Телевизоры с 3д принцип действия устройство. Цветовые фильтры или анаглифические очки

Пользователи, которые только начинают свое знакомство с компьютером, нередко задаются вопросом о том, что такое и как реализовывается система 3D.

Это распространенная аббревиатура, которую в настоящее время можно встретить практически где угодно – от описаний гаджетов, и игр до процедур, предлагаемых в салонах красоты.

В данной статье рассказано, что имеется в виду под таким обозначение.

Определение

Как же расшифровывается 3D, что означает данное сокращение? D в данном контексте – это первая буква слова dimensions, которое означает «измерения».

Таким образом, аббревиатура 3D обозначает три измерения, именно этим сочетание может заменяться выражение трехмерная графика, а также объемное изображение.

Изначально данная аббревиатура стала употребляться именно относительно графики.

Такой способ изображения, по мере развития компьютерных технологий, пришел на смену привычному двухмерному построению картинки.

Особенно часто выражение «объемная графика» применяется к компьютерным играм, которые создают для пользователя, в большей или меньшей степени, эффект присутствия, позволяют реалистично обходить объекты, осматривать их с разных сторон.

Также данное выражение имеет широкое распространение, когда речь идет о фильмах и телевизорах. Некоторые фильмы в некоторых кинотеатрах могут быть показаны в системе Некоторые фильмы в некоторых кинотеатрах могут быть показаны в системе 3D, с эффектом присутствия, некоторые телевизоры оснащены такой функцией. Здесь имеет место несколько иная технология, чем в компьютерной графике – обе эти технологии будут подробно рассмотрены ниже.

Другие сферы применения

Такое определение используется не только в графике, оно также применимо и ко звуку, некоторым изделиям и т. п. Например:

По сути, такое обозначение может применяться практически ко всему, что традиционно является плоским – двухмерным, но с появлением новой технологии может выполняться, как трехмерное.

В любом словосочетании данная аббревиатура означает «объемное».

Фильмы

Раньше увидеть так называемые стереофильмы или можно , да и то не во всех. А кроме того, не со всеми фильмами это было возможно.

Сейчас же эта технология стала настолько распространена, что реализовывается даже в домашних телевизорах, и теперь у зрителя есть возможность смотреть фильмы с объемным изображением в домашних условиях.

Существует две технологии, с помощью которых можно добиться эффекта присутствия. Они имеют различные технические особенности, но дают более или менее схожий результат, то есть, объемную картинку высокого качества. Это технологии активного и пассивного построения изображения, каждая из которых имеет свои преимущества и недостатки.

Активное 3D

Эта технология «присутствия» может реализоваться в , она достаточно сложна и будет работать только с использованием специальных затворных очков.

Реализуется она путем динамичной смены различных картинок.

Когда очки надеты на зрителя, он в один момент может видеть изображение только одним глазом, затем – только вторым (используются специальные затемнители в очках).

Но за счет того, что картинки и затемнители меняются очень быстро, зритель этого мигания не замечает.

Реализация этого достаточно сложная – нужны не только очки, но и телевизор, поддерживающий такую систему построения изображения.

При этом, важно, чтобы очки точно синхронизировались с телевизором (чаще всего – по блютуз), а если этого не происходит, то качество картинки будет очень низким.

Интересной особенностью технологии является то, что мигание и затемнение линз приводит к общему субъективному затемнению картинки в очках, потому изображения в таких фильмах делается немного более ярким.

Его можно, но не слишком приятно смотреть без очков.

Пассивное 3D

Это иная технология, которая допускает использование совсем простых , которые известны всем и имеют синюю и красную линзы.

Именно таким методом реализуется объемное изображение в большинстве кинотеатров, так как такие очки дешевые, их стоимость в случае утери или порчи можно заложить в стоимость билета.

Конечно, для реализации такого эффекта в домашних условиях тоже требуется телевизор, способный работать по данной схеме.

Важно! Отдельно покупать очки, обычно, не требуется. Телевизоры с соответствующей технологией комплектуются сразу несколькими такими очками из-за их низкой стоимости.

Здесь основная нагрузка приходится не на очки, а на телевизор. Его экран , который построчно делит изображение на две части – синюю и красную.

Сняв очки, вы можете заметить, что картинка немного раздваивается, сильнее в центре, менее заметно у вертикальных границ экрана – это результат работы фильтра, о котором идет речь.

Каждый глаз при такой системе видит только ту картинку, которая предназначена ему – только четные или только нечетные строки.

При этом строки, предназначенные для другого глаза, перекрываются фильтром цветной линзы очков. Таким образом строится объемное изображение.

Сравнительная характеристика технологий

В настоящее время производители техники не пришли к однозначному мнению о том, какая из двух технологий оптимальнее и лучше отвечает потребностям потребителя, потому одинаково активно реализуются устройства обоих типов.

Хотя спрос на пассивное объемное изображение выше за счет более дешевой стоимости оборудования при не слишком сниженном качестве изображения.

В таблице ниже приведены преимущества и недостатки обеих технологий для сравнения.

Таблица 1. Сравнительные характеристики технологий активного и пассивного 3D
Активное Пассивное
Очки стоят достаточно дорого, как и телевизор с такой технологией В целом технология получается дешевле, чем при активном построении объемного изображения
Не всегда удобно смотреть телевизор в очках
Может не подходить некоторым людям, страдающим мигренью
Нужно следить за зарядом очков, так как они имеют собственный блок питания Чаще всего очков много в комплекте, они дешевые, выполняют лишь механическую функцию фильтра
Высокое качество изображения Чуть более низкое качество изображения
Полная безопасность для глаз по мнению специалистов, или нагрузка достаточно низкая
Мигание и смена картинки отнимает, пусть и минимально, время – в динамичных сценах это может быть достаточно сильно заметно Высокое качество картинки дают только телевизоры, которые стоят достаточно дорого
Даже несмотря на попытки производителей оптимизировать яркость, фильмы все равно будут немного темнее, чем в оригинале Нельзя смотреть кино на близком расстоянии – минимальное расстояние от экрана до зрителя для построения качественной картинки – 3 м.

Вне зависимости от технологии, важное значение имеет качество цветопередачи – если оно низкое, то оцени качество объемного видео все равно не получится.

Также большое значение, особенно при активном построении картинки имеет частота .

Все эти факторы существенно влияют на цену оборудования, часто настолько, что ценовая граница между устройствами с пассивной и активной технологией почти полностью стирается.

Совет. Нужно учесть, что фильм тоже должен быть обработан для воспроизведения в объемном формате. Хотя количество такого контента постепенно растет, в настоящее время его все еще немного. Особенно такого, который выполнен действительно качественно.

<Рис. 6 Пассивное построение>

Вообще-то, мир объемный. Это потому, что наш правый и левый глаз смотрят на один и тот же объект с разных точек и видят его немного по-разному. Этого эффекта нет, когда мы смотрим обычное кино, потому что оба глаза видят один и тот же экран.

Чтобы добиться иллюзии объемного изображения, нужно, чтобы правый и левый глаз, глядя на экран, . Для этого существует два наиболее распространенных способа.

Существует третий способ показать 3D, там очки не требуются вовсе. Вместо них к вискам крепятся электроды, которые подают ток на левое и правое веко. Смысл затеи - заставить глаза моргать поочередно так, чтобы каждый глаз видел свой спектр. Франсуа Вожель, один из авторов этого способа, преподает и называет это «безочковым 3D».

Первый из них основан на том, что свет - это электромагнитная волна, которая может колебаться в разных направлениях, например по горизонтали и по вертикали. Тогда говорят, что свет поляризован вертикально или горизонтально. И есть специальные пленки-поляризаторы, которые одну волну пропускают, а другую – нет. Тогда перед киноэкраном ставится два проектора. Они показывают как бы один и тот же фильм, но снятый немного с разных точек. Причем один проектор светит горизонтально поляризованным светом, а другой - вертикально поляризованным.

Зрители надевают очки, состоящие из двух поляризаторов, один из которых ориентирован вертикально, а другой горизонтально. В результате глаза видят изображения, полученные от разных проекторов, то есть снятые с разных точек. Интересно, что если в таких очках склонить голову набок, то ориентация поляроидов изменится, и оба глаза увидят двойную картинку.

Второй способ несколько сложнее. В человеческом глазе для определения цвета есть всего три вида светочувствительных клеток-колбочек: одни видят красный, другие любят зеленый, третьи - синий. Смесь красного и зеленого света вызывает те же ощущения, что и желтый свет. Этим смешиванием авторы 3D-кино занимаются на экране а стремлении вызвать полный набор цветовых ощущений, доступных глазу.

Цвета, как мы понимаем, бывают разных оттенков. Зеленый бывает ближе к желтому, бывает ближе к голубому. И проекторы в 3D-кино используют одни оттенки красного, зеленого и синего для создания картинки для правого глаза, а другие оттенки - для левого.

Дальше зрители все равно вынуждены надевать очки, в которых стоят разные светофильтры. Правый светофильтр пропускает цвета, необходимые для создания «правой» картинки и не пропускает цвета для создания «левой», а левый светофильтр – наоборот.

В наши дни каждый слышал о 3D фильмах, и, конечно же, каждый знает, что такие фильмы необходимо смотреть в специальных 3D очках. За последние годы технологии трехмерного изображения существенно преобразились. Качество изображений и уровень реалистичности существенно увеличились. Многие уже успели в полной мере ощутить все прелести современных трехмерных фильмов. Однако мало кто задумывается, как работают 3D очки. Однако это важный момент при выборе 3D телевизора и трехмерных очков.

1. Технология трехмерного изображения

Что бы понять принцип работы очков, стоит рассмотреть саму технологию трехмерного изображения. На данный момент существует две технологии трехмерного изображения:

  • Активная технология (так называемая затворная);
  • Пассивная технология (более известная как поляризационная).

Обе технологии позволяют зрителю в полной мере ощутить эффект присутствия, увидеть объемное изображение и насладиться реалистичностью картинки. Более того, обе технологии основываются на одном свойстве – заставить каждый глаз видеть разную перспективу картинки.

К примеру, в реальном мире все объекты имеют три измерения – высота, ширина и глубина. Благодаря тому, что глаза человека расположены на некотором удалении друг от друга, каждый из них видит несколько разную перспективу предмета. Это можно заметить, если поочередно закрывать то один глаз то другой, смотря на какой-либо предмет. Таким образом, вы увидите объект с разных перспектив. Изображение, получаемое каждым глазом, поступает в мозг, который обрабатывает обе картинки и превращает их в одну объемную. Это позволяет приблизительно оценить его высоту, ширину и глубину.

На этом и построены все существующие технологии трехмерных изображений. Разница между активной и пассивной технологией заключается в методе разделении изображения.

1.1. Принцип работы 3D очков с поляризационными линзами

Поляризационные 3D очки работают по пассивной технологии. Ее суть заключается в том, чтобы отображаемое изображение на экране телевизора было разделено на две картинки. Но как сделать так, чтобы каждый глаз видел то, что нужно? Из самого названия технологии (поляризационная) становиться понятно, что делается это при помощи поляризации. То есть изображение на экране телевизора состоит из строчек, каждая из которых имеет определенный диапазон излучения.

К примеру, четные строчки составляют одну часть изображения, а нечетные другую. Благодаря тому, что четные и нечетные строки имеют разный спектр излучения, изображение разделяется на две картинки. В 3D очках установлены две линзы, которые также имеют разную поляризацию.

Другими словами, например, правая линза полностью блокирует изображение четных строк, но при этом позволяет свободно видеть изображение нечетных строк. Левая же линза напротив, полностью блокирует изображение нечетных строк, и свободно пропускает картинку из четных. Таким образом, каждый глаз видит разную перспективу одного изображения, что в результате работы мозга превращается в объемное изображение.

Стоит отметить, что для просмотра 3D фильмов с использование поляризационных очков не достаточно иметь сами очки и 3Д телевизор. Для этого само видео также должно быть трехмерным. То есть телевизор сам по себе не способен разделить изображение. Видео изначально должно быть оптимизировано либо быть снято на специальную камеру с двумя объективами.

1.2. Как устроены 3D очки с затворами

Особенность активной технологии трехмерного изображения заключается в том, что на экране изображение не разделяется на две картинки. Все делают очки, которые оснащены специальными затворами на линзах. То есть, телевизор оснащен специальным инфракрасным передатчиком, такой же приемник есть в очках. В определенные моменты телевизор посылает сигналы на очки, которые в свою очередь поочередно закрывают затворы то на левой, то на правой линзе.

Все происходит настолько быстро, что мозг просто не успевает понять, что происходит. Однако при этом каждый глаз видит различную картинку. Далее мозг обрабатывает оба изображения и создает иллюзию объемности.

Стоит отметить, что для достижения полноценного объемного изображения видео должно иметь минимум 48 кадров в секунду. Это необходимо, так как каждый глаз обязательно должен видеть минимум по 24 кадра в секунду, чтобы видео было плавным и приятным для восприятия. Отсюда следует, что затвор на каждой линзе закрывается и открывается не минимум 24 раза в секунду. При этом, чем больше количество кадров, тем более плавным и приятным будет видео, и тем более реалистичным будет эффект 3D.

2. Активное 3D и пассивное 3D: Видео

Такие фильмы и ролики также снимаются специальными камерами, которые способны снимать с частотой более 50 кадров в секунду. Преимуществом такой технологии является тот факт, что такие фильмы можно смотреть и без очков, как обычный фильм, только более плавный.

Еще одно преимущество данной технологии заключается в том, что зритель видит все 1080. Это достигается благодаря тому, что изображение не разделяется на строки. Это позволяет наслаждаться 3D фильмами в FullHD разрешении, что в свою очередь существенно усиливает эффект 3Д, а также делает просмотр гораздо более приятным.

Итак, теперь вы знаете, как работают 3Д очки. Это позволит вам сделать наиболее правильный выбор при покупке, а также понимать принцип их действия и какие фильмы можно смотреть с полноценным 3D эффектом. Многие люди, не зная принципа действия технологии, часто задают вопрос, почему не работают 3D очки?

Все просто, очки должны соответствовать той технологии, которая поддерживается телевизором. Кроме этого необходимо смотреть только соответствующие фильмы, которые оптимизированы под стандарт 3DTV. Только при соблюдении этих правил вы сможете насладиться настоящим трехмерным изображением в полной мере.

Перевод с Best 3dtvs.com и Howstuffworks.com

Окружающий нас мир мы воспринимаем в объемном виде, так почему же просмотр телепрограмм до сих пор был ограничен двумя измерениями? Предшествующие поколения 3D технологии были достаточно примитивными, а в результате не давали ярких впечатлений, но сопровождались порой такими негативными последствиями, как тошнота и быстрое утомление глаз. Сейчас крупные производители потребительской электроники делают ставку на возрождение 3D технологии и в бешеном темпе работают, чтобы представлять все новые варианты, которые смогут обеспечить увлекательное воспроизведение 3D видео в комфортной домашней обстановке.

В этом руководстве по технологиям 3D видеовоспроизведения подробно объясняется принцип действия 3D телевизора, отмечаются достоинства и недостатки различных вариантов 3D технологии. Но, конечно, вначале необходимо понять, за счет чего мы воспринимаем окружающий нас мир в 3D формате.

Почему мы видим мир в 3D

Мы воспринимаем мир в 3D по той простой причине, что у нас есть два глаза, которыми наблюдаем окружающее пространство (бинокулярное зрение). Наши глаза расположены друг от друга на расстоянии примерно в 6 -7 см. В результате, каждый глаз воспринимает несколько иной, чем другой глаз, образ. Например, если вы посмотрите на какой-либо объект только левым глазом, а затем правым, то вы увидите, почти одинаковое изображение, за исключением того, что каждый глаз имеет несколько смещенную точку зрения. Эта особенность называется параллаксом и имеет решающее значение в нашей способности воспринимать глубину пространства. Человеческий мозг устроен так, что если он одновременно получает от правого и левого глаза два несколько смещенных изображения, то, совмещая их, он способен воспринимать глубину пространства и расстояние до объекта.

Теперь, приняв это во внимание, попробуйте разместить перед глазами небольшой предмет и смотрите на него попеременно то, одним то другим глазом. Вы отметите сдвиг в позиции предмета. Если повторить этот эксперимент, удалив объект на метр или более, то отметите меньшее смещение для левого и правого глаза. Этот факт дает понимание того, как наш мозг воспринимает глубину пространства по визуальным подсказкам.

Теперь, когда мы понимаем, почему воспринимаем мир объемным, понятно, что любая экранная 3D технология должна обеспечить несколько разные изображения для каждого глаза. Читайте дальше, чтобы узнать об особенностях различных телевизионных 3D технологий сегодня и в ближайшем будущем.

Цветовые фильтры или анаглифические очки

Анаглифическую технологию впервые использовал еще в 1853 году в Германии, в Лейпциге Вильгельм Роллманн. Работает она довольно просто. Вы одеваете очки с цветными фильтрами вместо линз. Как правило, для левого глаза - красный, для правого - голубой или синий, иногда зеленый. Просматриваемый фильм состоит из двух наложенных друг на друга изображений в различных цветовых оттенках, каждый глаз воспринимает изображение, окрашенное в цвет, соответствующий цвету светофильтра в очках. Красный светофильтр отфильтровывает изображение для левого глаза, синий - для правого, и картинки обретают объем.

Однако, у этого метода есть ряд недостатков, которые объясняют, почему технология анаглифа никогда широко не использовалась в системах домашнего кинотеатра.

Достоинства:

  • Очень дешевые очки стоимостью меньше доллара. И, кроме того, любой цифровой телевизор или ЖК дисплей способен отображать искусственно тонированное 3D видео. Однако недостатки явно перевешивают эти преимущества.
Недостатки:
  • Тонированные цветные линзы очков дают очень плохую точность цветопередачи, изображение отличается заметными оттенками красного и зеленого или красного и синего.
  • Качество 3D изображения в целом довольно бедное, может иногда вызывать чувство тошноты.
Поляризационные очки

Еще одна технология, в которой линзы очков являются обычными светофильтрами - это поляризационная. Разделение кадров для левого и правого глаза происходит благодаря эффекту поляризации (ориентированным в разных направлениях колебаниям световых волн). В кинотеатрах поляризационная картинка получается с помощью двух проекторов. Варианты 3D видеовоспроизведения с поляризационными очками для городских кинотеатров сегодня используют компании IMAX 3D и RealD.

Направление поляризация света определяется как плоскость вдоль которой колеблется электрическое поле световой волны. Не вдаваясь в тонкости процесса можно сказать, что поляризация света дает возможность выборочно воспринимать с экрана свет в зависимости от типа поляризации. При этом используются специальные сфетофильтры в виде поляризационных пленок. Как показано на рисунке ниже, один фильтр пропускает лишь горизонтально ориентированные волны света, другой лишь световые волны с вертикальной поляризацией. Экраны в кинотеатрах имеют специальное покрытие, которое сохраняет при отражении поляризацию излучаемого проектором света. Изображения имеют направленные взаимно перпендикулярно поляризации световых потоков.

В итоге каждый глаз видит свое изображение и, как отмечалось выше, это приводит к восприятию виртуального 3D эффекта. В действительности, в таких коммерческих системах, как в RealD на самом деле используется более сложный тип поляризации света, называемый циркулярной или круговой поляризацией. Одно из изображений имеет правую, а другое левую круговую поляризацию. Преимущество использования циркулярно поляризованного света состоит в том, что вы можете наклонять голову из стороны в сторону без изменений в контрастности и яркости видимого изображения.

В домашней технике, а тем более на обычном плоском дисплее данный эффект получить довольно сложно, поэтому в телевизорах подобная технология стала использоваться лишь с прошлого года. А пионером в данном случае стала компания LG с теперь уже завоевавшей популярность фирменной технологией LG Cinema 3D. Примеру LG последовали Toshiba, Philips и ряд других компаний. А затем и Samsung представил свой вариант 3D телевизора на основе поляризационной технологии. Но до внедрения в серийное производство его пока так и не довел.

Достоинства:

  • Надежная технология позволяет получить высококачественную 3D картинку с богатыми цветами и очень хорошей детальностью.
  • Пассивные поляризационные очки не имеют электронной начинки, очень дешевые и легкие.
  • Нет мерцания и перекрестных искажений, как в случае использования активной 3D технологии с затворными очками.
  • Значительно снижается утомление глаз и другие негативные эффекты в сравнении с технологией активного 3D.
Недостатки:
  • При использовании в телевизионном варианте понижается вдвое вертикальное разрешение из-за чередования на телеэкране в одном кадре строк для правого и левого глаза. Правда, в настоящее время предпринимаются попытки избавиться от этого недостатка.
Очки с затворными линзами

Наиболее распространена сегодня т.н. активная 3D технология, в которой используются специальные 3D очки с затворными ЖК линзами. На экране телевизора попеременно отображаются кадры для левого и правого глаза, а в управляемых (ИК или ВЧ излучателем) очках попеременно открываются ЖК линзы для пропускания светового потока. Наиболее активными сторонниками развития такой 3D технологии выступают сегодня известные производители телевизоров Panasonic, Samsung и Sony.

В этом методе вдвое понижается эффективная частота смены изображения на ТВ экране из-за необходимости отображения, последовательно для каждого глаза, отдельных кадров. Поэтому такие телевизоры и мониторы должны иметь удвоенную частоту кадровой развертки. Все 3D телевизоры с поддержкой системы активного 3D имеют минимальную частоту кадров 100/120 Гц.

Линзы затворов таких 3D очков действуют подобно затворам фотоаппарата и, поэтому каждый глаз видит лишь предназначенное для него изображение. Первоначально для управления очками использовался инфракрасный (ИК) канал. Сейчас более совершенные очки работают с использование радиочастотной технологии Bluetooth.

В наиболее совершенных моделях 3D телевизоров применяется также повышенная до 200/240 Гц частота обновления экранной картинки, что помогает снизить заметность эффекта мерцания и сделать более равномерным и плавным перемещение объектов в динамичных сюжетах.

Достоинства:

Недостатки:
  • Необходимы дорогие и требующие батареек очки, что очень неудобно, когда хочется посмотреть 3D фильм в большой компании.
  • Линзы затворных очков поглощают часть светового потока, изображение может быть тусклым при пониженной яркости экрана и повышенном уровне внешнего освещения.
  • Частота обновления 100/120 Гц иногда может быть слишком низкой для динамичных спортивных и игровых сцен, что может приводить к мерцанию и смазыванию картинки.
Безочковые 3D телевизоры

Наиболее привлекательными и лишенными многих неудобств представляются сегодня автостереоскопические 3D телевизоры, которые позволяют смотреть объемное видео без всяких очков. Приятно отметить, что такие модели уже начали появляться в продаже, но, к сожалению, они пока очень дорогие и качество изображения оставляет еще желать лучшего.

В автостерескопических телевизорах используются наносимые на экран специальные прозрачные оптические элементы. За счет чего каждый глаз и получает свое изображение и, поэтому создается иллюзия глубины. Наиболее распространены сегодня два варианта автостереоскопии. Первый известен, как метод лентикулярных линз, второй – метод параллаксного барьера. На поверхность экрана нанесено либо множество миниатюрных продольных линз, либо перед ЖК панелью расположено множество щелевых отверстий. За счет таких ухищрений каждый глаз видит свое изображение, из которых мозг собирает виртуальное объемное.

Технология параллаксного барьера, была впервые разработанна Sharp. Эта технология использует в качестве визуальных барьеров управляемые жидкие кристаллы, которые под действием управляющего сигнала могут поворачиваться и тем самым менять направление проходящего через них света. Существенным преимуществом этого метода является то, что жидкокристаллический барьер может быть отключен, чтобы смотреть двумерное изображение.

Однако, после длительного просмотра зрительное утомление и даже головная боль здесь также могут ощущаться. Чтобы наблюдать 3D эффект зритель должен находиться перед экраном в определенных зонах, таких зон несколько, так что вся семья может с покойно смотреть 3D телевизор.

Полномасштабное использование автостереоскопических телевизоров предполагается в течение ближайших пяти лет.

Достоинства:

  • Не нужно одевать порой очень неудобные очки! Легкий переход между просмотром 2D и 3D материалов.
Недостатки:
  • Отсутствие очков является привлекательным фактором, тогда как необходимость выбора определенного места при просмотре несколько огорчает.
Выводы

Сегодня наблюдается повышенный интерес к инновационным технологиям в телевидении, 3D телевизоры наиболее яркий тому пример. Все известные производители плоскопанельных ЖК и плазменных телевизоров уже освоили производство 3D HDTV и вкладывают большие деньги в разработку еще более совершенных вариантов технологии и рекламу новых моделей своих 3D телевизоров.

Если вы пока не определились, какая из двух доминирующих сегодня 3D технологий предпочтительнее, пассивная с поляризационными очками или активная с затворными жидкокристаллическими, следите за последними новостями в соперничестве производителей. А со следующего года начинаются и более активные продажи безочковых автостереоскопических телевизоров.

Пока шла конкуренция между обычными LCD и жк телевизорами с LED подсветкой, производители начали выпуск телевизоров 3D . Желая не отстать друг от друга, мировые лидеры по производству жк телевизоров принялись за разработку и выпуск систем объемного телевидения. И только такие модели появились на выставке CES и IFA в 2010 году , как уже началось их производство многими фирмами. По прогнозам в 2010 году будет продано около 400 тысяч телевизоров 3D, а в 2011 году продажи возрастут до 3,4 млн., а в 2012 году планируется их продать уже 50 миллионов штук, из которых 80% будут LCD, а остальные плазменные панели.

В некоторых странах даже уже начались трансляции программ в 3D по кабельным и спутниковым каналам. Заключаются договора на производство такого контента и продажи фильмов в стандарте 3D.

Японские лидеры в производстве телевизоров, Sony и Panasonic решили всерьез побороться за рынок 3D телевизоров с корейскими конкурентами LG и Samsung . Для этого они использовали свои возможности от спонсирования олимпиады и чемпионата мира по футболу 2010 года. Sony демонстрирует свои системы на всех выставках и прогнозирует, что 40% прибыли компании в 2012 году составят как раз доходы от продаж 3в телевизоров. А в 2010 году цены на такие модели будут примерно на 200$ выше, чем обычные жк панелей.

Все это говорит о том, что фирмы производители вкладывают большие средства в продвижение продукции объемного телевидения и это дает повод ожидать серьезного снижения в цене.

3D телевизор

Принцип работы 3D телевизора

Все представленные на выставках модели 3D телевизоров имеют разрешение Full HD , так же как и средства предоставления объемного контента. Эти выставки вызвали большой интерес у посетителей. И если возможности объемного изображения уже реализованы в проекторах и телевизорах, то объемное телевидение высокой четкости - это другая технология.

3D в кинотеатрах

Объемное изображение в кинофильмах уже давно можно смотреть в кинотеатрах. При первых просмотрах использовались очки с разноцветными линзами. Здесь использовался принцип разделения изображения для левого и правого глаза. Очки еще были с красной и зеленой линзой.

Большим успехом в объемном кино стало использование поляризационных очков. Эта технология называлась IMAX 3D . Тогда использовалось два проектора и на экране получалось два изображения одно с горизонтальной поляризацией, а другое с вертикальной поляризацией . У специальных очков левое и правое стекло пропускало только изображение со своей поляризацией и получалось объемное изображение. При таком методе можно было получить качественное и яркое изображение. Недостаток был в том, что при наклоне головы менялась яркость картинки и качество.

Более новой технологией объемного кино стало RealD . По этой технологии применялся один цифровой проектор, который проецировал кадры для левого и правого глаза поочередно на высокой частоте. Что бы качество картинки не зависело от наклона головы, использовалась круговая поляризация. Для одного кадра применялась поляризация по часовой стрелке, а для другого против часовой стрелки . При таком методе трехмерное изображение получалось более качественное и естественное. Только в силу технологических особенностей такая технология может применяться только в небольших залах с сохранением качества.

При всех этих методах в кинотеатрах применяют специальные посеребренные ткани для экранов и сложное оборудование для проекторов. Такие технологии не рационально использовать в домашних условиях, а тем более в телевизионной технике. Применение в телевизорах поляризации невозможно на всей площади экрана.

3D в телевизорах Full HD

В ранее применяемых моделях объемного видео (кинескопные телевизоры, проекторы) применялся принцип деления разрешения изображения на два. И один кадр стереоизображения выводился на четных строках, а другой кадр на нечетных строках. При таком методе деления изображения разрешение кинескопного телевизора по вертикали снижалось до 300 строк. А в случае применения Full HD снижение будет до 540 строк при родном разрешении в 1080 точек по вертикали. Выводилось изображение для каждого глаза отдельно, и в один момент времени один глаз видел свой полукадр, а другой именно в этот момент времени ничего не видел. В следующий полукадр было наоборот, и уже другой глаз видел изображение, а первый нет.

Для обеспечения разрешения HD в 3д телевизорах, то есть 1080 точек по вертикали, можно применять тот же принцип, что и раньше: выводить поочередно отдельно кадры для каждого глаза. При этом сделать так, что бы каждый кадр видел только один глаз, а другой глаз видел уже свой, то есть следующий кадр изображения.

В обычном телевизоре по такой технологии кадры будут идти с частотой 25 Гц, ведь кадровая частота там 50 Гц и если разделить для каждого глаза изображение то и получится 50:2=25 кадров в секунду. И если в кинотеатрах кинофильмы идут с частотой 24 кадра в секунду, то там мы видим отраженный свет с большого расстояния. В телевизорах при частоте 25 Гц будет заметно мерцание и будут болеть глаза. Если же взять режим 24р, реализуемый в современных телевизорах для просмотра как раз кинофильмов с частотой 24 кадра в секунду, то там на самом деле частота кадров берется кратной 24 и составляет 72 или 96 Гц.

Получается, что Full HD 3D не сможет нормально воспроизводиться на обычных HD жк телевизорах. Для комфортного просмотра нужна частота в 60 Гц для каждого полукадра (такое значение вывели в результате исследований), то есть общая кадровая частота должна быть 120 Гц , а значит даже 100 герцовые телевизоры не подойдут для показа 3D. При этом каждый кадр должен выводиться с разрешением 1920х1080 точек, что соответствует Full HD.

Время отклика в 3D телевизорах

Для обеспечения четкого изображения нужно, что бы каждый пиксель на экране менял свое положение 120 раз в секунду, при этом каждый раз он будет выводить изображение другого полукадра. И если в 2D для получения хорошей четкости это не так критично, то в 3D нельзя допустить, что бы кадры перекрывались, значит нужно очень маленькое время отклика пикселя. По этому параметру лучшими для объемного телевидения являются панели, ведь в них время отклика пикселей меньше чем в жк матрицах. Но в плазменных панелях другой недостаток – это спад свечения пикселя и производители применяют дополнительные методы для уменьшения этого свечения.

Для lcd панелей время отклика должно быть меньше 3 мили секунд , а этого значения достигают не все матрицы. Поэтому при просмотре 3D на жк телевизорах может возникать эффект строба и срывы особенно на быстрых сценах. При просмотре сигнала объемного телевидения на проекционных телевизорах может возникать эффект радуги. Поэтому, по отзывам посетителей выставок, наилучший результат при показе контента объемного телевидения получается у плазменных панелей.

Но учитывая развитие рынка жк телевизоров и интерес фирм производителей можно ожидать, что в скором времени они преодолеют недостатки во времени отклика матриц.

Передача контента к 3д телевизорам

Еще одна сложность возникает с доставкой Full HD 3D контента от источника к телевизору. Во первых должно происходить считывание с диска по двух канальной системе, а затем еще и передать такой сигнал. А для передачи уже потребуется HDMI 1.4 , ведь распространенный сегодня интерфейс HDMI 1.3 может и не справиться с передачей 120 кадров в секунду в качестве Full HD.

Очки для 3D телевизоров

А для приема 3D изображения применяются все те же очки. Правда они теперь активные, то есть они с помощью встроенного чипа управляют затенением нужной линзы. Раньше применялись пассивные очки с поляризационными фильтрами. Для управления активными очками применяется беспроводная схема синхронизации с изображением на экране телевизора, реализованная с помощью инфракрасного излучения.

В системах технологии объемного телевидения без очков лежит принцип разделения изображения для каждого глаза с помочью микролинз на экране. Здесь один кадр разделяется на изображение для каждого глаза отдельно и значит никак не получается высокое разрешение Full HD.

На сегодня получение Full HD объемных телевизионных систем связано только с использованием очков.

Конечно, с развитием телепередач в системах объемного телевидения и выпуском все новых фильмов развитие 3D телевизоров только будет набирать скорость .