядерном реакторе один грамм плутония дает 2 107 ккал - это энергия, заключенная в 4 т угля. Наперсток же плутониевого топлива в энергетическом эквиваленте может быть приравнен к сорока вагонам хороших дров!

Считается, что «природный изотоп» плутония (244Pu) самый долгоживущий изотоп из всех трансурановых элементов. Его период полураспада составляет 8,26∙107 лет. Ученые длительное время пытались получить изотоп трансуранового элемента, который существовал бы дольше 244Pu - большие надежды в этом отношении возлагались на 247Cm. Однако после его синтеза выяснилось, что период полураспада этого элемента всего 14 млн лет.

История

В 1934 году группа ученых во главе с Энрико Ферми сделала заявление, что в ходе научных работ в Университете Рима они обнаружили химический элемент с порядковым номером 94. Элемент по настоянию Ферми был назван геспериумом, ученый был убежден, что открыл новый элемент, который сейчас называют плутонием, таким образом, сделав предположение о существовании трансурановых элементов и став их теоретическим первооткрывателем. Эту гипотезу Ферми отстаивал и в своей Нобелевской лекции в 1938 году. Только после открытия деления ядер немецкими учеными Отто Фришем и Фрицем Штрассманом, Ферми был вынужден сделать в печатной версии, вышедшей в Стокгольме в 1939 году примечание, указывающее на необходимость пересмотра «всей проблемы трансурановых элементов». Дело в том, что работа Фриша и Штрассмана показала, что активность, обнаруженная Ферми в его экспериментах, была обусловлена именно делением, а не открытием трансурановых элементов, как он ранее полагал.

Новый - девяносто четвертый элемент был открыт в конце 1940 года. Произошло это в Беркли в Калифорнийском университете. При бомбардировке окиси урана (U3O8) ядрами тяжелого водорода (дейтронами) группа американских радиохимиков во главе с Гленном Т. Сиборгом обнаружила неизвестный прежде излучатель альфа-частиц с периодом полураспада 90 лет. Этим излучателем оказался изотоп элемента № 94 с массовым числом 238. Таким образом, 14 декабря 1940 года были получены первые микрограммовые количества плутония вместе с примесью других элементов и их соединений.

В ходе эксперимента, проведённого в 1940 году, было установлено, что при проводимой ядерной реакции сначала получается короткоживущий изотоп нептуний-238 (период полураспада 2,117 суток), а из него уже плутоний-238:

23392U (d,2n) → 23893Np → (β−) 23894Pu

Долгие и трудоемкие химические опыты по отделению нового элемента от примесей продолжались два месяца. Существование нового химического элемента было подтверждено в ночь с 23 на 24 февраля 1941 года Г. Т. Сиборгом, Э. М. Макмилланом, Дж. В. Кеннеди и А. К. Валлем благодаря изучению его первых химических свойств - возможностью обладать, по крайней мере, двумя степенями окисления. Немногим позже окончания опытов было установлено, что этот изотоп является неделящимся, а, следовательно, неинтересным для дальнейшего изучения. Вскоре (март 1941 года) Кеннеди, Сиборг, Сегрэ и Валь синтезировали более важный изотоп - плутоний-239 посредством облучения урана сильно ускоренными в циклотроне нейтронами. Этот изотоп образуется при распаде нептуния-239, испускает alfa-лучи и имеет период полураспада 24 000 лет. Первое чистое соединение элемента было получено в 1942 году, а первые весовые количества металлического плутония были получены в 1943 году.

Название нового 94 элемента было предложено в 1948 году Макмилланом, который несколькими месяцами ранее обнаружения плутония совместно с Ф. Эйбельсоном получил первый элемент, более тяжелый, чем уран, - элемент № 93, который назвали нептунием в честь планеты Нептун - первой за Ураном. По аналогии элемент № 94 решили назвать плутонием, так как планета Плутон является второй за Ураном. В свою очередь Сиборг предложил назвать новый элемент «плутием», однако потом понял, что название не очень звучит по сравнению с «плутонием». Кроме того, он выдвигал и другие названия для нового элемента: ультимиум, экстермиум, из-за ошибочного в то время суждения, что плутоний станет последним химическим элементом в периодической таблице. В итоге, элемент назвали «плутоний» в честь открытия последней планеты солнечной системы.

Нахождение в природе

Период полураспада самого долгоживущего изотопа плутония - 75 млн лет. Цифра весьма внушительная, однако, возраст Галактики измеряется миллиардами лет. Из этого следует, что у первичных изотопов девяносто четвертого элемента, образовавшихся при великом синтезе элементов Вселенной, не было шансов дожить до наших дней. И все же, это не означает, что плутония совсем нет в Земле. Он постоянно образуется в урановых рудах. Захватывая нейтроны космического излучения и нейтроны, образующиеся при спонтанном (самопроизвольном) делении ядер 238U, некоторые - очень немногие - атомы этого изотопа превращаются в атомы 239U. Ядра этого элемента очень нестабильны, они испускают электроны и тем самым повышают свой заряд, происходит образование нептуния - первого трансуранового элемента. 239Np также неустойчив, его ядра тоже испускают электроны, поэтому всего за 56 часов половина 239Np превращается в 239Pu.

Период полураспада этого изотопа уже весьма велик и составляет 24 000 лет. В среднем, содержание 239Pu примерно в 400 000 раз меньше, чем у радия. Поэтому не только добыть - даже обнаружить «земной» плутоний необыкновенно трудно. Малые количества 239Pu - триллионная доля - и продукты распада могут быть найдены в урановых рудах, например, в природном ядерном реакторе в Окло, Габон (Западная Африка). Так называемый «природный ядерный реактор» считается единственным в мире, в котором в настоящее время происходит образование актиноидов и их продуктов деления в геосфере. По современным оценкам в этом регионе несколько миллионов лет назад происходила самоподдерживающаяся реакция с выделением тепла, продолжавшаяся более полумиллиона лет.

Итак, мы уже знаем, что в урановых рудах в результате захвата нейтронов ядрами урана образуется нептуний (239Np), продуктом β-распада которого и является природный плутоний-239. Благодаря специальным приборам - масс-спектрометрам было обнаружено наличие плутония-244 (244Pu), который имеет самый большой период полураспада - примерно 80 миллионов лет, в докембрийском бастнезите (в цериевой руде). В природе 244Pu находится преимущественно в виде диоксида (PuO2), который в воде еще менее растворим, чем песок (кварц). Поскольку относительно долгоживущий изотоп плутоний-240 (240Pu) находится в цепочке распада плутония-244, то его распад имеет место быть, однако это происходит очень редко (1 случай на 10 000). Очень небольшие количества плутония-238 (238Pu) относятся к весьма редкому двойному бета-распаду материнского изотопа - урана-238, который был найден в урановых рудах.

Следы изотопов 247Pu и 255Pu обнаружены в пыли, собранной после взрывов термоядерных бомб.

Минимальные количества плутония гипотетически могут находиться в человеческом организме, учитывая то, что было проведено огромное количество ядерных испытаний так или иначе связанных с плутонием. Плутоний накапливается преимущественно в скелете и печени, откуда практически не выводится. Кроме того, девяносто четвертый элемент накапливается морскими организмами; наземные растения усваивают плутоний главным образом через корневую систему.

Выходит, что искусственно синтезированный плутоний все-таки существует в природе, так почему же его не добывают, а получают искусственным путем? Дело в том, что слишком мала концентрация данного элемента. О другом радиоактивном металле - радии говорят: «в грамм добыча - в год труды», а радия в природе в 400 000 раз больше, чем плутония! По этой причине не только добыть - даже обнаружить «земной» плутоний необыкновенно трудно. Сделать это удалось лишь после того, как были изучены физические и химические свойства плутония, полученного в атомных реакторах.

Применение

Изотоп 239Pu (наряду с U) используют в качестве ядерного топлива энергетических реакторов, работающих на тепловых и на быстрых нейтронах (восновном), а также при изготовлении ядерного оружия.

Около полутысячи атомных электростанций по всему миру генерируют примерно 370 ГВт электроэнергии (или 15 % от общего объема производства электроэнергии в мире). Плутоний-236 применяется при изготовлении атомных электрических батареек, срок службы которых достигает пяти лет и более, их применяют в генераторах тока, стимулирующих работу сердца (кардиостимуляторы). 238Pu применяют в малогабаритных ядерных источниках электрического тока, используемых в космических исследованиях. Так плутоний-238 является источником питания для зондов New Horizons, Galileo и Cassini, марсохода Curiosity и других космических аппаратов.

В ядерном оружии применяется плутоний-239, так как данный изотоп является единственным подходящим нуклидом для применения в ядерной бомбе. Кроме того, более частое использование плутония-239 в ядерных бомбах обусловлено тем, что плутоний занимает меньший объем в сфере (где расположено ядро бомбы), следовательно, можно выиграть во взрывной силе бомбы за счет этого свойства.

Схема, по которой происходит ядерный взрыв с участием плутония, заключается в конструкции самой бомбы, ядро которой состоит из сферы, заполненной 239Pu. В момент столкновения с землей сфера сжимается до миллиона атмосфер за счет конструкции и благодаря окружающему эту сферу взрывчатому веществу. После удара происходит расширение ядра в объеме и плотности за кратчайшее время - десяток микросекунд, сборка проскакивает критическое состояние на тепловых нейтронах и переходит в сверхкритическое состояние на быстрых нейтронах - начинается цепная ядерная реакция с участием нейтронов и ядер элемента. При конечном взрыве ядерной бомбы выделяется температура порядка десятков миллионов градусов.

Изотопы плутония нашли свое применение при синтезе трансплутониевых (следующих после плутония) элементов. Так, например, в Оук-Риджской национальной лаборатории при длительном нейтронном облучение 239Pu получают 24496Cm, 24296Cm, 24997Bk, 25298Cf, 25399Es и 257100Fm. Таким же образом в 1944 году был впервые получен и америций 24195Am. В 2010 году оксид плутония-242 бомбардируемый ионами кальция-48 послужил источником получения унунквадия.

δ-Стабилизированные сплавы плутония используются в изготовлении ТВЭЛов, ведь они обладают значительно лучшими металлургическими свойствами в сравнении с чистым плутонием, который при нагревании претерпевает фазовые переходы и является весьма хрупким и ненадежным материалом. Сплавы плутония с другими элементами (интерметаллические соединения) обычно получают прямым взаимодействием элементов в нужных соотношениях, при этом в основном используется дуговая плавка, иногда нестабильные сплавы получают распылительным осаждением или охлаждением расплавов.

Основные промышленные легирующие элементы для плутония - это галлий, алюминий и железо, хотя плутоний способен образовывать сплавы и промежуточные соединения с большинством металлов за редким исключением (калий, натрий, литий, рубидий, магний, кальций, стронций, барий, европий и иттербий). Тугоплавкие металлы: молибден, ниобий, хром, тантал и вольфрам растворимы в жидком плутонии, но почти нерастворимы или мало растворимы в твёрдом плутонии. Индий, кремний, цинк и цирконий способны к формированию метастабильного δ-плутония (δ"-фаза) при быстром охлаждении. Галлий, алюминий, америций, скандий и церий могут стабилизировать δ-плутоний при комнатной температуре.

Большие количества гольмия, гафния и таллия позволяют сохранить некоторое количество δ-плутония при комнатной температуре. Нептуний является единственным элементом, который может стабилизировать α-плутоний при высоких температурах. Титан, гафний и цирконий стабилизируют структуру β-плутония при комнатной температуре при резком охлаждении. Применение таких сплавов довольно разнообразно. Например, сплав плутоний-галий используется для стабилизации δ-фазы плутония, который позволяет избежать переход α-δ фаза. Тройной сплав плутоний-галлий-кобальт (PuGaCo5) - сверхпроводниковый сплав при температуре 18,5 К. Существует ряд сплавов (плутоний-цирконий, плутоний-церий и плутоний-церий-кобальт), которые используются в качестве ядерного топлива.

Производство

Промышленный плутоний получают двумя способами. Это либо облучение ядер 238U, содержащегося в ядерных реакторах, либо разделение радиохимическими способами (соосаждением, экстракцией, ионным обменом и др.) плутония от урана, трансурановых элементов и продуктов деления, содержащихся в отработанном топливе.

В первом случае наиболее значимый в практическом отношении изотоп 239Pu (в смеси с небольшой примесью 240Pu) получают в ядерных реакторах при участии ядер урана и нейтронов с помощью β--распада и с участием изотопов нептуния как промежуточного продукта деления:

23892U + 21D → 23893Np + 210n;

23893Np → 23894Pu

β--распад

В данном процессе дейтрон попадает в уран-238, в результате чего образуется нептуний-238 и два нейтрона. Далее нептуний-238 спонтанно делится, излучая бета-минус-частицы, которые образуют плутоний-238.

Обычно содержание 239Pu в смеси составляет 90-95 %, 240Pu-1-7 %, содержание других изотопов не превышает десятых долей процента. Изотопы с большими периодами полураспада - 242Pu и 244Pu получают при продолжительном облучении нейтронами 239Pu. Причем выход 242Pu составляет несколько десятков процентов, а 244Pu - доли процента от содержания 242Pu. Небольшие количества изотопно-чистого плутония-238 образуются при облучении нейтронами нептуния-237. Легкие изотопы плутония с массовыми числами 232-237 обычно получают на циклотроне при облучении изотопов урана α-частицами.

При втором способе промышленного производства 239Pu используют пьюрекс-процесс, основанный на экстракции трибутилфосфатом в легком разбавителе. В первом цикле осуществляют совместную очистку Pu и U от продуктов деления, а затем их разделение. Во втором и третьем циклах плутоний подвергают дальнейшей очистке и концентрированию. Схема такого процесса основана на разнице в свойствах четырех- и шестивалентных соединений разделяемых элементов.

Первоначально отработавшие ТВЭЛы демонтируются и оболочка, содержащая отработавший плутоний и уран, удаляется физическими и химическими способами. Далее извлеченное ядерное топливо растворяют в азотной кислоте. Ведь она - сильный окислитель при растворении и уран, и плутоний, и примеси окисляются. Атомы плутония с нулевой валентностью превращаются в Pu+6, происходит растворение, как плутония, так и урана. Из такого раствора девяносто четвертый элемент восстанавливают до трехвалентного состояния сернистым газом, а затем осаждают фторидом лантана (LаF3).

Однако осадок кроме плутония содержит нептуний и редкоземельные элементы, но основная масса (уран) остается в растворе. Далее плутоний вновь окисляют до Pu+6 и вновь добавляют фторид лантана. Теперь уже редкоземельные элементы переходят в осадок, а плутоний остается в растворе. Далее окисляется нептуний до четырехвалентного состояния броматом калия, так как на плутоний этот реактив не действует, то при вторичном осаждении тем же фторидом лантана трехвалентный плутоний переходит в осадок, а нептуний остается в растворе. Конечными продуктами таких операций являются плутонийсодержащие соединения - двуокись PuO2 или фториды (PuF3 или PuF4), из которых (путем восстановления парами бария, кальция или лития) получают металлический плутоний.

Получение более чистого плутония можно достичь электролитическим рафинированием пирохимически произведенного металла, что производится в ячейках для электролиза при температуре 700° C с электролитом из калия, натрия и хлорида плутония с применением вольфрамового или танталового катода. Получаемый таким образом плутоний имеет чистоту 99,99 %.

Для получения больших количеств плутония строятся реакторы-размножители, так называемые «бридеры» (от английского глагола to breed - размножать). Свое название данные реакторы получили благодаря своей возможности получения делящегося материала в количестве, превышающем затраты этого материала на получение. Отличие реакторов такого типа от остальных заключается в том, что нейтроны в них не замедляются (отсутствует замедлитель, например, графит) для того, чтобы их как можно больше прореагировало с 238U.

После реакции образуются атомы 239U, которые в дальнейшем и образуют 239Pu. Ядро такого реактора, содержащее PuO2 в обедненном диоксиде урана (UO2), окружено оболочкой из еще более обедненного диоксида урана-238 (238UO2), в которой и образуется 239Pu. Совместное использование 238U и 235U позволяет «бриддерам» производить из природного урана энергии в 50-60 раз больше других реакторов. Однако у этих реакторов существует большой недостаток - ТВЭЛы обязаны охлаждаться средой отличной от воды, которая снижает их энергию. Поэтому было решено использовать жидкий натрий в качестве охладителя.

Строительство таких реакторов в Соединенных Штатах Америки началось после окончания Второй Мировой Войны, СССР и Великобритания приступили к их созданию лишь в 1950-х годах.

Физические свойства

Плутоний - очень тяжелый (плотность при н. у. 19,84 г/см³) серебристый металл, в очищенном состоянии очень похожий на никель, однако на воздухе плутоний быстро окисляется, тускнеет, образую радужную пленку, сначала светло-желтую, затем переходящую в темно-пурпурную. При сильном окислении на поверхности металла появляется оливково-зеленый порошок оксида (PuO2).

Плутоний - очень электроотрицательный и химически активный металл, во много раз больше, даже чем уран. Имеет семь аллотропных модификаций (α, β, γ, δ, δ", ε и ζ), которые меняются в определенном температурном отрезке и при определенном диапазоне давления. При комнатной температуре плутоний находится в α-форме - это наиболее распространённая для плутония аллотропная модификация. В альфа фазе чистый плутоний хрупок и весьма жёсток - данная структура примерно такая же жёсткая, как серый чугун, если она не легирована другими металлами, которые придадут сплаву пластичность и мягкость. Кроме того, в этой максимально плотной форме плутоний - шестой по плотности элемент (тяжелее его только осмий, иридий, платина, рений и нептуний). Дальнейшие аллотропные превращения плутония сопровождаются скачкообразными изменениями плотности. Так, например, при нагревании от 310 до 480 °С он не расширяется, как другие металлы, а сжимается (фазы «дельта» и «дельта-прим»). При расплавлении (переход из фазы «эпсилон» в жидкую фазу) плутоний также сжимается, позволяя нерасплавленному плутонию всплывать.

Плутоний отличает большое количество необычных свойств: у него самая низкая теплопроводность из всех металлов - при 300 K она составляет 6,7Вт/(м К); у плутония самая низкая электропроводность; в своей жидкой фазе - плутоний самый вязкий металл. Удельное сопротивление девяносто четвертого элемента при комнатной температуре очень велико для металла, и эта особенность будет усиливаться с понижением температуры, что для металлов не свойственно. Такая «аномалия» прослеживается вплоть до температуры 100 К - ниже этой отметки электрическое сопротивление будет уменьшаться. Однако, с отметки в 20 К сопротивление вновь начинает возрастать из-за радиационной активности металла.

Плутоний обладает самым высоким удельным электрическим сопротивлением среди всех изученных актиноидов (на данный момент), которое составляет 150 мкОм см (при 22 °C). Этот металл имеет низкую температуру плавления (640 °C) и необычно высокую температуру кипения (3 227 °C). Ближе к точке плавления жидкий плутоний имеет очень высокий показатель вязкости и поверхностного натяжения по сравнению с другими металлами.

Благодаря своей радиоактивности, плутоний теплый на ощупь. Большой кусок плутония в термооболочке разогревается до температуры, превышающей температуру кипения воды! Кроме того, вследствие своей радиоактивности плутоний со временем претерпевает изменения в своей кристаллической решётке - происходит некое подобие отжига благодаря самооблучению из-за повышения температуры выше 100 K.

Наличие большого количества аллотропных модификаций у плутония делает его трудным металлом в обработке и выкатывании из-за фазовых переходов. Мы уже знаем, что в альфа-форме девяносто четвертый элемент схож по свойствам с чугуном, однако имеет свойство изменяться и превращаться в пластичный материал, и образовывать ковкую β-форму при более высоких интервалах температур. Плутоний в δ-форме обычно стабилен при значениях температуры от 310 °C до 452 °C, но может существовать и при комнатной температуре, если легирован малопроцентным содержанием алюминия, церия или галлия. Находясь в сплаве с этими металлами, плутоний может использоваться при сварке. Вообще дельта-форма имеет более ярко выраженные характеристики металла - по прочности и способности к ковке близка к алюминию.

Химические свойства

Химические свойства девяносто четвертого элемента во многом схожи со свойствами его предшественников в периодической системе - ураном и нептунием. Плутоний довольно активный металл, он образует соединения со степенями окисления от +2 до +7. В водных растворах элемент проявляет следующие степени окисления: Pu (III), в качестве Pu3+ (существует в кислых водных растворах, имеет светло-фиолетовый цвет); Pu (IV), в качестве Pu4+ (шоколадный оттенок); Pu (V), в качестве PuO2+ (светлый раствор); Pu (VI), в качестве PuO22+ (светло-оранжевый цвет раствора) и Pu(VII), в качестве PuO53- (зелёный раствор).

Причем указанные ионы (кроме PuO53-) могут находиться в растворе одновременно в равновесии, что объясняется наличием 5f-электронов, которые расположены на локализованной и делокализованной зоне электронной орбитали. При pH 5-8 доминирует Pu (IV), который наиболее устойчив среди остальных валентностей (степеней окисления). Ионы плутония всех степеней окисления склонны к гидролизу и комплексообразованию. Способность образовывать такие соединения увеличивается в ряду Pu5+

Компактный плутоний медленно окисляется на воздухе, покрываясь радужной маслянистой пленкой оксида. Известны следующие окислы плутония: PuO, Pu2O3, PuO2 и фаза переменного состава Pu2O3 - Pu4O7 (бертоллиды). В присутствии незначительного количества влаги скорость окисления и корродирования значительно возрастает. Если металл достаточно долго подвергается воздействию малых количеств влажного воздуха, то на его поверхности образуется диоксид плутония (PuO2). При недостатке кислорода может образоваться и его дигидрид (PuH2). Удивительно, но плутоний покрывается ржавчиной в атмосфере инертного газа (например, аргона) с парами воды гораздо быстрее, чем на сухом воздухе или в чистом кислороде. На самом деле этот факт легко объяснить - прямое действие кислорода формирует на поверхности плутония слой оксида, препятствующего дальнейшему окислению, присутствие влаги производит рыхлую смесь из оксида и гидрида. Кстати, благодаря именно такому покрытию металл становится пирофорным, то есть он способен к самовозгоранию, по этой причине металлический плутоний, как правило, обрабатывается в инертной атмосфере аргона или азота. При этом кислород является защитным веществом и предотвращает воздействие влаги на металл.

Девяносто четвертый элемент реагирует с кислотами, кислородом и их парами, но только не со щелочами. Плутоний хорошо растворим лишь в очень кислых средах (например, соляная кислота HCl), а так же растворяется в в хлороводороде, иодоводороде, бромоводороде, 72 % хлорной кислоте, 85 % ортофосфорной кислоте H3PO4, концентрированной CCl3COOH, сульфаминовой кислоте и кипящей концентрированной азотной кислоте. В растворах щелочей плутоний заметно не растворяется.

При воздействии щелочей на растворы, содержащие четырех валентный плутоний, выпадает осадок гидроксида плутония Pu(OH)4 xH2O, обладающий основными свойствами. При воздействии щелочей на растворы солей, содержащих PuO2+, выпадает амфотерный гидроксид PuO2OH. Ему отвечают соли - плутониты, например, Na2Pu2O6.

Плутониевые соли легко гидролизируются при контакте с нейтральными или щелочными растворами, создавая нерастворимую гидроокись плутония. Концентрированные растворы плутония нестабильны, вследствие радиолитического разложения, ведущего к выпадению осадка.

Плутоний, элемент с порядковым номером 94, открыт Гленом Сиборгом (Glenn Seaborg), Эдвином Макмилланом (Edwin McMillan), Кеннеди (Kennedy), и Артуром Уолхом (Arthur Wahl) в 1940 году в Беркли при бомбардировки мишени из урана дейтронами из шестидесятидюймового циклотрона. В мае 1940 свойства плутония были предсказаны Льюисом Тернером (Louis Turner).
В декабре 1940 года был открыт изотоп плутония Pu-238, с периодом полураспада ~90 лет, через год - более важный Pu-239 с периодом полураспада ~24 000 лет.
Pu-239 присутствует в природном урана в виде следов (количество - одна часть на 10 15), образуется он там в результате захвата нейтрона ядром U-238. Чрезвычайно малые количества Pu-244 (самого долгоживущего изотопа плутония, период полураспада 80 миллионов лет) были обнаружены в цериевой руде, по видимому, оставшиеся там со времен формирования Земли.
Всего известно 15 изотопов плутония, все радиоактивны. Самые значимые для проектирования ядерного оружия:
Pu 238 -> (86 лет, альфа-распад) -> U 234
Pu 239 -> (24 360 лет, альфа-распад) -> U 235
Pu 240 -> (6580 лет, альфа-распад) -> U 236
Pu 241 -> (14.0 лет, бета-распад) -> Am 241
Pu 242 -> (370 000 лет, альфа-распад) -> U 238

Физические свойства плутония

Плутоний - очень тяжелый серебристый металл, блестящий подобно никелю, когда только что очищен. Это крайне электроотрицательный, химически активный элемент, гораздо в большей степени, чем уран. Он быстро тускнеет, образую радужную пленку (подобно радужной масляной пленки), вначале светло-желтую, со временем переходящую в темно-пурпурную. Если окисление довольно велико, на его поверхности появляется оливково-зеленый порошок оксида (PuO 2).
Плутоний охотно окисляется, и быстро коррозирует даже в присутствии незначительной влажности. Странно, но он покрывается ржавчиной в атмосфере инертного газа с парами воды гораздо быстрее, чем на сухом воздухе или в чистом кислороде. Причина этого - прямое действие кислорода формирует на поверхности плутония слой оксида, мешающий дальнейшему окислению. Воздействие же влаги производит рыхлую смесь из оксида и гидрида. Для предотвращения оксидирования и коррозии требуется сушильная печь.
Плутоний имеет четыре валентности, III-VI. Хорошо растворяется только в очень кислых средах, таких как азотная или соляная кислоты, так же хорошо растворяется в иодистоводородной и хлорной кислотах. Плутониевые соли легко гидролизируются при контакте с нейтральными или щелочными растворами, создавая нерастворимую гидроокись плутония. Концентрированные растворы плутония нестабильны, в следствии радиолитического разложения, ведущего к выпадению осадка.
Вследствии своей радиоактивности, плутоний теплый на ощупь. Большой кусок плутония в термоизолированной оболочке разогревается до температуры, превышающей температуру кипения воды.

Основные физические свойства плутония:
Температура плавления: 641 °C;
Температура кипения: 3232 °C;
Плотность: 19.84 (в альфа-фазе).

Плутоний имеет множество специфических свойств. Он обладает самой низкой теплопроводностью изо всех металлов, самой низкой электропроводностью, за исключением марганца (по другим данным все же самой низкой из всех металлов). В своей жидкой фазе это самый вязкий металл.
При изменении температуры плутоний подвергается самым сильным и неестественным изменениям плотности. Плутоний обладает шестью различными фазами (кристаллическими структурами) в твердой форме, больше чем любой другой элемент (в действительности, по более строгим условиям, их семь). Некоторые переходы между фазами сопровождаются разительными изменениями объема. В двух из этих фаз - дельта и дельта прим - плутоний обладает уникальным свойством сжиматься при повышении температуры, а в остальных - имеет чрезвычайно большой температурный коэффициент расширения. При расплавлении плутоний сжимается, позволяя нерасплавленному плутонию плавать. В своей максимально плотной форме, альфа фазе, плутоний шестой по плотности элемент (тяжелее его только осмий, иридий, платина, рений и нептуний). В альфа фазе чистый плутоний хрупок, но существуют его гибкие сплавы.
Плотности и температурный диапазон фаз плутония:

Фаза Плотность Диапазон существования (°C)

альфа 19.84 (20 °C) стабильна ниже 122

бета 17.8 (122 °C) 122 - 206

гамма 17.2 (206 °C) 224 - 300

дельта прим 15.9 (319 °C) 319 - 476

эпсилон 17.0 (476 °C) 476 - 641 (точка плавления)

жидкая 16.65 (641 °C) 641 - до точки кипения

К концу 1995 года в мире было произведено в общей сложности около 1270 тонн плутония, из которого 257 т для оружейного использования, остальное - побочный продукт АЭС.
Кроме своего оружейного назначения, плутоний может потенциально применяться для производства электроэнергии. Единственную крупную программу по энергетическому использованию плутония имеет только Япония. Это показывает его экономическую неконкурентноспособность по сравнению с ураном в течении десятилетий, по следующим причинам. Стоимость переработки реакторного топлива для извлечения плутония значительно выше, чем цена низкообогащенного урана. Большинство сегодняшних предприятий не оборудованы инструментарием для работы с более опасным для жизни оксидом плутония. Стоимость охраны плутония для предотвращения кражи или диверсии с целью его оружейного применения весьма существенна. Существующие энергетические реакторы могут работать с топливом, содержащим довольно малую величину плутония, представляющую небольшую ценность, и стоимость проектирования и строительства новых реакторов так же весьма велика. Текущая достаточная поставка урана, наличие больших обогатительных мощностей и большие запасы оружейного урана в США и России, который разбавляется для изготовления коммерческого топлива, гарантируют твердые цены на уран в последующие 20-30 лет.
Плутоний имеет и несколько других применений. Самое широко распространенное из них - в радиоизотопных дымовых детекторах в Европе (в США такие же детекторы изготавливаются из америция из-за его более короткого времени полураспада). Плутониево-бериллиевый сплав работает как лабораторный источник нейтронов. Изотоп Pu-238 находится в ряде атомных термоэлектрических генераторах энергии на борту космических исследовательских аппаратов, благодаря долгому времени жизни и высокой тепловой мощности.
Плутоний - элемент практически отсутствующий в природе. Однако около 5000 кг его выделилось в атмосферу в результате ядерных испытаний. По некоторым оценкам, почва в США содержит в среднем 2 милликюри (28 мг) плутония на км 2 от выпадения радиоактивных осадков.

Металлургия плутония

При комнатной температуре плутоний представляет собой кристаллическую структуру, называемую "альфа фаза". В этой форме плутоний имеет свою максимальную плотность - около 19.84 при 20 °С. Атомы в альфа фазе связаны ковалентной связью (в отличии от металлической связи), поэтому физические свойства ближе к минералам, чем к металлам. Это твердый, хрупкий и ломающийся в определенном направлении материал. Альфа фаза не поддается обработке обычными для металлов технологиями производства.
В самом "легком" виде, дельта фазе (плотность 15.9), плутоний достаточно ковкий и вязкий. Так же и в гамма фазе.
В дельта фазе плутоний имеет нормальные металлические свойства, включая превосходную ковкость. Дельта фаза имеет прочность и пластичность сходную с алюминием, делая простой обработку и отливку. Хотя дельта фаза и проявляет аномальное свойство сжиматься при нагревании, этот отрицательный коэффициент расширения невелик. Плутоний в дельта фазе совсем неустойчив. Он стремится осесть в плотную альфа фазу под очень небольшим давлением, увеличив на 25% свою плотность. В чистом плутонии дельта фаза не может существовать при давлении более 1 килобара. Для сравнения, увеличение на 25% плотности урана (или альфа фазы плутония) требует давления 450 килобар. При давлениях свыше 30 килобар плутоний существует только в альфа и бета фазах.
Это свойство перехода дельта -> альфа фазы (и увеличение его плотности на 25%) используется в имплозионных проектах оружия. Плутоний можно стабилизировать в дельта фазе при комнатной температуре путем сплавления его с трехвалентными металлами, такими как галлий, алюминий, церий, индий и америций в концентрации нескольких молярных процентов. Даже стабилизированная, дельта фаза продолжает оставаться легко сжимаемой давлением в несколько килобар. Особенно интересен факт, что в стабилизированном галлием плутонии дельта фаза действительно метастабильна при содержании галлия менее 4 молярных процентов. Это означает, что процесс фазового перехода под давлением в альфа фазу необратим.
Для оружейного применения плутоний обычно стабилизируется в дельта фазе сплавлением с 3-3.5 молярных процента (0.9-1% по весу) галлия. Этот сплав стабилен при температурах по крайней мере от -75 до 475 °C. Стабилизация предотвращает изменения объема плутония при колебаниях температуры после изготовления, что может повредить прецезионно сделанные компоненты устройства. Сплав имеет почти нулевой коэффициент теплового расширения. Так же он облегчает литье из-за наличия единственного эпсилон -> дельта фазового перехода во время охлаждения. Наконец, стабилизация снижает восприимчивость плутония к коррозии. Трехпроцентный галлиевый сплав применялся в Gadget`е и Fat Man`е. Если не считать галлий, плутоний в их ядрах был очень высокой чистоты.
Алюминий хороший материал для сплавления, но первоначально он отсутствовал в американской оружейной программе из-за образования нейтронов в результате реакций альфа частица -> n. Церий не использовался вообще (по многим причинам), в частности, он не давал стойкость к коррозии.
Плутоний для ядер бомб покрывается слоем металла (обычно никелем) для защиты его от ржавчины и снижения биологической опасности. Два полушария для Gadget`а были покрыты гальваническим способом никелем (по другим данным - серебром), процесс был не совсем удачным и привел к появлению раковин в металле. Пересмотр метода привел к химической металлизации при выдерживании плутония в атмосфере карбонильного никеля. Никелем были покрыты ядра Fat Man"а, бомб, взорванных в операции Crossroads, и первом советском заряде РДС-1. Напыление слоя алюминия или гальванопокрытие цинком не применялись.
Потенциально серьезная проблема для использования плутония в оружии - это наличие у него высокого фона спонтанных нейтронов. Присутствие нейтронов в то время, когда еще только достигается надкритическая масса ведет к преждевременной ядерной реакции, недостаточному выходу энергии и в некоторых случаях вообще к отказу оружия, легкому "хлопку". Существуют два источника нейтронного фона.
Самый главный - присутствие изотопа Pu-240, чей уровень спонтанного деления достаточен для появления 10 6 нейтронов/с*кг. Этот изотоп неизбежно образуется в течении производства Pu-239.
Второй из них - взаимодействие сильного альфа-излучения с легкими элементами, находящимися в плутонии. Хотя эта проблема имела большое значение во время Манхэттенского проекта, когда первоначально планировалось использование пушечного дизайна, открытие Pu-240 превратило ее в далекую от практики. Для минимизации (но не исключения) присутствие легких элементов в плутонии должно находиться в отношении одна часть к миллиону, это задача достаточно трудная. Алюминий, из которого альфа-частицы выбивают нейтроны, на некотором протяжении сделался не очень желательным веществом для сплавления, хотя с современным оружейного качества плутонием этот вклад в испускание нейтронов невелик. В конечном счете, удовлетворяющие характеристики галлиевого сплава, установленные в ходе обращения с ним и относительную незначимость таких деталей, как стоимость сплавляемого материала помешали использованию веществ, подобных алюминию.
Первоначальная техника получения металлического плутония заключена в пирохимическом восстановлении галогенидов плутония щелочными металлами. Обычно PuF 4 восстанавливается кальцием и йодом, это стандартный в США метод, по крайней мере в 1970-х годах. Высшей очистки можно достичь электролитическим рафинированием пирохимически произведенного металла (не обязательный шаг для оружейного применения). Это делается в ячейках для электролиза при 700 °C с электролитом из натрия, калия и хлорида плутония, вольфрамовым или танталовым катодом. Таким образом получается 99.99% плутоний. Более новые способы базируются на прямом пирохимическом восстановлении и электрорафинировании плутониевого оксида. Среди преимуществ этих методов - меньшее количество утилизируемых отходов производства. Обработка расплавленного плутония и литье плутония осуществляется сегодня из оборудования, сделанного из слегка окисленного тантала. Литейные формы могут изготовляться из графита, мягкой стали или чугуна, если они покрыты фторидом кальция или оксидом циркония или иттрия.

Токсичность плутония

Хотя плутоний, по-видимому, химически токсичен, как и любой тяжелый металл, этот эффект выражается слабо по сравнению с его радиотоксичностью. Токсические свойства плутония появляются как следствие альфа-радиоактивности. Альфа частицы представляют серьезную опасность только в том случае, если их источник находится в теле (т.е. плутоний должен быть принят внутрь). Хотя плутоний излучает еще и гамма-лучи и нейтроны, которые могут проникать в тело снаружи, уровень их слишком мал, чтобы причинить сильный вред.
Альфа-частицы повреждают только ткани, содержащие плутоний или находящиеся в непосредственном контакте с ним. Значимы два типа действия: острое и хроническое отравления. Если уровень облучения достаточно высок, ткани могут страдать острым отравлением, токсическое действие проявляется быстро. Если уровень низок, создается накопляющийся канцерогенный эффект.
Плутоний очень плохо всасывается желудочно-кишечным трактом, даже когда попадает в виде растворимой соли, впоследствии она все равно связывается содержимым желудка и кишечника. Загрязненная вода, из-за предрасположенности плутония к осаждению из водных растворов и к формированию нерастворимых комплексов с остальными веществами, имеет тенденцию к самоочищению.
Поглощение 500 мг плутония как мелкораздробленного или растворенного материала может привести к смерти от острого облучения пищеварительной системы за несколько дней или недель. Вдыхание 100 мг плутония в виде частиц оптимального для удержания в легких размера ведет к смерти от отека легких за 1-10 дней. Вдыхание дозы в 20 мг ведет к смерти от фиброза примерно за 1 месяц. Для доз много меньших этих величин проявляется хронический канцерогенный эффект.
Для хронического действия, плутоний должен долгое время присутствовать в организме человека. Вдыхание частиц подходящего для удержания в легких размера (1-3 микрона) весьма вероятно ведет к постоянному нахождению их там (детонация взрывчатки, не повлекшая за собой ядерный взрыв, может превратить 20-50% плутония в такую форму). Самая вероятная химическая форма, попадающая в тело, это оксид плутония. Оксид используется в реакторном топливе и частицы металлического плутония быстро окисляются на воздухе. Оксид почти нерастворим в воде.
На протяжении всей жизни риск развития рака легких для взрослого примерно зависит от количества попавшего в тело плутония. Прием внутрь 1 мигрограмма плутония представляет риск в 1% развития рака (нормальная вероятность рака 20%). Соответственно 10 микрограмм увеличивают риск рака с 20% до 30%. Попадание 100 микрограмм или более виртуально гарантируют развитие рака легких (обычно через несколько десятилетий), хотя свидетельства повреждения легких могут появиться в течении нескольких месяцев.
Плутоний обычно содержится в биологических системах в степени окисления +4, имея химическое сходство с Fe 3+. Если он проникнет в систему кровообращения, то с большой вероятностью начнет концентрироваться в тканях, содержащих железо: костном мозге, печени, селезенке. Если 1.4 микрограмма разместятся в костях взрослого человека, в результате ухудшится иммунитет и через несколько лет может развиться рак. Международная комиссия по радиологической защите установила норму ежегодного поглощения на уровне 280 нанограмм. Это значит, что для профессионального облучения концентрация плутония в воздухе не должна превышать 7 пикокюри/м 3 . Максимально допустимая концентрация Pu-239 (для профессионального персонала) 40 нанокюри (0.56 микрограмма) и 16 нанокюри (0.23 микрограмма) для легочной ткани.
Период биологического полувыведения плутония 80-100 лет при нахождении в костной ткани, т.о. концентрация его там практически постоянна. Период полувыведения из печени - 40 лет. Хелатные добавки могут ускорить выведение плутония.

Оружейный плутоний

Это название применяется в США к плутонию с содержанием Pu-240 менее 7%. Типичный состав оружейного плутония приведен ниже. Первые две колонки - средний состав плутония, произведенного в Хэнфорде и Саванне в июне 1968. Третья - базируется на образцах почвы, взятых поблизости от Роки Флетс в 1970-х с учетом америция-241 (продукта распада Pu-241).

Типичный состав оружейного плутония

Хэнфорд Саванна Почва Роки Флетс

(сред. 6/68) (сред. 6/68) (сред. 1970-е)

Pu-238 менее чем 0.05% менее чем 0.05% следы

Pu-239 93.17% 92.99% 93.6%

Pu-240 6.28% 6.13% 5.8%

Pu-241 0.54% 0.86% 0.6%

Pu-242 менее чем 0.05% менее чем 0.05% следы

В США производится и сверхчистый плутоний с 3% Pu-240, для обогащения обычного плутония, и, возможно, для специальных зарядов. Некоторые американские устройства требуют содержание Pu-240 менее 1.5%.
Существенный вопрос: что подразумевает название "оружейного качества". Самая распространенная интерпретация состоит в том, что это плутоний с содержанием изотопа Pu-240 менее 7%, действительно требующийся для успешного создания оружия. По крайней мере, превышение этой отметки означает серьезный компромисс с эффективностью.
Наличие Pu-240 точно определяет характеристики оружия, ибо именно от него зависит нейтронный фон и такие вторичные явления как рост критической массы (незначительный) и тепловой выход. Нейтронный фон влияет на проект ядерного взрывного устройства (ЯВУ) ограничением общей массы заключенного плутония, необходимостью достижения скоростей имплозии выше определенного порога. Как указывалось выше, некоторые проекты (преимущественно старые), требуют плутония с низкой концентрацией Pu-240 по эти причинам.
Однако, в современных усовершенствованных конструкциях, указанные сложности не являются критическими, по крайней мере с начала 1960-х. В недавно рассекреченных документах (WASH-1037, "Введение в ядерное оружие", июнь 1972) указывается, что обозначение плутония как "оружейной чистоты" - исключительно экономический вопрос. С одной стороны, стоимость плутония падает с ростом доли Pu-240. С другой - Pu-240 увеличивает критическую массу. Около 6-7% Pu-240 делает общую стоимость плутония, с учетом указанных причин, минимальной.
Это не означает, что существующие ядерные устройства сохранят работоспособность, если увеличить уровень плутония-240. Они спроектированы для достижения наилучшего эффекта с определенным делящимся материалом и пострадают в работоспособности при изменении изотопного состава.
Принимая средний состав оружейного плутония: 93.4% Pu-239, 6.0% Pu-240 и 0.6% Pu-241 (с пренебрежимым содержанием остальных изотопов) можно просчитать следующие его свойства. Начальная тепловая мощность свежевыработанного оружейного плутония 2.2 Вт/кг, уровень спонтанного деления 27 100 делений/с. Этот показатель деления позволяет использовать в оружии 4-5 кг плутония с очень низкой вероятность предетонации при условии хорошей имплозионной системы. По прошествии пары десятилетий, большая часть Pu-241 превратится в Am-241, существенно увеличив тепловыделение - до 2.8 Вт/кг. Поскольку Pu-241 прекрасно делится, а Am-241 - нет, это приводит к снижению запаса реактивности плутония и должно приниматься в расчет конструкторами.
Нейтронное излучение 5 кг оружейного плутония 300 000 нейтронов/с создает уровень излучения 0.003 рад/час на 1 м. Фон снижается отражателем и взрывчатым веществом, окружающим его. Облегченное оружие уменьшает радиацию в 5-10 раз. С другой стороны, высокая проникающая способность нейтронов увеличивает опасность. Длительный постоянный контакт с ЯВУ во время их обычного обслуживания может привести к дозе радиации, приближающейся к предельной годовой для профессионального состава. Сотрудники плутониевых предприятий, обрабатывающие плутониевый ядра непосредственно или в герметичных боксах, имеют ограниченную защиту от радиации и могут нуждаться в переводе с этой работы на другую, чтобы не превысить годового лимита облучения.
Вследствии малой разницы в массах Pu-239 и Pu-240, эти изотопы не разделяются промышленно широко распространенными способами обогащения. Единственный способ произвести более чистый Pu-239 - сократить время пребывания в реакторе кассеты м U-238. Малые количества плутония разделяются на электромагнитном сепараторе для исследовательских целей. Для развитых государств нет причин для снижения процента Pu-240 менее 6, так как эта концентрация не мешает создавать эффективные и надежные триггеры термоядерных зарядов. Очень малое количество Pu-240 позволяет достичь некоторой дополнительной гибкости, требующейся специализированным или экзотическим изделиям.

Реакторный плутоний

Подавляющая часть сегодняшней атомной энергетики использует урановое горючие. По экономическим причинам ядерное топливо на АЭС работает долгое время и выгорает почти полностью. Степень облученности топливного элемента можно измерить в мегаватт-днях/тонну (МВт-день/т). Плутоний из отработанного ядерного топлива состоит из множества изотопов. Структура их меняется от типа реактора, рабочего режима, но типичные значения таковы:

Реакторы: на легкой воде CANDU MAGNOX

Типичный 33000МВт-день/т 7500МВт-день/т 3000МВт-день/т

Pu-238 2% 1.5% low 0.1%

Pu-239 61% 56.2% 66.6% 80.0%

Pu-240 24% 23.6% 26.6% 16.9%

Pu-241 10% 14.3% 5.3% 2.7%

Pu-242 3% 4.9% 1.5% 0.3%

Реакторы с 33 000 МВт-день/т оперировали с ураном 3-х процентного обогащения в 1970-80-х гг. Со снижением цен на обогащенный уран (из-за освобождения армейских производственных мощностей) в настоящее время используется более насыщенное U-235 топливо - 4-4.5%, позволяя довести выгорание до 45 000 МВт-день/т и даже выше. В результате в отработанном горючем содержится еще больше Pu-238, 240, 241 и 242.
Использую за основу плутоний из типичного легководного реактора, определим его тепловую мощность - 14.5 Вт/кг, увеличивающуюся до 19.6 Вт/кг за 14 лет после полураспада Pu-241 и после полного распада Pu-241 - 24 Вт/кг. Уровень нейтронов - 350 000 нейтронов/кг, удельная радиоактивность - 11.0 кюри/г (0.442 кюри/г альфа-активности).
Принимая в расчет явление изотопного разбавления критической массы (хорошо делятся только Pu-239 и Pu-241) бомба, созданная из 8 кг такого материала выдавала бы 116 Вт тепла (электролампочку такого же размера и такой же мощности невозможно держать в руках) и 2.8 миллиона нейтронов/с. С таким веществом создание атомной бомбы остается под вопросом.
Потребовалось бы система постоянного активного охлаждения ядра для предотвращения порчи ядра, взрывчатки и других компонентов. Высокий уровень нейтронного излучения неибежно вызывает преждевременную детонацию, даже с очень эффективной имплозионной системой. Однако, даже с относительно примитивной в настоящее время конструкцией Fat Man"а, можно было бы произвести взрыв в 0.5 кт или около того. С оптимальной имплозионной системой выход бы составил несколько килотонн. При технологии усиления заряда за счет синтеза, все нежелательные свойства реакторного плутония полностью обходятся, можно изготовить мощный боеприпас, несмотря на менее удобный для использования делящийся материал.
После долгого периода времени, несколько десятилетий или столетий, тепловая мощность реакторного плутония значительно снижается с распадом Pu-238 и Am-241. На нейтронный фон это сказывается мало. Сейчас отработанное реакторное топливо обычно сохраняется на неопределенное время в герметичных контейнерах. В принципе, оно может представлять интерес для террористов, особенно хранящееся уже долгое время, с сократившимся тепловыделением и радиацией.
Сорокалетнее храненение позволит распасться 30-ти процентам Pu-238 и 88-ти процентам Pu-241:
1.5% Pu-238,
67.3% Pu-239,
26.4% Pu-240,
1.3% Pu-241,
3.3% Pu-242.
Происходит снижение мощности до 11.7 Вт/кг и меньший ее рост в дальнейшем (максимум до 13.8 Вт/кг). Хранение реакторного плутония 150 лет изменит состав таким образом:
0.66% Pu-238,
69.06% Pu-239,
26.86% Pu-240,
0.01% Pu-241,
3.41% Pu-242,
с сохранением стабильного тепловыделения на уровне 7.5 Вт/кг.

Возможности обогащения плутония

Применение технологий обогащения урана для удаления нежелательных изотопов плутония технически возможно. Оно усложнено присутствием множества изотопов, отличающихся друг от друга всего одной атомной еденицей массы (U-235 и U-238 отличаются на 3) - значительно снизится и без того небольшой коэффициент сепарации. Может потребоваться двухпроходное разделение - сначала удаляются тяжелые изотопы - Pu-240 и выше, а затем (в зависимости от начального содержания и нежелательности нагрева), отделяется Pu-238. Токсичность, нейтронное излучение и самонагрев плутония во входном и выходном потоках, в обогащенном продукте - все эти факторы еще больше усложняют технологию разделения плутония по сравнению с ураном.
Есть и облегчающий процесс обогащения момент - масса сырья, которая должна быть переработана, более чем на два порядка меньше, чем при разделении природного урана. Это происходит и в следствии высокого изначального содержания Pu-239 (60-70% сравнивая с 0.72% у урана) и меньшей критической массой плутония (6 против 15 кг). Даже со всеми указанными выше сложностями, завод по обогащению плутония будет много меньше уранового безотносительно к используемой технологии разделения.
Довольно-таки легко производить оружейный плутоний из реакторного на электромагнитных сепараторах. В следствии очень высокого коэффициента разделения потребовалось бы всего одна стадия очистки и производительность сепаратора определялась бы концентрацией Pu-239 в сырье. Электромагнитный сепаратор, способный нарабатывать 0.5 урановых бомбы в год (аналогичный планировался Ираком до войны 1991 года), способен на производство 100 плутониевых бомб из реакторного плутония.
Газовая диффузия и центрифугирование тоже жизнеспособные кандидаты. Свойства гексафторида плутония сходны с гексафторидом урана и требуют лишь незначительных изменений в центрифугах или диффузионных мембраннах. Если подать на вход 60% Pu-239/25% Pu-240 плутоний, задаться выходом 94% Pu-239 и терять в шлаке половину поступающего с сырьем Pu-239, то потребуется мощность всего в 2 МПП-кг для производства 1 кг оружейного плутония. Это менее 1 % от ресурсов, нужных для производства 1 кг 90% U-235 из природного урана.
Технология AVLIS (испарение с использованием лазера) создает возможность недорогого разделения и может использоваться с реакторным плутонием в качестве исходного материала. Возможно, это одна из причин исследований по ней в восьмидесятых годах.

Денатурированный плутоний

Если извлеченный из отработавшего топлива плутоний повторно использовать в реакторах на быстрых нейтронах, его изотопный состав постепенно становится менее пригодным для оружейного использования. После нескольких топливных циклов, накопление Pu-238, Pu-240 и Pu-242 делает его неупотребимым для этой цели. Подмешивание такого материала удобный метод "денатурировать" плутоний, или переработать отработавшее ядерное топливо, гарантируя нераспространение делящихся материалов. В основном это служит препятствием против использования реакторного плутония в низкотехнологичных дизайнах. Возросший выход тепла и радиация являются досаждающими помехами, но не серьезными препятствиями, хотя они и рождают значительные проектные ограничения и проблемы с обслуживанием. При усовершенствовании ЯВУ и организации надлежащего производственного процесса такие преткновения полностью преодолеваются.

Он поистине драгоценен.

Предыстория и история

Вначале были протоны – галактический водород. В результате его сжатия и последовавших затем ядерных реакций образовались самые невероятные «слитки» нуклонов. Среди них, этих «слитков», были, по-видимому, и содержащие по 94 протона. Оценки теоретиков позволяют считать, что около 100 нуклонных образований, в состав которых входят 94 протона и от 107 до 206 нейтронов, настолько стабильны, что их можно считать ядрами изотопов элемента №94.

Но все эти изотопы – гипотетические и реальные – не настолько стабильны, чтобы сохраниться до наших дней с момента образования элементов солнечной системы. Период полураспада самого долгоживущего изотопа элемента №94 – 75 млн лет. Возраст Галактики измеряется миллиардами лет. Следовательно, у «первородного» плутония не было шансов дожить до наших дней. Если он и образовывался при великом синтезе элементов Вселенной, то те давние его атомы давно «вымерли», подобно тому как вымерли динозавры и мамонты.

В XX в. новой эры, нашей эры, этот элемент был воссоздан. Из 100 возможных изотопов плутония синтезированы 25. У 15 из них изучены ядерные свойства. Четыре нашли практическое применение. А открыли его совсем недавно. В декабре 1940 г. при облучении урана ядрами тяжелого водорода группа американских радиохимиков во главе с Гленном Т. Сиборгом обнаружила неизвестный прежде излучатель альфа-частиц с периодом полураспада 90 лет. Этим излучателем оказался изотоп элемента №94 с массовым числом 238. В том же году, но несколькими месяцами раньше Э.М. Макмиллан и Ф. Эйбельсон получили первый элемент, более тяжелый, чем уран, – элемент №93. Этот элемент назвали нептунием , а 94-й – плутонием. Историк определенно скажет, что названия эти берут начало в римской мифологии, но в сущности происхождение этих названий скорее не мифологическое, а астрономическое.

Элементы №92 и 93 названы в честь далеких планет солнечной системы – Урана и Нептуна, но и Нептун в солнечной системе – не последний, еще дальше пролегает орбита Плутона – планеты, о которой до сих пор почти ничего не известно... Подобное же построение наблюдаем и на «левом фланге» менделеевской таблицы: uranium – neptunium – plutonium, однако о плутонии человечество знает намного больше, чем о Плутоне. Кстати, Плутон астрономы открыли всего за десять лет до синтеза плутония – почти такой же отрезок времени разделял открытия Урана – планеты и урана – элемента.

Загадки для шифровальщиков

Первый изотоп элемента №94 – плутоний-238 в наши дни нашел практическое применение. Но в начале 40-х годов об этом и не думали. Получать плутоний-238 в количествах, представляющих практический интерес, можно, только опираясь на мощную ядерную промышленность. В то время она лишь зарождалась. Но уже было ясно, что, освободив энергию, заключенную в ядрах тяжелых радиоактивных элементов, можно получить оружие невиданной прежде силы. Появился Манхэттенский проект, не имевший ничего, кроме названия, общего с известным районом Нью-Йорка. Это было общее название всех работ, связанных с созданием в США первых атомных бомб. Руководителем Манхэттенского проекта был назначен не ученый, а военный – генерал Гровс, «ласково» величавший своих высокообразованных подопечных «битыми горшками».

Руководителей «проекта» плутоний-238 не интересовал. Его ядра, как, впрочем, ядра всех изотопов плутония с четными массовыми числами, нейтронами низких энергий* не делятся, поэтому он не мог служить ядерной взрывчаткой. Тем не менее первые не очень внятные сообщения об элементах №93 и 94 попали в печать лишь весной 1942 г.

* Нейтронами низких энергий мы называем нейтроны, энергия которых не превышает 10 кэВ. Нейтроны с энергией, измеряемой долями электронвольта, называются тепловыми, а самые медленные нейтроны – с энергией меньше 0,005 эВ – холодными. Если же энергия нейтрона больше 100 кэВ, то такой нейтрон считается уже быстрым.

Чем это объяснить? Физики понимали: синтез изотопов плутония с нечетными массовыми числами – дело времени, и недалекого. От нечетных изотопов ждали, что, подобно урану-235, они смогут поддерживать цепную ядерную реакцию. В них, еще не полученных, кое-кому виделась потенциальная ядерная взрывчатка. И эти надежды плутоний, к сожалению, оправдывал.

В шифровках того времени элемент №94 именовался не иначе, как... медью. А когда возникла необходимость в самой меди (как конструкционном материале для каких-то деталей), то в шифровках наряду с «медью» появилась «подлинная медь».

«Древо познания добра и зла»

В 1941 г. был открыт важнейший изотоп плутония – изотоп с массовым числом 239. И почти сразу же подтвердилось предсказание теоретиков: ядра плутония-239 делились тепловыми нейтронами. Более того, в процессе их деления рождалось не меньшее число нейтронов, чем при делении урана-235. Тотчас же были намечены пути получения этого изотопа в больших количествах...

Прошли годы. Теперь уже ни для кого не секрет, что ядерные бомбы, хранящиеся в арсеналах, начинены плутонием-239 и что их, этих бомб, достаточно, чтобы нанести непоправимый ущерб всему живому на Земле.

Распространено мнение, что с открытием цепной ядерной реакции (неизбежным следствием которого стало создание ядерной бомбы) человечество явно поторопилось. Можно думать по-другому или делать вид, что думаешь по-другому, – приятнее быть оптимистом. Но и перед оптимистами неизбежно встает вопрос об ответственности ученых. Мы помним триумфальный июньский день 1954 г., день, когда дала ток первая атомная электростанция в Обнинске. Но мы не можем забыть и августовское утро 1945 г. – «утро Хиросимы», «черный день Альберта Эйнштейна»... Помним первые послевоенные годы и безудержный атомный шантаж – основу американской политики тех лет. А разве мало тревог пережило человечество в последующие годы? Причем эти тревоги многократно усиливались сознанием, что, если вспыхнет новая мировая война, ядерное оружие будет пущено в ход.

Здесь можно попробовать доказать, что открытие плутония не прибавило человечеству опасений, что, напротив, оно было только полезно.

Допустим, случилось так, что по какой-то причине или, как сказали бы в старину, по воле божьей, плутоний оказался недоступен ученым. Разве уменьшились бы тогда наши страхи и опасения? Ничуть не бывало. Ядерные бомбы делали бы из урана-235 (и в не меньшем количестве, чем из плутония), и эти бомбы «съедали» бы еще большие, чем сейчас, части бюджетов.

Зато без плутония не существовало бы перспективы мирного использования ядерной энергии в больших масштабах. Для «мирного атома» просто не хватило бы урана-235. Зло, нанесенное человечеству открытием ядерной энергии, не уравновешивалось бы, пусть даже частично, достижениями «доброго атома».

Как измерить, с чем сравнить

Когда ядро плутония-239 делится нейтронами на два осколка примерно равной массы, выделяется около 200 МэВ энергии. Это в 50 млн раз больше энергии, освобождающейся в самой известной экзотермической реакции C + O 2 = CO 2 . «Сгорая» в ядерном реакторе, грамм плутония дает 2·10 7 ккал. Чтобы не нарушать традиции (а в популярных статьях энергию ядерного горючего принято измерять внесистемными единицами – тоннами угля, бензина, тринитротолуола и т.д.), заметим и мы: это энергия, заключенная в 4 т угля. А в обычный наперсток помещается количество плутония, энергетически эквивалентное сорока вагонам хороших березовых дров.

Такая же энергия выделяется и при делении нейтронами ядер урана-235. Но основную массу природного урана (99,3%!) составляет изотоп 238 U, который можно использовать, только превратив уран в плутоний...

Энергия камней

Оценим энергетические ресурсы, заключенные в природных запасах урана.

Уран – рассеянный элемент, и практически он есть всюду. Каждому, кто побывал, к примеру, в Карелии, наверняка запомнились гранитные валуны и прибрежные скалы. Но мало кто знает, что в тонне гранита до 25 г урана. Граниты составляют почти 20% веса земной коры. Если считать только уран-235, то в тонне гранита заключено 3,5·10 5 ккал энергии. Это очень много, но...

На переработку гранита и извлечение из него урана нужно затратить еще большее количество энергии – порядка 10 6 ...10 7 ккал/т. Вот если бы удалось в качестве источника энергии использовать не только уран-235, а и уран-238, тогда гранит можно было бы рассматривать хотя бы как потенциальное энергетическое сырье. Тогда энергия, полученная из тонны камня, составила бы уже от 8·10 7 до 5·10 8 ккал. Это равноценно 16...100 т угля. И в этом случае гранит мог бы дать людям почти в миллион раз больше энергии, чем все запасы химического топлива на Земле.

Но ядра урана-238 нейтронами не делятся. Для атомной энергетики этот изотоп бесполезен. Точнее, был бы бесполезен, если бы его не удалось превратить в плутоний-239. И что особенно важно: на это ядерное превращение практически не нужно тратить энергию – напротив, в этом процессе энергия производится!

Попробуем разобраться, как это происходит, но вначале несколько слов о природном плутонии.

В 400 тысяч раз меньше, чем радия

Уже говорилось, что изотопы плутония не сохранились со времени синтеза элементов при образовании нашей планеты. Но это не означает, что плутония в Земле нет.

Он все время образуется в урановых рудах. Захватывая нейтроны космического излучения и нейтроны, образующиеся при самопроизвольном (спонтанном) делении ядер урана-238, некоторые – очень немногие – атомы этого изотопа превращаются в атомы урана-239. Эти ядра очень нестабильны, они испускают электроны и тем самым повышают свой заряд. Образуется нептуний – первый трансурановый элемент. Нептуний-239 тоже весьма неустойчив, и его ядра испускают электроны. Всего за 56 часов половина нептуния-239 превращается в плутоний-239, период полураспада которого уже достаточно велик – 24 тыс. лет.

Почему не добывают плутоний из урановых руд? Мала, слишком мала концентрация. «В грамм добыча – в год труды» – это о радии, а плутония в рудах содержится в 400 тыс. раз меньше, чем радия. Поэтому не только добыть – даже обнаружить «земной» плутоний необыкновенно трудно. Сделать это удалось только после того, как были изучены физические и химические свойства плутония, полученного в атомных реакторах.

Когда 2,70 >> 2,23

Накапливают плутоний в ядерных реакторах. В мощных потоках нейтронов происходит та же реакция, что и в урановых рудах, но скорость образования и накопления плутония в реакторе намного выше – в миллиард миллиардов раз. Для реакции превращения балластного урана-238 в энергетический плутоний-239 создаются оптимальные (в пределах допустимого) условия.

Если реактор работает на тепловых нейтронах (напомним, что их скорость – порядка 2000 м в секунду, а энергия – доли электронвольта), то из естественной смеси изотопов урана получают количество плутония, немногим меньшее, чем количество «выгоревшего» урана-235. Немногим, но меньшее, плюс неизбежные потери плутония при химическом выделении его из облученного урана. К тому же цепная ядерная реакция поддерживается в природной смеси изотопов урана только до тех пор, пока не израсходована незначительная доля урана-235. Отсюда закономерен вывод: «тепловой» реактор на естественном уране – основной тип ныне действующих реакторов – не может обеспечить расширенного воспроизводства ядерного горючего. Но что же тогда перспективно? Для ответа на этот вопрос сравним ход цепной ядерной реакции в уране-235 и плутонии-239 и введем в наши рассуждения еще одно физическое понятие.

Важнейшая характеристика любого ядерного горючего – среднее число нейтронов, испускаемых после того, как ядро захватило один нейтрон. Физики называют его эта-числом и обозначают греческой буквой η. В «тепловых» реакторах на уране наблюдается такая закономерность: каждый нейтрон порождает в среднем 2,08 нейтрона (η = 2,08). Помещенный в такой реактор плутоний под действием тепловых нейтронов дает η = 2,03. Но есть еще реакторы, работающие на быстрых нейтронах. Естественную смесь изотопов урана в такой реактор загружать бесполезно: цепная реакция не пойдет. Но если обогатить «сырье» ураном-235, она сможет развиваться и в «быстром» реакторе. При этом η будет равно уже 2,23. А плутоний, помещенный под обстрел быстрыми нейтронами, даст η, равное 2,70. В наше распоряжение поступит «лишних полнейтрона». И это совсем не мало.

Проследим, на что тратятся полученные нейтроны. В любом реакторе один нейтрон нужен для поддержания цепной ядерной реакции. 0,1 нейтрона поглощается конструктивными материалами установки. «Избыток» идет на накопление плутония-239. В одном случае «избыток» равен 1,13, в другом – 1,60. После «сгорания» килограмма плутония в «быстром» реакторе выделяется колоссальная энергия и накапливается 1,6 кг плутония. А уран и в «быстром» реакторе даст ту же энергию и 1,1 кг нового ядерного горючего. И в том и в другом случае налицо расширенное воспроизводство. Но нельзя забывать об экономике.

В силу ряда технических причин цикл воспроизводства плутония занимает несколько лет. Допустим, что пять лет. Значит, в год количество плутония увеличится только на 2%, если η = 2,23, и на 12%, если η = 2,7! Ядерное горючее – капитал, а всякий капитал должен давать, скажем, 5% годовых. В первом случае налицо большие убытки, а во втором – большая прибыль. Этот примитивный пример иллюстрирует «вес» каждой десятой числа η в ядерной энергетике.

Сумма многих технологий

Когда в результате ядерных реакций в уране накопится необходимое количество плутония, его необходимо отделить не только от самого урана, но и от осколков деления – как урана, так и плутония, выгоревших в цепной ядерной реакции. Кроме того, в урано-плутониевой массе есть и некоторое количество нептуния. Сложнее всего отделить плутоний от нептуния и редкоземельных элементов (лантаноидов). Плутонию как химическому элементу в какой-то мере не повезло. С точки зрения химика, главный элемент ядерной энергетики – всего лишь один из четырнадцати актиноидов. Подобно редкоземельным элементам, все элементы актиниевого ряда очень близки между собой по химическим свойствам, строение внешних электронных оболочек атомов всех элементов от актиния до 103-го одинаково. Еще неприятнее, что химические свойства актиноидов подобны свойствам редкоземельных элементов, а среди осколков деления урана и плутония лантаноидов хоть отбавляй. Но зато 94-й элемент может находиться в пяти валентных состояниях, и это «подслащивает пилюлю» – помогает отделить плутоний и от урана, и от осколков деления.

Валентность плутония меняется от трех до семи. Химически наиболее стабильны (а следовательно, наиболее распространены и наиболее изучены) соединения четырехвалентного плутония.

Разделение близких по химическим свойствам актиноидов – урана, нептуния и плутония – может быть основано на разнице в свойствах их четырех- и шестивалентных соединений.

Нет нужды подробно описывать все стадии химического разделения плутония и урана. Обычно разделение их начинают с растворения урановых брусков в азотной кислоте, после чего содержащиеся в растворе уран, нептуний, плутоний и осколочные элементы «разлучают», применяя для этого уже традиционные радиохимические методы – соосаждение с носителями, экстракцию, ионный обмен и другие. Конечные плутонийсодержащие продукты этой многостадийной технологии – его двуокись PuO 2 или фториды – PuF 3 или PuF 4 . Их восстанавливают до металла парами бария, кальция или лития. Однако полученный в этих процессах плутоний не годится на роль конструкционного материала – тепловыделяющих элементов энергетических ядерных реакторов из него не сделать, заряда атомной бомбы не отлить. Почему? Температура плавления плутония – всего 640°C – вполне достижима.

При каких бы «ультращадящих» режимах ни отливали детали из чистого плутония, в отливках при затвердевании всегда появятся трещины. При 640°C твердеющий плутоний образует кубическую кристаллическую решетку. По мере уменьшения температуры плотность металла постепенно растет. Но вот температура достигла 480°C, и тут неожиданно плотность плутония резко падает. До причин этой аномалии докопались довольно быстро: при этой температуре атомы плутония перестраиваются в кристаллической решетке. Она становится тетрагональной и очень «рыхлой». Такой плутоний может плавать в собственном расплаве, как лед на воде.

Температура продолжает падать, вот она достигла 451°C, и атомы снова образовали кубическую решетку, но расположились на большем, чем в первом случае, расстоянии друг от друга. При дальнейшем охлаждении решетка становится сначала орторомбической, затем моноклинной. Всего плутоний образует шесть различных кристаллических форм! Две из них отличаются замечательным свойством – отрицательным коэффициентом температурного расширения: с ростом температуры металл не расширяется, а сжимается.

Когда температура достигает 122°C и атомы плутония в шестой раз перестраивают свои ряды, плотность меняется особенно сильно – от 17,77 до 19,82 г/см 3 . Больше, чем на 10%! Соответственно уменьшается объем слитка. Если против напряжений, возникавших на других переходах, металл еще мог устоять, то в этот момент разрушение неизбежно.

Как же тогда изготовить детали из этого удивительного металла? Металлурги легируют плутоний (добавляют в него незначительные количества нужных элементов) и получают отливки без единой трещины. Из них и делают плутониевые заряды ядерных бомб. Вес заряда (он определяется прежде всего критической массой изотопа) 5...6 кг. Он без труда поместился бы в кубике с размером ребра 10 см.

Тяжелые изотопы

В плутонии-239 в незначительном количестве содержатся и высшие изотопы этого элемента – с массовыми числами 240 и 241. Изотоп 240 Pu практически бесполезен – этот балласт в плутонии. Из 241-го получают америций – элемент №95. В чистом виде, без примеси других изотопов, длутоний-240 и плутоний-241 можно получить при электромагнитном разделении плутония, накопленного в реакторе. Перед этим плутоний дополнительно облучают нейтронными потоками со строго определенными характеристиками. Конечно, все это очень сложно, тем более что плутоний не только радиоактивен, но и весьма токсичен. Работа с ним требует исключительной осторожности.

Один из самых интересных изотопов плутония – 242 Pu можно получить, облучая длительное время 239 Pu в потоках нейтронов. 242 Pu очень редко захватывает нейтроны и потому «выгорает» в реакторе медленнее остальных изотопов; он сохраняется и после того, как остальные изотопы плутония почти полностью перешли в осколки или превратились в плутоний-242.

Плутоний-242 важен как «сырье» для сравнительно быстрого накопления высших трансурановых элементов в ядерных реакторах. Если в обычном реакторе облучать плутоний-239, то на накопление из граммов плутония микрограммовых количеств, к примеру, калифорния-251 потребуется около 20 лет.

Можно сократить время накопления высших изотопов, увеличив интенсивность потока нейтронов в реакторе. Так и делают, но тогда нельзя облучать большое количество плутония-239. Ведь этот изотоп делится нейтронами, и в интенсивных потоках выделяется слишком много энергии. Возникают дополнительные сложности с охлаждением контейнера и реактора. Чтобы избежать этих сложностей, пришлось бы уменьшить количество облучаемого плутония. Следовательно, выход калифорния стал бы снова мизерным. Замкнутый круг!

Плутоний-242 тепловыми нейтронами не делится, его и в больших количествах можно облучать в интенсивных нейтронных потоках... Поэтому в реакторах из этого изотопа «делают» и накапливают в весовых количествах все элементы от калифорния до эйнштейния.

Не самый тяжелый, но самый долгоживущий

Всякий раз, когда учеными удавалось получить новый изотоп плутония, измеряли период полураспада его ядер. Периоды полураспада изотопов тяжелых радиоактивных ядер с четными массовыми числами меняются закономерно. (Этого нельзя сказать о нечетных изотопах.)

Рис. 8.

Посмотрите на график, где отражена зависимость периода полураспада четных изотопов плутония от массового числа. С увеличением массы растет и «время жизни» изотопа. Несколько лет назад высшей точки этого графика был плутоний-242. А дальше как пойдет эта кривая – с дальнейшим ростом массового числа? В точку 1 , которая соответствует времени жизни 30 млн, лет, или в точку 2 , которая отвечает уже 300 млн лет? Ответ на этот вопрос был очень важен для наук о Земле. В первом случае, если бы 5 млрд лет назад Земля целиком состояла из 244 Pu, сейчас во всей массе Земли остался бы только один атом плутония-244. Если же верно второе предположение, то плутоний-244 может быть в Земле в таких концентрациях, которые уже можно было бы обнаружить. Если бы посчастливилось найти в Земле этот изотоп, наука получила бы ценнейшую информацию о процессах, происходивших при формировании нашей планеты.

Несколько лет назад перед учеными встал вопрос: стоит ли пытаться найти тяжелый плутоний в Земле? Для ответа на него нужно было прежде всего определить период полураспада плутония-244. Теоретики не могли рассчитать эту величину с нужной точностью. Вся надежда была только на эксперимент.

Плутоний-244 накопили в ядерном реакторе. Облучали элемент №95 – америций (изотоп 243 Am). Захватив нейтрон, этот изотоп переходил в америций-244; америций-244 в одном из 10 тыс. случаев переходил в плутоний-244.

Из смеси америция с кюрием выделили препарат плутония-244. Образец весил всего несколько миллионных долей грамма. Но их хватило для того чтобы определить период полураспада этого интереснейшего изотопа. Он оказался равным 75 млн лет. Позже другие исследователи уточнили период полураспада плутония-244, но ненамного – 82,8 млн лет. В 1971 г. следы этого изотопа нашли в редкоземельном минерале бастнезите.

Много попыток предпринимали ученые, чтобы найти изотоп трансуранового элемента, живущий дольше, чем 244 Pu. Но все попытки остались тщетными. Одно время возлагали надежды на кюрий-247, но после того, как этот изотоп был накоплен в реакторе, выяснилось, что его период полураспада всего 14 млн лет. Побить рекорд плутония-244 не удалось, – это самый долгоживущий из всех изотопов трансурановых элементов.

Еще более тяжелые изотопы плутония подвержены бета-распаду, и их время жизни лежит в интервале от нескольких дней до нескольких десятых секунды. Мы знаем наверное, что в термоядерных взрывах образуются все изотопы плутония, вплоть до 257 Pu. Но их время жизни – десятые доли секунды, и изучить многие короткоживущие изотопы плутония пока не удалось.

Возможности первого изотопа

И напоследок – о плутонии-238 – самом первом из «рукотворных» изотопов плутония, изотопе, который вначале казался бесперспективным. В действительности это очень интересный изотоп. Он подвержен альфа-распаду, т.е. его ядра самопроизвольно испускают альфа-частицы – ядра гелия. Альфа-частицы, порожденные ядрами плутония-238, несут большую энергию; рассеявшись в веществе, эта энергия превращается в тепло. Как велика эта энергия? Шесть миллионов электрон-вольт освобождается при распаде одного атомного ядра плутония-238. В химической реакции та же энергия выделяется при окислении нескольких миллионов атомов. В источнике электричества, содержащем один килограмм плутония-238, развивается тепловая мощность 560 ватт. Максимальная мощность такого же по массе химического источника тока – 5 ватт.

Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность плутония-238 делает этот изотоп незаменимым. Обычно альфа-распад сопровождается сильным гамма-излучением, проникающим через большие толщи вещества. 238 Pu – исключение. Энергия гамма-квантов, сопровождающих распад его ядер, невелика, защититься от нее несложно: излучение поглощается тонкостенным контейнером. Мала и вероятность самопроизвольного деления ядер этого изотопа. Поэтому он нашел применение не только в источниках тока, но и в медицине. Батарейки с плутонием-238 служат источником энергии в специальных стимуляторах сердечной деятельности.

Но 238 Pu не самый легкий из известных изотопов элемента №94, получены изотопы плутония с массовыми числами от 232 до 237. Период полураспада самого легкого изотопа – 36 минут.

Плутоний – большая тема. Здесь рассказано главное из самого главного. Ведь уже стала стандартной фраза, что химия плутония изучена гораздо лучше, чем химия таких «старых» элементов, как железо. О ядерных свойствах плутония написаны целые книги. Металлургия плутония – еще один удивительный раздел человеческих знаний... Поэтому не нужно думать, что, прочитав этот рассказ, вы по-настоящему узнали плутоний – важнейший металл XX в.

Плутоний был открыт в конце 1940 г. в Калифорнийском университете. Его синтезировали Мак-Миллан, Кеннеди и Валь, бомбардируя окись урана (U 3 O 8) сильно ускоренными в циклотроне ядрами дейтерия (дейтронами). Позднее было установлено, что при этой ядерной реакции сначала получается короткоживущий изотоп нептуний-238, а из него уже плутоний-238 с периодом полураспада около 50 лет. Годом позже Кеннеди, Сиборг, Сегрэ и Валь синтезировали более важный изотоп - плутоний-239 посредством облучения урана сильно ускоренными в циклотроне нейтронами. Плутоний-239 образуется при распаде нептуния-239; он испускает alfa-лучи и имеет период полураспада 24 000 лет. Чистое соединение плутония впервые получено в 1942 r. Затем стало известно, что существует природный плутоний, обнаруженный в урановых рудах, в частности в рудах, залегах в Конго.

Название элемента было предложено в 1948 г.: Мак-Миллан назвал первый трансурановый элемент нептунием в связи с тем, что планета Нептун - первая за Ураном. По аналогии элемент 94 решили назвать плутонием, так как планета Плутон является второй за Ураном. Плутон, открытый в 1930 г., получил свое название от имени бога Плутона - властителя подземного царства по греческой мифологии. В начале XIX в. Кларк предлагал наименовать плутонием элемент барий, производя это название непосредственно от имени бога Плутона, но его предложение не было принято.