Основные положения тэд. Конспект урока химии на тему "основные положения теории электролитической диссоциации" Основные положения теории электролитической диссоциации сформулировал

Муниципальное бюджетное общеобразовательное учреждение

Малоархангельского района

«Ивановская средняя общеобразовательная школа»

ОТКРЫТЫЙ УРОК ХИМИИ В 8 КЛАССЕ ПО ТЕМЕ

« Основные положения теории электролитической диссоциации ».

Учитель химии Трошина С.Н.

Д. Вторая Ивань, 2015 год

Основные положения теории электролитической диссоциации.

Цели урока:

Образовательные –

    сформулировать основные положения теории электролитической диссоциации;

    обобщить сведения об ионах;

    закрепить умение записывать процесс диссоциации при помощи химических знаков и формул.

Воспитательная – воспитывать желание учиться активно, с интересом, прививать сознательную дисциплинированность, четкость и организованность в работе.

Развивающая – развивать умение учащихся на основе теоретических знаний сравнивать, анализировать, обобщать, логически рассуждать, делать выводы, развивать устную речь.

Методы обучения: объяснение, беседа, постановка и решение учебных проблем, самостоятельная индивидуальная работа.

Средства обучения: мультимедийный проектор, компьютер, таблица растворимости кислот, оснований и солей в воде, тренировочные упражнения.

Тип урока : урок изучения нового материала.

Ход урока:

I .Организационный момент.

II. Актуализация пройденного материала: проверка домашнего задания.

Проверим домашнее задание. У вас на столах есть листы с заданиями. Напишите в правом верхнем углу свою фамилию и имя. Приступаем к выполнению задания. На выполнение задания – 5 мин.

Задание 1.

Проверь свои знания. Допишите определения.

    Вещества, растворы которых проводят электрический ток, называют … (электролиты)

    Процесс распада электролита на ионы называют … (электролитическая диссоциация)

    Вещества, растворы которых не проводят электрический ток, называют … (неэлектролиты)

    Отношение числа частиц, распавшихся на ионы, к общему числу растворенных частиц называют … (степень электролитической диссоциации)

Задание 2

Проверь свои знания. Дополните схему.

Задание 3

Проверь свои знания. Заполните таблицу.

ЭЛЕКТРОЛИТЫ

НЕЭЛЕКТРОЛИТЫ

Растворимые соли

Органические вещества

Щелочи

Простые вещества

Кислоты

Нерастворимые оксиды

Нерастворимые соли, кислоты, основания

II I . Вводная беседа: сообщение темы, разъяснение целей и задач урока.

Сегодня на уроке мы познакомимся с основными положениями теории электролитической диссоциации. Эта тема является продолжением предыдущего занятия. Поэтому сегодня целью нашего урока будет обобщить сведения об ионах, закрепить умение записывать процесс диссоциации при помощи химических знаков и формул, сформулировать основные положения теории электролитической диссоциации

IV. Изучение нового материала.

История открытия теории электролитической диссоциации.

Шведский ученый Сванте Аррениус изучая электропроводность растворов различных веществ, пришел к выводу, что причиной электропроводности является наличие в растворе ионов, которые образуются при растворении электролита в воде. Этот процесс получил название электролитическая диссоциация. В 1887 году Аррениус сформулировал основные положения теории электролитической диссоциации. Рассмотрим основные положения теории электролитической диссоциации (в сокращенном варианте ТЭД).

Основные положения теории ТЭД.

1. При растворении в воде электролиты диссоциируют (распадаются) на положительные и отрицательные ионы.

Например: NaCl = Na + + Cl -

Ионы – это одна из форм существования химического элемента. Ионы отличаются от атомов числом электронов, т.е. электрическим зарядом. Атомы – нейтральные частицы, ионы имеют заряд (положительный или отрицательный). Эти два обстоятельства и обуславливают различие их свойств.

Следовательно, ионы – это положительно или отрицательно заряженные частицы в которые превращаются атомы или группы атомов в результате отдачи или присоединения электронов. Этот процесс превращения можно представить в виде схемы.

Разберем различие свойств атомов и ионов на примере всем известного вещества – поваренной соли. 1 электрон – это очень много для изменения свойств, поэтому свойства ионов совершенно не похожи на свойства атомов, которые их образовали. Металлический натрий – очень реакционно-способное вещество, которое даже хранят под слоем керосина, иначе натрий начнет взаимодействовать с компонентами окружающей среды. Натрий энергично взаимодействует с водой, образуя при этом щелочь и водород, в то время как положительные ионы натрия таких продуктов не образуют. Хлор имеет желто-зеленый цвет и резкий запах, ядовит, а ионы хлора – бесцветны, неядовиты, лишены запаха. Никому не придет в голову использовать в пищу металлический натрий и газообразный хлор, в то время как без хлорида натрия, состоящего из ионов натрия и хлора, невозможно приготовление пищи. Отличаются эти две частицы только одним электроном.

Слово «ион» в переводе с греческого означает «странствующий». В растворах ионы беспорядочно передвигаются («странствуют») в различных направлениях. По составу ионы делят на простые – Cl - , Na + сложные – NH 4 + , SO 4 -.

2. Причиной диссоциации электролита в водном растворе является его гидратация, т.е. взаимодействие электролита с молекулами воды и разрыв химической связи в нем.

В результате взаимодействия электролита с молекулами воды образуются гидратированные, т.е. связанные с молекулами воды, ионы.

Следовательно, по наличию водной оболочки ионы делят на гидратированные (в растворах и кристаллогидратах) и негидратированные (в безводных солях). Например: кристаллогидраты - глуберова соль, медный купорос; безводные соли – сульфат меди, нитрат натрия. Свойства гидратированных и негидратированных ионов отличаются, как вы смогли убедиться на примере ионов меди.

ИОНЫ (по наличии водной оболочки)

    гидратированные
    в растворах и кристаллогидратах: CuSO 4 *5H 2 O , Na 2 SO 4 *10H 2 O

    негидратированные
    в безводных солях: Cu 2+ SO 4 2- , Na + NO 3 -

3. Под действием электрического тока положительно заряженные ионы движутся к отрицательному полюсу источника тока – катоду, поэтому их называют катионами, а отрицательно заряженные ионы движутся к положительному полюсу источника тока – аноду, поэтому их называют анионами.

Следовательно, существует еще одна классификация ионов – по знаку их заряда.

ИОНЫ
*катионы (положительно заряженные частицы)
*анионы (отрицательно заряженные частицы)

В растворах электролитов сумма зарядов катионов равна сумме зарядов анионов, вследствие чего эти растворы электронейтральны.

4.Электролитическая диссоциация – процесс обратимый для слабых электролитов. Наряду с процессом диссоциации (распад электролита на ионы) протекает и обратный процесс – ассоциация (соединение ионов). Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости, например:

HNO 2 ↔ H + + NO 2-

5. Не все электролиты в одинаковой мере диссоциируют на ионы.

Степень диссоциации зависит от природы электролита и его концентрации.

По степени диссоциации электролиты делят на слабые и сильные.

6. Химические свойства растворов электролитов определяются свойствами тех ионов, которые они образуют при диссоциации.

По характеру образующихся при диссоциации электролитов ионов различают три типа электролитов: кислоты, основания и соли.

V .Закрепление изученного материала.

Попробуем теперь выполнить задание, используя полученную информацию. При выполнении задания, обратите внимание на то, является ли вещество электролитом.

ЗАДАНИЕ.

    HCl

    HNO 3

    H 2 SiO 3

Основываясь на составленных схемах, попробуйте дать определение кислотам с точки зрения ТЭД.

ДОПИШИТЕ ОПРЕДЕЛЕНИЕ

Кислоты – это электролиты, которые диссоциируют на катионы … и анионы …

КИСЛОТЫ- это электролиты, которые при диссоциации образуют катионы водорода и анионы кислотного остатка.

Например:

HCl = H + + Cl -
HNO
3 = H + + NO 3 -

Для многоосновных кислот протекает ступенчатая диссоциация. Например, для фосфорной кислоты H3PO4:

1-я ступень – образование дигидрофосфат – ионов:

H 3 PO 4 ↔ H + + H 2 PO 4 -

2-я ступень – образование гидрофосфат – ионов:

H 2 PO 4 - ↔ H + + HPO 4 2-

Cледует учитывать, что диссоциация электролитов по второй ступени происходит намного слабее, чем по первой. Диссоциация по третьей ступени при обычных условиях почти не происходит.

Все кислоты объединяет то, что они при диссоциации обязательно образуют катионы водорода. Поэтому логично предположить, что общие характерные свойства кислот – кислый вкус, изменение окраски индикаторов и др. – обусловлены именно катионами водорода.

Выполним следующее задание, основываясь на основных положениях ТЭД.

ЗАДАНИЕ.

Составьте возможные уравнения электролитической диссоциации веществ в водных растворах.

    NaOH

    KOH

    Fe(OH) 2

Назовите класс данных веществ.

Основываясь на составленных схемах, попробуйте дать определение основаниям с точки зрения ТЭД.

ДОПИШИТЕ ОПРЕДЕЛЕНИЕ

Основания – это электролиты, которые диссоциируют на катионы … и анионы …

ОСНОВАНИЯ- это электролиты, которые при диссоциации образуют катионы металла и гидроксид-анионы.

Например:

NaOH = Na + + OH -
KOH = K
+ + OH -

Многокислотные основания диссоциируют ступенчато, в основном по первой ступени. Например, гидроксид бария Ba (OH)2:

1-я ступень – образование гидроксо-ионов:

Ba (OH) 2 ↔ OH - + BaOH +

2-я ступень – образование ионов бария:

BaOH+ ↔ Ba 2+ + OH -

Все общие свойства оснований – мылкость на ощупь, изменение окраски индикаторов и др. – обусловлены общими для всех оснований гидроксид-ионами ОН - .

Выполняем следующее задание.

ЗАДАНИЕ.

Составьте возможные уравнения электролитической диссоциации веществ в водных растворах.

    NaCl

    KNO 3

    BaSO 4

Назовите класс данных веществ.

Основываясь на составленных схемах, попробуйте дать определение солям с точки зрения ТЭД.

ДОПИШИТЕ ОПРЕДЕЛЕНИЕ

Соли – это электролиты, которые диссоциируют на катионы … и анионы …

СОЛИ- это электролиты, которые при диссоциации образуют катионы металла (или аммония NH 4 ) и анионы кислотных остатков.

Например:

K 3 PO 4 = 3K + + PO 4 3-
NH
4 Cl = NH 4 + + Cl -

Очевидно, что свойства солей определяются как катионами металла, так и анионами кислотного остатка. Так, соли аммония имеют как общие свойства, обусловленные ионами NH 4 + , так и спецефические, обусловленные различными анионами. Аналогично, общие свойства сульфатов – солей серной кислоты – определяются ионами SO 4 2- , а различные – разными катионами. В отличие от многоосновных кислот и оснований, содержащих несколько гидроксид-ионов, такие соли как K 2 SO 4 , Al 2 (SO 4 ) 3 и т. д., диссоциируют сразу полностью, а не ступенчато.

А теперь давайте выполним более сложное задание, основываясь на всем изученном на уроке материале.

ПРОВЕРЬ СВОИ ЗНАНИЯ

Пользуясь таблицей растворимости, приведите примеры трех веществ, которые в растворах образуют сульфат-ионы. Запишите уравнения электролитической диссоциации этих веществ.

Например:

H 2 SO 4 ↔ H + + SO 4 -
HSO
4 ↔ H + + SO 4 2-

VI .Итоги урока.

VII .Домашнее задание.

    §36, положения ТЭД записать в тетрадь, выучить наизусть;

    Определения кислот, оснований, солей выучить наизусть;

    Задание №5 (письменно).

1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные частицы движутся к катоду, отрицательно заряженные – к аноду. Поэтому положительно заряженные частицы называются катионами, а отрицательно заряженные – анионами.

3. Направленное движение происходит в результате притяжения их противоположно заряженными электродами (катод заряжен отрицательно, а анод – положительно).

4. Ионизация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов в молекулы (ассоциация).

Основываясь на теории электролитической диссоциации, можно дать следующие определения для основных классов соединений (ОСНОВАНИЯ – электролиты, диссоциирующие с образованием катионов металла и анионов гидроксила).:

Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только ионы водорода (КИСЛОТЫ – электролиты, диссоциирующие с образованием катионов водорода и анионов кислотного остатка.) . Например,

HCl → H + + Cl - ;

CH 3 COOH H + + CH3COO-.

Основность кислоты определяется числом катионов водорода, которые образуются при диссоциации. Так, HCl, HNO3 – одноосновные кислоты, H 2 SO 4 , H 2 CO 3 – двухосновные, H 3 PO 4 , H 3 AsO 4 – трехосновные.

Основаниями называют электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы. Например,

KOH → K + + OH - ,

NH 4 OH NH4 + + OH - .

Растворимые в воде основания называются щелочами.

Кислотность основания определяется числом его гидроксильных групп. Например, KOH, NaOH – однокислотные основания, Ca(OH) 2 – двухкислотное, Sn(OH) 4 – четырехкислотное и т.д.

Солями называют электролиты, при диссоциации которых образуются катионы металлов (а также ион NH4+) и анионы кислотных остатков. Например,

CaC l2 → Ca 2 + + 2Cl - ,

NaF → Na + + F - .

Электролиты, при диссоциации которых одновременно, в зависимости от условий, могут образовываться и катионы водорода, и анионы – гидроксид-ионы называются амфотерными. Например,

H 2 O H + + OH - ,

Zn(OH) 2 Zn 2+ + 2OH - ,

Zn(OH) 2 2H + + ZnO 22 - или

Zn(OH) 2 + 2H 2 O 2 - + 2H +.

Средние соли – электролиты, диссоциирующие с образованием катионов металла и анионов кислотного остатка.

Кислые соли – электролиты, диссоциирующие с образованием катионов металла и водорода, и анионов кислотного остатка.

Основные соли – электролиты, диссоциирующие с образованием катионов металла и анионов гидроксила и кислотного остатка.

Конец работы -

Эта тема принадлежит разделу:

Химия – наука, изучающая вещества и процессы их превращения. Объекты изучения в химии - химические элементы и их соединения

Химический элемент это совокупность атомов с одинаковым зарядом ядер атом наименьшая частица химического элемента сохраняющая его свойства.. химия нужна человечеству чтобы получать из веществ природы по возможности все.. химию можно рассматривать в двух аспектах описательном открытие химических фактов и явлений и их описание и..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Периодический закон и Периодическая система химических элементов
Открытие Периодического закона Основной закон химии - Периодический закон был открыт Д.И. Менделеевым в 1869 году в то время, когда атом считался неделимым и о его внутреннем строении ничего

Квантовомеханическое описание состояния электрона в атоме
Как известно, свет проявляет свойства как потока частиц, так и электромагнитной волны, т.е. фотоны обладают корпускулярно-волновой двойственностью. Создание квантовой механики произошло на пути обо

Атомные орбитали
Состояние электрона в атоме, характеризующееся тремя квантовыми числами n, l, ml , называется атомной орбиталью.Часто орбиталь также определяют как область пространства, в кото

Раствор, находящийся в равновесии с растворяющимся веществом, называется насыщенным раствором
При растворении кристаллов происходит их разрушение, что требует затраты энергии, поэтому растворение должно было бы всегда протекать с поглощением теплоты. Однако, как было ранее отмечено, некот

Способы выражения концентрации растворов
Под концентрацией раствора понимают содержание растворённого вещества в определённом объёме или массе раствора или растворителя. Растворы с большой концентрацией растворённого вещества называются к

Константа химического равновесия
При равновесии химической реакции: bB + dD = lL + mM или, где pp,L, ppM, pp,D, ppB –равновесные парциальные давления веществ, а

Принцип Ле Шателье
Так как почти все реакции в той или иной степени обратимы, в промышленности и лабораторной практике возникают две проблемы: как получить продукт " полезной" реакции с максимальным выходом

Скорость химических реакций
Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ: V = ± ((С2 – С1) / (t2 - t1)) = ± (DС / Dt)

Истинные и потенциальные электролиты
Процесс распада вещества на ионы при растворении или расплаве называется ЭД. Механизм ЭД зависит от типа электролита: следует различать истинные и потенциальные электролиты.

Константа диссоциации. Степень диссоциации
Концентрации ионов в растворах слабых электролитов качественно характеризуют степень и константой диссоциации. Степень диссоциации - это отношение числа молекул, распавшихся на ионы

Ионные реакции
Реакции ионного обмена -это реакции между ионами, образовавшимися в результате диссоциации электролитов Правила составления ионных уравнений реакций 1.Нерастворим

Ионные произведения воды. водородный показатель. буферные растворы
Водородный показатель (рН) величина, характеризующая активность или концентрацию ионов водорода в растворах. Водородный показатель обозначается рН. Водородный показатель численно равен отр

Гидролиз солей. Константа, степень и ph гидролиза
Под гидролизом солей подразумеваются процессы реакций между молекулами воды и молекулами растворенных в ней солей. В результате подобной реакции образовываются малодиссоциированные соединения. Проц

Окислительно восстановительные реакции. Понятие окисления, восстановление, окислитель, восстановитель
Окислительно-восстановительные реакции играют огромную роль в природе и технике. Без этих реакций невозможна жизнь, потому что дыхание, обмен веществ, синтез растениями клетчатки из углекислого газ

Составление уравнений окислительно-восстановительных реакций (метод электронного баланса, метод полуреакций)
Метод электронного баланса. Уравнения ОВР часто имеют сложный характер, их составление, в частности, расстановка стехиометрических коэффициентов, представляет собой при этом трудную задачу.

Предмет органической химии. Исторический обзор развития органической химии. Первые теорритические воззрения. Теория строения А. М. Бутлерова
Органической химией изначально называлась химия веществ, полученных из организмов растений и животных. С такими веществами человечество знакомо с глубокой древности. Люди умели получать уксус из пр

Физические и химические свойства алканов. Метод получения и идентификации алканов. Отдельные представители
Алканы - бесцветные вещества, нерастворимые в воде. В обычных условиях они химически инертны, так как все связи в их молекулах образованы с участием sp3-гибридных орбиталей атома углерода и являютс

Физические и химические свойства алкенов. Методы получения и идентификации алкенов. Отдельные представители
Физические свойства некоторых алкенов показаны в табл. 1. Первые три представителя гомологического ряда алкенов (этилен, пропилен и бутилен) - газы, начиная с C5H10 (ам

Эффект сопряжения. Физические и химические свойства диенов. Методы получения и идентификации диенов. Отдельные представители
1. Получение диенов Из диеновых углеводородов особое значение имеют дивинил (бута-диен-1,3) и изопрен (2-метилбутадиен-1,3). Рассмотрим основные способы получения этих диенов.

Физические и химические свойства аренов. Методы получения и идентификации. Отдельные представители
Физические свойства. Первые члены гомологического ряда бензола (например, толуол, этилбензол и др.) - бесцветные жидкости со специфическим запахом. Они легче воды и нерастворимы в ней. Хорош

Номенклатура спиртов
Для спиртов существует несколько способов их названия. При названии отдельных спиртов широко применяются исторические названия (тривиальные): древесный спирт СН3О

Изомерия
Изомерия спиртов обусловлена строением углеводородного радикала и положением функциональной (гидроксильной) группы. Например, молекулярной формуле С

Физические свойства спиртов
Низшие и средние члены гомологического ряда предельных одноатомных с С1 до С11 спиртов – жидкости, высшие (начиная с С11) – твердые вещества. Плотности предельных и

Методы получения и химические свойства
3.1 Методы получения А. Гидратация алкенов: СН3–CH=CH2+HOН---------------------® СН3–CH–CH3

Строение гидроксильной группы
Свойства спиртов определяется строением гидроксильной группы, характером ее химических связей, строение углеводородных радикалов и их взаимным влиянием. Связи О–Н и С–О – полярные ковалентные. Элек

Химические свойства гликолей
Химические свойства гликолей и многоатомных спиртов напоминает свойства одноатомных спиртов. Гликоли лучше, чем соответствующие одноатомные спирты, растворимы в воде и имеют несколько боле

Фенолы. Общая характеристика. Методы получения и химические свойства
Фенолами называются соединения, у которых гидроксильная группа непосредственно присоединена к ароматическому кольцу бензола. Соединения, содержащие гидроксильную группу у конденсированных ароматиче

Строение гидроксильной группы фенола
Фенольная гидроксильная группа за счет р,p-сопряжения с кольцом является электродонором, поэтому вектор диполя в феноле направлен в сторону бензольного кольца, в то время ка

Сложные эфиры (Эстеры)
Сложные эфиры - это производные карбоновых кислот, у которых гидроксильная группа замещена на остаток спирта. Общая формула сложных эфиров - R-CO-O-R" Номенклатура. Изомерия.

Номенклатура, изомерия аминов
1. Названия аминов по рациональной номенклатуре обычно производят от названий вхо­дящих в них углеводородных радикалов с присоединением окончания –амин: метиламин СН

Способы получения аминов
Амины могут быть получены различными способами. А) Действием на аммиак галогеналкилами 2NH3 + CH3I ––® CH3– NH2 + NH4I

Физические свойства аминов
Метиламин, диметиламин и триметиламин - газы, сред­ние члены ряда аминов - жидкости, высшие - твердые тела. С увеличением молекулярной массы аминов увеличивается их плотность, повышается температур

Химические свойства аминов
Химическое поведение аминов определяется наличием в молекуле аминогруппы. На внешней электронной оболочке атома азота имеется 5 электронов. В молекуле амина также, как и в молекуле аммиака, атом аз

Диамины
Диамины играют важную роль в биологических процес­сах. Как правило, они легко растворимы в воде, обладают ха­рактерным запахом, имеют сильно щелочную реакцию, взаи­модействуют с С02 возд

Аминоспирты
Аминоспирты - соединения со смешанными функциями, в молекуле которых содержатся амино- и оксигруппы. Аминоэтанол(этаноламин) НО-СН2СН2-NH

Физические и хим свойства карбоновых кислот
Только с чисто формальных позиций можно рассматривать карбоксильную группу как комбинацию карбонильной и гидроксильной функций. Фактически их взаимное влияние друг на друга таково, что полностью из

Химические свойства
Для кислот характерны три типа реакций: замещения иона водорода карбоксильной группы (образование солей); с участием гидроксильной группы (образование сложных эфиров, галогенангидридов, ангидридов

Важнейшие представители
Муравьиная кислота - бесцветная жидкость с резким запа­хом. Является сильным восстановителем и окисляется до уголь­ной кислоты. В природе свободная муравьиная кис

Изомерия
В молекулах всех природных аминокислот (за исключением глицина) у a-углеродного атома все четыре валентные связи заняты различными заместителями, такой атом углерода является асимметрическим, и по

Пространственное строение белков. Физические и химические свойства белков
Практически все белки построены из 20 a-аминокислот, принадлежащих к L-ряду, и одинаковых практически у всех организмов. Аминокислоты в белках соединены между собой пептидной связью-СО-NH-, которая

Дисахариды. физико-химические свойства, строение
Д и с а х а р и д ы. Дисахариды - это сложные сахара, каждая молекула которых при гидролизе распадается на 2 молекулы моносахарида. Иногда они используются в качестве запасных питательных ве

Полисахариды. Строение, химические свойства отдельных представителей
Общая формула полисахаридов, образованных остатками пентоз (C5H8О4)n, гексоз (C6H10О5), где n = 103 - 105. Наибольшее значение имеют производные глюкозы: крахмал и целлюлоза. Крахмал являе

Липицы
Липиды - это жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к пр

Строение простых липидов. Воски
Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина - триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку - к

Сложные липиды
Сложные липиды. К ним относят фосфолипиды, гликолипиды, липопротеины и др. Фосфолипиды - триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают

Прогоркание (порча) жиров. Аналитическая характеристика жиров
Прогоркание жиров, проявляющееся в появлении специфического запаха и неприятного вкуса, вызвано образованием низкомолекулярных карбонильных соединений и обусловлено рядом химических процессов.

Мыла и детергенты
Общая формула твердого мыла: Один из вариантов химического состава твёрдого мыла - C17H35COONa (жидкого - C17H35COOK). Детергенты (detergere - очищать) - вещества, обладающие выра

1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные частицы движутся к катоду, отрицательно заряженные – к аноду. Поэтому положительно заряженные частицы называются катионами, а отрицательно заряженные – анионами.

3. Направленное движение происходит в результате притяжения их противоположно заряженными электродами (катод заряжен отрицательно, а анод – положительно).

4. Ионизация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов в молекулы (ассоциация).

Основываясь на теории электролитической диссоциации, можно дать следующие определения для основных классов соединений:

Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только ионы водорода. Например,

HCl → H+ + Cl-;

CH3COOH H+ + CH3COO-.

Основность кислоты определяется числом катионов водорода, которые образуются при диссоциации. Так, HCl, HNO3 – одноосновные кислоты, H2SO4, H2CO3 – двухосновные, H3PO4, H3AsO4 – трехосновные.

Основаниями называют электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы. Например,

KOH → K+ + OH-,

NH4OH NH4+ + OH-.

Растворимые в воде основания называются щелочами.

Кислотность основания определяется числом его гидроксильных групп. Например, KOH, NaOH – однокислотные основания, Ca(OH)2 – двухкислотное, Sn(OH)4 – четырехкислотное и т.д.

Солями называют электролиты, при диссоциации которых образуются катионы металлов (а также ион NH4+) и анионы кислотных остатков. Например,

CaCl2→ Ca2+ + 2Cl-,

NaF → Na+ + F-.

Электролиты, при диссоциации которых одновременно, в зависимости от условий, могут образовываться и катионы водорода, и анионы – гидроксид-ионы называются амфотерными. Например,

Zn(OH)2 Zn2+ + 2OH-,

Zn(OH)2 2H+ + ZnO22- или

Zn(OH)2 + 2H2O 2- + 2H+.

Диссоциация кислот, оснований и солей в водных растворах

С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей.

Диссоциация кислот

Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода (H +).

Например,

HCl -> H + + Cl -

HNO 3 -> H + + NO 3 -

Многоосновные кислоты диссоциируют ступенчато :

Н 3 РО 4 ↔ Н + + Н 2 РО - 4 (первая ступень) – дигидроортофосфат ион


Н 2 РО - 4 ↔ Н + + НРO 2- 4 (вторая ступень) – гидроортофосфат ион

НРО 2- 4 ↔ Н + + PО З- 4 (третья ступень) – ортофосфат ион

Диссоциация многоосновной кислоты протекает главным образом по первой ступени, в меньшей степени по второй и лишь в незначительной степени - по третьей.

Диссоциация оснований

Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы (OH -).

Диссоциация щелочей Диссоциация амфотерных оснований (амфолитов)
Вспомните! Щёлочи – это основания, растворимые в воде. Это основания щелочных и щелочноземельных металлов : LiOH, NaОН, КОН, Rb ОН, С s ОН, Fr ОН и Са(ОН) 2 , Sr(ОН) 2 , Ва(ОН) 2 , R а(ОН) 2 , а также N Н 4 ОН Амфолиты - это электролиты, которые при диссоциации одновре­менно образуют катионы водорода (H +) и гидроксид-ионы (OH -).
Примеры уравнений диссоциации щелочей KOH -> K + + OH - ; NH 4 OH ↔ NH + 4 + OH - Многокислотные основания диссоциируют ступенчато: Ba(ОН) 2 -> Bа(ОН) + + OH - (первая ступень) Ba(OH) + ↔ Ba 2+ +OH - (вторая ступень) Примеры уравнений диссоциации амфолитов Н 2 O ↔ Н + + ОН - Диссоциацию амфотерного гидроксида цинка Zn(ОН) 2 можно выра­зить уравнением: 2ОН - + Zn 2+ + 2Н 2 О ↔ Zn (ОН) 2 + 2Н 2 О ↔ 2- + 2Н +

Диссоциация солей

Солями называются электролиты, при диссоциации которых образуются катионы металлов а также катион аммония (NH + 4) и анионы кислотных остатков.

Например, диссоциация средних солей:

(NH 4) 2 SO 4 -> 2NH + 4 + SO 2- 4 ;

Na 3 PO 4 -> 3 Na + + PO 3- 4

Кислые же и основные соли диссоци­ируют ступенчато:

Например,

БИЛЕТ №22

Степень диссоциации. Сильные и слабые электролиты. Ионные уравнения реакций.

Степень диссоциации - величина, характеризующая состояние равновесия в реакции диссоциации в гомогенных (однородных) системах.

>> Химия: Основные положения теории электролитической диссоциации Обобщим сведения об электролитической диссоциации в виде основных положений ныне общепризнанной теории. Они заключается в следующем.
В результате такого взаимодействия образуются гидратиро-ванные, то есть связанные с молекулами воды, ионы.

Следовательно, по наличию водной оболочки ионы делятся на гидратированные (в растворах и кристаллогидратах) и не-гидратированные (в безводных солях).

Свойства гидратиронянных и негндратировашшх ионов отличаются, как вы смогли уже убедиться на примере ионов меди.

При растворении в воде электролиты диссоциируют (расспадаются) на положительные и отрицательные ионы.

Свойства ионов совершенно не похожи на свойства атомов , которые их образовали. Ионы - зто одна из форм существования химического элемента. Например, атомы металла натрия энергично взаимодействуют с водой, образуя при этом щелочь и водород Н, в то время как ионы натрия таких продуктов не образуют. Хлор имеет желто-зеленый цвет и резкий запих, ядовит, а ионы хлора - бесцветны, неядовиты, лишены запаха. Никому не придет в голову использовать в пищу металлический натрий и газообразный хлор, в то время как без хлорида натрия, состоящего из ионов натрия и хлора, невозможно приготовление пищи.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Проводимость веществами электрического тока или отсутствие проводимости можно наблюдать с помощью простого прибора.


Он состоит из угольных стержней (электродов), присоединенных проводами к электрической сети. В цепь включена электрическая лампочка, которая показывает присутствие или отсутствие тока в цепи. Если опустить электроды в раствор сахара,то лампочка не загорается. Но она ярко загорится, если их опустить в раствор хлорида натрия.


Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами.


Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.


К электролитам относятся кислоты, основания и почти все соли.


К неэлектролитам относятся большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи.


Электролиты - проводники второго рода. В растворе или расплаве они распадаются на ионы, благодаря чему и протекает ток. Очевидно, чем больше ионов в растворе, тем лучше он проводит электрический ток. Чистая вода электрический ток проводит очень плохо.

Различают сильные и слабые электролиты.

Сильные электролиты при растворении вводе полностью диссоциируют на ионы.


К ним относятся:


1) почти все соли;


2) многие минеральные кислоты, например Н 2 SO 4 , HNO 3 , НСl, HBr, HI, НМnО 4 , НСlО 3 , НСlО 4 ;


3) основания щелочных и щелочноземельных металлов.


Слабые электролиты при растворении в воде лишь частично диссоциируют на ионы.


К ним относятся:


1) почти все органические кислоты;


2) некоторые минеральные кислоты, например H 2 СО 3 , Н 2 S, НNO 2 , HClO, H 2 SiO 3 ;


3) многие основания металлов (кроме оснований щелочных и щелочноземельных металлов), а также NH 4 OH, который можно изображать как гидрат аммиака NH 3 ∙H 2 O.


К слабым электролитам относится вода.


Слабые электролиты не могут дать большой концентрации ионов в растворе.

Основные положения теории электролитической диссоциации.

Распад электролитов на ионы при растворении их в воде называется элекролитической диссоциацией.


Так, хлорид натрия NaСl при растворении в воде полностью распадается на ионы натрия Na + и хлорид-ионы Cl - .

Вода образует ионы водорода Н + и гидроксид-ионы ОН - лишь в очень незначительных количествах.


Для объяснения особенностей водных растворов электролитов шведским ученым С. Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи.


Современное содержание этой теории можно свести к следующим трем положениям:


1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы - положительные и отрицательные.


Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы (Na + , Mg 2+ , Аl 3+ и т.д.) - или из нескольких атомов - это сложные ионы (NО 3 - , SO 2- 4 , РО З- 4 и т.д.).


2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные - к аноду. Поэтому первые называются катионами, вторые - анионами.


Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.


3. Диссоциация - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).


Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например, уравнение диссоциации молекулы электролита КA на катион К + и анион А - в общем виде записывается так:


КА ↔ K + + A -


Теория электролитической диссоциации является одной из основных теорий в неорганической химии и полностью согласуется с атомно-молекулярным учением и теорией строения атома.

Степень диссоциации.

Одним из важнейших понятий теории электролитической диссоциации Аррениуса является понятие о степени диссоциации.


Степенью диссоциации (а) называется отношение числа молекул, распавшихся на ионы (n"), к общему числу растворенных молекул (n):


Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1 или 100%, то электролит полностью распадается на ионы. Если же α = 20%, то это означает, что из 100 молекул данного электролита 20 распалось на ионы.


Различные электролиты имеют различную степень диссоциации. Опыт показывает, что она зависит от концентрации электролита и от температуры. С уменьшением концентрации электролита, т.е. при разбавлении его водой, степень диссоциации всегда увеличивается. Как правило, увеличивает степень диссоциации и повышение температуры. По степени диссоциации электролиты делят на сильные и слабые.


Рассмотрим смещение равновесия, устанавливающегося между недиссоциированными молекулами и ионами при электролитической диссоциации слабого электролита - уксусной кислоты:


СН 3 СООН ↔ СН 3 СОO - + Н +


При разбавлении раствора уксусной кислоты водой равновесие сместится в сторону образования ионов, - степень диссоциации кислоты возрастает. Наоборот, при упаривании раствора равновесие смещается в сторону образования молекул кислоты - степень диссоциации уменьшается.


Из этого выражения очевидно, что α может изменяться от 0 (диссоциации нет) до 1 (полная диссоциация). Степень диссоциации часто выражают в процентах. Степень диссоциации электролита может быть определена только экспериментальным путем, например по измерению температуры замерзания раствора, по электропроводности раствора и т. д.

Механизм диссоциации

Легче всего диссоциируют вещества с ионной связью. Как известно, эти вещества состоят из ионов. При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. При этом образуются гидратированные ионы, т.е. ионы, химически связанные с молекулами воды.


Аналогично диссоциируют и электролиты, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества также ориентируются диполи воды, которые своими отрицательными полюсами притягиваются к положительному полюсу молекулы, а положительными полюсами - к отрицательному полюсу. В результате этого взаимодействия связующее электронное облако (электронная пара) полностью смещается к атому с большей электроотрицательностью, полярная молекула превращается в ионную и затем легко образуются гидратированные ионы:



Диссоциация полярных молекул может быть полной или частичной.


Таким образом, электролитами являются соединения с ионной или полярной связью - соли, кислоты и основания. И диссоциировать на ионы они могут в полярных растворителях.

Константа диссоциации.

Константа диссоциации. Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит.


Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:


A K → A - + K + .


Поскольку диссоциация является обратимым равновесным процессом, то к этой реакции применим закон действующих масс, и можно определить константу равновесия как:



где К - константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита.


Диапазон констант равновесия для разных реакций очень большой - от 10 -16 до 10 15 . Например, высокое значение К для реакции


означает, что если в раствор, содержащий ионы серебра Ag + ,внести металлическую медь, то в момент достижения равновесия концентрация ионов меди намного больше, чем квадрат концентрации ионов серебра 2 . Напротив, низкое значение К в реакции


говорит о том, что к моменту достижения равновесия растворилось ничтожно малое количество иодида серебра AgI.


Обратите особое внимание на форму записи выражений для константы равновесия. Если концентрации некоторых реагентов существенно не изменяются в процессе реакции, то они не записываются в выражение для константы равновесия (такие константы обозначаются К 1).


Так, для реакции меди с серебром неправильным будет выражение:



Правильной будет следующая форма записи:


Это объясняется тем, что концентрации металлических меди и серебра введены в константу равновесия. Концентрации меди и серебра определяются их плотностью и не могут быть изменены. Поэтому эти концентрации нет смысла учитывать при расчете константы равновесия.


Аналогично объясняются выражения констант равновесия при растворении AgCl и AgI


Произведение растворимости. Константы диссоциации малорастворимых солей и гидроксидов металлов называются произведением растворимости соответствующих веществ (обозначается ПР).


Для реакции диссоциации воды


выражение константы будет:




Объясняется это тем, что концентрация воды во время реакций в водных растворах изменяется очень незначительно. Поэтому принимается, что концентрация [Н 2 О] остается постоянной и вводится в константу равновесия.


Кислоты, основания и соли с позиций электролитической диссоциации.


С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей.


Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода.


Например:


НCl ↔ Н + + С l - ;


СН 3 СООН ↔ Н + + СН 3 СОО -


Диссоциация многоосновной кислоты протекает главным образом по первой ступени, в меньшей степени по второй и лишь в незначительной степени - по третьей. Поэтому в водном растворе, например, фосфорной кислоты наряду с молекулами Н 3 РО 4 имеются ионы (в последовательно уменьшающихся количествах) Н 2 РО 2- 4 , НРО 2- 4 и РО 3- 4


Н 3 РО 4 ↔ Н + + Н 2 РО - 4 (первая ступень)


Н 2 РО - 4 ↔ Н + + НРO 2- 4 (вторая ступень)


НРО 2- 4 ↔ Н+ PО З- 4 (третья ступень)


Основностъ кислоты определяется числом катионов водорода, которые образуются при диссоциации.


Так, НCl, HNO 3 - одноосновные кислоты - образуется один катион водорода;


Н 2 S, Н 2 СО 3 , Н 2 SO 4 - двухосновные,


Н 3 РО 4 , Н 3 АsО 4 - трехосновные, так как образуются соответственно два и три катиона водорода.


Из четырех атомов водорода, содержащихся в молекуле уксусной кислоты СН 3 СООН, только один, входящий в карбоксильную группу - СООН, способен отщепляться в виде катиона Н + , - уксусная кислота одноосновная.


Двух - и многоосновные кислоты диссоциируют ступенчато (постепенно).


Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы.


Например:


KOH ↔ K + + OH - ;


NH 4 OH ↔ NH + 4 + OH -


Основания,растворимые в воде называются щелочами. Их немного. Это основания щелочных и щелочноземельных металлов: LiOH, NaОН, КОН, RbОН, СsОН, FrОН и Са(ОН) 2 , Sr(ОН) 2 , Ва(ОН) 2 , Rа(ОН) 2 , а также NН 4 ОН. Большинство оснований в воде малорастворимо.


Кислотность основания определяется числом его гидроксильных групп (гидроксогрупп). Например, NН 4 ОН - однокислотное основание, Са(ОН) 2 - двухкислотное, Fе(ОН) 3 - трехкислотное и т. д. Двух- и многокислотные основания диссоциируют ступенчато


Ca(ОН) 2 ↔ Са(ОН) + + OH - (первая ступень)


Ca(OH) + ↔ Ca 2+ + OH - (вторая ступень)


Однако имеются электролиты, которые при диссоциации одновременно образуют катионы водорода, и гидроксид - ионы. Эти электролиты называются амфотерными или амфолитами. К ним относятся вода, гидроксиды цинка, алюминия, хрома и ряд других веществ. Вода, например, диссоциирует на ионы Н + и ОН - (в незначительных количествах):

Н 2 O ↔ Н + + ОН -


Следовательно, у нее в равной мере выражены и кислотные свойства, обусловленные наличием катионов водорода Н + , и щелочные свойства, обусловленные наличием ионов ОН - .


Диссоциацию амфотерного гидроксида цинка Zn(ОН) 2 можно выразить уравнением


2ОН - + Zn 2+ + 2Н 2 О ↔ Zn(ОН) 2 + 2Н 2 О ↔ 2- + 2Н +


Солями называются электролиты, при диссоциации которых образуются катионы металлов а также катион аммония (NH 4) и анионы кислотных остатков


Например:


(NH 4) 2 SO 4 ↔ 2NH + 4 + SO 2- 4 ;


Na 3 PO 4 ↔ 3Na + + PO 3- 4


Так диссоциируют средние соли. Кислые же и основные соли диссоциируют ступенчато. У кислых солей вначале отщепляются ионы металлов, а затем катионы водорода. Например:


KHSO 4 ↔ K + + HSO - 4



HSO - 4 ↔ H + + SO 2- 4


У основных солей вначале отщепляются кислотные остатки, а затем гидроксид-ионы.


Mg(OH)Cl ↔ Mg(OH) + + Cl -