Лабораторная работа. Определение остаточного активного хлора

Государственное санитарно-эпидемиологическое
нормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение концентрации остаточного свободного хлора в питьевой и пресной природной воде хемилюминесцентным методом

МУК 4.1.965-99

Минздрав России

Москва 2000

1. Методические указания разработаны Федеральным центром госсанэпиднадзора Минздрава Российской Федерации (Н. С. Ластенко, И. В. Брагина, В. Б. Скачков ) и ВАХЗ, ЭНТЦ «ЭкМОС» (В. А. Ишутин, А. А. Стехин, И. А. Пушкин, Г. В. Яковлева, А. А. Симонов )

2. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации Г. Г. Онищенко 22 марта 2000 г.

3. Введены впервые.

3.3. Материалы

Бумага фильтровальная

3.4. Реактивы

4. Требования безопасности

4.1. При работе с реактивами соблюдают требование безопасности, установленные для токсичных, едких и легковоспламеняющихся веществ по ГОСТу 12.1.005-88.

4.2. При выполнении измерений с использованием прибора ЛИК соблюдают правила электробезопасности по ГОСТу 12.1.019- 79 и инструкцией по эксплуатации прибора.

5. Требования к квалификации операторов

К выполнению измерений допускаются лица, имеющие квалификацию техника-химика с опытом работы на приборе ЛИК.

6. Условия измерений

При выполнении измерений соблюдаются следующие условия:

6.1. Приготовление растворов и подготовка проб к анализу проводятся в нормальных условиях при температуре воздуха 20 + 15 °С, атмосферном давлении 630-800 мм рт. ст., влажности воздуха до 90 %.

6.2. Измерения на приборе ЛИК проводят в условиях, рекомендуемых технической документацией к прибору ЛИК.

7. Подготовка к выполнению измерений

7.1. Подготовка к построению градуированного графика

7.1.1. Открывают водопроводный кран и через 10 минут после истечения из него воды трижды ополаскивают 2-3 литровую банку и наливают в нее 1,5-2,0 (2,5-3,0) дм 3 воды. Банку закрывают бумажной салфеткой и дают ей отстояться в течение 24 часов при комнатной температуре. РН-метром замеряют водородный показатель и серной (азотной) кислотой доводят его до значения (4,5 ± 0,2).

7.1.2. Приготовление хлорной воды.

Колбу с пришлифованной пробкой емкостью 500 см 3 трижды ополаскивают водой, приготовленной по . и наливают в нее 400 см 3 этой воды. Затем в колбу вносят навеску гипохлорида кальция или хлорированную воду с известной концентрацией активного свободного хлора в таком количестве, чтобы в 1000 см 3 исходной воды содержалось 2,0-2,5 мг остаточного хлора. После этого в колбу вносят воду, приготовленную по. до метки, закрывают ее пробкой и содержимое тщательно перемешивают встряхиванием в течение 5 мин.

7.2. Определение исходной концентрации активного свободного хлора в хлорной воде

7.2.1. Приготовление 0,005 %-ного раствора метилового оранжевого. 50 мг метилового оранжевого растворяют в дистиллированной воде, в колбе вместимостью 1000 см 3 , 1 см 3 этого раствора эквивалентен 0,0217 мг остаточного свободного хлора.

7.2.2. Приготовление 5 N раствора соляной кислоты.

В мерную колбу вместимостью 1000 см 3 наливают 60-70 см 3 дистиллированной воды и медленно, порциями прибавляют 40 см 3 концентрированной соляной кислоты, дистиллированной водой доводят объем колбы до метки.

7.2.3. Определение концентрации остаточного свободного хлора. 100 см 3 анализируемой хлорной воды наливают в фарфоровую чашку, добавляют 3 капли 5 N раствора соляной кислоты, перемешивают и быстро титруют раствором метилового оранжевого до появления неисчезающей розовой окраски. Концентрацию остаточного свободного хлора вычисляют по формуле:

X = (мг/дм 3), где

Количество 0,005 %-ного раствора метилового оранжевого, пошедшего на титрование, см 3 ;

0,0217 - титр раствора метилового оранжевого;

0,04 - эмпирический коэффициент;

V - объем исходной хлорной воды пробы, см 3 .

7.4. Построение градуированного графика

7.4.1. Проведение анализа хлорной воды с исходной концентрацией остаточного свободного хлора на приборе ЛИК.

Внимание! При построении графика во избежание загрязнения реактива одна насадка дозатора пипеточного используется только для отбора реактива, а вторая - хлорной воды.

Крышку прибора передвигают до упора вперед, снимают крышку-дозатор, извлекают из реакционной камеры кювету из стекла и наливают в нее 0,1 см 3 реактива на основе люминола дозатором пипеточным. Кювету с реактивом помещают в реакционную камеру и закрывают ее крышкой-дозатором. Затем в полость крышки-дозатора вносят 0,2 см 3 хлорной воды, приготовленной по дозатором пипеточным, предварительно сменив у него наконечник.

Крышку прибора передвигают до упора назад, нажимают на нее рукой, снимают показания прибора. Определение повторяют 5 раз, вычисляют среднее значение сигнала, которое будет соответствовать исходной концентрации остаточного свободного хлора в приготовленной хлорной воде.

7.4.2. Приготовление разведений из исходной хлорной воды.

5 чистых пробирок с притертой пробкой трижды ополаскивают водой, приготовленной по . В каждую пробирку вносят соответственно:

1 - 0,5 см 3 ; 2 - 1,0 см 3 ; 3 - 1,5 см 3 ; 4 - 2,0 см 3 ; 5 - 2,5 см 3 исходной хлорной воды, приготовленной по ., в эти же пробирки вносят соответственно:

1 - 4,5 см 3 ; 2 - 4,0 см 3 ; 3 - 3,5 см 3 ; 4 - 3,0 см 3 ; 5 - 2,5 см 3 воды, приготовленной по . Пробирки закрывают пробками и содержимое тщательно перемешивают, встряхивая в течение 3 минут. Если исходная концентрация свободного активного хлора в воде была 2,0 мг/дм 3 , то: в пробирке 1 - 0,2 мг/дм 3 , в пробирке 2 -0,4 мг/дм 3 , в пробирке 3 - 0,6 мг/дм 3 , в пробирке 4 - 0,8 мг/дм 3 , в пробирке 5-1,0 мг/дм 3 .

После приготовления разведений хлорной воды их анализируют на приборе ЛИК, как указано в . и по полученным данным строят градуировочный график в координатах: величина измеряемого сигнала (отн. единицы) - концентрация свободного активного хлора (мг/дм 3).

Построенный график уточняют и корректируют только после поверки прибора ЛИК (1 раз в год) путем анализа трех разведений хлорной воды с известной концентрацией.

8. Выполнение измерений концентрации остаточного свободного хлора в водопроводной воде

8.1. Определение остаточного свободного хлора в воде

Открывают водопроводный кран и через 10 минут после истечения из него воды в мерный стакан объемом 100 см 3 отбирают 70 - 80 см 3 и анализируют ее на приборе ЛИК, как указано в . Вычисляют среднее значение сигнала и по градуированному графику определяют искомую величину концентрации остаточного свободного хлора.

8.2. Определение связанного остаточного свободного хлора

В мерный стакан объемом 100 см 3 вносят 2 капли 20 %-ной серной кислоты. Открывают водопроводный кран и через 10 минут после истечения из него воды, в стакан отбирают 50-60 см 3 воды, перемешивают 1 минуту и анализируют на приборе ЛИК, как указано в .

Вычисляют среднее значение сигнала, по градуировочному графику определяют искомую концентрацию и из полученного значения вычитают величину концентрации остаточного свободного хлора, полученную по . По разности определяют концентрацию связанного свободного хлора в виде хлор, дихлорамина.

8.3. Определение хлороемкости воды

В исходную очищенную воду порциями добавляют хлор, перемешивают, отбирают пробу объемом 100 см 3 , через 30 минут после прибавления хлора анализируют на приборе ЛИК, как указана в . Величина сигнала на приборе должна соответствовать концентрации остаточного свободного хлора 0,01-0,02 мг/дм 3 .

9. Оформление результатов измерений

Результаты измерений оформляются протоколом по форме:

Протокол №

Протокол определения остаточного хлора

1. Дата проведения анализа ______

2. Место отбора пробы ____________

3. Название лаборатории __________

4. Юридический адрес _____________

Результаты химического анализа

Ответственный исполнитель

Заведующий лабораторией

10. Контроль погрешности измерения

Контроль погрешности измерения содержания в воде хлора проводят с помощью приготовленной хлорной воды с концентрацией в ней хлора 2,0-2,5 мг/дм 3 . + Δ , то воспроизводимость измерения является удовлетворительной. Если нет, то устраняют причины.


стр. 1



стр. 2



стр. 3



стр. 4



стр. 5



стр. 6



стр. 7

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ВОДА ПИТЬЕВАЯ

Методы определения содержания
остаточного активного хлора

Дата введения 01.01.74

Настоящий стандарт распространяется на питьевую воду и устанавливает методы определения содержания остаточного активного хлора.

1. МЕТОДЫ ОТБОРА ПРОБ

* На территории Российской Федерации действует ГОСТ Р 51593-2000 .

** На территории Российской Федерации действует ГОСТ Р 51232-98 .

1.2. Объем пробы воды для определения содержания активного хлора не должен быть менее 500 см 3 .

1.3. Пробы воды не консервируют. Определение следует проводить немедленно после отбора пробы.

2. ЙОДОМЕТРИЧЕСКИЙ МЕТОД

2.1. Сущность метода

Метод основан на окислении йодида активным хлором до йода, который титруют тиосульфатом натрия. Озон, нитриты, окись железа и другие соединения в кислом растворе выделяют йод из йодистого калия, поэтому пробы воды подкисляют буферным раствором с pH 4,5.

Йодометрический метод предназначен для анализа воды с содержанием активного хлора более 0,3 мг/дм 3 при объеме пробы 250 см 3 . Метод может быть рекомендован также для окрашенных и мутных вод.

2.2. Аппаратура, материалы и реактивы

ГОСТ 1770 , ГОСТ 29169 и ГОСТ 29251 , вместимостью: колбы 100 и 1000 см 3 ; пипетки без делений 5, 10, 25 см 3 ; бюретка с краном 25, 50 см 3 ; микробюретка 5 см 3 .

Колбы конические с пришлифованными пробками вместимостью 250 см 3 по ГОСТ 25336 .

Хлороформ (трихлорметан).

Кислота салициловая.

Кислота уксусная ледяная по ГОСТ 61 .

Натрий углекислый кристаллический по ГОСТ 84 .

Натрий серноватистокислый (тиосульфат натрия) по ГОСТ 27068 .

Все реактивы, используемые в анализе, должны быть квалификации «чистые для анализа» (ч. д. а.).

2.3. Подготовка к анализу

2.3.1. Приготовление 0,1 н раствора серноватистокислого натрия

25 г тиосульфата натрия Na 2 S 2 O 3 · 5H 2 O растворяют в свежепрокипяченной и охлажденной дистиллированной воде, добавляют 0,2 г углекислого натрия (Nа 2 СО 3) и доводят объем до 1 дм 3 .

2.3.2. Приготовление 0,01 н раствора серноватистокислого натрия

100 см 3 0,1 н. раствора тиосульфата натрия разбавляют свежепрокипяченной и охлажденной дистиллированной водой, добавляют 0,2 г углекислого натрия и доводят раствор до 1 дм 3 . Раствор применяют при содержании активного хлора в пробе более 1 мг/дм 3 .

2.3.3. Приготовление 0,005 н. раствора серноватистокислого натрия

50 см 3 0,1 н. раствора тиосульфата натрия разбавляют свежепрокипяченной и охлажденной дистиллированной водой, добавляют 0,2 г углекислого натрия и доводят раствор до 1 дм 3 . Раствор применяют при содержании активного хлора в пробе менее 1 мг/дм 3 .

2.3.4. Приготовление 0,01 н. раствора калия двухромовокислого

0,4904 г двухромовокислого калия К 2 Сr 2 О 7 , взвешенного с точностью до ± 0,0002 г, перекристаллизованного и высушенного при 180 °C до постоянной массы, растворяют в дистиллированной воде и доводят объем до 1 дм 3 .

2.3.5. Приготовление 0,5 %-ного раствора крахмала

0,5 г растворимого крахмала смешивают с небольшим объемом дистиллированной воды, приливают к 100 мл кипящей дистиллированной воды и кипятят несколько минут. После охлаждения консервируют, добавляя хлороформ или 0,1 г салициловой кислоты.

2.3.6. Приготовление буферного раствора pH 4,5

102 см 3 1 М уксусной кислоты (60 г ледяной уксусной кислоты в 1 дм 3 воды) и 98 см 3 1 М раствора уксуснокислого натрия (136,1 г уксуснокислого натрия СН 3 СОONа · 3Н 2 О в 1 дм 3 воды) наливают в мерную колбу вместимостью 1 дм 3 и доводят до метки дистиллированной водой (предварительно прокипяченной и охлажденной до 20 °C, свободной от двуокиси углерода).

2.3.7. Поправочный коэффициент 0,01 н. раствора серноватисто-кислого натрия определяют по 0,01 н раствору двухромовокислого калия следующим образом: в коническую колбу и с пришлифованной пробкой помещают 0,5 г йодистого калия, проверенного на отсутствие йода, растворяют в 2 см 3 дистиллированной воды, прибавляют 5 см 3 серной кислоты (1:4), затем 10 см 3 0,01 н. раствора двухромовокислого калия, добавляют 80 см 3 дистиллированной воды, закрывают колбу пробкой, перемешивают и ставят в темное место на 5 мин. Выделившийся йод титруют тиосульфатом натрия в присутствии 1 см 3 крахмала, прибавленного в конце титрования.

2.3.8. Поправочный коэффициент (K ) (0,01; 0,005 н. растворов серноватистокислого натрия) вычисляют по формуле

где v - количество серноватистокислого натрия, израсходованное на титрование, см 3 .

2.4. Проведение анализа

В коническую колбу насыпают 0,5 г йодистого калия, растворяют его в 1 - 2 см 3 дистиллированной воды, затем добавляют буферый раствор в количестве, приблизительно равном полуторной величине щелочности анализируемой воды, после чего добавляют 250 - 500 см 3 анализируемой воды. Выделившийся йод оттитровывают 0,005 н. раствором тиосульфата натрия из микробюретки до появления светло-желтой окраски, после чего прибавляют 1 см 3 0,5 %-ного раствора крахмала и раствор титруют до исчезновения синей окраски. При определении щелочности воду предварительно дехлорируют с помощью тиосульфата натрия в отдельной пробе.

При концентрации активного хлора менее 0,3 мг отбирают для титрования большие объемы воды.

2.5. Обработка результатов

где v - количество 0,005 н. раствора тиосульфата натрия, израсходованное на титрование, см 3 ;

K - поправочный коэффициент нормальности раствора тиосульфата натрия;

V - объем пробы воды, взятый для анализа, см 3 .

3. МЕТОД ОПРЕДЕЛЕНИЯ СВОБОДНОГО ОСТАТОЧНОГО ХЛОРА
ТИТРОВАНИЕМ МЕТИЛОВЫМ ОРАНЖЕВЫМ

3.1. Сущность метода

Метод основан на окислении свободным хлором метилового оранжевого, в отличие от хлораминов, окислительный потенциал которых недостаточен для разрушения метилового оранжевого.

3.2.

Посуда мерная лабораторная стеклянная по ГОСТ 1770 и ГОСТ 29251 вместимостью: колбы мерные 100 и 1000 см 3 ; микробюретка с краном 5 см 3 .

Чашки фарфоровые выпарительные по ГОСТ 9147 .

Все реактивы, применяемые для анализа, должны быть квалификации чистые для анализа (ч. д. а.).

3.3. Подготовка к анализу

3.3.1. Приготовление 0,005 %-ного раствора метилового оранжевого

50 мг метилового оранжевого растворяют в дистиллированной воде в мерной колбе и доводят дистиллированной водой до 1 дм 3 . 1 см 3 этого раствора соответствует 0,0217 мг свободного хлора.

3.3.2. Приготовление 5 н. раствора соляной кислоты

В мерную колбу наливают дистиллированную воду, затем медленно добавляют 400 см 3 соляной кислоты HCl и доводят дистиллированной водой до 1 дм 3 .

3.4. Проведение анализа

100 см 3 анализируемой воды помещают в фарфоровую чашку, добавляют 2 - 3 капли 5 н. раствора соляной кислоты и, помешивая, быстро титруют раствором метилового оранжевого до появления неисчезающей розовой окраски.

3.5. Обработка результатов

где v - количество 0,005 %-ного раствора метилового оранжевого, израсходованного на титрование, см 3 ;

0,0217 - титр раствора метилового оранжевого;

0,04 - эмпирический коэффициент;

V - объем воды, взятый для анализа, см 3 .

По разности между содержанием суммарного остаточного хлора, определенного методом титрования, метилоранжевым, находят содержание хлораминового хлора (Х 2):

Х 2 = X - Х 1 .

4. МЕТОД РАЗДЕЛЬНОГО ОПРЕДЕЛЕНИЯ СВОБОДНОГО ХЛОРА,
СВЯЗАННОГО МОНОХЛОРАМИНА И ДИХЛОРАМИНА ПО МЕТОДУ ПЕЙЛИНА

4.1. Сущность метода

Метод основан на способности разных видов хлора превращать в определенных условиях восстановленную бесцветную форму диэтилпарафенилендиамина в полуокисленную окрашенную форму, которую восстанавливают опять до бесцветной ионами двухвалентного железа. Используются серия титрований раствором соли Мора для определения свободного хлора, монохлорамина и дихлорамина в присутствии диэтилпарафенилендиамина, как индикатора. Свободный хлор образует окраску индикатора в отсутствии йодистого калия, монохлорамин дает окраску в присутствии очень маленьких количеств йодистого калия (2 - 3 мг), а дихлорамин образует окраску лишь в присутствии больших количеств KI (около 1 г) и при стоянии раствора в течение 2 мин. По количеству раствора соли Мора, израсходованному на титрование, определяют содержание того вида активного хлора, за счет которого образуется окрашенная форма индикатора.

4.2. Аппаратура, материалы, реактивы

Посуда мерная стеклянная лабораторная по ГОСТ 1770 и ГОСТ 29251 вместимостью: колбы мерные 100 и 1000 см 3 ; цилиндры мерные 5 и 100 см 3 ; микробюретки 1 и 2 см 3 .

Колбы конические вместимостью 250 мл; склянки из темного стекла вместимостью 100 - 200 см 3 .

Двойная сернокислая соль закиси железа и аммония (соль Мора) по ГОСТ 4208 .

Калий фосфорнокислый однозамещенный по ГОСТ 4198 , х. ч.

Натрий фосфорнокислый двузамещенный безводный по ГОСТ 11773 .

Трилон Б (комплексон III, двунатриевая соль этилендиаминтетрауксусной кислоты) по ГОСТ 10652 .

Диэтилпарафенилендиамин оксалат или сульфат.

Все реактивы, применяемые для анализа, должны быть квалификации «чистые для анализа» (ч. д. а.).

4.3. Подготовка к анализу

4.3.1. Приготовление стандартного раствора соли Мора

1,106 г соли Мора Fe(NH 4) 2 (SO 4) 2 · 6H 2 O растворяют в дистиллированной воде, подкисляют 1 см 3 25 %-ного раствора серной кислоты H 2 SO 4 и доводят свежепрокипяченной и охлажденной дистиллированной водой до 1 дм 3 . 1 см 3 раствора соответствует 0,1 мг активного хлора. Если определение проводится в 100 см 3 воды, то количество миллилитров соли Мора, израсходованное на титрование, соответствует мг/дм 3 хлора, или монохлорамина или дихлорамина. Раствор устойчив в течение месяца. Хранить его следует в темном месте.

4.3.2. Приготовление фосфатного буферного раствора

К 2,4 г фосфорнокислого натрия двузамещенного Na 2 HPO 4 и 4,6 г фосфорнокислого калия однозамещенного КН 2 РО 4 приливают 10 см 3 0,8 %-ного раствора трилона Б и доводят дистиллированной водой до 100 см 3 .

4.3.3. Приготовление индикатора диэтилпарафенилендиамин (оксалат или сульфат) 0,1 %-ного раствора

0,1 г диэтилпарафенилендиамина оксалата (или 0,15 г соли сульфата) растворяют в 100 см 3 дистиллированной воды с добавлением 2 см 3 10 %-ного раствора серной кислоты. Раствор индикатора следует хранить в склянке из темного стекла.

4.4. Проведение анализа

4.4.1. Определение содержания свободного хлора

В коническую колбу для титрования помещают 5 см 3 фосфатного буферного раствора, 5 см 3 раствора индикатора диэтилпарафенилендиамин оксалата или сульфата и приливают 100 см 3 анализируемой воды, раствор перемешивают. В присутствии свободного хлора раствор окрашивается в розовый цвет, его быстро титруют из микробюретки стандартным раствором соли Мора до исчезновения окраски, энергично перемешивая. Расход соли Мора, пошедший на титрование (А, см 3), соответствует содержанию свободного хлора, мг/дм 3 .

При наличии в анализируемой воде значительных количеств свободного хлора (более 4 мг/дм 3) для анализа следует брать менее 100 см 3 воды, так как большие количества активного хлора могут разрушить полностью индикатор.

4.4.2. Определение содержания монохлорамина

В колбу с оттитрованным раствором добавляют кристаллик (2 - 3 мг) йодистого калия, раствор перемешивают. В присутствии монохлорамина мгновенно появляется розовая окраска, которую тотчас же оттитровывают стандартным раствором соли Мора. Количество миллилитров соли Мора, пошедших на титрование (B , см 3), соответствует содержанию монохлорамина, мг/дм 3 .

4.4.3. Определение содержания дихлорамина

К оттитрованному раствору после определения содержания монохлорамина вновь добавляют около 1 г йодистого калия, перемешивают до растворения соли и оставляют раствор стоять в течение 2 мин. Появление розовой окраски свидетельствует о наличии в воде дихлорамина. Раствор титруют стандартным раствором соли Мора до исчезновения окраски. Расход соли Мора (С , см 3) соответствует содержанию дихлорамина, мг/дм 3 .

Хлорсоединения в водопроводной воде встречаются в нескольких модификациях, определить которые помогают специальные экспресс-тесты и йодокрахмальная бумага.

Резкий запах хлорки хорошо знаком каждому. Именно поэтому многие жители мегаполиса уверенно обходят стороной бытовые фильтры с повышенной защитой от хора, полагая, что проявление одного из главных канцерогенных элементов не останется незамеченным.

Согласно положениям открытого еще в 1869 году Периодического закона, ионы свойствами простого вещества не обладают. Это означает, что характерный запах далеко не всегда является неотъемлемым спутником употребляемого вместе с водопроводной водой хлора. Так, когда же следует «бить тревогу»? И как определить хлор в воде в домашних условиях?

Хлор многоликий

Хлор в водопроводной воде существует в нескольких формах. Самый явный представитель дезинфицирующих средств (активный хлор) удаляется еще на стадии хлорирования практически полностью. Практически – потому что даже отдельные молекулы соляной и хлорной кислоты позволяют предотвратить рост и развитие болезнетворных бактерий и микроскопических водорослей в трубопроводе. Также в водопроводной воде встречается хлор в свободном и связанном виде (Таблица 1).

Таблица 1. Виды хлорсоединений, содержащихся в водопроводной воде

Типы хлора

Виды хлорсоединения

Активный хлор

Молекулы хлора;

Молекулы соляной и хлорной кислот

Остаточный хлор

Хлорноватистая кислота;

Продукты взаимодействия хлорноватистой кислоты с водой

Связанный хлор

Хлорамины - продукты взаимодействия хлора и органических веществ

Общий хлор

Молекулы хлора и все хлорсоединения, содержащееся в воде

Как определить хлор в водопроводной воде «на глаз»?

Косметологи хорошо знают, что одна из главных причин преждевременного старения кожи – водопроводная вода. Хлорсоединения, которыми ежедневно приходиться умываться жителям больших городов, не только способствуют удалению бактерий с поверхности кожи, но и разрушают естественный жировой слой эпидермиса. Именно поэтому стойкое ощущение стянутости и сухости кожи – первый признак повышенного содержания хлора в водопроводной воде.

И с помощью йодокрахмальной бумаги

Йодокрахмальная бумага, широко используемая аквариумистами для определения концентрации хлора в воде, – один из самых простых «экспресс-тестов». Принцип действия подобных «хлор-индикаторов» прост: пропитанная раствором йодида калия и крахмала основа в присутствии окислителей (к которым относится и молекулярный хлор) синеет.

Чем опасен хлор?

Согласно СанПиН 2.1.4.1074-01 , предельно допустимая концентрация (ПДК) хлора в водопроводной питьевой воде не должна превышать 0,3 мг/л. В противном случае «в зоне риска» оказываются слизистые оболочки полости рта, глотки, пищевода. Кроме того, хлорсоединения провоцируют возникновение бронхиальной астмы и оказывают токсическое действие на организм взрослых и детей.

Присутствует в качестве обеззараживающего средства, особенно это касается тех, кто пользуется водопроводной водой. Если смотреть на хлор с точки зрения вреда здоровью, то конечно это не лучшая примесь для организма. Чтобы понимать, насколько опасен или безопасен хлор, следует рассмотреть его действие. Хлор в газовом состоянии способен растворяться в воде, а значит, незаметно растворится в дыхательной системе и на слизистых носа и глаз. Когда происходит растворение хлора, образуется соляная кислота, которая как раз и разъедает нежные оболочки. Таким образом, хлор опасен для легких, сердца и он способен затормаживать работу тканей организма, вызывает одышку вплоть до того, что человек может задыхаться.

Ощущение хлора организм воспринимает как настоящую боль. Еще одним продуктом, воздействующим на слизистые, является атомарный кислород. Это действующее вещество в хлорированной воде, он активный и негативно воздействует не только на слизистые, но и на белковую, жировую и углеводную систему. При попадании воды на кожный покров она сильно сушится, и жировой слой достаточно сильно повреждается. Чрезмерной опасности это состояние не представляет, но конечно приводит к неприятным ощущениям.

Слизистые глаза страдают настолько, что чувствуется постоянное неприятное ощущение в глазах, часто это вызвано не каким-то заболеванием, а попаданием паров хлора. Влияние атомарного кислорода на глаза нельзя спрогнозировать, состояние может ухудшиться в любую минуту. Когда вы набираете ванну с сильной хлорированной водой, то происходит , а содержание хлора увеличивается и становится интенсивным концентратом, все это вдыхается и оседает внутри организма. Легкие подвержены раковым заболеваниям, происходит сбой работы внутренних органов. Хлорированная вода при питье оказывает не менее пагубное действие.

В какой форме может быть представлен хлор?

Активный хлор — это когда в воде происходит насыщение хлором, смешиваются молекулы хлора с соляной и хлорной кислотой и другими продуктами растворения. При хлорировании активный хлор полностью удаляется, а если и остается что – то, то это остаточное явление. Если представить что хлор не удаляется, то по пути к выходу из трубы возникает отряд болезнетворных бактерий, а труба может зарастать водорослями.

Остаточными компонентами в воде являются:

— остаточный хлор (свободный хлор, хлорноватистая кислота, продукты растворения и молекулы);

— связанный хлор (образуется при взаимодействии хлора и органических веществ);

— общий хлор (показатель совокупности всего хлора в воде);

— активный хлор (общий хлор за исключением компонентов связанного хлора).

Активный хлор

Активный хлор способен выделяться, когда происходит взаимодействие вещества и соляной кислоты. При окислительно-восстановительной реакции выделяется хлор, его степени окисления положительные и отмечены как +1, 3 или 5. Активный хлор вещества равен массе хлора в молекулярном виде. Очень трудно без существенных потерь произвести окисление HCl до Cl2. На самом деле активный хлор принимается как масса основного хлора, которая выделится из HI.

Йодоводородная кислота легко окислится до мельчайших частиц, в итоге получается йод, количество которого очень просто определить. Если смотреть на практические работы, то вещество растворяется и добавляется раствор KI, после образовавшийся йод титруют тиосульфатом определенной концентрации.

Использование хлорной воды и хлорноватистой кислоты

История использования таких веществ, которые содержат , уходит корнями на несколько сот лет назад. Хлор был открыт известным химиком в 1774 году, под воздействием хлора в воде происходит отбеливание желтых пятен на белы тканях хлопка и льна. Клод Луи Бертолле впервые отбелил бумагу и ткани, он открыл свою фабрику, на которую принял одного работника и своего сына для отбеливания холста.

При реакции в воде с хлором образуется хлорноватистая кислота по формуле HClO. Такой активный хлор получился впервые. Кислота в растворе не устойчивая, ее содержание не превышает и 30% в концентрированном виде. Если среда кислая, а температура поддерживается комнатная, то будет происходить замедленная реакция. Если в растворе есть соляная кислота, то образуется состояние равновесия, которое сдвигается вправо. Диспропорционирование и образование ионов хлората получается в слабых средах щелочи, реакция усиливается при высоких температурах. В реальности в воде находится очень мало хлорноватистой кислоты и активного хлора.

Уже в 19 веке исследования показали, что свойства хлорной воды – это в первую очередь отбеливание и дезинфекция, причем такого отбеливания не добиться ни с одним другим веществом. В таком действии хлор начали использовать в Венском госпитале в 1846 году, когда ввели практику для врачей ополаскивать руки после работы с пациентами. После того, когда на конгрессе в Вене признали, что с водой распространяются многие эпидемиологические заболевания типа холеры, стали искать качественное водных ресурсов. С появлением водопроводных сетей хлору сразу нашли применение, он стал использоваться как дезинфицирующее средство. Хлор растворяется в водной среде и убивает живые микроорганизмы. Активно используются соединения с активным хлором и для дезинфекции бассейнов, особенно в местах большого скопления народу, например в аквапарках. В природных водных источниках содержание хлора запрещено.

Количество остаточного активного хлора в воде – методы определения

Сначала отбираются пробы в соответствии с утвержденным ГОСТом. Объемы не должны быть меньше чем 500 см. куб. Пробы для работы проводятся сразу же после забора воды, промедление и консервация запрещены.

Хлорноватистая кислота в свободном виде во много раз активнее, так как HClO способен мембранно проникать вовнутрь бактерии. В данном случае подтверждено, что хлорирование воды это безопасный способ и дешевый. Болезнетворные бактерии в водной среде не всегда, получается, обнаруживать без длительного и сложного лабораторного исследования, однако кишечную палочку легко распознать и под микроскопом. Если большее количество палочек после хлорирования исчезает, то можно смело говорить об успешности проведенного мероприятия. На кубический метр воды по нормативам добавляется не более 2 грамм хлора. В весенний период добавляется чуть больше хлора, так как увеличивается число загрязнителей. Хлорированную воду пить не очень приятно, однако водопроводная вода не представляет опасности для человека. Чтобы хлорный запах улетучился, отставьте воду в открытой емкости на несколько часов или прокипятите.

Хлорная известь

Самой распространенной стала хлорная известь или белильная как ее еще называют. Получается она при хлорировании Ca(OH)2 в сухом виде. Продукт, который получается на исходе, содержит примерно до 30-37 % активного хлора. Разложение происходит очень медленно, поэтому запах хлора присутствует постоянно. Если известь хранить, следует знать, что за год она теряет активный хлор и с каждым годом теряет свои свойства все больше и больше. Ускорить разложение поможет влажность и высокая температура. Известь на открытом солнце теряет до 5% активного хлора за каждые сутки. Хлорная известь в лабораториях применяется для получения хлора, а также она используется для отбеливания и очистки нефтяных продуктов.

Шкала для определения активного хлора

Допустим, при определении активного хлора в белилах происходят одни и те же ошибки. Погрешности не всегда высчитываются и во многих случаях неизвестны. Велика вероятность улетучивания йода, калия йодид тоже здесь содержится, но при окислении хлор тоже может улетучиваться. Именно поэтому аналитическая схема при таких погрешностях не определяется.

В России хлорная известь производится на заводе Ушакова недалеко от города Елабуга. Активный хлор не устойчив при хранении, но это не мешает производить его в огромных количествах, в частности для развивающихся стран. В США наблюдалось самое большое производство хлора, но с появлением более эффективных средств, которые содержат активный хлор, производство снизилось.

Остаточный активный хлор в питьевой воде

О качественном обеззараживании свидетельствует свидетельство по ГОСТу, где уточняются показатели наличия бактерий. Остаточный активный хлор не обязательно проверяется исследованиями, по экспериментальным данным и по ведению наблюдений можно судит по соотношению хлора к хлорпоглощаемости. Показатель говорит о наличии эпидемической безопасности водообеспечения. Химическое окисление самый распространенный способ обеззараживания. В Англии в 1896 году оно спасло многих людей от болезнетворного брюшного тифа. В воде происходит процесс гидролиза, соответствующий формуле Cl2 + H2O = HCl + HClO. Хлорноватистая кислота HClO = HCl + O это работа кислорода в щелочной или кислой среде, вследствие чего образуются окислительные свойства. На станции происходит два этапа хлорирования, сначала вода обрабатывается после попадания из реки, а только потом проходит завершающую стадию очистки.

К соединениям с активным хлором относится и хлорит, который тоже обладает отбеливающим действием, в кислой среде происходит ее распад. Диоксид хлора используют для отбеливающих процессов с растительным и животным жиром и при дезодорации воды. В ClO2 в чистом виде активного хлора содержится более 26,28%.

Анализ отбора проб: проводится отбор проб и готовится для работы раствор метилового оранжевого в соотношении 0.005%. В колбу добавляется 50 мг реагента, который растворяется до получения одного литра. В миллилитре содержится до 0.0217 мг активного хлора. Этим раствором наполняется микробюретка. В чашку из фарфора наливают воду для анализа, достаточно 100 мл, туда вливают 3 капельки 5 М HCl и все смешивают, титруют меловым оранжевым до тех пор, пока не исчезнет розовый цвет. Расчеты проводят по формуле X2 = (X — X1). Для определения активного хлора существуют специальные тест-системы. Тест помогает определить активный хлор быстрее.

Исследователи и ученые определяют хлорирование как лучшее изобретение, которое только можно было придумать для гигиенических мероприятий 20 века. Активный хлор играет огромную роль и приносит пользу для всего живого. В нашей стране производство было налажено в Нижнем Новгороде, Ростове-на-Дону и конечно в Ленинградской области. С одной стороны по типу своему хлор относится к ядам, который во времена мировых войн использовался как химическое оружие, теперь к этому вопросу подходят ответственно, что очень заметно отсутствием хлорки в свободной продаже по розничным ценам.

Остаточный хлор – хлор, оставшийся в воде после введенной дозы и после окисления находящихся в воде веществ. Он может быть свободным и связанным , т.е. представлен различными формами хлора. Именно остаточный хлор является – показателем достаточности принятой дозы хлора. Согласно требованиям СанПиН 2.1.4.1074-01 концентрация остаточного хлора в воде перед поступлением ее в сеть должна находиться в пределах 0,3 – 0,5 мг/л.

28. Определить хлорпотребность воды методом хлорирования воды в трёх стаканах.

Хлорпотребностъ воды - это количество активного хлора (в миллиграммах), необходимое для эффективного обеззараживания 1 л воды и обеспечивающее содержание остаточного свободного хлора в пределах 0,3-0,5 мг/л после 30-минутного контакта с водой, или количество остаточного связанного хлора в пределах 0,8-1,2 мг после 60-минутного контакта. Для определения необходимой дозы хлора при хлорировании нормальными дозами проводится пробное хлорирование воды. В полевых условиях пробное хлорирование проводят в трех стаканах, в каждый из которых наливают по 200 мл исследуемой воды, вкладывают стеклянные палочки и с помощью выверенной пипетки (25 капель равны 1 мл) добавляют 1% раствор хлорной извести: в первый – 1 каплю, во второй – 2 капли, в третий – 3 капли. Воду в стаканах хорошо перемешивают и через 30 мин определяют наличие в ней остаточного хлора. Для этого в каждый стакан прибавляют 2 мл 5% раствора йодида калия, 2 мл хлористоводородной кислоты (1:5), 1 мл 1% раствора крахмала и тщательно перемешивают. При наличии остаточного хлора вода окрашивается в синий цвет, тем более интенсивный, чем больше в ней содержится остаточного хлора. Интенсивность окраски соответствует следующим концентрациям остаточного хлора в воде: слегка синяя (0,1 мг/л), светло-синяя (0,2 мг/л), синяя (0,3 мг/л), густо-синяя (0,5 мг/л); сине-черная (не видно дна пробирки) - 1,0 мг/ л и более.

Воду в стаканах, где появилось синее окрашивание, титруют по каплям 0,7% раствором тиосульфата натрия до обесцвечивания, перемешивая ее после добавления каждой капли.

Для расчета дозы выбирают тот стакан, где произошло обесцвечивание от 2 капель тиосульфата натрия, так как содержание остаточного хлора в этом стакане составляет 0,4 мг/л (1 капля 0,7% раствора тиосульфата натрия связывает 0,04 мг хлора, что соответствует при пересчете на 1л 0,04х5=0,2 мг/л). Если обесцвечивание произошло от 1 капли, содержание остаточного хлора недостаточно – 0,2 мг/л; при обесцвечивании от 3 капель содержание остаточного хлора избыточно – 0, 6 мг/л.

В зависимости от результатов пробного хлорирования рассчитывают количество хлорной извести, необходимое для хлорирования 1л воды.



29. Продемонстрировать методику отбора проб воздуха с целью изучения бактериальной загрязнённости воздуха.

Существуют два основных способа отбора проб воздуха для исследования: 1) седиментационный - основан на механическом оседании микроорганизмов; 2) аспирационный - основан на активном просасывании воздуха (этот метод дает возможность определить не только качественное, но и количественное содержание бактерий).

Седиментационный метод

Чашки Петри с питательной средой (МПА) устанавливают в открытом виде горизонтально, на разном уровне от пола. Метод основан на механическом оседании бактерий на поверхность агара в чашках Петри. Чашки со средой экспонируют от 10 до 20 мин, в зависимости от предполагаемого загрязнения воздуха. Для выявления патогенной флоры используют элективные среды. Экспозиция в этих случаях удлиняется до 2-3 ч. После экспозиции чашки закрывают, доставляют в лабораторию и ставят в термостат на 24 ч при температуре 37° С. На следующий день изучают выросшие колонии. Метод этот используют в основном в закрытых помещениях.

(Аспирационный метод)

Бактериоуловитель Речменского. Перед работой прибор заполняют стерильной содой. Действие прибора основано на протягивании через него воздуха с помощью аспиратора. При этом происходит распыление находящейся в приборе жидкости. После окончания просасывания жидкость, через которую был пропущен воздух, засевают по 0,1-0,2 мл на МПА в чашках Петри. При необходимости использовать элективные среды посевную дозу увеличивают (0,3-0,5 мл). Полученная в приемнике жидкость может быть использована для заражения животных (например, при исследованиях, проводимых для выявления вирусов, риккетсий и т. д.).



Прибор Дьяконова также основан на улавливании бактерий в жидкости, через которую пропущен воздух.

Прибор ПАБ-1 предназначен для бактериологического исследования больших объемов воздуха в течение короткого промежутка времени. Получение проб воздуха производят со скоростью 125-150 л/мин. Принцип работы прибора основан на улавливании микроорганизмов на электрод противоположного заряда. Большая скорость отбора проб воздуха в этом приборе и возможность посева его на различные питательные среды имеет значение для обнаружения патогенных и условно-патогенных бактерий (например, синегнойной палочки в хирургических отделениях и др.).

Аппарат Кротова. Действие основано на принципе удара струи воздуха на среду в чашках Петри. Аппарат состоит из трех частей: узла для отбора проб воздуха, ротаметра, электрической части питающего механизма.

Исследуемый воздух при помощи центробежного вентилятора, вращающегося со скоростью 4000-5000 об/мин, засасывается в щель прибора и ударяется о поверхность открытой чашки Петри со средой. Содержащиеся в воздухе микроорганизмы оседают на питательный агар. Для равномерного распределения микроорганизмов по всей поверхности столик с находящейся на нем чашкой вращается. Из прибора воздух выводится через воздухопроводную трубку, которая соединена с ротаметром, показывающим скорость протягивания воздуха через прибор.

Недостатком прибора Кротова является то, что он нуждается в электроэнергии, поэтому не во всех условиях может быть использован.

Первый день исследования

Отобранные пробы помещают в термостат при 37° С на 18-24 ч.

Второй день исследования

Чашку вынимают из термостата и производят подсчет колоний. Бактериальное загрязнение воздуха выражается общим числом микробов в 1 м3 его.

Расчет. Например, за 10 мин пропущено 125 л воздуха, на поверхности выросло 100 колоний.

Для определения золотистого стафилококка забор производят на желточно-солевой агар. Чашки с посевами инкубируют в термостате при 37° С в течение 24 ч и 24 ч выдерживают при комнатной температуре для выявления пигмента. Колонии, подозрительные на S. aureus, подлежат дальнейшей идентификации (см. главу 14).

В детских учреждениях воздух проверяют на наличие сальмонелл. Для этого воздух засевают в чашку со средой висмут-сульфитный агар.

Выявление патогенных бактерий и вирусов в воздухе закрытых помещений проводят по эпидемиологическим показаниям. Для выявления возбудителей туберкулеза пользуются прибором ПОВ, в качестве улавливающей используется среда Школьниковой.

30. Оценить условия труда и определить класс условий труда по степени вредности и опасности труда врача-стоматолога, если содержание в воздухе рабочей зоны металлов превышает ПДК в 2,5 раза; концентрация аэрозолей фиброгенного действия выше ПДК в … раз и т.д.

Первая степень 3-го класса (малый, умеренный риск) - значительное превышение параметров предельно допустимых концентраций (ПДК) (в 1,1-3 раза). Создает условия
для развития заболеваний, могут возникать обратимые функциональные изменения.
3.2. Вторая степень 3-го класса (средний, существенный риск) - превышение параметров ПДК в 3,1-5 раз. Пред- располагает к развитию стойких функциональных нарушений, увеличению временной нетрудоспособности, повышению общей заболеваемости, появлению начальных явлений профессиональной патологии.
3.3. Третья степень 3-го класса (высокий риск) - превышение параметров ПДК в 5,1 -10 раз. Приводит к развитию профессиональной патологии в легкой форме, росту хронической общесоматической патологии (неспецифическое влияние вредных факторов на формирование болезненности у предрасположенных лиц, при наличии скрытых анатомо-физиологических дефектов) и временной нетрудоспособности.
3.4. Четвертая степень 3-го класса (очень высокий риск) - превышение параметров ПДК более чем в 10 раз. Приводит к выраженной форме профессиональных заболеваний, значительному росту хронической непрофессиональной патологии.
4-й класс: опасные (экстремальные) условия труда (опасный, сверхвысокий риск) - чаще встречаются в аварийных ситуациях, способствуют развитию острых профессиональных заболеваний.

31. Определить класс условий труда по показателям тяжести и напряжённости трудового процесса врача-стоматолога, если стереотипные рабочие движения совершаются до … раз за смену и т.д.

при локальной нагрузке. 1 класс – до 20 000, 2 класс – до 40 000, класс 3.1 – до 60 000, класс 3.2 – больше 60 000

при региональной нагрузке. 1 класс – до 10 000, 2 класс – до 20 000, 3.1 класс – до 30 000, 3.2 класс – больше 30 000