Свойства легочной ткани. Растяжимость легких (легочной ткани)


4. Изменение объема легких во время вдоха и выдоха. Функция внутриплеврального давления. Плевральное пространство. Пневмоторакс.
5. Фазы дыхания. Объем легкого (легких). Частота дыхания. Глубина дыхания. Легочные объемы воздуха. Дыхательный объем. Резервный, остаточный объем. Емкость легких.

7. Альвеолы. Сурфактант. Поверхностное натяжение слоя жидкости в альвеолах. Закон Лапласа.
8. Сопротивление дыхательных путей. Сопротивление легких. Воздушный поток. Ламинарный поток. Турбулентный поток.
9. Зависимость «поток-объем» в легких. Давление в дыхательных путях при выдохе.
10. Работа дыхательных мышц в течение дыхательного цикла. Работа дыхательных мышц при глубоком дыхании.

При вдохе увеличению объема грудной полости препятствуют эластическая тяга легких , движение ригидной грудной клетки, органы брюшной полости и, наконец, сопротивление дыхательных путей движению воздуха в направлении альвеол. Первый фактор, а именно эластическая тяга легких, в наибольшей степени препятствует увеличению объема легких во время инспирации.

Растяжимость легких (легочной ткани).

В нормальных физиологических условиях глубина вдоха может быть ограничена только физическими свойствами легочной ткани и грудной клетки. Сопротивление раздуванию легких, которое возникает при поступлении в них воздуха, обусловлено растяжимостью их соединительной ткани и сопротивлением дыхательных путей потоку воздуха. Мерой эластических свойств легочной ткани является растяжимость легких, которая характеризует степень увеличения объема легких в зависимости от степени уменьшения внутриплеврального давления:

где С - растяжимость (англ. - compliance), dV - изменение легочного объема (мл), а dР - изменение внутриплеврального давления (см водн. ст.). Растяжимость характеризует количественно степень изменения объема легких у человека в зависимости от степени изменения при вдохе внутриплеврального давления. Грудная клетка также обладает эластическими свойствами, поэтому растяжимость тканей легких и тканей грудной клетки обусловливает эластические свойства всего аппарата внешнего дыхания человека.

Рис. 10.6. Кривая растяжимости (комплайенса) легких человека . Кривые справа показывают изменение дыхательного объема легких и общей емкости легких, возникающие при изменениях внутриплеврального давления без учета влияния тканей грудной клетки. Легкие полностью не спадаются, если внутриплевральное давление становится равным нулю (точка 1). Кривые комплайенса совпадают в точке 2 при большом объеме в легких, когда легочная ткань достигает предела эластического растяжения. Вд - внутриплевральное давление. Слева - схема регистрации изменений внугриплеврального давления и дыхательного объема легких.

На рис. 10.6 показано изменение легочного объема , которое возникает при изменениях внутриплеврального давления. Восходящая и нисходящая линии характеризуют раздувание и спадение легких соответственно. Фрагмент рис. 10.6 слева демонстрирует, каким образом могут быть измерены значения легочного объема и внутриплеврального давления, вынесенные на график. Объем легких не уменьшается до нуля, когда величина внутриплеврального давления становится равной нулю. Раздувание легких с уровня их минимального объема требует усилия для того, чтобы раскрыть спавшиеся стенки альвеол в силу значительного поверхностного натяжения жидкости, покрывающей как их поверхность, так и поверхность дыхательных путей. Поэтому кривые, полученные при раздувании и спадении легких, не совпадают друг с другом, и их нелинейное изменение называется гистерезисом .

Легкие при спокойном дыхании никогда не спадаются полностью, поэтому кривая спадения описывает изменения легочного объема при изменении величины внутриплеврального давления в диапазоне от -2 см. водн. ст. до -10 см водн. ст. В норме легкие человека имеют высокую растяжимость (200 мл/см водн. ст.). Эластичность легочной ткани обусловлена свойствами соединительных волокон легочной ткани. С возрастом эти волокна, как правило, снижают тонус, что сопровождается увеличением растяжимости и уменьшением эластической тяги легких. При повреждении легочной ткани или при избыточном развитии в ней соединительной ткани (фиброз) легкие становятся плохо растяжимыми, величина их растяжимости снижается, что затрудняет выполнение вдоха и требует значительно большего усилия дыхательных мышц, чем в норме.

Легочная растяжимость обусловлена не только эластичностью легочной ткани, но и поверхностным натяжением слоя жидкости, покрывающей альвеолы. По сравнению с эластической тягой легких, влияние на величину легочной растяжимости во время дыхания фактора поверхностного натяжения слоя жидкости, покрывающей альвеолы, имеет более сложную природу.

Коллагеновые и эластичные волокна стенок альвеол осуществляют эластичный сопротивление, направленный на уменьшение объема альвеол. Кроме того, в области раздела воздуха с жидкостью возникают силы, которые также направлены на уменьшение поверхности - это силы поверхностного натяжения. К тому же, чем меньше диаметр альвеол, тем больше поверхностное натяжение. Если бы эти силы действовали без помех, то благодаря сочетанию между отдельными альвеолами воздух малых альвеол переходило бы в большие, а маленькие альвеолы должны были бы исчезнуть.
Однако в организме существует биологическое приспособление, противодействует этим силам. Цесурфактанты (поверхностно-активные вещества - ПАВ), содержащихся в поверхностном слое жидкости. Они производятся пневмоцитами II типа. Чем меньше диаметр альвеол и большая сила поверхностного натяжения, то активны сурфактанты. В присутствии ПАВ поверхностное натяжение снижается почти в 10 раз. Если смыть водой жидкость, содержащая сурфактанты и покрывает тонким слоем эпителий альвеол, то альвеолы спадуться.
Функции сурфактантов.
1. Сохранение размеров и формы альвеол. Главным элементом ЮАР является дипальмітилфосфатидилхолін (ДПФХ), который синтезируется из жирных кислот. Эти кислоты приносит в легких кровь. Считают, что поверхностное натяжение снижается благодаря особенностям молекулы ДПФХ. Она с одного края гидрофобная, а с другой - гидрофильная, благодаря этому молекула растекается по поверхности воды тонким слоем. За счет способности отталкивания сурфактанты противодействуют притяжения молекул воды, которые обеспечивают поверхностное натяжение. Рост активности ПАВ при уменьшении площади поверхности альвеол обеспечивается тесным прилеганием
молекул ДПФХ друг к другу, что и увеличивает силу взаимного отталкивания.
2. Гистерезис легких. ЮАР синтезируются пневмоцитами постоянно и сначала поступают в так называемую гипофазу. Это своеобразное депо сурфактантов находится под поверхностным монослоем. Разрушение участков верхнего активного слоя, состарились, сопровождается поступлением готовых молекул сурфактантов с гипофазу. ЮАР поступают монослоя также при растяжении легких в фазу вдоха. Растущая во время выдоха концентрация их способствует начальной задержке спадиння альвеол. В этот момент, несмотря на уменьшение силы внутреннего растяжение альвеол, диаметр их остается сравнительно большим, чем при вдохе. То есть наблюдается несоответствие объема внешнего давления. Это несоответствие изображена на графике в виде петли гистерезиса (от греч. Hysteresis - отставание, запаздывание. При нормальной глубине дыхания объем альвеол изменяется мало (до 3-5%). Благодаря этому гистерезис не имеет существенного значения. В отличие от этого при глубоком дыхании гистерезис начинает играть важную роль в облегчении дыхательных движений. Кроме того, задержка спадиння альвеол в свою очередь способствует длительному хранению воздуха в альвеолах, что улучшает условия газообмена.
3. ЮАР принимают участие в периодическом исключении части альвеол из процесса дыхания. Хотя синтез сурфактантов в пневмоцитах происходит постоянно, «выстреливаются» они в окружающую гипофазу периодически. Благодаря этому те ЮАР, состарились, исчезая с поверхности некоторых альвеол или и отдельных участков, могут на некоторое время обнажить поверхность. Увеличение поверхностного натяжения приводит к уменьшению входа альвеол.
4. Очистка альвеол. На поверхности альвеол ЮАР постепенно перемещаются в направлении градиента поверхностного напряжения. На месте секреции сурфактантов поверхностное натяжение маленький, а в части, прилегающей к бронхиол, где нет секреторных клеток, поверхностное натяжение выше. Поэтому сюда, к выходу из альвеол, и движутся сурфактанты. С поверхности альвеол вместе с ЮАР могут выводиться пылевые частицы, разрушенный эпителий. В запыленной атмосфере эти процессы усиливаются, следовательно активизируется и синтез сурфактантов. Из-за высокой активности этих процессов может постепенно истощаться биосинтез ЮАР. Это является одной из причин развития ателектаза - исчезновение части мелких альвеол.
5. Бытует мнение, что Гиари способствуют сохранению сухости поверхности альвеол и примерно на 50% снижают испарение воды через легкие. Не исключено и участие их в переносе газов через легочную мембрану. Но, безусловно, важнейшей функцией ЮАР является сохранение стабильности альвеол.
Кроме сурфактантов, в поддержании структуры легких важную роль играет структурная взаимозависимость альвеол. Сращение их друг с другом способствует взаимному растяжению соседних альвеол.
Сурфактанты начинают синтезироваться в конце внутриутробного периода. их присутствие облегчает осуществление первого вдоха. Во время преждевременных родов легкие ребенка могут быть не подготовлены для дыхания, что может вызвать участков ателектаза.
Работа дыхательных мышц, выполняющих вдох, направлена, в первую очередь, на преодоление всех видов сопротивления. Кроме этого, дыхательные мышцы преодолевают гравитацию, которая препятствовала подъему грудной клетки и плечевого пояса при вдохе. Особо следует подчеркнуть важность преодоления аэродинамического сопротивления. Это сопротивление возрастает при сужении воздухоносных путей, а также при увеличении скорости вентиляции легких. Так, отек слизистой оболочки, возникающее даже при кратковременном вдохе дыма сигарет, на 20-30 мин увеличивает сопротивление движению воздуха в 2-3 раза. Еще больше возрастает сопротивление движению воздуха при сужении бронхов при бронхиальной астме. Вследствие этого у больного для выполнения даже спокойного дыхания должны подключаться вспомогательные мышцы. Увеличение скорости движения воздуха при форсированном дыхании приводит к значительному росту турбулентных завихрений и повышения сопротивления без изменения просвета дыхательных путей. Это настолько затрудняет работу дыхательных мышц, что для снижения аэродинамического сопротивления при форсированном дыхании человек невольно переходит на дыхание через рот. Установлено, что дыхание через рот на 30-40% снижает аэродинамическое сопротивление.

В нормальных физиологических условиях глубина вдоха может быть ограничена только физическими свойствами легочной ткани и грудной клетки. Сопротивление раздуванию легких, которое возникает при поступлении в них воздуха, обусловлено растяжимостью их соединительной ткани и сопротивлением дыхательных путей потоку воздуха. Мерой эластических свойств легочной ткани является растяжимость легких, которая характеризует степень увеличения объема легких в зависимости от степени уменьшения внутриплеврального давления:

где С - растяжимость (англ. - compliance), dV - изменение легочного объема (мл), а dР - изменение внутриплеврального давления (см водн. ст.). Растяжимость характеризует количественно степень изменения объема легких у человека в зависимости от степени изменения при вдохе внутриплеврального давления. Грудная клетка также обладает эластическими свойствами, поэтому растяжимость тканей легких и тканей грудной клетки обусловливает эластические свойства всего аппарата внешнего дыхания человека.

Рис. 10.6. Кривая растяжимости (комплайенса) легких . Кривые справа показывают изменение дыхательного объема легких и общей емкости легких, возникающие при изменениях внутриплеврального давления без учета влияния тканей грудной клетки. Легкие полностью не спадаются, если внутриплевральное давление становится равным нулю (точка 1). Кривые комплайенса совпадают в точке 2 при большом объеме в легких, когда легочная ткань достигает предела эластического растяжения. Вд - внутриплевральное давление. Слева - схема регистрации изменений внугриплеврального давления и дыхательного объема легких.

На рис. 10.6 показано изменение легочного объема , которое возникает при изменениях внутриплеврального давления. Восходящая и нисходящая линии характеризуют раздувание и спадение легких соответственно. Фрагмент рис. 10.6 слева демонстрирует, каким образом могут быть измерены значения легочного объема и внутриплеврального давления, вынесенные на график. Объем легких не уменьшается до нуля, когда величина внутриплеврального давления становится равной нулю. Раздувание легких с уровня их минимального объема требует усилия для того, чтобы раскрыть спавшиеся стенки альвеол в силу значительного поверхностного натяжения жидкости, покрывающей как их поверхность, так и поверхность дыхательных путей. Поэтому кривые, полученные при раздувании и спадении легких, не совпадают друг с другом, и их нелинейное изменение называется гистерезисом .

Легкие при спокойном дыхании никогда не спадаются полностью, поэтому кривая спадения описывает изменения легочного объема при изменении величины внутриплеврального давления в диапазоне от -2 см. водн. ст. до -10 см водн. ст. В норме легкие человека имеют высокую растяжимость (200 мл/см водн. ст.). Эластичность легочной ткани обусловлена свойствами соединительных волокон легочной ткани. С возрастом эти волокна, как правило, снижают тонус, что сопровождается увеличением растяжимости и уменьшением эластической тяги легких. При повреждении легочной ткани или при избыточном развитии в ней соединительной ткани (фиброз) легкие становятся плохо растяжимыми, величина их растяжимости снижается, что затрудняет выполнение вдоха и требует значительно большего усилия дыхательных мышц, чем в норме.


Легочная растяжимость обусловлена не только эластичностью легочной ткани, но и поверхностным натяжением слоя жидкости, покрывающей альвеолы. По сравнению с эластической тягой легких, влияние на величину легочной растяжимости во время дыхания фактора поверхностного натяжения слоя жидкости, покрывающей альвеолы, имеет более сложную природу.

Тонкий слой жидкости покрывает поверхность альвеол легких . Переходная граница между воздушной средой и жидкостью имеет поверхностное натяжение , которое формируется межмолекулярными силами и которое будет уменьшать площадь покрываемой молекулами поверхности. Однако миллионы альвеол легких, покрытых мономолекулярным слоем жидкости, не спадаются, поскольку эта жидкость содержит субстанции, которые в целом называются сурфактантом (поверхностно активный агент). Поверхностно активные агенты обладают свойством снижать поверхностное натяжение слоя жидкости в альвеолах легких на границе фаз воздух-жидкость, благодаря которому легкие становятся легко растяжимыми.

Рис. 10.7. Приложение закона Лапласа к изменению поверхностного натяжения слоя жидкости, покрывающего поверхность альвеол . Изменение радиуса альвеол изменяет в прямой зависимости величину поверхностного натяжения в альвеолах (Т). Давление (Р) внутри альвеол также варьирует при изменении их радиуса: уменьшается при вдохе и увеличивается при выдохе.

Альвеолярный эпителий состоит из плотно контактирующих между собой альвеолоцитов (пневмоцитов ) I и II типа и покрыт мономолекулярным слоем сурфактанта , состоящего из фосфолипидов, белков и полисахаридов (глицерофосфолипиды 80 %, глицерол 10 %, белки 10 %). Синтез сурфактанта осуществляется альвеолоцитами II типа из компонентов плазмы крови. Основным компонентом сурфактанта является дипальмитоилфосфатидилхолин (более 50 % фосфолипидов сурфактанта), который адсорбируется на границе фаз жидкость-воздух с помощью белков сурфактанта SP-B и SP-C. Эти белки и глицерофосфолипиды уменьшают поверхностное натяжение слоя жидкости в миллионах альвеол и обеспечивают легочной ткани свойство высокой растяжимости. Поверхностное натяжение слоя жидкости, покрывающей альвеолы, изменяется в прямой зависимости от их радиуса (рис. 10.7). В легких сурфактант изменяет степень поверхностного натяжения поверхностного слоя жидкости в альвеолах при изменении их площади. Это обусловлено тем, что во время дыхательных движений количество сурфактанта в альвеолах остается постоянным. Поэтому при растяжении альвеол во время вдоха слой сурфактанта становится тоньше, что вызывает снижение его действия на поверхностное натяжение в альвеолах. При уменьшении объема альвеол во время выдоха молекулы сурфактанта начинают более плотно прилегать друг к другу и, увеличивая поверхностное давление, снижают поверхностное натяжение на границе фаз воздух-жидкость. Это препятствует спадению (коллапсу) альвеол во время экспирации, независимо от ее глубины. Сурфактант легких влияет на поверхностное натяжение слоя жидкости в альвеолах в зависимости не только от ее площади, но и от направления, в котором происходит изменение площади поверхностного слоя жидкости в альвеолах. Этот эффект сурфактанта называется гистерезисом (рис. 10.8).

Физиологический смысл эффекта заключается в следующем. При вдохе по мере увеличения объема легких под влиянием сурфактанта увеличивается натяжение поверхностного слоя жидкости в альвеолах, что препятствует растяжению легочной ткани и ограничивает глубину инспирации. Напротив, при выдохе поверхностное натяжение жидкости в альвеолах под влиянием сурфактанта уменьшается, но не исчезает полностью. Поэтому даже при самом глубоком выдохе в легких не происходит спадения, т. е. коллапса альвеол.

Рис. 10.8. Эффект поверхностного натяжения слоя жидкости на изменение объема легких в зависимости от внутриплеврального давления при раздувании легких солевым раствором и воздухом. Когда объем легких увеличивается за счет их наполнения солевым раствором, то в них отсутствуют поверхностное натяжение и феномен гистерезиса. Относительно интактных легких - площадь петли гистерезиса свидетельствует об увеличении поверхностного натяжения слоя жидкости в альвеолах при вдохе и снижении этой величины при выдохе.

В составе сурфактанта имеются белки типа SP-A и SP-D, благодаря которым сурфактант участвуют в местных иммунных реакциях, опосредуя фагоцитоз , поскольку на мембранах альвеолоцитов II типа и макрофагов имеются рецепторы SP-A. Бактериостатическая активность сурфактанта проявляется в том, что это вещество опсонизирует бактерии, которые затем легче фагоцитируются альвеолярными макрофагами. Кроме того, сурфактант активирует макрофаги и влияет на скорость их миграции в альвеолы из межальвеолярных перегородок. Сурфактант выполняет защитную роль в легких, предотвращая непосредственный контакт альвеолярного эпителия с частицами пыли, агентами инфекционного начала, которые достигают альвеол с вдыхаемым воздухом. Сурфактант способен обволакивать инородные частицы, которые затем транспортируются из респираторной зоны легкого в крупные дыхательные пути и удаляются из них со слизью. Наконец, сурфактант снижает поверхностное натяжение в альвеолах до близких к нулевым величинам и тем самым создает возможность расправления легких при первом вдохе новорожденного.

Растяжимость легких количественно характеризует растяжимость легочной ткани в любой момент изменения их объема в течение фазы вдоха и выдоха. Поэтому растяжимость представляет собой статическую характеристику эластических свойств легочной ткани. Однако во время дыхания возникает сопротивление движению аппарата внешнего дыхания, обусловливающее его динамические характеристики, среди которых наибольшее значение имеет сопротивление потоку воздуха при его движении через дыхательные пути легких.

На движение воздуха из внешней среды через дыхательные пути к альвеолам и в обратном направлении оказывает влияние градиент давления: при этом воздух движется из области высокого давления в область низкого давления. При вдохе давление воздуха в альвеолярном пространстве меньше, чем атмосферное, а при выдохе - наоборот. Сопротивление дыхательных путей потоку воздуха зависит от градиента давления между полостью рта и альвеолярным пространством.

Поток воздуха через дыхательные пути может быть ламинарным , турбулентным и переходным между этими типами. Воздух движется в дыхательных путях, в основном, ламинарным потоком, скорость которого выше в центре этих трубок и меньше вблизи их стенок. При ламинарном потоке воздуха его скорость линейно зависит от градиента давления вдоль дыхательных путей. В местах деления дыхательных путей (бифуркации) ламинарный поток воздуха переходит в турбулентный. При возникновении турбулентного потока в дыхательных путях возникает дыхательный шум, который может выслушиваться в легких с помощью стетоскопа. Сопротивление ламинарному потоку газа в трубе обусловлено ее диаметром. Поэтому, согласно закону Пуа-зейля величина сопротивления дыхательных путей потоку воздуха пропорциональна их диаметру, возведенному в четвертую степень. Поскольку сопротивление дыхательных путей находится в обратной зависимости от их диаметра в четвертой степени, то этот показатель самым существенным образом зависит от изменений диаметра воздухоносных путей, вызванных, например, выделением в них слизи из слизистой оболочки или сужением просвета бронхов. Общий диаметр сечения дыхательных путей возрастает в направлении от трахеи к периферии легкого и становится максимально большим в терминальных дыхательных путях, что вызывает резкое снижение сопротивления потоку воздуха и его скорости в этих отделах легких. Так, линейная скорость потока вдыхаемого воздуха в трахее и главных бронхах равна примерно 100 см/с. На границе воздухопроводящей и переходной зон дыхательных путей линейная скорость воздушного потока составляет около 1 см/с, в дыхательных бронхах она снижается до 0,2 см/с, а в альвеолярных ходах и мешочках - до 0,02 см/с. Столь низкая скорость воздушного потока в альвеолярных ходах и мешочках обусловливает в них незначительное сопротивление движущемуся воздуху и не сопровождается значимыми затратами энергии мышечного сокращения.

Напротив, наибольшее сопротивление дыхательных путей потоку воздуха возникает на уровне сегментарных бронхов в связи с наличием в их слизистой оболочке секреторного эпителия и хорошо развитого гладкомышечного слоя, т. е. факторов, которые в наибольшей степени влияют как на диаметр воздухоносных путей, так и на сопротивление в них потоку воздуха. В преодолении этого сопротивления заключается одна из функций дыхательных мышц.

В легких большинство дыхательных путей представляют собой эластичные трубки, за исключением трахеи и бронхов, стенки которых «укреплены» хрящевой тканью. Бронхиолы имеют высокоэластичные стенки, и диаметр их просвета может изменяться пассивно во время дыхательных движений. В обычных физиологических условиях при вдохе (как спокойном, так и глубоком) растяжение легочной ткани вызывает растяжение стенки мелких дыхательных путей. Согласно закону Пуазейля, незначительное увеличение радиуса дыхательных путей резко снижает в них сопротивление потоку воздуха. Поэтому при вдохе сопротивление дыхательных путей потоку воздуха не оказывает существенного влияния на силу сокращения дыхательных мышц. Напротив, при выдохе, особенно при глубоком и усиленном (форсированном) выдохе, диаметр мелких дыхательных путей уменьшается, что вызывает значительное увеличение сопротивления потоку воздуха в них. Влияние объема легких при выдохе на поток воздуха в дыхательных путях количественно характеризуется зависимостью «поток-объем». В клинической физиологии дыхания оценка этой зависимости является основным критерием типа и степени нарушения функции дыхательных путей.

Рис. 10.9. Давление в дыхательных путях при выдохе . Вертикальными стрелками показаны величины давления, возникающие в дыхательных путях под влиянием комплайенса легких и грудной клетки. Горизонтальными стрелками в области дыхательных путей показано, что давление, оказываемое на стенки дыхательных путей, может увеличивать их просвет при спокойном выдохе (а) либо уменьшать их диаметр при глубоком выдохе (б) в том участке общей площади поперечного сечения мелких дыхательных путей, где сравниваются величины внутриплеврального и альвол и давления в дыхательных путях (эквипотенциальная точка - ЭПТ). Р -давление (см водн. ст.), РА - давление в альвеолах.

Зависимость «поток-объем» следующим образом характеризует влияние большого объема воздуха в легких на экспираторный поток воздуха в дыхательных путях (рис. 10.9). В момент, предшествующий началу выдоха, после глубокой инспирации в дыхательных путях отсутствует поток воздуха, а внутриплевральное давление равно -10 см водн. ст. С началом форсированной экспирации внутриплевральное давление возрастает примерно до +30 см водн. ст. относительно атмосферного давления, вызывая уменьшение радиуса как альвеол, так и мелких дыхательных путей. В этих условиях давление газов внутри альвеол становится выше, чем в плевральной полости, благодаря действию на стенки альвеол эластической тяги легких. В результате поток воздуха выходит из альвеолярного пространства по дыхательным путям во внешнюю среду по градиенту давления, который постепенно уменьшается в дыхательных путях по мере приближения к трахее. Спадению эластичных стенок бронхиол препятствует градиент давления воздуха между дыхательными путями и внутриплевральным давлением. Однако в некоторой точке дыхательных путей (как правило, в области бронхиол) этот градиент давления становится равным нулю (эквипотенциальная точка давления) и стенки дыхательных путей могут частично или полностью спадаться. В этих условиях продвижение воздуха по дыхательным путям может обеспечиваться только за счет увеличения силы сокращения (работы) внутренних межреберных мышц и мышц живота.

Снижение эластической тяги легких , например при эмфиземе легких, вызывает смещение ближе к альвеолярному пространству эквипотенциальной точки давления в дыхательных путях при выдохе, и, таким образом, блокируется выход воздуха непосредственно из альвеол. Дыхательные шумы, которые возникают в легких у больных, обусловлены прохождением воздуха через спавшиеся мелкие дыхательные пути. Увеличение экспираторного усилия у таких пациентов повышает риск спадения мелких дыхательных путей и еще больше затрудняет выдох. При бронхиальной астме у пациентов дыхательные пути уменьшают свой просвет в результате сокращения гладких мышц стенки бронхиол. В этом случае увеличение сопротивления потоку воздуха в мелких дыхательных путях вызывает рост градиента давления вдоль дыхательных путей при вдохе и смещает эквипотенциальную точку ближе к альвеолярному пространству, вызывая коллапс дыхательных путей при выдохе. Усиление сокращения экспираторных мышц в фазу выдоха еще больше затрудняет выдох у пациентов вследствие уменьшения просвета мелких дыхательных путей.

Сокращение дыхательных мышц создает градиент давления по ходу дыхательных путей. При этом преодолевается эластическое сопротивление легких и грудной клетки, а также сопротивление дыхательных путей потоку воздуха. Наряду с этим последние два показателя позволяют измерять работу дыхательных мышц во время дыхательного цикла. Если принять, что величина работы (W) представляет собой произведение силы (F) на путь (х), то получим: W = F х х В дыхательной системе, в которой измеряемыми величинами являются дыхательный объем и внутриплевральное давление, сила сокращения дыхательных мышц приравнивается к развиваемому ими давлению (Р), которое они оказывают на площадь (А). Поэтому, подставляя выражение F = Р х А в формулу работы дыхательных мышц в течение дыхательного цикла, получим: W = Р х А хх. Поскольку величина А, умноженная на путь (х), в дыхательной системе представляет собой аналог дыхательного объема (V), то общая формула работы дыхательных мышц имеет вид: W = Р х V.

Рис. 10.10. Работа дыхательных мышц при спокойном дыхании . Изменения дыхательного объема (вертикальная ось) при вдохе и выдохе сопровождаются изменениями внутри-плеврального давления. При одновременной регистрации этих величин во время дыхательного цикла общая площадь петель дыхательный объем - внутриплевральное давление отражает количественно работу дыхательных мышц. Работа дыхательных мышц при вдохе больше, поскольку она затрачивается на преодоление эластического сопротивления легких. При выдохе работа дыхания минимальная, поскольку совершается за счет энергии эластической тяги легких, т. е. пассивно. Стрелками показаны изменения внутриплев-рального давления в течение фаз дыхательного цикла. Чем больше площадь петли, тем больше работа дыхательных мышц.

Работа дыхательных мышц при спокойном дыхании. При спокойном дыхании объем вдоха достигает максимум 1 л, а инспираторные мышцы совершают минимальную работу (рис. 10.10). Сокращение инспираторных мышц обеспечивает вдох, а выдох осуществляется пассивно за счет эластической тяги легких. В этих условиях сопротивление дыхательных путей при вдохе и выдохе не оказывает лимитирующего влияния на процесс внешнего дыхания. По мере увеличения глубины дыхания дыхательный объем формируется за счет объема функциональной остаточной емкости и резервного объема вдоха, а работа дыхания совершается против существенного нарастания поверхностного натяжения жидкости на поверхности альвеол. Поэтому чем глубже инспирация, тем большую работу совершают инспираторные мышцы. Во время выдоха, когда глубина дыхательных движений осуществляется в пределах объема жизненной емкости легких, объем легких возвращается пассивно к уровню функциональной остаточной емкости за счет эластической тяги легких, а в пределе функциональной остаточной емкости выдох происходит активно в результате сокращения мышц живота, которые при этом совершают работу.

Работа дыхательных мышц при глубоком дыхании. При глубоком дыхании на силу сокращения дыхательных мышц начинает оказывать влияние изменение диаметра дыхательных путей. Глубокий вдох вызывает расширение дыхательных путей и снижение сопротивления в них потоку вдыхаемого воздуха, поэтому работа инспираторных мышц обусловлена только величинами комплайенса легких и тканей грудной клетки. При глубоком выдохе, при котором в вьщыхаемом воздухе оказывается объем воздуха функциональной остаточной емкости, возникает сдавление мелких дыхательных путей высоким градиентом давления между дыхательными путями и внутриплевральным давлением. Существенное увеличение потока газов через дыхательные пути приводит к росту их сопротивления потоку воздуха, которое становится основным фактором, обусловливающим величину работы дыхания. Однако при глубоком дыхании механизмы регуляции диаметра дыхательных путей при участии вегетативной нервной системы способны минимизировать величину работы, которые выполняют дыхательные мышцы. Так, при глубоком дыхании за счет регулирующих влияний вегетативной нервной системы на гладкие мышцы дыхательных путей увеличивается их диаметр. В результате на сокращение дыхательных мышц затрачивается минимальное количество энергии. Например, при астме дыхание у пациентов становится медленным и глубоким, что снижает затраты энергии на преодоление сопротивления дыхательных путей потоку воздуха и уменьшает работу дыхательных мышц.

Легкие обладают рядом особенностей структурной организации, обеспечивающих их эластические свойства. Опорный каркас легких, начиная от главных бронхов и заканчивая альвеолами, состоит из соединительной ткани, включающей коллагеновые, ретикулярные и эластические волокна. Пучки этих волокон, подобно пружине, могут растягиваться и сжиматься . Механические свойства коллагеновых и эластических волокон не одинаковы: длина коллагеновых волокон при растяжении увеличивается всего на 2%, но зато очень велика их прочность на разрыв. Эластические волокна, наоборот, обладают очень высокой растяжимостью - до 130 %. В паренхиме легких соотношение коллаген /эластин равно 2.5/1, а в париетальной плевре - 10/1, следовательно, растяжимость легких значительно выше.

Вторым компонентом, способным сокращаться и расслабляться являются клетки гладкой мускулатуры, которые расположены по ходу дыхательных путей, в основании у входа в альвеолы, в плевре.

Третьим компонентом, вносящим свой вклад в эластичность легких, служат клетки фибробластического ряда, содержащие пучки фибрилл, богатые сократительными белками и способные к сокращению.

Соединительнотканный каркас, или строма, легких выполняет несколько функций: опорную, амортизационную, трофическую, коммуникационную. Основной принцип организации опорного каркаса - его непрерывность и структурная взаимосвязанность, от воздухоносных путей до висцеральной плевры. В связи с этим, при изменении внутриплеврального давления силы тяги передаются с париетальной на висцеральную плевру и далее на легкие, в воротах которых соединительнотканные образования плевры зафиксированы.

Таким образом, легкие содержат структуры, которые, с одной стороны, эластичны и могут растягиваться, а с другой - обладают ярко выраженной способностью к ретракции (будем называть это свойство ретракцией, для того, чтобы отличать этот пассивный процесс от активного сокращения). Во время вдоха легкие подвергаются растяжению под действием сил сокращения дыхательной мускулатуры (размер грудной клетки увеличивается). Когда эти силы прекращают действовать, легкие благодаря своим упругим свойствам возвращаются в первоначальное состояние. Чем больше увеличивается объем легких во время вдоха, тем сильнее они растягиваются и тем больше накапливается механической энергии для последующей ретракции. Эластические свойства легких характеризуются двумя основными параметрами: 1) растяжимостью и 2) эластическим сопротивлением - это та сила, которая препятствует растяжению.

Легочный сурфактант

Если полностью удалить из легких воздух и заменить его физиологическим раствором, то окажется, что способность к растяжению у легких значительно повышается. Это объясняется тем, что растяжению легких в норме препятствуют силы поверхностного натяжения, возникающие в легком на границе жидкость - газ.

Пленка жидкости, выстилающая внутреннюю поверхность альвеол, содержит высокомолекулярное вещество, понижающее поверхностное натяжение . Это вещество называется сурфактант и синтезируется альвеолоцитами II типа. Сурфактант имеет сложную белково-липидную структуру и представляет собой межфазную пленку на границе воздух - жидкий слой. Физиологическая роль легочного сурфактанта обусловлена тем, что эта пленка значительно снижает поверхностное натяжение, вызванное жидкостью. Поэтому сурфактант обеспечивает во-первых, повышение растяжимости легких и уменьшении работы, совершаемой во время вдоха и, во-вторых, обеспечивает стабильности альвеол препятствуя их слипанию. Регулирующее действие сурфактанта в обеспечении стабильности размеров альвеол состоит в том, что чем меньше становятся размеры альвеол, тем больше снижается поверхностное натяжение под влиянием сурфактанта. Без этого эффекта при уменьшении объема легких самые мелкие альвеолы должны были бы спадаться (ателектаз).

Синтез и замена поверхностно-активного вещества - сурфактанта происходит довольно быстро, поэтому нарушение кровотока в легких, воспаление и отеки, курение, острая кислородная недостаточность (гипоксия) или избыток кислорода (гипероксия), а также различные токсические вещества, в том числе некоторые фармакологические препараты (жирорастворимые анестетики), могут снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах. Потеря сурфактанта приводит к «жестким» (малоподвижным, плохо растяжимым) легким с наличием зон ателектазов.

Кроме действия сурфактанта стабильность альвеол в значительной степени обусловлена и структурными особенностями паренхимы легких. Каждая альвеола (кроме прилежащих к висцеральной плевре) окружена другими альвеолами. В такой эластической системе при уменьшении объема какой-то группы альвеол, окружающая их паренхима будет подвергаться растяжению, и препятствовать спадению соседних альвеол. Эту поддержку окружающей паренхимы называют «взаимосвязью». Взаимосвязь наряду с сурфактантом играет большую роль в предотвращении ателектазов и открытии ранее закрытых, по каким то причинам, участков легких. Кроме того, такая «взаимосвязь» поддерживает низкое сопротивление внутрилегочных сосудов и стабильность их просвета, просто растягивая их снаружи.

Транспульмональное давление

Стенки грудной клетки и поверхность легких покрыты тонкой серозной оболочкой. Между листками висцеральной и париетальной плевры имеется узкая (5 - 10 мкм) и герметичная щель, заполненная серозной жидкостью, по составу сходной с лимфой. В момент первого вдоха новорожденного легкие расправляются и остаются в таком состоянии всю оставшуюся жизнь. Если вспомнить о свойствах эластического каркаса легких, то становится ясно, что растянутые легкие постоянно стремятся уменьшить свой размер за счет способности эластических волокон к ретракции. Эта сила эластической тяги легких постоянно «оттягивает» легкие от грудной клетки, поэтому давление в плевральной полости всегда немного ниже, чем давление в альвеолах. Эту разницу давлений можно выявить, если, как видно на рисунке 3, ввести в плевральную полость канюлю, так чтобы ее кончик находился в плевральной полости. Соединив эту канюлю с манометром, мы можем убедиться в том, что у человека в состоянии покоя в конце выдоха внутриплевральное давление примерно на 3-4 мм рт. столба (5см. водного столба) ниже атмосферного.

Внутриплевральное давление ниже давления в альвеолах на величину эластической тяги легких:

Р плевральное = Р альвеолярное - Р эластической тяги легких

Следовательно, между внутренней поверхностью альвеол и плевральной полостью существует разность давлений, причем эта разность всегда в пользу альвеолярного пространства. Разницу между давлением в альвеолах и давлением в плевральной полости называют транспульмональным давлением.

Р транспульмональное = Р альвеолярное - Р плевральное.

Транспульмональное давление это тот градиент давлений, который поддерживает легкие в расправленном состоянии (давление «изнутри» выше давления «снаружи»). Таким образом, сила транспульмонального давления направлена в одну сторону с влиянием сурфактанта и противодействует эластической тяге легкого и поверхностному натяжению водной пленки. На схеме представлено взаимодействие сил, которые обеспечивают расправленное состояние легких, следовательно возможность легких растягиваться и обеспечивать поступление воздуха в альвеолярное пространство.

Плевральное давление часто называют отрицательным лишь потому, что оно ниже атмосферного. Плевральное давление можно считать отрицательным, если атмосферное давление принять за 0. На самом деле это давление положительное и зависит от атмосферного давления.

Если атмосферное давление сегодня равно 747 мм рт. ст., то плевральное давление к концу спокойного выдоха будет равно 747 - 3 = 744 мм рт. ст. Таким образом, транспульмональное давление равно 747 – 744 = 3 мм рт. ст.

Рассмотрим, каким образом изменяется альвеолярное и плевральное давление во время дыхания. Схема и рисунки 3А и Б иллюстрируют изменения давления во время вдоха и выдоха.

Перед вдохом давление в альвеолах равно атмосферному, движения воздуха нет. Стрелка - это эластическая тяга легкого, которая создает в плевральной полости давление ниже атмосферного. Транспульмональное давление поддерживает легкие в расправленном состоянии.
Во время вдоха объем грудной клетки увеличивается, легочная ткань растягивается. Объем легких увеличивается, давление в альвеолах становится ниже атмосферного, и воздух поступает в легкие. Увеличение размеров грудной клетки приводит к еще большему уменьшению плеврального давления, потому что плевральная полость растягивается в двух направлениях - две стрелки - увеличение размеров грудной клетки и более сильная тяга эластики легких во время их растяжения. Таким образом, транспульмональная разница давлений не только сохраняется, ни и немного увеличивается, облегчает растяжение легких.
Во время пассивного выдоха (расслабление межреберных мышц и диафрагмы) увеличение плеврального давления и ретракция эластики легких обеспечивают движение воздуха из альвеол в атмосферу.
На этой схеме приведены давления в альвеолах и плевральной полости во время активноговыдоха. При сокращении внутренних межреберных мышц уменьшаются размеры грудной клетки и объем легких, происходит повышение альвеолярного давления и осуществляется выдох. Давление в плевральной полости может стать даже выше атмосферного, благодаря сокращению экспираторных мышц, кроме того, уменьшается эластическая тяга легких.

Легко убедиться в том, что транспульмональная разница давлений совершенно необходима для нормального дыхания: стоит только нарушить герметичность плевральной полости. Если атмосферный воздух попадет в плевральную полость, то давление внутри легких и плевральной полости окажутся одинаковыми, легкие при этом спадаются. Сообщение плевральной полости с внешней средой в результате нарушения герметичности грудной клетки носит название пневмоторакса . При пневмотораксе выравниваются внутриплевральное и атмосферное давления, что вызывает спадение легкого и делает невозможной его вентиляцию при дыхательных движениях грудной клетки и диафрагмы. Если при одностороннем пневмотораксе пациент может существовать за счет воздухообмена через сохранившееся легкое, то при двустороннем пневмотораксе неминуемо наступает смерть. Кроме травматического пневмоторакса существует лечебный пневмоторакс, при котором в плевральную полость вводится строго определенное количество воздуха. Лечебный пневмоторакс применяется с целью ограничения функции больного легкого, например при туберкулезе легкого, абсцессах в легком и т.д.

Рисунок 3А. Плевральное давление во время дыхания

Рисунок 3Б. Изменение внутрилегочного и внутриплеврального давления во время дыхания

Механизмы изменения объема легких при дыхании можно продемонстрировать с помощью модели Дондерса (рис. 4), на которой с помощью двух манометров можно проследить за изменением давления и в легких, и в плевральной полости.

Если отсосать воздух из колокола, то легкие расправятся, т.к. в плевральной полости давление станет ниже внутрилегочного, появится разница давлений между внутрилегочным пространством и плевральной полостью – транспульмональное давление.

Теперь можно попробовать снизить давление в легких, оттягивая эластическую мембрану вниз и имитируя сокращение диафрагмы и увеличение объема грудной клетки. При этом уменьшится и внутриплевральное давление, что будет видно по изменению уровня жидкости в манометре. Такие изменения внутрилегочного и плеврального давлений характерны для фазы вдоха.

Рисунок 4. Модель Дондерса

Легочные объемы и емкости

Для функциональной характеристики дыхания принято использовать различные легочные объемы и емкости. Легочные объемы подразделяются на статические и динамические. Первые измеряют при завершенных дыхательных движениях. Вторые измеряют при проведении дыхательных движений и с ограничением времени на их выполнение. Емкость включает в себя несколько объемов.

Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических индивидуальных характеристик человека и строения дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.

Дыхательный объем (ДО) - объем воздуха, который вдыхает и выдыхает человек во время спокойного дыхания (рис. 5). У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рас­считывают как среднюю величину после измерения примерно шести спокойных дыхательных движений.

Резервный объем вдоха (РО вд) - максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РО вд составляет 1,5-1,8 л.

Резервный объем выдоха (РО выд )-максимальный объем воздуха, который человек дополнительно может выдохнуть после спокойного выдоха. Величина РО выдоха ниже в горизонтальном поло­жении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0-1,4 л.

Остаточный объем (ОО) - объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0-1,5 л.

Исследование динамических легочных объемов представляет на­учный и клинический интерес, и их описание выходит за рамки курса нормальной физиологии,

Легочные емкости . Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5-5,0 л и более. Для женщин типичны более низкие величины (3,0-4,0 л). В зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.

Емкость вдоха (Е вд ) равна сумме дыхательного объема и резервного объема вдоха. У человека Е вд составляет в среднем 2,0-2.3 л.

Рисунок 5. Легочные объемы и емкости

Функциональная остаточная емкость (ФОЕ) - объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами газовой дилюции, или «разведения газов» и плетизмографически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизонтальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растяжимости грудной клетки.

Общая емкость легких (ОЕЛ) - объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами:

ОЕЛ = 00 + ЖЕЛ или ОЕЛ = ФОЕ + Евд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции.

Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции системы внешнего дыхания у здоровых людей и при диагностике заболевания легких.

Минутный объем дыхания

Одной из основных характеристик внешнего дыхания является минутный объем дыхания (МОД). Вентиляция легких определяется объемом воздуха вдыхаемого или выдыхаемого в единицу времени. МОД – это произведение дыхательного объема на частоту дыхательных циклов . В норме, в покое ДО равен 500 мл, частота дыхательных циклов – 12 – 16 в минуту, отсюда МОД равен 6 - 7 л/мин. Максимальная вентиляция легких – это объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений.

Альвеолярная вентиляция

Итак, внешнее дыхание, или вентиляция легких обеспечивает поступление в легкие примерно 500 мл воздуха во время каждого вдоха (ДО). Насыщение крови кислородом и удаление углекислого газа происходит при контакте крови легочных капилляров с воздухом, содержащимся в альвеолах. Альвеолярный воздух – это внутренняя газовая среда организма млекопитающих и человека. Ее параметры – содержание кислорода и углекислого газа – постоянны. Количество альвеолярного воздуха примерно соответствует функциональной остаточной емкости легких – количеству воздуха, которое остается в легких после спокойного выдоха, и в норме равно 2500 мл. Именно этот альвеолярный воздух обновляется поступающим по дыхательным путям атмосферным воздухом. Следует иметь в виду, что в легочном газообмене участвует не весь вдыхаемый воздух, а лишь та его часть, которая достигает альвеол. Поэтому для оценки эффективности легочного газообмена важна не
столько легочная, сколько альвеолярная вентиляция.

Как известно, часть дыхательного объема не участвует в газообмене, заполняя анатомически мертвое пространство дыхательных путей – примерно 140 – 150 мл.

Кроме того, есть альвеолы, которые в данный момент вентилируются, но не снабжаются кровью. Эта часть альвеол является альвеолярным мертвым пространством. Сумма анатомического и альвеолярного мертвых пространств называется функциональным, или физиологическим мертвым пространством. Примерно 1/3 дыхательного объема приходится на вентиляцию мертвого пространства, заполненного воздухом, который непосредственно не участвует в газообмене и лишь перемещается в просвете воздухоносных путей при вдохе и выдохе. Следовательно, вентиляция альвеолярных пространств – альвеолярная вентиляция – представляет собой легочную вентиляцию за вычетом вентиляции мертвого пространства. В норме альвеолярная вентиляция составляет 70 - 75 % величины МОД.

Расчет альвеолярной вентиляции проводится по формуле: МАВ = (ДО - МП) ´ ЧД, где МАВ - минутная альвеолярная вентиляция, ДО - дыхательный объем, МП - объем мертвого пространства, ЧД - частота дыхания.

Рисунок 6. Соотношение МОД и альвеолярной вентиляции

Используем эти данные для расчета еще одной величины, характеризующей альвеолярную вентиляцию - коэффициент вентиляции альвеол. Этот коэффициент показывает, какая часть альвеолярного воздуха обновляется при каждом вдохе.В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ), во время вдоха в альвеолы поступает 350 мл воздуха, следовательно, обновляется лишь 1/7 часть альвеолярного воздуха (2500/350 = 7/1).