Общие тесты свертывания крови. Исследование коагуляции Определение времени свертывания плазмы крови

Методы исследования свертывающей системы крови включают следующие группы:

  1. ориентировочные (общие), дающие представление о состоянии всего коагуляционного каскада в целом и отдельных его этапов (регистрация может производиться визуально или с помощью отдельных приборов - коагулографа, тромбоэластографа и др.);
  2. дифференцирующие дефицит отдельных факторов - коррекционные коагуляционные тесты, тесты смешивания исследуемой плазмы крови с плазмой крови больных с заведомо известным дефицитом тех или иных факторов;
  3. количественного определения отдельных компонентов системы по их функциональной активности (коагуляционные пробы, исследования на хромогенных и других субстратах) и (или) по иммунологическим маркерам;
  4. выявления внутрисосудистой активации процесса свертывания крови и фибринолиза по функциональным признакам или молекулярным маркерам такой активации - выявлению в циркуляции активированных факторов свертывания, продуктов дегрануляции тромбоцитов, расщепления компонентов свертывающей системы крови или их метаболитов, появлению новых антигенных маркеров активированных факторов и их комплексов, ускоренной метаболизации меченых компонентов свертывающей системы крови (сокращению периода их полужизни в циркуляции).

Таким образом, при оценке состояния свертывающей системы крови используются как собственно коагуляционные методики (лабораторные и инструментальные), составляющие основу диагностического процесса, так и иммунологические, радионуклидные и другие виды исследования . При этом во многих случаях компоненты системы могут определяться как по функциональной активности, так и иммунологически - по содержанию соответствующего антигена в крови. Параллельное использование таких методик позволяет дифференцировать формы патологии, связанные с отсутствием синтеза соответствующего фактора свертывания (в этом случае одинаково снижены как его функциональная активность, так и количество антигена), и формы, при которых молекула фактора синтезируется, но она аномальна и функционально неполноценна.

Для обозначения первых форм к номеру соответствующего фактора добавляется знак «-» (например, VIII-, IX- и т. д.), а во втором - знак «+» (например, VIII+, IX+).

Ориентировочные (общие) коагуляционные тесты

Определение времени свертывания крови

Определение времени свертывания крови (предпочтительнее методике Ли-Уайта) - давно применяющийся быстровыполнимый (непосредственно у постели больного) ориентировочный тест, позволяющий выявлять значительные нарушения свертываемости крови, связанные с дефицитом факторов гемокоагуляции (кроме фактора VII) или с действием антикоагулянтов и фибринолитиков. Используется в качестве ориентировочного теста и для контроля за гепаринотерапией, устранения действия гепарина протаминсульфатом. Тест сравнительно низкочувствительный, показатели его нарушаются лишь при выраженном снижении содержания в плазме факторов свертывания (ниже 4-5 %), в связи с чем непригоден для выявления легких форм гемофилии A и B, а также нарушений свертываемости крови при ангиогемофилии, дефиците фактора XI, прекалликреина и высокомолекулярного кининогена. По этим причинам тест не может использоваться для предоперационного обследования больных: при нормальных показателях теста (5-10 мин) возможно возникновение профузных послеоперационных кровотечений.

Время рекальцификации плазмы

Время рекальцификации плазмы - нестандартизированный низкочувствительный тест, менее надежен для выявления гипокоагуляции, чем время свертывания цельной крови. Не может быть рекомендован для диагностики нарушений гемостаза.

Активированное парциальное тромбопластиновое время плазмы

Активированное парциальное тромбопластиновое время плазмы (АПТВ, каолин-кефалиновый тест) - высокочувствительный метод, выявляющий нарушения свертываемости крови при запуске процесса по внутреннему механизму. Избирательно чувствителен к дефициту плазменных факторов свертывания (поскольку дефицит тромбоцитов и фактора 3 тромбоцитов компенсирован вводимым извне кефалином или эритрофосфатидом).

Используется для контроля за гепаринотерапией, предоперационного обследования больных и т. д. Нормативные показатели зависят от используемых образцов кефалина, в большинстве случаев составляют 37-50 с (оптимально - 37-45 с).

Каолиновое время плазмы

Каолиновое время плазмы - тест, сходный с предыдущим, но без добавления в плазму кефалина (эритрофосфатида), в результате чего он чувствителен не только к дефициту плазменных факторов свертывания, но и к недостатку тромбоцитов и фактора 3 тромбоцитов. Ориентировочная оценка активности этого фактора может быть проведена путем сравнения каолинового времени плазмы исследуемого с высоким и низким содержанием тромбоцитов (норма - 57-70 с).

Не рекомендуется использование фосфолипидных компонентов, дающих в АПТВ время свертывания равное 55 с и более, так как при этом резко снижается точность и воспроизводимость тестов, в том числе при количественном определении факторов VIII и IX.

Силиконовое время плазмы

Силиконовое время плазмы - это время рекальцификации плазмы, полученной в условиях силиконирования игл, пробирок, пипеток, т. е. при минимальной контактной активации. Тест чувствителен к гиперкоагуляции-внутрисосудистой активации пусковой контактной фазы (факторов XII и XI), однако это нарушение более четко выявляется путем определения силиконового времени свертывания цельной крови (на основе метода Ли-Уайта либо тромбоэластографической регистрации процесса в силиконированной кювете).

Нормативные показатели зависят от используемого силикона и определяются исследованием крови здоровых людей для каждого его образца отдельно. При выборе силикона лучшим является тот, который в наибольшей степени удлиняет время свертывания крови (плазмы).

Протромбиновое (тромбопластиновое) время плазмы

Протромбиновое (тромбопластиновое) время плазмы (время Квика, протромбиновый индекс) характеризует скорость свертывания рекальцифицированной плазмы крови при запуске процесса по внешнему механизму, т. е. при добавлении тромбопластина мозга человека (или кролика).

Активность тромбопластина стандартизируется на смешанных образцах нормальной (контрольной) плазмы. Чаще всего используются тромбопластины активностью 12-18 с (в классической методике Квика- 12-13 с). Чем слабее тромбопластин, тем больше ошибка метода.

При нормальном протромбиновом времени плазмы тест позволяет выявить изолированный или совокупный дефицит факторов протромбинового комплекса - VII, X, V и II, из которых три фактора (VII, X и II) К-витаминозависимы и их активность снижается под влиянием антикоагулянтов непрямого действия. В связи с этим протромбиновый тест является основным при контроле за дозировкой кумаринов (неодикумарин, или пелентан, синкумар и др.) и других препаратов этой группы (фенилин).

Протромбиновое время остается нормальным при дефиците факторов внутреннего механизма активации протромбиназы - факторов XII, XI, IX, VIII (т. е. при всех видах гемофилии и дефекте Хагемана), а также при дефиците прекалликреина и высокомолекулярного кининогена (ВМ кининогена)

В литературе принято разное обозначение результатов протромбинового теста . Наиболее целесообразно указывать протромбиновое время исследуемой и контрольной плазмы крови в секундах (что дает информацию и об активности использованного тромбопластина). Иногда пользуются соотношением этих двух величин, т. е. индексом (ПВ исследуемой плазмы, с,)/(ПВ контрольной плазмы, с) , (норма 0,9-1,1).

Другой формой оценки этого показателя, которой наиболее широко пользуются в лабораториях, является вычисление протромбинового индекса в процентах путем составления обратной арифметической пропорции (норма - 90-110%), однако такой расчет является неправильным, так как между концентрацией факторов свертывания и временем свертывания имеется не арифметическая, а логарифмическая зависимость. Кроме того, протромбиновый тест чувствителен лишь к снижению факторов свертывания ниже 50 % их нормальной величины. В силу этого целесообразно использование определения протромбинового индекса в процентах по кривой разведения (1:2, 1:4, 1:8 и т. д.) смешанного образца нормальной плазмы. Такая кривая строится однократно для тромбопластинов разной исходной активности (от 12 до 18 с) и по ней определяется протромбиновый индекс у исследуемых больных. Преимущество такой методики состоит также в том, что результаты всех исследований, в том числе и выполняемых в динамике в разные дни, соотносятся не к случайным различным образцам нормальной плазмы крови, а к усредненным одним и тем же стандартным параметрам, вследствие чего существенно уменьшается ошибка метода. Индексы, полученные по пропорции и по кривой разведения нормальной плазмы, совершенно не соответствуют друг другу. Это следует учитывать и при контроле за действием непрямых антикоагулянтов, ибо снижение обычного индекса до 50 % примерно соответствует снижению индекса по кривой разведения до 25-30 % В связи с этим в анализах всегда следует указывать, как рассчитывался протромбиновый индекс, каковы его нормативные показатели для тромбопластина данной активности.

Тромбиновое время плазмы

Тромбиновое время плазмы, т. е. время свертывания цитратной плазмы при добавлении к ней тромбина стандартной активности, является основным тестом для оценки конечного этапа свертывания крови. Учет этого показателя важен для правильного толкования всех остальных коагуляционных тестов, ибо нарушение конечного этапа свертывания крови неизбежно должно привести к удлинению времени свертывания во всех перечисленных выше методиках.

В большинстве случаев при проведении тромбинового теста используется такая концентрация раствора тромбина, которая при смешивании с равным объемом плазмы крови дает свертывание за 12- 18 с, но при распознавании дисфибриногенемий используются и более слабые его концентрации (приводящие к свертыванию за 30-35 с).

Тромбиновое время - важный диагностический показатель, нарушение его наблюдается как при врожденных, так и при часто встречающихся приобретенных (вторичных) гипопротромбинемиях, при большинстве дисфибриногенемий, а также под влиянием гепарина, продуктов фибринолиза (ПДФ) и ряда других антитромбинов и ингибиторов самосборки мономеров фибрина. В силу этого тромбиновое время в первую очередь и в большей степени нарушается при острых и подострых ДВС-синдромах, что играет важную роль для экспресс-диагностики этой патологии.

Аутокоагуляционный тест

Аутокоагуляционный тест (АКТ) - высокочувствительный двухступенчатый, характеризует процесс свертывания крови при запуске его по внутреннему механизму. Как и АПТВ, тест не чувствителен к дефициту фактора VII, но вместе с тем его показания не зависят от содержания фибриногена (фактора I) в исследуемой плазме крови, чем он отличается от всех остальных ориентировочных коагуляционных проб.

Другое достоинство АКТ состоит в том, что исследуется разведенная кровь, благодаря чему существенно повышается чувствительность теста к дефициту факторов свертывания и, кроме того, выполнение АКТ не требует использования каолина и кефалина, поскольку стандартизация контактной и фосфолипидной активации в нем достигается гемолизатом собственных эритроцитов исследуемого.

Сущность АКТ состоит в том, что к 2 мл гипотонического раствора (0,222 %) хлорида кальция добавляется 0,1 мл крови исследуемого.

В этой гемолизат-кальциевой смеси происходит образование протромбиназы и тромбина, активность которых определяется последовательным добавлением 0,2 мл этой смеси к 0,2 мл плазмы исследуемого (через каждые 2 мин на протяжении первых 10 мин, а затем - через каждые 10 мин в течение 1 ч).

Плазма исследуемого является источником фибриногена, на котором тестируется активность образующегося в смеси тромбина. Как показали многочисленные исследования, она может быть заменена плазмой крови здоровых людей или раствором фибриногена. В этом случае расход крови больного сокращается до 0.1-0,2 мл (может быть взята из пальца!), что трансформирует аутокоагуляционный тест в микрокоагуляционный (МКТ) и делает его очень удобным для использования в педиатрии, в том числе при исследовании гемостаза у новорожденных.

Коагуляционная активность в АКТ и МКТ вначале нарастает и у здоровых людей обычно достигает максимума к 10-й минуте, инкубация кровь-кальциевой смеси (ККС), когда свертывание субстратной плазмы происходит за 10±1 с. Затем коагуляционная активность ККС начинает снижаться, что свидетельствует об инактивации образовавшегося в ней тромбина. При гемофилиях, действии гепарина и других нарушениях свертываемости коагулирующая активность ККС резко снижается, а максимум перемещается с 10-й минуты на более поздний срок. При гиперкоагуляции наблюдается более раннее и более значительное нарастание тромбиновой активности в ККС.

При проведении теста в одной пробирке (определение только на 10-й минуте инкубации ККС) он может быть использован для контроля за гепаринотерапией. Преимущество этой методики перед тестом активированного парциального тромбопластинового времени состоит в том, что в ней нивелируется неодинаковое влияние разных кефалинов на гепариновое время свертывания.

На основе АКТ (МКТ) разработана простая и точная методика дифференциальной диагностики гемофилий.

С помощью приводимых в справочниках переводных таблиц показания АКТ (МКТ) могут быть выражены в процентах и изображены в виде графика - аутокоагулограммы.

Для оценки ряда общих параметров свертываемости крови широко используются и инструментальные методы исследования, преимущественно с применением различных коагулографов и тромбоэластографов.

Тромбоэластография дает представление не только о временных параметрах свертывания крови или плазмы, но и о структуре и механических свойствах образующихся сгустков. В последние годы и в аппаратные методы регистрации вводится стандартизация контактной и фосфолипидной активации процесса свертывания. Создаются также коагулограммы для массового выполнения общих коагуляционных тестов - АПТВ, протромбинового, тромбинового и других с автоматической записью результатов.

Методы дифференциации дефицита различных факторов свертывания и их количественного определения

Приведенные ниже в таблице данные показывают, что ориентировочное исследование свертываемости крови с помощью трех основных тестов позволяет провести групповое разграничение дефицита различных плазменных факторов гемокоагуляции. Так, замедление свертываемости только в протромбиновом тесте (I тип нарушения) при нормальных показаниях всех остальных характерно для наследственного дефицита фактора VII либо для снижения уровня этого фактора на ранних этапах развития механической желтухи или в первые 1-2 дня лечения антикоагулянтами непрямого действия, когда подавление синтеза фактора VII опережает в своем развитии снижение уровня всех остальных К-витаминозависимых факторов свертывания.

Типы нарушений основных коагуляционных тестов при дефиците тех или иных плазменных факторов свертывания

Тип нарушений

Коагуляционные тесты

АПТВ, АКТ

Фактор Виллебранда

Плазменный прекалликреин

ВМ кининоген

Антикоагулянты прямого действия (гепарин, гепариноиды и др.)

Антикоагулянты непрямого действия (кумарины)

Примечание. (+) - замедление свертывания; (-) - отсутствие нарушения свертывания.

Нарушение только внутреннего механизма свертывания, т. е. активированного парциального тромбопластинового времени и АКТ (II тип), наблюдается при дефиците факторов XII, XI, IX, VIII, Виллебранда (не при всех формах), прекалликреина и ВМ кининогена. Из них при наследственных дефектах свертываемости дефицит факторов XII, прекалликреина и ВМ кининогена наблюдается крайне редко и не сопровождается какой-либо кровоточивостью, тогда как дефицит факторов VIII (гемофилия А), IX (гемофилия В) и фактора Виллебранда встречается очень часто (составляет более 96 % всех наследственных коагулопатий) и сопровождается выраженной кровоточивостью. Между ними в первую очередь и проводится дальнейшая дифференциальная диагностика.

Дефицит фактора XI встречается сравнительно редко (около 0,5-1,0 % всех гемофилий), протекает с очень слабо выраженной кровоточивостью (в основном после травм и операций) и занимает промежуточное место между первой подгруппой бессимптомных нарушений и гемофилиями и болезнью Виллебранда.

Еще один тип нарушений характеризуется удлинением как парциального тромбопластинового времени и АКТ, так и протромбинового времени. Он характерен для дефицита факторов V, X или II либо для комплексного дефицита всех К-витаминозависимых факторов (VII, X, IX, II), что наблюдается при механической желтухе и других видах К-витаминной недостаточности, а также при приеме антикоагулянтов непрямого действия.

И наконец, как видно из той же таблицы, возможно нарушение показаний всех трех тестов (IV тип), что наблюдается при наследственных и приобретенных гипо- и дисфибриногенемиях (не всех), при приеме антикоагулянтов прямого действия (гепарина, гепариноидов, гирудина и др.), лечении активаторами фибринолиза и дефибринирующими препаратами (стрептокиназа, урокиназа и др.), появлении в крови патологических антитромбинов и веществ, препятствующих соединению (сборке) фибрин-мономеров - парапротеинов, криоглобулинов, иммунных комплексов, а также при сложных нарушениях свертываемости, обусловленных ДВС-синдромом. При этом тромбиновое время часто нарушается в большей степени и несколько раньше, чем другие тесты.

При учете давности заболевания и возможности его наследственного генеза либо вторичной связи с другими видами патологии и лекарственными или иными воздействиями, наличия или отсутствия кровоточивости и ее типа удается правильно определить генез этих глубоких нарушений свертывания крови.

Все дифференцирующие тесты основаны на принципе коррекции , т. е. на определении, в какой степени выявленное нарушение свертываемости крови устраняется или, наоборот, не устраняется образцами плазмы крови или искусственно полученными препаратами крови с заведомо известным дефицитом того или иного фактора свертывания.

С этой целью специализированные лаборатории создают для себя коллекции фактородефицитных плазм крови, получая их от больных с заведомо установленным глубоким (менее 1 %) дефицитом каждого из факторов и хранят их в мелкой расфасовке (по 0,5 мл) при температуре - 30 °С. При необходимости эти образцы размораживают и используют в диагностических тестах.

Плазма, подвергшаяся случайному размораживанию или оставшаяся неиспользованной, повторному замораживанию не подлежит. В коррекционных тестах не следует использовать плазму с иммунными ингибиторами того или иного фактора. В диагностических наборах ряда фирм содержатся лиофильно высушенные образцы плазмы крови с дефицитом определяемых факторов свертывания (субстратные плазмы). Однако многие нарушения свертываемости крайне редко наблюдаются в клинической практике, в связи с этим используются искусственно приготовленные компоненты нормальной крови с дефицитом тех или иных факторов свертывания, а также гетерогенные плазмы (цыплят, утят и др.).

В таблице приведены сведения о содержании факторов свертывания крови в компонентах крови, используемых для проведения коррекционных коагуляционных тестов в зависимости от сроков их хранения. Пользуясь этой таблицей, легко расшифровать показания любого из трех основных коагуляционных тестов. В коррекционных методиках такого рода используются тесты, стандартизированные по контакту и фосфолипидной активации, т. е. каолин-кефалиновые или с применением гемолизата (в АКТ).

Плазма крови

Фактор свертывания

внутреннего механизма

внешнего механизма

VIII IX XI XII прекалликреин

VII X V II

Нативная (со сроком хранения до 18 ч)

Адсорбированная *

Со сроком хранения более 24 ч

Со сроком хранения 2-4 дня (при температуре +4°С)

Не используется

Профильтрованная **

Не используется

Нативная плазма цыплят или утят (в возрасте до 3-4 дней)

Не используется

Примечание. (+) - наличие фактора; (-) - отсутствие.

* Адсорбция производится либо сульфатом бария из оксадаткой плазмы (BaSO 4 -плазма). либо гелем гидроокиси аллюминня из цитратной плазмы (Al(OH) 3 -плазма).

** Фильтрация производится через два асбестовых фильтра (фильтры Зейца) - с 20 % (верхний фильтр) и 30 % (нижний фильтр) содержанием асбеста либо через удвоенный или утроенный соответственно 30 и 20 % фильтры.

Тесты смешивания плазмы крови больного с плазмой, имеющей заведомо известный дефицит того или иного фактора

Определяют активированное парциальное тромбопластиновое время в исследуемой плазме крови, нормальной плазме (контроль) и в плазме с заведомо известным дефицитом факторов VIII (от больного гемофилией А), IX (от больного гемофилией В), XI и XII. Затем готовят смесь из образцов цитратной плазмы исследуемого (7/10 объема) и последовательно с каждой из дефицитных плазм (3/10 объема), начиная с дефицита фактора VIII и IX (наиболее частые формы патологии! ).

К смеси добавляют каолин и кефалин, и через 2 мин подвергают ее рекальцификации (при температуре 37 °С). В той смеси, где активированное парциальное тромбопластиновое время не нормализуется, имеется один и тот же дефект свертывания.

Так, если у обследуемого больного активированное парциальное тромбопластиновое время не нормализуется добавлением плазмы крови больного с заведомо известным дефицитом фактора VIII, но корригируется плазмой крови больного с дефицитом фактора IX, у него имеется гемофилия А .

Аналогично, но на основе протромбинового теста дифференцируют дефицит факторов протромбинового комплекса (X, V, VII и II).

Тест генерации тромбопластина

Для дифференциации нарушений внутреннего механизма свертывания крови чаще всего используется классический тест генерации тромбопластина с заменой тромбоцитарного компонента, приготовление которого требует значительной затраты времени и крови, кефалином Недостатками теста генерации тромбопластина являются его громоздкость, необходимость приготовления большого числа реагентов, значительная затрата времени на его выполнение.

Коррекционный тест, основанный на базе аутокоагуляционного теста.

Задачам экспресс-диагностики вполне отвечает другой коррекционный тест, основанный на проведении коррекции теми же компонентами нормальной крови на базе аутокоагуляционного теста.

Этот тест отличается высокой надежностью, быстротой и легкостью выполнения и требует небольшого (не более 0,5 мл) количества крови исследуемого, что позволяет использовать его в педиатрической практике.

В нем, как и в тесте генерации тромбопластина, используют для коррекции адсорбированную плазму и старую сыворотку крови, которую повторно центрифугируют перед проведением исследования. В три пробирки разливают по 2 мл 0,222 % раствора хлорида кальция и в две из них добавляют 0,1 мл адсорбированной нормальной плазмы крови (1-я пробирка) и 0,1 мл старой нормальной сыворотки крови (2-я пробирка). В три другие пробирки вносят по 0,2 мл нормальной цитратной плазмы. Затем во все пробирки с раствором хлорида кальция добавляют по 0,1 мл цитратной крови исследуемого.

Ровно через 4 мин инкубации этой смеси ее свертывающую активность тестируют на нормальной плазме.

Резкое снижение коагулирующей активности только в первой пробирке (с нормальной BaSO 4 -плазмой) свидетельствует о наличии у больного дефицита фактора IX (гемофилия В), только во второй пробирке (со старой сывороткой) - о дефиците фактора VIII (гемофилия А); если коррекция происходит в обеих пробирках (одинаково сильная), то, очевидно, имеется дефицит фактора XI или XII (см. табл. 14).

Коагуляционные тесты, дифференцирующие нарушения свертывания крови по внутреннему механизму (при нормальном протромбиновом и тромбиновом времени)

Дефицитные факторы в исследуемой плазме крови

Адсорбированная плазма (без фактора IX)

Старая сыворотка (без фактора VIII )

Смесь адсорбированной плазмы и старой сыворотки

Фактор VIII

Факторы XI или XII

Данный тест высокочувствителен, так как исследование проводится на разведенной в 20 раз крови при компенсации фактора 3 тромбоцитов гемолизатом. Единственный используемый реактив - гипотонический раствор хлорида кальция, что делает пробу общедоступной.

Столь же простой является методика коррекционных проб, выполняемых на основе протромбинового теста для дифференциации дефицита факторов II, V и VII+, X (в таблице).

Коагуляционные тесты, дифференцирующие дефицит факторов II, V и V II+, +Х, выполняемые на основе протромбинового теста (при нормальном тромбиновом времени)

Дефицитные факторы в исследуемой плазме крови

Компоненты нормальной крови, добавляемые к исследуемой плазме

Адсорбированная плазма (без факторов II, VII, X)

Старая плазма (без фактора V)

Профильтрованная плазма (без факторов VII и X )

Старая сыворотка (без факторов II и V )

Факторы VII или X

Примечание. (+) - нормализация свертывания; (-) - отсутствие нормализации свертывания.

Для того чтобы разграничить дефицит факторов VII и X, выполняется дополнительный коагуляционный тест с добавлением к исследуемой плазме крови раствора яда змеи гюрзы - препарат лебетокс (подбирается такая концентрация яда, которая в присутствии кефалина и хлорида кальция вызывает свертывание за 20-25 с; все ингредиенты берутся в количестве 0,1 мл и смешиваются) (таблица ниже).

С этой же целью используется препарат яда гадюки Расселла, обитающей в Индии (препарат стипвен ).

Коагуляционные тесты, дифференцирующие дефицит факторов VII и X с помощью яда гюрзы (лебетокс)

Дефицитные факторы в исследуемой плазме крови

Тесты

с ядом гюрзы+кефалин+хлорид кальция

с ядом гюрзы+кефалин+хлорид кальция+профильтрованная плазма крови (источник факторов V а VIII)

протромбиновый

Фактор VII

Примечание. (+) - нормализация свертывания; (-) - отсутствие нормализации свертывания.

Дифференциальную диагностику завершают при необходимости количественным определением дефицитных факторов или их специфических иммунных ингибиторов, для чего применяются специальные высокочувствительные стандартизированные методики. В этих методиках используется построение кривых разведения смешанных образцов нормальной плазмы крови с коррекцией дефицита всех факторов, кроме исследуемого. По этим кривым определяется активность исследуемого фактора в плазме больных.

Особенно важно количественное определение концентрации факторов VIII и IX, а также наличия их ингибиторов у больных гемофилией А и В (особенно до и во время хирургических вмешательств и при проведении интенсивной заместительной терапии), а также при отсроченных профузных послеродовых кровотечениях, когда приходится дифференцировать ДВС-синдром и более редкую патологию - появление иммунного ингибитора фактора VIII (еще намного реже - фактора V).

При глубоком дефиците фактора XIII (очень редкая наследственная патология) все коагуляционные пробы нормальны, но сгустки растворяются в 5М или 7М мочевине.

Помогает дифференцировать дефицит различных факторов свертывания также и учет степени и, особенно, сроков нормализации показаний тестов после внутривенного введения больным препаратов крови, т. е. учет коррекции in vivo по методике Л. 3. Баркагана .

Особенно эффективна эта методика при большой разнице продолжительности жизни дифференцируемых факторов в циркуляции. Так, продолжительность полужизни факторов протромбинового комплекса варьирует от нескольких часов (фактор VII) до нескольких дней (фактор II). Промежуточное положение между ними занимают факторы X (2-2,5 дня) и V (12-18 ч).

Поэтому после массивной струйной трансфузии плазмы протромбиновый индекс повышается при дефиците фактора VII очень кратковременно, при дефиците фактора V - несколько более длительно (примерно в 4-6 раз), а при дефиците факторов X и, особенно, II на более продолжительный срок (свыше 1-2 суток). Показательно в этом отношении и влияние на протромбиновый индекс препарата ППСБ (концентрата факторов VII, IX, X и II). Он также кратковременно нормализует протромбиновое время при дефиците фактора VII и более длительно (во много раз!) при дефиците факторов X и II. Поскольку в этом препарате отсутствует фактор V, данный дефицит им не корригируется.

Аналогичное различие выявляется при трансфузионной и заместительной терапии факторов внутреннего механизма свертывания (XII, XI, IX и VIII), что регистрируется активированным парциальным тромбопластиновым тестом.

Особый интерес представляет динамика коррекции уровня фактора VIII и показаний АПТВ при трансфузионной терапии гемофилии А и болезни Виллебранда . При первом из этих заболеваний выявляется немедленное максимальное улучшение свертываемости после трансфузии (струйно, быстро!) антигемофильной плазмы или введения криопреципитата, а затем довольно быстрое (за 10-18 ч) неуклонное снижение ее, тогда как при болезни Виллебранда наблюдается некоторое нарастание свертывающей активности в течение нескольких часов после трансфузии, а затем ее снижение - намного более медленное, чем при. В связи с этим при лечении болезни Виллебранда более редко прибегают к заместительным трансфузиям, чем при гемофилии А.

Исследование функциональной активности факторов свертывания и компонентов калликреин-кининовой и фибринолитической систем с помощью хромогенных субстратов

Методы основаны на исследовании активности протеолитических ферментов и их ингибиторов, участвующих в свертывании крови, фибринолизе и образовании кининов, по интенсивности и скорости расщепления специфически чувствительных к этим ферментам пептидов, при деградации которых освобождается красящий агент (β-нитроанилин).

Степень окраски реагирующей смеси определяется спектрофотометрически, и по ее интенсивности судят об активности соответствующих ферментов (факторов свертывания, калликреина, плазмина и др.), а по торможению процесса - об активности ингибиторов ферментов.

Так, например, действие гепарина и антитромбина III может быть оценено по ослаблению расщепления хромогенных субстратов фактором Xa или тромбином, а активность α 2 -антиплазмина - по ослаблению действия плазмина на соответствующий хромогенный субстрат. Хромогенные субстраты либо имеют цифровое обозначение (например, s-2222), либо именуются хромозинами с сокращенной приставкой, обозначающей тот фермент, к которому чувствителен этот субстрат (например, Chromozym PL - субстрат плазмина, Chromozym TH - субстрат тромбина, Chromozym PK - субстрат прекалликреина/калликреина и т. д.).

Хромогенные субстраты расширяют возможности исследования системы гемостаза, но пока недостаточно доступны для многих лабораторий. Некоторые исследования, выполненные с их помощью, не имеют преимуществ перед обычными коагуляционными тестами и дают совпадающие с ними результаты; в других случаях их использование упрощает и ускоряет исследование, делает его более точным; в третьих - эти методики имеют самостоятельное значение и не могут быть заменены коагуляционными тестами (например, определение прекалликреина).

Иммунологическое определение компонентов системы гемостаза

Иммунологическое определение компонентов системы гемостаза выполняется методами:

  • Иммунопреципитации;
  • Иммуноэлектрофореза;
  • Радиоиммунологическими и другими с соответствующими антисыворотками

При этом оценивается содержание в плазме крови антигена того или иного фактора свертывания (или его фрагментов), а не функциональная активность, которая может быть резко сниженной при нормальном содержании антигена в плазме. Такая ситуация характерна для всех тех случаев, когда в организме синтезируются аномальные (функционально неполноценные) факторы, сохраняющие свою антигенность, но лишенные способности участвовать в гемостазе.

Это позволяет разграничивать полное прекращение синтеза соответствующих факторов и образование их аномальных форм.

Вместе с тем ряд компонентов системы гемостаза может определяться только иммунологически.

В эту группу входят такие важные исследования, как определение следующих компонентов:

  • β-тромбоглобулина;
  • α2-макроглобулина;
  • протеинов C и S;
  • антигенов факторов VIII:C и VIII:R cof ;
  • продуктов фибринолиза (ПДФ);
  • неоантигенов комплексов тромбин - антитромбин III и плазмин - антиплазмин;
  • ряд других тестов.

Поэтому иммунологическое исследование существенно дополняет функциональную оценку разных звеньев системы гемостаза.

Диагностические тесты, основанные на использовании в качестве реагентов препаратов из змеиных ядов

Давно установлено, что яды многих змей содержат высокоактивные протеолитические ферменты, вызывающие свертывание крови и воздействующие на разные звенья коагуляционного каскада. Вследствие этого змеиные яды и выделенные из них коагулазы широко используются для распознавания нарушений гемостаза, количественного определения факторов свертывания, выявления и количественного определения растворимых фибрин-мономерных комплексов (РФМК) и ряда других исследований.

Пробы со змеиными ядами часто намного упрощают и делают более оперативной диагностику нарушений гемостаза.

В таблице приведены данные о механизме действия ядов на свертывающую систему крови и возможностях диагностического использования каждого из них.

Гемокоагулирующие свойства змеиных ядов и их использование в диагностической практике

Наименование змей * и препаратов из их ядов

Механизм действия на свертывающую систему

Отличия от свойств естественных факторов свертывания

Возможности диагностического применения

Гюрза Vipera lebetina); лебетокс (гадюка Расселла; стипвен)

Активатор фактора X (в присутствии кальция, фактора V и фосфолипида **)

В отличие от тканевого тромбопластина не содержит фосфолипида и не компенсирует его дефицита. Не нуждается для реализации свертывания в факторе VII

Определение фактора и тромбоцитов и его освобождения при агрегации; разграничение дефицита факторов VII и X; количественное определение фактора X

Эфа многочешуйчатая (Echis multisgumatos) и эфа песчаная (Echis carinatus); экарин, эхитокс

Активатор фактора II, образует атипичный тромбин-Ем

В отличие от α-тромбина, тромбин-Ем не блокируется гепарином и антитромбином III, не активирует фактора XIII (сгустки лизируются в мочевине), коагулирует весь пул фибриногена и все растворимые комплексы фибрин-мономеров

Выявление гиперкоагуляции, в том числе скрытой, при лечении гепарином; количественное определение всего фибриногена и РФМК с целью диагностики тромбинемии и ДВС- синдрома

Щитомордник обыкновенный (Aghistrodon halus halus), а также многие гремучие змеи тропической Америки и Азии; анцистрон-Н1, рептилаза, ботропклотаза, кроталаза, анкрод и др.

Свертывает фибриноген, отщепляя только пептиды А и образуя неполные мономеры фибрина (дес-А-фибрин)

Не отщепляет пептиды В, не активирует фактор XIII и тромбоциты, не вызывает ретракцию сгустков, не блокируется гепарином, быстро лизирует сгустки

Распознавание дисфибриногенемий; оценка роли гепарина в нарушении конечного этапа свертывания (в сопоставлении с тромбиновым временем)

* Все указанные змеи обитают в Средней Азии (в скобках указаны другие виды со сходным механизмом действия и фирменные препараты из них; гадюка Расселла обитает в Индии, гадюка Дабойа - в Австралии.

** Аналог кефалина и тромбоцитарного фактора 3.

Эти возможности еще более расширяются при одновременном использовании нескольких ядов и простейших общих коагуляционных тестов. Так, например, одновременное применение коагуляционных проб с ядом гюрзы и эфы позволяет легко дифференцировать дефицит факторов VII, Х-V и II (в таблице ниже), а с дополнительной коррекцией профильтрованной нормальной плазмой (источник факторов V и II) -дефицит факторов X и V.

Коагуляционные тесты с применением различных ядов, дифференцирующие дефицит факторов протромбинового комплекса

Дефицитные факторы в исследуемой плазме крови

Тесты

с ядом гюрзы+кефалином

с ядом эфы

протромбиновый

Примечание. (+) - нормализация свертывания; (-)-отсутствие нормализации свертывания.

Определение основных физиологических антикоагулянтов

Наиболее важное значение имеет определение активности основного физиологического антикоагулянта - антитромбина III, снижение которой может быть генетически обусловленным (первичная тромбофилия) либо вторичным вследствие интенсивного потребления (ДВС-синдром, массивные тромбозы) или ускоренного метаболизма (лечение гепарином, L-аспарагиназой, синтетическими контрацептивными средствами) и блокады иммунными комплексами, парапротеинами, фибронектином, белками острой фазы.

В любом случае снижение активности антитромбина III ниже 60-65 % поддерживает внутрисосудистое свертывание крови, делает менее выраженным антикоагулянтное действие гепарина. Вместе с тем очень часто между уровнем антитромбина III и снижением чувствительности к гепарину нет закономерного соответствия.

При этом обычно ослабление антикоагулянтного действия гепарина существенно преобладает над степенью снижения активности антитромбина III. Доказано, что при разных формах дефицита антитромбина III сродство его к гепарину может меняться в различной степени. Кроме того, разные фракции гепарина, соотношение которых в лекарственных средствах весьма изменчиво, также имеют различное сродство к антитромбину III. Поэтому практически важно исследовать как собственно активность антитромбина III, так и его способность превращаться под влиянием гепарина в быстродействующий антикоагулянт.

Антикоагулянтная активность антитромбина III

Антикоагулянтная активность антитромбина III определяется по способности исследуемой плазмы крови (разведенной - метод Копли-Винтерштейна или дефибринированной тепловой денатурацией при температуре 56 °С - методы Лолигера, Абильдгаарда и др.) инактивировать в течение определенного срока вводимый извне тромбин. Остаточная активность тромбина в такой плазме может определяться по ее свертывающей активности (на фибриногене, адсорбированной сульфатом бария плазме) либо по расщеплению хромогенного субстрата, чувствительного к тромбину или фактору Xa (поскольку антитромбин III инактивирует и этот фактор).

Гепарин-кофакторная активность

Гепарин-кофакторная активность содержащегося в плазме крови антитромбина III длительный период определялась с помощью теста толерантности плазмы к гепарину, который может считаться ориентировочным, поскольку дает очень большой разброс нормальных показателей и недостаточно воспроизводим.

Значительно более точны и воспро изводимы тесты, в которых исследуется влияние различных концентраций гепарина на тромбиновое время исследуемой плазмы, содержащей небольшое количество тромбоцитов. Сравнение проводится с удлинением тромбинового времени контрольной нормальной плазмы крови, к которой добавляются те же образцы гепарина.

Так, в тромбин-гепариновом тесте к исследуемой плазме крови добавляются такие количества гепарина, которые в контроле удлиняют тромбиновое время с 15 до 32-35 с (малая концентрация) и до 95-110 с (высокая концентрация гепарина). По этим данным рассчитываются индексы активности антитромбинов плазмы (ААП) и антикоагулянтного резерва плазмы (АРП).

Также широко используются сходные методики с оценкой степени инактивации тромбина как в коагуляционных тестах, так и на хромогенных субстратах.

Иммунологическое определение антигена антитромбина III

Иммунологическое определение антигена антитромбина III позволяет дифференцировать различные виды тромбофилии:

  • с недостаточным синтезом антитромбина III (уровень антигенного маркера снижен адекватно снижению активности);
  • с сохраненным синтезом аномальных и функционально неполноценных его форм (уровень антигенного маркера намного выше, чем активность).

Протеины C и S, тромбомодулин и α 2 -макроглобулин определяются иммуноэнзиматическими методами.

КОАГУЛЯЦИОННЫЙ ГЕМОСТАЗ

Вторичный, или коагуляционный, гемостаз обеспечивает плотную закупорку поврежденных сосудов красным тромбом , состоящим из сети волокон фибрина с захваченными ею клетками крови (тромбоцитами, эритроцитами и др.).

Упрощенная схема свертывания крови:
1)под влиянием «активатора протромбина» - тромбокиназы, образующейся при повреждении тканей, агрегации и разрушении тромбоцитов, и в результате сложных химических взаимодействий факторов свертывания крови, белок плазмы протромбин превращается в тромбин
2)тромбин в свою очередь, расщепляет растворенный в плазме фибриноген с образованием фибрина, волокна фибрина образуют основу тромба
Через несколько часов они активно сжимаются - происходит ретракция сгустка, в результате которой из него выдавливается светлая жидкость - сыворотка.

Свертывание крови в целом представляет собой многоступенчатый каскадный процесс , протекающий с участием многочисленных факторов свертывания. Все факторы присутствуют в плазме в неактивной форме. Они обозначаются римскими цифрами и соответствующими названиями, в которых отражена их функция. Для обозначения активированных факторов свертывания добавляется буква «а».

Следует помнить также , что фактор VI изъят из классификации, так как представляет собой активированный фактор V. Некоторые из факторов свертывания не имеют цифровых обозначений.

Процесс свертывания крови принято условно разделять на две основные фазы:
Фаза активации - многоступенчатый этап свертывания, завершающийся активизацией протромбина (фактор II) с превращением его в активный фермент тромбин (фактор IIа).
Фаза коагуляции - конечный этап свертывания, в результате которого под влиянием тромбина фибриноген (фактор I) превращается в фибрин.

Фаза активации

Центральным звеном сложных химических превращений этой фазы является образование так называемого «активатора протромбина», который представляет собой ферментный комплекс, состоящий из активированных факторов свертывания Ха, Va, ионов Са2+ и фосфолипопротеидов.

Источником последних могут быть:
фосфолипопротеиды , высвобождающиеся при повреждении тканей, в частности, эндотелия сосудов или соединительной ткани (тканевой тромбопластин - фактор III)
фосфолипопротеиды мембран тромбоцитов, выходящие в плазму при их разрушении (тромбоцитарный фактор 3)

Таким образом, формирование ключевого ферментного комплекса этой фазы - «активатора протромбина» - происходит двумя путями, в соответствии с которыми различают две системы свертывания:
1.Внешняя система , которая активируется при повреждении тканей в течение нескольких секунд. Фосфолипопротеиды, выходящие из тканевых клеток (тканевой тромбопластин, или фактор III), в присутствии ионов Са2+ активируют фактор VII (проконвертин). Последний в комплексе с фосфолипопротеидами поврежденной ткани и ионами Са2+, в свою очередь, активирует фактор Х, входящий затем в состав “активатора протромбина”.
2.Внутренняя система , активация которой происходит несколько медленнее (в течение минут) и без участия тканевого тромбопластина. Пусковым фактором этого механизма является фактор XII (фактор Хагемана), который активируется двумя путями:
при контакте крови с коллагеном субэндотелия поврежденного сосуда или с любой чужеродной поверхностью (стеклом, металлом, каолином и т. д.)
при ферментативном расщеплении фактора Хагемана протеолитическими ферментами (калликреином, тромбином, трипсином и др.) с участием высокомолекулярного кининогена (ВМК)

Фактор ХIIа активирует фактор XI. Последний, в свою очередь, активирует фактор IX. Наконец, фактор IХа образует ферментный комплекс с фосфолипопротеидами, высвобождающимися при разрушении тромбоцитов (т. е. с тромбоцитарным фактором 3), который в присутствии ионов Са2+ и плазменного фактора VIIIа (фактора Виллебранда) активирует фактор X. Последний также входит в состав “активатора протромбина”. Образовавшийся двумя путями ключевой ферментный комплекс - “активатор протромбина” - протеолитически расщепляет неактивный предшественник протромбин (фактор II) (молекулярная масса 72 000), в результате чего образуется активный протеолитический фермент тромбин (молекулярная масса 35 000), представляющий собой пептидазу. Действие тромбина не ограничивается только протеолизом фибриногена на следующем этапе свертывания крови. Тромбин способствует также необратимой агрегации тромбоцитов, а также активирует ряд факторов свертывания (V, VIII, XIII). Следует помнить, что внешний и внутренний механизмы свертывания взаимосвязаны между собой: между отдельными их этапами существуют своеобразные «мостики» - альтернативные пути для процессов коагуляции. Так, комплекс факторов ХIIа–калликреин–кининоген (внутренний механизм) ускоряет активацию фактора VII (внешний механизм), а фактор VIIa ускоряют активацию фактора IX (внутренний механизм).

Фаза коагуляции

В течение этой фазы происходит образование фибрина из его предшественника фибриногена.

Процесс протекает в два этап:
на первом этапе - фибриноген расщепляется тромбином на четыре растворимых мономера фибрина (по два пептида А и В), у каждого из которых имеются по 4 свободные связи
на втором этапе - мономеры соединяются друг с другом, формируя полимеры, из которых строятся волокна фибрина

Процесс необратимой полимеризации фибрина происходит с участием фибриностабилизирующего фактора XIII в присутствии ионов Са2+.

Однако на этой стадии трехмерная сеть волокон фибрина, которая содержит эритроциты, тромбоциты и другие клетки крови, все еще относительно рыхлая. Свою окончательную форму она принимает после ретракции сгустка, возникающей при активном сокращении волокон фибрина и выдавливании сыворотки. Благодаря ретракции сгусток становится более плотным и стягивает края раны.

!!! Следует упомянуть еще об одном возможном пути превращения фибриногена в фибрин на конечной стадии свертывания крови - о так называемом феномене паракоагуляции, который наблюдается, например, при синдроме диссеминированного внутрисосудистого свертывания крови (ДВС-синдроме).

В отличие от обычного (описанного выше) процесса полимеризации волокон фибрина из его мономеров, при этом синдроме значительно снижается чувствительность к тромбину и нарушается процесс полимеризации фибрин-мономеров. Это происходит в результате того, что часть фибрин-мономеров образуют с фибриногеном и продуктами его распада комплексные крупно- и среднемолекулярные соединения - растворимые фибрин-мономерные комплексы (РФМК). Они плохо реагируют на действие тромбина, обладая относительной тромбинрезистентностью, но образуют гель при добавлении к плазме этанола, протаминсульфата или бета-нафтола. Это и есть феномен неферментативного свертывания, или феномен паракоагуляции. Выявление РФМК имеет важное значение для диагностики ДВС-синдрома.

МЕТОДЫ ИССЛЕДОВАНИЯ свертывающей системы крови

Для определения состояния гемокоагуляции используют несколько групп методов:
ориентировочные (базисные) методы, характеризующие процесс свертывания в целом, отдельные его фазы, а также дающие возможность оценить внешний и внутренний механизмы коагуляции
методы, позволяющие дифференцировать дефицит отдельных факторов свертывания крови
методы, позволяющие выявить внутрисосудистую активацию системы свертывания крови

К базисным методам относятся:
1.определение времени свертывания крови
2.определение времени рекальцификации стабилизированной крови (плазмы)
3.протромбиновое время (протромбиновый индекс)
4.тромбиновое время

1. Время свертывания крови

1.1 Определение времени свертывания цельной нестабилизированной крови проводится непосредственно у постели больного.

Иглой без шприца пунктируют локтевую вену. Первые капли крови выпускают на ватный тампон и набирают по 1 мл крови в 2 сухие пробирки. Включив секундомер, ставят пробирки в водяную баню при температуре 37°С. Через 2–3 мин, а затем каждые 30 с пробирки слегка наклоняют, определяя момент, когда кровь свернется. Определив время образования сгустка крови в каждой из пробирок, вычисляют средний результат.

В норме время свертывания составляет 5–10 мин.

!!! Удлинение времени свертывания свидетельствует о значительных сдвигах в системе гемокоагуляции и чаще указывает на:
выраженную недостаточность факторов, участвующих во внутреннем механизме коагуляции
дефицит протромбина
дефицит фибриногена
наличие в крови ингибиторов свертывания, в частности гепарина

1.2 Метод Моравица
В клинике до сих пор используется еще один упрощенный метод определения времени свертывания крови. Он применяется, в основном, для динамического контроля за состоянием гемокоагуляции при лечении прямыми антикоагулянтами.

На предметное стекло наносят каплю крови, взятую из пальца или мочки уха. Включив секундомер, каждые 20–30 с в каплю крови опускают тонкий стеклянный капилляр. Время свертывания определяют в момент появления первой тонкой нити фибрина при вытягивании капилляра из капли крови.

В норме свертывание крови составляет около 5 мин.

2. Активированное время рекальцификации плазмы

Метод основан на измерении времени свертывания тромбоцитарной плазмы при добавлении в нее оптимального количества кальция хлорида или каолина, что обеспечивает стандартизацию контактной активизации факторов свертывания.

В пробирку с раствором кальция хлорида или каолина, установленную в водяной бане при температуре 37°С, добавляют 0,1 мл плазмы и по секундомеру определяют время образования сгустка.

В норме время рекальцификации плазмы с кальция хлоридом составляет 60–120 с, с каолином - 50–70 с.

Изменения этого показателя неспецифичны и указывают лишь на общую тенденцию к гиперкоагуляции (укорочение времени рекальцификации) или к гипокоагуляции (увеличение показателя).

Удлинение времени рекальцификации может быть обусловлено:
Недостаточностью большинства плазменных факторов свертывания (кроме факторов VII и XIII).
Дефицитом тромбоцитарного фактора III (при выраженной тромбоцитопении или нарушении реакции высвобождения).
Избыточным содержанием в плазме ингибиторов свертывания (гепарина)
Наличием ДВС-синдрома.

3. Активированное частичное (парциальное) тромбопластиновое время (АЧТВ)

Принцип метода заключается в определении времени свертывания плазмы в условиях стандартизации не только контактной, но и фосфолипидной (тромбопластиновой) активации факторов свертывания. С этой целью к плазме добавляют смесь каолина и кефалина (тромбопластиновый активатор), а также кальция хлорид и по секундомеру определяют время свертывания плазмы.

В норме АЧТВ (кефалин-каолиновое время) составляет 35–50 с.

Уменьшение АЧТВ свидетельствует о гиперкоагуляции и склонности к тромбозам, увеличение - о гипокоагуляции крови.

!!! АЧТВ чрезвычайно чувствительно к дефициту плазменных факторов свертывания, участвующих во внутреннем механизме свертывания (факторы XII, XI, IX, VIII) и не зависит от дефицита тромбоцитов или их функциональной недостаточности (в связи с добавлением кефалина).

АЧТВ удлиняется также при наличии в крови ингибиторов свертывания (гепарина) и может быть использован как чувствительный тест для контроля за лечением гепарином.

4. Протромбиновое время (ПВ, протромбиновый индекс)

Метод представляет собой еще одну модификацию определения времени рекальцификации плазмы при добавлении в нее тканевого тромбопластина человека или кролика, что приводит к «запуску» свертывания по внешнему механизму. Тканевой тромбопластин в комплексе с фактором VII и ионом Са2+ активирует фактор X, входящий в состав «проактиватора протромбина».

В пробирку с 0,1 мл плазмы и 0,1 мл раствора тромбопластина, установленную в водяной бане при температуре 37°С, добавляют 0,1 мл раствора кальция хлорида и по секундомеру определяют время образования сгустка.

В норме протромбиновое время составляет 12–18 с и во многом зависит от активности тканевого тромбопластина, использованного при исследовании. Поэтому в большинстве случаев для определения этого показателя одновременно по той же методике исследуют плазму донора и вычисляют так называемый протромбиновый индекс (ПИ) :

ПИ=(ПBд/ ПВб)*100%

Где ПИ - протромбиновый индекс, ПBд и ПВб - протромбиновое время донора и больного, соответственно. В норме протромбиновый индекс составляет 90-100%. Чем больше протромбиновое время, свидетельствующее о гипокоагуляции крови, тем меньше значения протромбинового индекса.

Удлинение протромбинового времени (уменьшение протромбинового индекса) интегрально отражает недостаточность плазменных факторов, участвующих во внешнем механизме свертывания и в активации протромбина (VII, X, V), а также на конечных этапах коагуляции (I и II).

Наиболее частыми причинами такого изменения являются:
Прием непрямых антикоагулянтов (фенилин, синкумор, неодикумарин и др.).
Дефицит соответствующих витамин К-зависимых факторов свертывания (факторы II, VII, IХ, X) при тяжелых поражениях паренхимы печени (гепатит, цирроз, рак) и недостаточности витамина К (механическая желтуха, нарушения всасывания в кишечнике, дисбактериоз кишечника и т. п.).
Дефицит фибриногена (гипофибриногенемия), являющегося К-независимым фактором свертывания (тяжелые поражения паренхимы печени и др.).
Наличие феномена паракоагуляции, в частности, при ДВС-синдроме.

МНО (Международное нормализованное отношение, INR) - показатель системы свертывания крови.

Основные показания к применению: лечение антикоагулянтами непрямого действия – варфарином, аценокумаролом и другими аналогами.
МНО – показатель, рассчитывающийся при определении протромбинового времени.
Определение МНО гарантирует возможность сравнения результатов при определении ПВ, обеспечивая точный контроль терапии непрямыми антикоагулянтами.
Для диагностики нарушений свертывания крови используют показатель ПВ, выражающийся в секундах.
В тех случаях, когда определение ПВ применяют для оценки проведения лечения варфарином, используется показатель МНО - международное нормализованное отношение (INR - International Normalized Ratio).
Этот показатель позволяет выразить результаты ПВ с учетом использования в различных лабораториях коммерческих препаратов тромбопластина, используемого в определении ПВ.
Такой подход гарантирует возможность сравнения результатов полученных в разных лабораториях и проводить более точный контроль при лечении антикоагулянтами непрямого действия.
МНО вычисляется при делении ПВ пациента на значение нормального ПВ, далее результат возводится в степень, показатель которой равен международному индексу чувствительности (ISI или МИЧ - международный индекс чувствительности) тромбопластина:
МНО = (ПВ пациента/среднее нормальное ПВ)
Доза антикоагулянта подбирается так, что бы поддерживать МНО на необходимом уровне, в зависимости от заболевания.
Наиболее часто используемым антикоагулянтом непрямого действия в клинической практике является варфарин.
Применять анализ целесообразно с одновременным определением АЧТВ (активированное частичное тромбопластиновое время).

Референтные значения МНО:
В каждом конкретном случае необходимо поддерживать МНО на определенном уровне. Дозы назначаемого препарата выбираются лечащим врачом.
В норме: МНО = 0,8 - 1,15.
При лечение венозного тромбоза: МНО = 2,0-3,0.
Лечение артериальной тромбоэмболии, рецидивирующей системной эмболии: МНО= 3,0 -4,0.
Профилактика пристеночных тромбозов при мерцательной аритмии: МНО=1,5-2.

Факторы искажающие результат:
Недостаточное наполнение пробирки кровью, недостаточное перемешивание крови с антикоагулянтом, а также несвоевременная отправка пробы в лабораторию.
Гемолиз вследствие травматичной пункции вены или небрежного обращения с пробой крови.

Увеличение показателя МНО:
Болезни печени.
Дефицит витамина К.
Внутрисосудистое свёртывание.
Наследственный дефицит факторов II (протромбин), V, VII, X.
Афибриногенемия.
Гипофибриногенемия (уровень фибриногена менее 50 мг/100 мл).
Дисфибриногенемия.
Лечение кумарином.
Циркулирующие антикоагулянты.
____________________________________________________________________________________________________________________________

5. Тромбиновое время

Метод оценки тромбинового времени заключается в определении времени свертывания плазмы при добавлении в нее тромбина со стандартной активностью, который обладает способностью индуцировать превращение фибриногена в фибрин без участия других факторов свертывания крови.

В пробирку с 0,2 мл плазмы, установленную в водяной бане при температуре 37°С, добавляют 0,2 мл стандартного раствора тромбина и по секундомеру определяют время образования сгустка. В норме тромбиновое время составляет 15–18 с.
Определение тромбинового времени позволяет оценить конечный этап свертывания крови (превращение фибриногена в фибрин). Тромбиновое время, таким образом, зависит от концентрации фибриногена, его свойств и наличия в крови ингибиторов тромбина (гепарин, антитромбин III).

Причинами удлинения тромбинового времени являются:
Афибриногенемия и гипофибриногенемия.
ДВС-синдром и другие патологические состояния, сопровождающиеся феноменом паракоагуляции с нарушением процесса полимеризации фибрина и нарастанием концентрации в крови продуктов деградации фибрина (ПДФ).
Тяжелые поражения белковосинтетичекой функции печени, сопровождающиеся снижением синтеза фибриногена.
Острый фибринолиз.
Увеличение в крови концентрации ингибиторов тромбина (антитромбина III, гепарина).

Определение тромбинового времени используется для контроля за лечением гепарином и фибринолитиками.

6. Аутокоагуляционный тест (АКТ)

Метод заключается в исследовании динамики образования и инактивации тромбина в разведенной в 20 раз и гемолизированной крови пациента при добавлении гипотонического раствора кальция хлорида. Оценивается свертывающая активность гемолизат-кальциевой смеси с помощью гемокоагулографа.
Гемолизированные эритроциты обеспечивают контактную и фосфолипидную активацию процесса свертывания (подобно каолину и кефалину при исследовании активированного частичного тромбопластинового времени). Таким образом, аутокоагуляционный тест оказывается чувствительным к нарушениям внутреннего механизма свертывания.

Показатель
А - Свертывающая активность на 2-й мин инкубации, %
Нормальные величины = 15,5 ± 3,0
Показатель
МА - Максимальная свертывающая активность, %
Нормальные величины = 100 ± 1,1
Показатель
T1 - Время достижения 1/2 максимальной активности, мин
Нормальные величины = 3,7 ± 0,2
Показатель
Т2 - Время достижения максимальной активности, мин
Нормальные величины = 9,5
Показатель
Т - Время от начала инкубации до момен-та, когда активность снижается до 1/2 МА
Нормальные величины = 35

Увеличение значений T1 и Т2, а также уменьшение А и МА свидетельствуют о гипокоагуляции, которая может быть обусловлена:
дефицитом факторов внутреннего механизма свертывания (XII, XI, IX, VIII)
дефицитом факторов X и V (“проактиватора протромбина”)
дефицитом факторов конечного этапа коагуляции (I и II)
избытком ингибиторов тромбина (гепарин, антитромбин III и др.)

7. Тромбоэластография

Широкое распространение в клинической практике получил метод тромбоэластографии, который позволяет регистрировать свертывание крови и изменения упругости сгустка крови во времени (ретракцию и лизис).

Основной частью любого типа тромбоэластографа (гемокоагулографа) является кювета, в которую вносят исследуемую кровь. В кювету погружают стержень с диском или пластиной на конце, которая не касается ее стенок. Стержень связан с регистрирующим устройством тромбоэластографа. Специальное устройство придает кювете колебательно-вращательные движения, которые могут передаваться на стержень (и регистрирующее устройство), только когда в кювете, заполненной кровью, начнется образование нитей фибрина. По мере образования и уплотнения сгустка амплитуда колебаний стержня увеличивается и достигает максимума.

Предложено множество количественных показателей тромбоэластограммы, три из которых заслуживают внимания:
1.Время реакции (R) - время от начала исследования до начала свертывания крови (первых отклонений тромбоэластограммы от прямой линии).
2.Время коагуляции (К) - время от начала движений стержня прибора до момента, когда амплитуда тромбоэластограммы составит 20 мм.
3.Максимальная амплитуда (МА) тромбоэластограммы .

Считается, что время R характеризует в основном первую фазу коагуляции, а время К - интенсивность образования фибрина. Нормальные величины приведенных трех показателей тромбоэластограммы обычно устанавливают эмпирически для каждого прибора. В среднем у здоровых людей время реакции (R) составляет 4-10 мин, время коагуляции (К) - 5-7 мин, а максимальная амплитуда (МА) - 45-65 мин.

!!! Для гиперкоагуляции крови характерно укорочение R, К и увеличение МА, а для гипокоагуляции - удлинение R и К и уменьшение МА.

Следует отметить , что в целом чувствительность тромбоэластографии к нарушениям гемокоагуляции достаточно низкая, сопоставимая с чувствительностью времени свертывания крови, а тромбоэластографические показатели лишь весьма приблизительно отражают отдельные стадии процесса коагуляции. Тем не менее, тромбоэластография может использоваться в клинике для динамического контроля за лечением антикоагулянтами.

____________________________________________________________________________________________________________________________

Принципы оценки базисных методов диагностики нарушений коагуляционного гемостаза
Оценка свертывания крови с помощью описанных базисных тестов позволяет составить общее ориентировочное представление о процессе коагуляции крови. При этом следует иметь в виду, что такие показатели как время свертывания крови и время рекальцификации плазмы обладают весьма низкой чувствительностью и специфичностью, и, следовательно, информативностью: они изменяются, как правило, лишь при выраженных нарушениях коагуляции крови и не позволяют судить (хотя бы предположительно) о повреждениях отдельных ее механизмов и этапов.
Преимуществом в этом отношении обладают три базисных теста:
1.тромбиновый
2.протромбиновый
3.АЧТВ или АКТ (их изменения сходны)

Они позволяют судить не только о состоянии всей свертывающей системы в целом, но и о возможной недостаточности отдельных факторов свертывания.
При дефиците фактора VII (проконвертина), участвующего только во внешнем механизме свертывания, удлиняется только протромбиновое время, а тромбиновый тест и АЧТВ остаются без изменения.
При дефиците факторов XII, XI, IX, VIII и прекалликреина, участвующих только во внутреннем механизме коагуляции, изменяются АЧТВ (и АКТ), а протромбиновое и тромбиновое время свертывания остаются нормальными.
При дефиците факторов X, V, II, на которых замыкаются оба механизма свертывания, нарушения обнаруживаются как в протромбиновом тесте, так и в АЧТВ. Тромбиновое время при этом не изменяется.
Наконец, при нарушениях количества, структуры и свойств фибриногена (фактор I) изменения выявляются при выполнении всех трех базисных тестов. При этом целесообразно также оценить уровень фибриногена в сыворотке крови (см. ниже).
При дефиците фактора XIII показания всех трех базисных тестов оказываются нормальными.

Дальнейшее уточнение механизмов нарушения коагуляции крови производят с помощью дифференцирующих тестов, подробно описанных в специальных руководствах.

____________________________________________________________________________________________________________________________

8. Определение фибриногена

Наибольшее распространение в клинической практике получили два метода определения фибриногена:
1.Гравиметрический метод заключается в высушивании и взвешивании сгустка, который образуется при добавлении в плазму 0,2 мл стандартного раствора тромбина.
2.Колориметрический метод также основан на превращении фибриногена в фибрин путем добавления в плазму раствора тромбина. Фибриновый сгусток подвергают гидролизу, а в гидролизат добавляют биуретовый реактив (см. выше) и колориметрируют, определяя концентрацию белка.

Оба метода дают близкие результаты . Содержание фибриногена в плазме здорового человека составляет 2–4 г/л.

Уменьшение концентрации фибриногена наблюдается:
при врожденной недостаточности фибриногена (афибриногенемия, гипофибриногенемия, некоторые варианты дисфибриногенемии)
при тяжелых заболеваниях паренхимы печени (цирроз, рак, гепатит)
при ДВС-синдроме
при остром фибринолизе

Нередко встречается увеличение концентрации фибриногена. Наиболее частыми причинами гиперфибриногенемии являются:
острые инфекционные заболевания
острые и хронические воспалительные заболевания
злокачественные новообразования
тромбозы и тромбоэмболии, в том числе у больных острым инфарктом миокарда, ишемическим инсультом и т. п.

9. Определение высокомолекулярных производных фибриногена

Наиболее важными в практическом отношении высокомолекулярными производными фибриногена являются:
1) Растворимые фибрин-мономерные комплексы (РФМК) - представляет собой высокомолекулярные растворимые комплексы фибрин-мономера с фибриногеном и с продуктами расщепления фибриногена/фибрина. В норме РФМК не обнаруживаются. Появление РФМК в плазме свидетельствует о нарушении процесса нормальной полимеризации фибрин-мономеров. РФМК плохо коагулируют под влиянием тромбина, обладая относительной тромбинрезистентностью
2) Продукты деградации фибриногена (ПДФ) - в небольших количествах образуются и в норме в результате расщепления фибрина, присутствующего в плазме и в отложениях, под влиянием плазмина (см. ниже). Повышение содержания ПДВ - признак усиливающегося внутрисосудистого свертывания крови или массивных тромбоэмболий, сопровождающихся активацией фибринолитической системы.

Определение растворимых фибрин-мономерных комплексов (РФМК). Для выявления РФМК в клинике чаще используются так называемые паракоагуляционные тесты. Они основаны на феномене неферментативного свертывания РФМК: при добавлении к плазме, в которой содержатся РФМК, 50% раствора этанола или 1% раствора протамина сульфата из растворимых комплексов фибрин-мономера с продуктами расщепления фибриногена/фибрина и фибриногеном высвобождаются фибрин-мономеры, которые затем полимеризуются с образованием геля. Проба с 50% раствором этанола является более чувствительной. В пробирку набирают 0,15 мл 50% этанола и 0,5 мл плазмы. Пробирку встряхивают и помещают в штатив при комнатной температуре. Проба расценивается как положительная, если через 1–10 мин в пробирке образуется гель. Помутнение или появление небольшой зернистости является признаком отрицательной пробы (нормальный показатель). Проба с протамина сульфатом позволяет выявить не только полимеризацию фибрин-мономеров, высвобождающихся из РФМК, но и обнаружить осаждение ранних продуктов расщепления фибриногена/фибрина.

Перед началом исследования предварительно готовят 5 разведений 1% раствора протамина сульфата (в 5, 10, 20, 40 и 80 раз). В каждое из приготовленных разведений добавляют 0,2 мл плазмы. Пробирки оставляют на 30 мин при комнатной температуре. Оценка результатов проводится так же, как и в пробе с этанолом. В норме отрицательный результат обнаруживают во всех разведениях протамина сульфата. Если хотя бы в одном из разведений образуется гель, результат оценивается как положительный.

Положительная проба с этанолом, а также положительный результат протаминсульфатной пробы в первых 1–2 разведениях свидетельствует о наличии в плазме РФМК. Образование геля во всех разведениях протамина сульфата больше характерно для повышения уровня ранних продуктов расщепления фибриногена/фибрина.

!!! Положительные результаты обеих проб встречаются при ДВС-синдроме или массивных тромбозах и тромбоэмболиях, сопровождающихся активацией системы фибринолиза.

Определение продуктов деградации фибрина (ПДФ). Для определения ПДФ в крови используют различные иммунологические и неиммунологические методы. Наиболее простым из них является проба с протамина сульфатом. В пробирку набирают 0,4 мл свежей сыворотки крови и добавляют 0,1 мл 1% раствора протамина сульфата. Помутнение или мелкую зернистость оценивают как отрицательный результат (норма), а образование геля, хлопьев или нитей фибрина - как положительный, свидетельствующий о повышении содержания ПДФ в сыворотке крови больше 0,015 г/л.
В основе иммунодиффузного метода определения ПДФ лежит образование дуг преципитации на агаровой пластине, на которую наносят на определенном расстоянии друг от друга исследуемую и антифибриногеновую сыворотки. Обычно используют стандартную антисыворотку, которую помещают в центральные лунки на агаровой пластинке. В периферические лунки вносят исследуемую сыворотку в различных разведениях (в 2, 4, 8, 16 и 32 раза). Результат определяют через сутки инкубации при комнатной температуре. При повышении в сыворотке ПДФ более 0,016–0,020 г/л на агаровой пластинке определяются дуги преципитации. Если известна чувствительность стандартной антифибриногеновой сыворотки, иммунодиффузный метод позволяет количественно определять содержание ПДФ в исследуемой сыворотке.

!!! Повышение концентрации ПДФ в сыворотке крови более 0,015 г/л чаще всего наблюдается:
при ДВС-синдроме
при массивных тромбозах и тромбоэмболиях, сопровождающихся активацией фибринолиза
при лечении фибринолитическими препаратами

ФИЗИОЛОГИЧЕСКИЕ АНТИКОАГУЛЯНТЫ

В условиях физиологической нормы постоянно встречаются ситуации, которые «запускают» процесс плазмокоагуляции. Ограничение этого процесса осуществляется с помощью так называемых физиологических антикоагулянтов, которые, будучи естественными ингибиторами различных факторов коагуляции, тормозят начавшееся свертывание крови.

Различают две группы физиологических антикоагулянтов:
1.первичные , постоянно содержащиеся в крови - антитромбин III, гепарин, протеин С, a2-макроглобулин и др.
2.вторичные - образующиеся только в процессе свертывания крови и фибринолиза

Антитромбин III является важнейшим ингибитором свертывания, на долю которого приходится 3/4 активности всех физиологических ингибиторов коагуляции. Он инактивирует все ключевые факторы свертывания: тромбин (IIа), фактор Ха, IХа, ХIа, VIIa, XIIa. Кроме того, антитромбин III является плазменным кофактором гепарина, образуя с ним комплекс, обладающий выраженными антикоагулянтными свойствами. Антитромбин III и гепарин взаимодействуют с факторами свертывания и порознь, но в этом случае ингибирование обратимо.

!!! Дефицит антитромбина III (наследственный или приобретенный) сопровождается тяжелым тромботическим состоянием, характеризующимся рецидивирующими тромбозами магистральных вен конечностей и внутренних органов, тромбоэмболиями легочной артерии, инфарктами различных органов. При этом антикоагулянтная активность гепарина, вводимого парентерально, резко снижается из-за отсутствия кофактора - антитрипсина III.

К другим первичным антикоагулянтам относятся:
гепарин - ингибитор поливалентного действия, ограничивающий все фазы плазмокоагуляции, особено в комплексе с антитромбином III
a2-макроглобулин - белок, являющийся ингибитором тромбина, плазмина, калликреина
протеин С - витамин-К-зависимый физиологический антикоагулянт, инактивирующий факторы VIII и V при участии двух кофакторов (протеина S и тромбомодулина).
a-антитрипсин I - ингибитор тромбина, факторов IXa, XIa, XIIa, плазмина и калликреина и др

Из вторичных физиологических антикоагулянтов, образующих в процессе начавшегося свертывания и фибринолиза, наибольший практический интерес вызывают:
фибрин - обозначаемый антитромбином I
продукты деградации фибриногена/фибрина (ПДФ)

!!! Образующийся в процессе коагуляции плазмы фибрин и являющийся по сути конечным продуктом этого процесса одновременно адсорбирует и инактивирует большие количества тромбина и фактора Ха, т. е. функционирует и как физиологический антикоагулянт.

!!! Продукты деградации фибриногена/фибрина (ПДФ), образующиеся в результате действия плазмина, ингибируют как агрегацию тромбоцитов, так и процесс полимеризации фибрин-мономеров, т. е. конечный этап свертывания - образование фибрина.

В клинической практике наибольшее распространение в последние годы получило определение функциональной активности антитромбина III как важнейшего физиологического антикоагулянта. Методы основаны на оценке интенсивности инактивации стандартных доз тромбина с регистрацией по времени свертывания или на количественном определении содержания в плазме антигена антитромбина III с применением стандартных антисывороток (иммунологический метод).


Владельцы патента RU 2394648:

Группа изобретений относится к медицинской технике и предназначена для определения коагуляции крови. Тест-элемент содержит первую и вторую поверхности, расположенные на заданном расстоянии напротив друг друга. Обе поверхности содержат две по существу одинаковые структуры, образующие конгруэнтные участки с высокой и низкой поверхностной энергией. Участки с высокой поверхностной энергией образуют систему распределения пробы с чувствительными к коагуляции участками. По меньшей мере, один чувствительный участок снабжен, по меньшей мере, одним вызывающим коагуляцию реагентом. Тест-система коагуляции содержит тест-элемент, устройство регистрации, обрабатывающее устройство и устройство отображения. Способ изготовления тест-элемента включает формирование структуры участков с высокой и низкой поверхностной энергией, покрытие, по меньшей мере, одного заранее определенного чувствительного участка, по меньшей мере, одним вызывающим коагуляцию реагентом, наложение слоев первой и второй поверхностей на противоположные участки центрального слоя. Способ определения коагуляции в сыворотке или жидкости пробы цельной крови включает нанесение сыворотки или жидкости пробы цельной крови на тест-элемент коагуляции, введение тест-элемента коагуляции в измерительное устройство, считывание выходных значений с устройства отображения. Устройства и способы позволяют достичь повышения эффективности определения коагуляции цельной крови за счет минимальных этапов: нанесение крови на полоску, автоматический расчет точного результата, включая средство для контроля качества "на полоске"; удешевления способа изготовления тест-элемента коагуляции за счет уменьшения числа сложных этапов. 4 н. и 19 з.п. ф-лы, 14 ил.

Область, к которой относится изобретение

Настоящее изобретение относится к тест-системе коагуляции для измерения коагуляции крови в образце физиологической жидкости.

Предпосылки создания изобретения

Процесс коагуляции крови является сложным и затрагивает большое число компонентов крови, включая образование волокон фибрина. Эти волокна образуются путем полимеризации молекул белка, называемого фибриногеном. Фибриноген образуется при катализе из энзима, называемого тромбином, который сам образуется при катализе из энзима протромбина.

Тест протромбинового времени (ПВ тест) обычно используют в больницах, клиниках и лабораториях для определения способности пробы крови свертываться. Этот тест широко используется для предоперационных оценок и для антикоагуляционной терапии, назначаемой, например, кардиологическим пациентам. ПВ тест основан на продолжительности времени, необходимого для свертывания образца крови под действием некоторых реагентов, таких как ионы кальция и тромбопластин.

Аналогично пациентам, страдающим заболеваниями сердечно-сосудистой системы и (или) с механическими клапанами сердца, часто назначают лечение с ежедневным приемом разжижающих кровь лекарственных средств, обычно называемых антикоагулянтами. Эффективное количество антикоагулянта в крови должно поддерживаться на уровне, который врач считает правильным. Последствия неправильных количеств антикоагулянта в крови тяжелые, приводящие к нарушению мозгового кровообращения или кровотечению.

Для поддержания такого баланса пациенты вынуждены часто, с высокими затратами и неудобством, посещать клинику, в которой можно тщательно контролировать способность крови свертываться. Мониторинг проводят с периодическими измерениями ПВ в соответствии с Международным нормализованным отношением (показатель состояния системы свертывания крови) - MHO. Например, MHO больше 3 приводит к более высокому риску тяжелого кровотечения, в то время как MHO 6 повышает риск развития сильного кровоизлияния почти в 7 раз, чем у пациентов с MHO ниже 3. В противоположность этому, MHO ниже 2 связано с повышенным риском нарушения мозгового кровообращения. Поэтому мониторинг протромбинового времени рекомендован для обеспечения уровней доз в пределах терапевтического диапазона.

Посредством мониторинга таких компонентов, как уровни фибриногена и протромбина в крови, врач может получить значимые данные в отношении свертывания крови пациента или других клинических состояний. Белки, участвующие в процессе свертывания (коагуляции), обычно называют факторами. Факторы пронумерованы I-XIII, и ссылка на фактор по его номеру идентифицирует соответствующий белок для специалистов.

Активация протромбина происходит в результате действия фактора свертывания крови Ха, который образуется за счет активации фактора Х во время протеолиза. Существуют два молекулярных канала, приводящих к активации фактора Х для получения фактора Ха, в основном упоминаемые как наружный и внутренний каналы свертывания крови. При наружном канале используется только тканевый фактор, специфический для поврежденной мембраны, в то время как при внутреннем канале используются только факторы, являющиеся внутренними для циркулирующей крови. Оба эти канала связаны с взаимодействием энзимов, участвующих в процессе свертывания крови, с поверхностными белками и фосфолипидами.

Предложены различные тесты для измерения коагуляции и при наружном, и при внутреннем каналах пробы крови пациента. Например, при тесте активированного частичного тромбопластинового времени (АРТТ) измеряются факторы коагуляции внутреннего канала. Эти факторы включают факторы XII, XI, X, IX, VIII, V, II и I, которые могут быть аномальны вследствие наследственности, заболевания или влияния гепариновой терапии. Таким образом, АРТТ тест полезен в качестве дооперационного скрининга и для мониторинга гепариновой терапии. Аналогично, тест скорости полимеризации фибриногена с использованием теста тромбинового времени (ТВ) или количественного теста фибриногена обеспечивает полезную диагностическую информацию для пациентов при терапии варфарином (торговое название: Кумадин®) или близкими фармацевтическими препаратами.

Как упомянуто выше, наиболее широко используемым тестом для мониторинга антикоагуляционной терапии является одноэтапный тест протромбинового времени. Измеряемая с помощью ПВ теста реакция следующая:

Кровь+Тромбопластин+Са ++ →Сгусток фибрина

Тромбопластин является препаратом фосфолипида-белка, который активирует свертывание в образцах крови. Тромбопластины имеются в продаже от различных изготовителей и могут быть получены из экстрактов легких, мозга или плаценты, а также синтезированы. В основном, значения ПВ для разных лабораторий не совпадают, таким образом, такие значения неприемлемы для определения терапевтических диапазонов для антикоагуляционной терапии.

Поэтому в начале 1980-х годов Всемирной организацией здравоохранения разработано и принято Международное нормализованное отношение (MHO). Нормализованное отношение призвано обеспечить стандартизацию результатов от различных тромбопластинов и привести в соответствие анализаторы коагуляции. Следовательно, под этим отношением изготовитель присваивает Международный индекс чувствительности (МИЧ) каждой партии тромбопластина, который указывает относительную чувствительность тромбопластина по сравнению с международным референтным тромбопластином. Например, если тромбопластин обладает той же чувствительностью, что и референтный тромбопластин, то МИЧ составляет 1,0. Значение МИЧ больше 1,0 указывает, что тромбопластин не является столь же чувствительным, как референтный тромбопластин. Выражение внизу используется для расчета значения MHO с использованием значения ПВ и значения МИЧ:

Среднее нормальное ПВ определено в каждой лаборатории посредством усреднения значений ПВ на число здоровых людей.

Обнаружение образования сгустков фибрина восходит к середине 1850-х годов, и первоначально обнаружение осуществлялось вручную. К 1910 г. был разработан аппарат для определения изменения вязкости пробы крови по мере ее свертывания. Этот аппарат обеспечивал прямую индикацию напряжения, для которого можно было построить график зависимости от времени свертывания. В 1920-е годы стали известны фотоэлектрические методы обнаружения различных изменений коэффициента пропускания света пробы крови во время свертывания с изменением оптического коэффициента пропускания пробы, наблюдаемого с помощью гальванометра. Последующие исследования коагуляции плазмы крови с использованием улучшенных фотоэлектрических методов проводили в середине 1930-х годов с наблюдением возрастания оптической плотности по мере свертывания крови. Это привело к разработке прибора, который показывает возрастающую плотность по мере образования сгустка.

Следовательно, современные системы регистрации оптической плотности работают по принципу того, что возрастание оптической плотности коагулирующей пробы снижает пропускание света через пробу. В типичной системе регистрации оптической плотности исследуемую пробу крови помещают в прозрачную кювету и наблюдают реакцию со стимулирующим коагуляцию реагентом, таким как тромбопластин. Световое или электромагнитное излучение в видимой или близкой инфракрасной области спектра затем пропускали через смесь плазмы-реагента по мере свертывания пробы. Поскольку биохимическое изменение, приводящее к образованию фибрина, происходит внутри пробы, оптическая плотность пробы возрастает. Выходное напряжение, соответствующее оптической плотности пробы, позволяет после обработки с помощью блока обработки, определить коагуляцию пробы.

В то время как давно признано существование взаимосвязи между уровнями фибриногена (фибрина) и оптической плотностью, возникли широкие разногласия в отношении сущности и правильной методологии измерения этой взаимосвязи, и введено множество параметров тестов для определения уровней фибриногена с использованием данных оптической плотности.

Далее, возросшие познания в отношении негативного влияния нерегулярного времени коагуляции крови, принятие самоконтроля и самолечения привело к разработке множества мониторов коагуляции крови и способов персонального использования и диагностики на месте. Однако этим устройствам еще недостает этапа отработки, экономичности и удобства, известных для систем мониторинга уровня глюкозы на дому у пациентов, страдающих диабетом.

Пример способа и системы для измерения времени коагуляции крови описан в патенте US 4252536. Способ включает обеспечение смеси пробы крови и реагента, воздействие на смесь пучка света и регистрацию света, отраженного от смеси, получение представительного электрического сигнала. Затем по электрическому сигналу определяют время, когда происходит наиболее быстрое изменение электрического сигнала, а затем определяют в качестве конечной точки момент времени перед первым временем, когда происходит изменение, которое составляет 1/n от наиболее быстрого изменения, где n больше 1. Большинство способов измерения времени коагуляции основаны на плазме, вводимой в кювету, и на анализе свойств коагуляции за некоторый период времени.

В ЕР 1162457 описана тест-система для определения соответствующего вещества, способствующего коагуляции для назначения пациенту в качестве терапии для улучшения функции свертывания с использованием трех пробирок с пробами для получения нужного количества крови.

В патенте US 6066504 описана система электродов, которая обеспечивает количественное измерение изменений вязкости за некоторые интервалы времени, что является показателем коагуляции или лизиса пробы крови.

В ЕР 974840 описано жидкостное диагностическое устройство для измерения концентрации аналита или свойств биологической жидкости с использованием оптических устройств регистрации.

В WO 20047/044560 описано фотометрическое определение времени коагуляции в неразбавленной цельной крови с емкостью для приема пробы неразбавленной цельной крови, источником для испускания света и фотоприемником для измерения количества света от указанной емкости.

В патенте US 6084660 описано жидкостное медицинское диагностическое устройство, содержащее у одного конца отверстие для введения пробы и у другого конца надувную камеру для всасывания проб в измерительную область, которое измеряет концентрацию аналита или физическое свойство цельной крови, в частности время коагуляции, только после подтверждения того, что проба цельной крови введена в устройство.

В WO 2002/086472 описано использование флуоресцентных молекулярных роторов, у которых меняется интенсивность флуоресценции в зависимости от вязкости среды. Изобретение дополнительно относится к классу молекулярных двигателей, которые при модифицированной углеводородной цепи или гидрофильной группе позволяют измерить вязкость мембраны или жидкости.

В публикациях заявок на патент US 2002/0110486 А1 и US 2003/0031594 А1 описана тест-полоска, содержащая множество зон реакции, используемых для обеспечения качества. Тест-полоска требует объема примерно 20 мкл крови. Однако если пользователь проводит тест часто, как этого требует правильное выполнение коагуляционной терапии, эти большие объемы проб неудобны и являются недостатком.

В заявке РСТ/ЕР 2004/002284 описан тест-элемент с сухим реагентом для фотометрической регистрации и количественного определения аналита, например глюкозы, в физиологической жидкости, например крови, с системой распределения проб по меньшей мере с двумя чувствительными участками, который снабжен встроенной калибровочной системой и который требует очень малых объемов проб примерно 0,5 мкл.

Однако до настоящего времени не существует тест-системы, которая пригодна для измерения коагуляции пробы крови и которая снабжена встроенным устройством контроля качества и требует только малых объемов проб.

Соответственно в основу настоящего изобретения положена задача обеспечить тест-систему для определения коагуляции цельной крови, которая требует только минимальных этапов, таких как нанесение крови на полоску, которая обеспечивает последующий автоматический расчет точного результата теста, включая средство для контроля качества "на полоске", и которая требует только малого количества пробы.

Другой целью настоящего изобретения является обеспечение способа изготовления тест-элемента коагуляции, который не требует большого числа сложных этапов и, следовательно, является недорогим и применимым для изделий, помогающих пациентам выполнять мониторинг коагуляции крови самостоятельно и(или) у врача.

Сущность изобретения

Соответственно, в настоящем изобретении предлагается тест-элемент для определения коагуляции в плазме или пробе цельной крови с первой поверхностью и второй поверхностью на заданном расстоянии друг напротив друга, причем обе поверхности снабжены двумя по существу одинаковыми и конгруэнтно выровненными участками с высокой и низкой поверхностной энергией (поверхностным натяжением), причем участки с высокой поверхностной энергией создают систему распределения пробы, по меньшей мере, с одним чувствительным участком, причем этот чувствительный участок(и) первой и (или) второй поверхностей снабжен, по меньшей мере, одним стимулирующим коагуляцию реагентом.

В настоящем изобретении также предлагается способ изготовления тест-элемента коагуляции.

Кроме того, предлагается тест-система коагуляции, состоящая из тест-элемента коагуляции и измерительного устройства для выполнения анализа коагуляции крови с использованием упрощенного формата для обеспечения достоверного результата в соответствии с мировыми стандартами путем обеспечения контроля качества полоски.

Особенности и преимущества настоящего изобретения будут лучше понятны из следующего подробного описания иллюстративных и предпочтительных вариантов осуществления в сочетании с приложенными чертежами.

Краткое описание чертежей

На фиг.1 показан вид в перспективе одного варианта предлагаемого в настоящем изобретении тест-элемента коагуляции, выполненного в виде тест-полоски;

на фиг.2 показан вид в перспективе варианта осуществления по фиг.1, показывающий распределение пробы в увеличенном масштабе;

на фиг.3 показан вид в перспективе с разбиением на части устройства по фиг.1, показывающий три слоя по отдельности;

на фиг.4 показаны различные формы выреза центрального слоя, образующего полость для пробы вместе с первой и второй поверхностями;

на фиг.5а представлен вид в сечении чувствительного участка системы распределения пробы, созданного гидрофобными направляющими элементами;

на фиг.5б представлен вид в сечении другого варианта осуществления чувствительного участка системы распределения пробы с использованием гидрофильных каналов;

на фиг.6 показаны различные варианты осуществления системы распределения пробы с различными схемами каналов и чувствительных участков, пригодных для различных способов оценки;

на фиг.7а показана система распределения пробы по фиг.5б в сочетании с излучателем света и устройством регистрации на виде в сечении, позволяющие оценить изменения поглощения света пробы;

на фиг.7б показана система распределения пробы по фиг.5б в сочетании с регистрирующим устройством, сконфигурированным для оценки изменений сигнала флуоресценции молекулярного ротора, добавленного к пробе, или для оценки мутности подаваемой жидкости пробы;

на фиг.8 показаны различные молекулярные роторы и их молекулярная структура;

на фиг.9 приведен график, показывающий схематическую оценку результатов коагуляции с использованием положительного и отрицательного контроля качества;

на фиг.10 показан оптический спектр цельной крови в диапазоне от 500 до 700 нм;

на фиг.11 представлен график, показывающий ход реакции коагуляции крови, вызванной Тромборелом С® с мониторингом при 600 нм;

на фиг.12 показана упрощенная блок-схема примера измерительного устройства для использования в предлагаемом в настоящем изобретении способе;

на фиг.13 показано влияние сбоев фиксации во время ламинирования на объем пробы тест-элемента и соответствующий вид сверху в сечении альтернативного варианта осуществления, который обеспечивает большее допустимое отклонение для установки нижнего слоя и верхнего слоя без ущерба для качества тест-полоски;

на фиг.14 показаны этапы изготовления тест-элементов коагуляции с формой полоски.

Подробное описание изобретения

Как показано на фиг.1 и 2, тест-полоска 1 коагуляции по настоящему изобретению представляет собой многослойную структуру, содержащую нижний слой 2, центральный слой 3, расположенный над нижним слоем 2, и верхний слой 4, расположенный над центральным слоем 3. Центральный слой 3 имеет вырез 5, который вместе с нижним слоем 2 и верхним слоем 4 образует внутреннюю полость. Внутри полости расположена система 6 распределения пробы, которая сообщается с расположенным на краю тест-полоски коагуляции участком 9 взятия пробы. Используемый пользователем участок 9 взятия пробы предпочтительно имеет форму скругленного выступа 10, расположенного на одной из главных сторон тест-полоски коагуляции для более простого взятия пробы. На другой главной стороне тест-полоски коагуляции против участка 9, 10 взятия пробы расположено вентиляционное отверстие 11, через которое заполняющая систему распределения проба физиологической жидкости или жидкости на водной основе вытесняет воздух и поступает на заранее определенные чувствительные участки 6а, 6"а (см. фиг.3). Следует отметить, что при этой конструкции необходимо только одно вентиляционное отверстие независимо от количества заранее определенных чувствительных участков, используемых внутри тест-элемента коагуляции. Описанные элементы системы распределения пробы с участками с высокой поверхностной энергией, участком взятия пробы, вентиляционным отверстием, центральным слоем и вырезом в центральном слое образуют собственно тест-элемент коагуляции, который создает внутренний капиллярный эффект, обеспечивающий распределение взятой физиологической жидкости или жидкости на водной основе на заранее определенные чувствительные участки.

Кроме того, тест-полоска 1 коагуляции содержит регистрирующие (позиционирующие) элементы 7, 8, используемые для различения нескольких типов тест-полосок для определения различных параметров, таких как протромбиновое время (ПВ) и активированное частичное тромбопластиновое время (АРТТ). Посредством этого измерительное устройство для нескольких аналитов настроено на выполнение специальной программы или процедур с выбираемыми параметрами при введении полоски для определения различных параметров, как показано на фиг.3, на котором представлена многослойная структура по фиг, 1 и 2 в разобранном виде, причем нижний слой 2 обеспечивает первую поверхность 2а, и верхний слой 4 обеспечивает вторую поверхность 4а. Первая поверхность 2а и вторая поверхность 4а сконструированы с участками, которые создают систему 6 распределения пробы. Структура системы 6 распределения пробы содержит заранее определенное число чувствительных участков 6а и каналов пробы 6b, которые совмещены и зафиксированы в основном конгруэнтно при сборке многослойной структуры. Центральный слой 3 обеспечивает расстояние между первой поверхностью 2а нижнего слоя 2 и второй поверхностью 4а верхнего слоя 4 и содержит вырез 5 для создания внутренней полости совместно с первой поверхностью 2а нижнего слоя 2 и второй поверхностью 4а верхнего слоя 4. Система 6 распределения пробы, которая образована между первой поверхностью 2а и второй поверхностью 4а, расположена внутри полости, создаваемой вырезом 5 центрального слоя 3 и первой поверхностью 2а нижнего слоя 2 и второй поверхностью 4а верхнего слоя 4. Предпочтительно внутренняя полость конструктивно по существу больше, чем система распределения пробы.

Поскольку назначение выреза 5 центрального слоя состоит только в создании полости для системы 6 распределения пробы, вырез 5 центрального слоя 3 может иметь различную форму; примеры показаны на фиг.4. На фиг.4а показана полость 12 тест-элемента коагуляции в форме зонтика. На фиг.4б показана прямоугольная полость 13 тест-элемента коагуляции, и на фиг.4с полость 14 для пробы имеет круглую форму. Вырез 5 центрального слоя 3 не влияет на размер заранее определенных чувствительных участков 6а и размер каналов 6b системы 6 распределения пробы и, следовательно, не влияет или не меняет требуемый объем пробы. По сравнению с системой 6 распределения пробы форма полости, показанная на фиг.4, довольно проста, таким образом обеспечивается использование простых пробивных штампов и быстрая обработка с меньшими требованиями по точности установки.

Система 6 распределения пробы, расположенная в полости, образованной вырезом 5 центрального слоя 3 и первой поверхностью 2а нижнего слоя 2 и второй поверхностью 4а верхнего слоя 4, образована за счет создания участков с высокой и низкой поверхностной энергией на указанных поверхностях 2а и 4а. Участки с высокой и низкой поверхностной энергией на первой поверхности 2а нижнего слоя 2 и второй поверхности 4а верхнего слоя 4 совмещены по существу конгруэнтно друг относительно друга. Поскольку нанесенная физиологическая жидкость или любая другая проба на водной основе смачивает только участки с высокой поверхностной энергией, таким образом, она ограничена в пределах заранее определенных каналов 6b потока и чувствительных участков 6а системы 6 распределения пробы и между первой поверхностью 2а нижнего слоя 2 и второй поверхностью 4а верхнего слоя 4.

На фиг.5а показана конструкция системы 6 распределения пробы с использованием гидрофобных "направляющих элементов". В этом варианте осуществления тест-элемента коагуляции по настоящему изобретению нижний слой 2 и верхний слой 4 покрыты гидрофобным слоем 16, за исключением участков, которые образуют каналы пробы, и чувствительных участков. Гидрофобный слой 16 создает участок с низкой поверхностной энергией, который проявляет силу отталкивания по отношению к нанесенной жидкости 15 пробы и, следовательно, ограничивает жидкость 15 пробы участками с высокой поверхностной энергией, которые образуют систему 6 распределения пробы.

Предпочтительно гидрофобный слой наносится на гидрофильную поверхность, которая смачивается физиологической жидкостью или жидкостью на водной основе. Описанная выше процедура требует наличия гидрофильной поверхности, которую можно изготовить из натурального гидрофильного полимера, такого как целлофан или стекло, а также на основе гидрофобных поверхностей общих полимеров (примеры приведены ниже), придав гидрофобной поверхности гидрофильные свойства с использованием покрытия или физического или химического плазменного осаждения гидрофильных мономеров, которые можно испарить в вакууме, например диоксид кремния, оксид этилена, этилен гликоль, пиррол или акриловая кислота. Следовательно, структура "направляющих элементов" может быть реализована печатью гидрофобной краски на гидрофильные поверхности нижнего и верхнего слоев.

Пригодная гидрофобная краска обладает углом смачивания с водой обычно больше 100° и поверхностной энергией обычно менее 25 мН/м и обычно содержит мономеры, олигомеры и полимеры с гидрофобными свойствами, придающие гидрофобные свойства добавки или гидрофобные пигменты и наполнители.

На фиг.5б показана другая конструкция системы распределения пробы с использованием гидрофильных каналов. В этом варианте осуществления тест-элемента коагуляции нижний слой 2 и верхний слой 4 покрыты гидрофильным слоем 17, создавая, тем самым, участки с высокой поверхностной энергией.

Гидрофильный слой 17, нанесенный печатью на гидрофобную поверхность, сильно смачивается физиологической жидкостью или жидкостью на водной основе; таким образом, участки с высокой поверхностной энергией, создающие гидрофильные каналы системы распределения пробы, оказывают воздействие положительной капиллярной силы на нанесенную физиологическую жидкость или жидкость пробы на водной основе, чтобы передать жидкость пробы на отдельные чувствительные участки.

Гидрофильный слой 17 может быть реализован путем печати гидрофильных или амфифильных реагентов на гидрофобную поверхность. Краски с гидрофильными свойствами могут быть выбраны из широкого ряда растворимых в воде и спирте полимеров с высокой молекулярной массой и их смесей. В частности, пригодны производные альгинатов, целлюлозы, гидроксиэтил целлюлозы, смол, многоатомных спиртов, полиэтиленгликолей, оксидов полиэтилена, винилпиролидона, сульфонатов полистирола, полисульфонатов, производных алкил-фосфохолина и других; в частности, пригодны также органо-модифицированные акрилаты кремния, которые являются перекрестно-сшитым видом органо-модифицированных поликсилоксанов и фторированных поверхностно-активных веществ. Пригодные покрытия обеспечивают угол смачивания с водой обычно менее 35° и поверхностную энергию обычно более 50 мН/м.

Нижний слой и верхний слой, пригодные в качестве подложки для печати, могут быть созданы из материала типа стекла, поливинил ацетата, полиметилметакрилата, полидиметилсилоксана, сложных полиэфиров полиэфирных смол, содержащих кольца флюорена, полистиролы, поликарбонаты и привитые сополимеры поликарбоната-полистирола, концевые модифицированные поликарбонаты, полиолефины, циклоолефины и сополимеры циклоолефинов и(или) сополимеры олефина-малеинимида.

В случае, когда подложка относится к промежуточному гидрофобному типу, также возможно нанесение печатью гидрофильных каналов с окружающей гидрофобной структурой, т.е. комбинация конструкций по фиг.5а и фиг.5б.

В альтернативном варианте осуществления (не показан) либо первая, либо вторая поверхность предусмотрена с гидрофильной/гидрофобной структурой и соответствующая поверхность обеспечивает гомогенную структуру гидрофильных пикселей, окруженных гидрофобным участком, создавая тем самым поверхность с полугидрофильными, полугидрофобными свойствами (амфифильный характер поверхности), что устраняет необходимость совмещения гидрофильной и гидрофобной структур первой поверхности с эквивалентной гидрофильной и гидрофобной структурой второй поверхности. Свойства такой амфифильной поверхности можно легко спроектировать посредством геометрической структуры гидрофильных пикселов и общего соотношения между гидрофильным и гидрофобным участком. В данном варианте осуществления изобретения амфифильный характер, соответственно, соотношение между гидрофильными пикселями и гидрофобными участками, заданы такими, чтобы жидкость пробы проходила от гидрофильного пикселя к гидрофильному пикселю, только если противоположная поверхность обеспечивает гидрофильный характер. Если противоположная поверхность обеспечивает гидрофобный характер, движение жидкости внутри капиллярного зазора тест-элемента коагуляции прекращается. Этот механизм позволяет создавать по вышеописанному способу функциональный тест-элемент коагуляции без строгого требования точного позиционирования соответствующей структуры системы распределения пробы, предусмотренной на первой и второй поверхностях. Однако предпочтительно, чтобы и первая, и вторая поверхности были предусмотрены с одинаковыми структурами с высокой и низкой поверхностной энергией для обеспечения быстрого распределения жидкости пробы внутри гидрофильных каналов системы распределения пробы.

Более того, можно физически поднять участки с высокой поверхностной энергией первой и второй поверхностей относительно участков с низкой поверхностной энергией за счет травления, тиснения или просто печати гидрофильного слоя толщиной больше примерно в три-пять раз на первой и второй поверхности. Благодаря этому подъему капиллярный зазор гидрофильных каналов становится меньше относительно окружающего участка и оказывает более сильное воздействие капилляров на жидкость пробы.

Требования к объему для системы распределения пробы, содержащейся в тест-элементе коагуляции по предпочтительному варианту осуществления, очень низкие и составляют примерно 0,5 мкл-1,0 мкл, так что требуется примерно только 100 нл-150 нл на чувствительный участок, в зависимости от того, созданы ли участки с высокой и низкой поверхностной энергией гидрофобными направляющими элементами или гидрофильными каналами или их комбинацией. Однако для специалистов будет очевидно, что объем системы распределения пробы различен для различных конструкций и в зависимости от числа использованных заранее определенных чувствительных участков.

На фиг.6 показаны различные структуры системы распределения пробы, которые можно осуществить посредством гидрофильных каналов, как показано на фиг.5б, или посредством гидрофобных "направляющих элементов", как показано на фиг.5а, или посредством комбинации гидрофильных каналов и гидрофобных направляющих элементов. Выбранная система распределения пробы должна соответствовать оцениваемому выбранному физиологическому параметру и используемому химическому способу регистрации.

Таким образом, повтор измерений пробы и стандарта возможен для конкретных проб сыворотки или цельной крови по вариантам осуществления, показанным в рядах со II по IV. Аналогично этому, можно использовать тест-элемент коагуляции, предусмотренный в ряду IV для оценки двух параметров коагуляции, таких как протромбиновое время и активированное частичное тромбиновое время.

Как описано выше, образование сгустка фибрина зависит от реакции между тромбопластином и ионами кальция, вступающими в реакцию с кровью, как указано ниже (Реакция I):

Тромбопластин+Са ++ +Кровь (или Плазма)→Сгусток фибрина

При реакции (1) чувствительные участки 6"а системы 6 распределения пробы первой поверхности 2а нижнего слоя 2 или второй поверхности 4а верхнего слоя 4 характеризуются тем, что они покрыты составом 18, 19, как показано на фиг.5а и 5б, который способствует и обеспечивает регистрацию реакции коагуляции в пробе крови.

В одном варианте осуществления тест-элемента по настоящему изобретению состав 18 содержит вызывающий коагуляцию реагент, такой как Тромбопластин (например, предлагаемый компанией Dade Behring Holding GmbH, Höchster Strasse 70, 65835 Liederbach, Германия), в то время как состав 19 содержит ионы кальция. Вызывающий коагуляцию реагент является ускорителем коагуляции крови на чувствительном участке, позволяя, таким образом, зарегистрировать оптические свойства с помощью фотометрии пропускания или поглощения или рассеяния света.

Протромбиновое время или активированное частичное тромбиновое время можно регистрировать путем изменения поглощения света или рассеяния света. Во время коагуляции фибриноген преобразуется в фибрин, что вызывает преждевременное произвольное распределение эритроцитов и тромбоцитов в наиболее связанной стадии, таким образом, эритроциты и тромбоциты будут захвачены и соединены с волокнами фибрина и друг с другом, образуя сгусток крови. Эти изменения физической консистенции пробы крови приводят к сокращению числа центров рассеяния и, следовательно, к изменению поглощения света и мутности исследуемой пробы крови. Для оценки изменения поглощения света используется конструкция регистрирующего устройства, показанная на фиг.7а.

На фиг.7а показана конструкция регистрирующего устройства для измерения оптической плотности пробы внутри тест-элемента коагуляции по фиг.5б. Эта конструкция содержит источник 20 света, который испускает свет 24 некоторой длины волны в направлении чувствительного к пробе участка. Свет, испускаемый источником 20 света, проходит через оптическую схему 21, например диффузор или линзу, и апертуру 22, нижний слой 2, пробу 15 и верхний слой 4 чувствительного участка и регистрируется на противоположной стороне прибора регистрирующим устройством 23.

В другом варианте осуществления тест-элемент коагуляции предназначен для выполнения нескольких определений для обеспечения дополнительных измерений контроля качества. В этом случае тест-элемент коагуляции имеет по меньшей мере два, предпочтительно три чувствительных к коагуляции участка. Предпочтительно все чувствительные участки 6"а на первой поверхности 2а покрыты вызывающим коагуляцию реагентом 18 (например, тромбином), ускоряющим реакцию между химическими компонентами для образования сгустка фибрина, между тем как чувствительный к пробе участок, например 6а2, второй поверхности 4а покрыт химическим составом, содержащим ускоритель коагуляции, способствующий быстрой и полной коагуляции (положительный контроль), и другой чувствительный участок, например 6а3, второй поверхности 4а покрыт химическим составом, содержащим ингибитор коагуляции, подавляющий коагуляцию крови (отрицательный контроль).

При реакции (1) количества тромбопластина, ионов кальция и, если это необходимо, состава контроля качества, такого как ингибитор или ускоритель коагуляции, точно дозируют на указанных чувствительных к пробе участках. Предпочтительно дозирование выполняется способом осаждения с дозированием, хотя другие способы, такие как струйная печать, известны специалистам. Точное дозирование вызывающего коагуляцию реагента, нанесенного на чувствительные к пробе участки, критично для правильной процедуры реакции и, таким образом, для надежного расчета конечной точки реакции коагуляции. Например, в примере варианта осуществления количество тромбопластина может быть постоянным на каждом чувствительном к пробе участке, в то время как концентрация ингибитора коагуляции, такого как этилендиаминтетрауксусная кислота, может меняться.

В другом варианте осуществления тест-элемента по настоящему изобретению кроме дозирования тромбопластина, ионов кальция и составов контроля качества, таких как ингибитор и ускоритель коагуляции, дополнительный компонент, который действует как вспомогательная добавка для регистрации флуоресценции, может быть нанесен на чувствительные к пробе участки первой и(или) второй поверхности(ей) 2а, 4а. Если указанные чувствительные участки снабжены так называемыми флуоресцентными молекулярными роторами, реакцию коагуляции можно контролировать по флуоресценции.

Флуоресценция - это испускание света каким-либо веществом, которое происходит из первого возбужденного состояния молекулы. При инициализации такая молекула возбуждается за счет поглощения света. В течение следующих нескольких наносекунд молекула возвращается в основное состояние и освобождается от энергии возбуждения либо путем испускания света, называемого флуоресценцией, либо путем перемещения и вращения основной цепи молекулы.

Флуоресценция обычно возникает у ароматических молекул. Ароматические молекулы, поглощающие видимый свет в диапазоне от 400 до 800 нм, кажутся цветными. Более того, хромофор является частью краски, определяющей свойства поглощения и испускания всей молекулы. Количество или интенсивность испускания конкретного хромофора оценивается количественно по его квантовому выходу флуоресценции. Квантовый выход флуоресценции определяется как число испущенных фотонов по отношению к числу поглощенных фотонов. Широкий диапазон обычно используемых флуоресцентных красок обладает фиксированным квантовым выходом, тем самым, все краски с большим квантовым выходом, достигающим 100% эффективности испускания, обнаруживают наиболее яркое испускание, например сульфородамин 101, также известный как Texas Red.

Краски, несущие гибкие группы на конце их хромофора, известны как молекулярные роторы и обнаруживают зависимость их квантового выхода флуоресценции от вязкости растворителя. По мере того как вязкость растворителя возрастает, квантовый выход флуоресценции этих красок также возрастает. Это можно отнести за счет подвижности подвижных нежестких групп на конце хромофора, которая снижается при увеличении вязкости. Чем больше замедляется подвижность боковых групп, присоединенных к хромофору, тем больше молекул краски не могут перейти в свое основное состояние посредством перемещений их молекулярного каркаса и освободиться от энергии возбуждения посредством испускания света. Примеры флуоресцентных красок, чувствительных к вязкости растворителя, можно найти в классе красок на основе ксантина, оксазина и карбопиронина.

Этот эффект можно отнести за счет подвижности диэтиламиновых групп, которая снижается при возрастании вязкости. Одним примером такой краски в классе ксантина является родамин В, который может быть показан в виде следующей химической структуры:

Нижеследующая химическая структура показана в качестве примера подвижности диэтиламиновых групп, которая, соответственно, снижается за счет контакта с реагентами реакции 1. Поскольку эти реагенты приводят к образованию сгустка фибрина, т.е. коагуляции физиологической жидкости, возрастает вязкость пробы и, следовательно, флуоресценция молекул. Отмеченные диэтиламино-группы на конце хромофора не являются жесткими и вращаются, как отмечено, вокруг связи. Так как это движение сильно замедляется при повышении вязкости из-за коагуляции, испускание флуоресценции краски возрастает.

В отношении настоящего изобретения флуоресцентные пробы, чувствительные к изменению вязкости, наиболее полезны. Другими примерами молекулярных роторов являются орамин О., кристаллический фиолет 4, р-N,N-диметиламинобензонитрил 5, p-N,N-диметиламинобензонитрил 6, юлолидинбензилиденмалононитрил, родамин 19, родамин G6, родамин В, оксазин 1, оксазин 4, оксазин 170. Их молекулярная структура показана на фиг.8.

В случае мониторинга реакции по флуоресценции наиболее полезно расположить источник света и регистрирующее устройство не напротив друг друга, а под углом приблизительно 90 градусов для достижения максимальной чувствительности, как показано на фиг.7б. Предпочтительный угол между источником света и регистрирующим устройством составляет от 80 до 120 градусов, но наиболее предпочтителен угол приблизительно 109 градусов и размещение тест-системы коагуляции в оптической регистрирующей схеме таким образом, чтобы угол между нижним слоем и источником света и угол между верхним слоем и регистрирующим устройством составлял приблизительно 54 градуса во избежание фонового шума, обусловленного внутренним отражением на различных поверхностях чувствительного участка (или, в основном, тест-системы коагуляции). Для полного использования указанное регистрирующее устройство 23 сконфигурировано помимо оптической схемы 21 и 22 с оптическими фильтрами 21а и 22а для различения длины волны возбуждения и испускания, таким образом, регистрирующее устройств "видит" только свет 24, испускаемый от флуоресцентной краски, и "не видит" свет 24а, испускаемый источником света. Тем не менее, специалист заметит, что фактический угол должен быть оптимизирован для конкретного применения, требуемой чувствительности и требований к измерительному устройству в отношении регистрирующего устройства.

Тест-элемент 1 коагуляции содержит по меньшей мере один чувствительный участок 6а, который необходим для точного измерения протромбинового времени, но в предпочтительном варианте осуществления можно использовать три чувствительных участка 6а1-6а3. Физическая компоновка тест-элемента 1 коагуляции обеспечивает гибкость в отношении состава соединений, наносимых на различные чувствительные участки. Например, чувствительные участки 6а-6с могут иметь различную концентрацию вызывающего коагуляцию реагента, такого как тромбопластин, нанесенный на первую поверхность 2а нижнего слоя 2, в то время как ионы кальция и флуоресцентный молекулярный ротор могут быть нанесены на вторую поверхность 4а верхнего слоя 4. В альтернативном варианте все реагенты могут быть нанесены либо на первую поверхность 2а нижнего слоя 2, либо на вторую поверхность 4а верхнего слоя 4 тест-элемента 1 коагуляции.

После того как физиологическая жидкость, такая как кровь или плазма, нанесена на участок 9 взятия пробы и распределена на чувствительные участки под воздействием капилляров, она растворяет вызывающий коагуляцию реагент, содержащийся в составе 18 на чувствительных участках первой поверхности 2а, а также молекулярный ротор и(или) потенциальный ингибитор коагуляции, такой как этилендиаминотетрауксусная кислота, и содержащийся в составе 19 на заранее определенных чувствительных участках второй поверхности 4а, образуя смесь крови или плазмы, и вызывающего коагуляцию реагента, такого как тромбопластин, и ионы кальция плюс дополнительные материалы, предусмотренные на второй поверхности.

Предпочтительно, чтобы вызывающие коагуляцию реагенты, нанесенные на заранее определенные чувствительные участки, были хорошо растворимы физиологической жидкостью, такой как кровь, и расположены близко друг к другу, чтобы обеспечивать быстрое диффузионное смешивание всех компонентов, обеспечивая, таким образом, быструю реакцию компонентов, содержащихся на чувствительных участках для ускорения быстрого фотометрического определения вызывающей коагуляцию реакции.

Если имеется больше двух, предпочтительно трех, чувствительных к пробе участков, расположенных в пределах системы распределения пробы, один, например 6а1, может быть использован для регистрации протромбинового времени или активированного частичного тромбопластинового времени. Дополнительный чувствительный к пробе участок, например 6а2, может быть конфигурирован для обеспечения отрицательного контроля с использованием ингибитора коагуляции на второй поверхности 4а или отсутствия вызывающего коагуляцию реагента на первой поверхности 2а, тем самым дополнительный чувствительный к пробе участок, например 6а3, может быть конфигурирован для обеспечения положительного контроля с использованием ускорителя коагуляции, например гелеобразующее средство воспроизводит коагуляцию крови, даже если кровь слабо коагулирует. Таким образом, устройство обработки измерительного устройства позволяет сравнить результат измерений пробы с двумя предусмотренными стандартами, обеспечивая ясное решение или индикацию ошибочного измерения.

На фиг.9 показана схематическая оценка и измерение времени коагуляции с использованием молекулярного ротора в качестве флуоресцентной пробы и вспомогательного средства регистрации. На чертеже также показано сравнение сигнала измерения относительно пробы крови 27 с положительным стандартом 26, обеспечивающим максимальную флуоресценцию, достижимую после полного образования сгустка крови, и сравнение с отрицательным стандартом 25, обеспечивающим минимальный сигнал флуоресценции относительно некоагулированной пробы крови. После нанесения пробы цельной крови на участок 9 взятия пробы проба 15 крови переносится под действием капилляров, создаваемым системой распределения пробы, на различные чувствительные к пробе участки 6а/6"а, показанные на фиг.3. Проба растворяет вызывающий коагуляцию реагент, предусмотренный на первой поверхности 2а нижнего слоя 2, обеспечивая начало реакции коагуляции сразу после заполнения чувствительного к пробе участка 6"а1. Блок регистрации измерительного устройства регистрирует введение пробы крови, таким образом, может быть запущено устройство обработки блока регистрации, чтобы выполнить оценку времени реакции коагуляции.

Как упомянуто выше, один чувствительный к пробе участок, например 6а2, может быть конфигурирован как отрицательный стандарт, обеспечивающий средство сравнения измеренного сигнала пробы крови на чувствительном к пробе участке 6а1 с измеренным сигналом пробы крови, показывающим отсутствие реакции коагуляции. Такое поведение достигается либо осаждением не вызывающего коагуляцию реагента на чувствительном к пробе участке 6"а2, либо осаждением ингибитора коагуляции на чувствительном к пробе участке 6а2. Типичными ингибиторами коагуляции являются гепарин лития и натрия и, соответственно, соль калия этилендиаминотетрауксусной кислоты.

С другой стороны, положительный стандарт может быть осуществлен посредством ускорения реакции коагуляции или путем воспроизведения вязкости полностью сформировавшегося сгустка крови с другим сшивающим реагентом, который обеспечивает более быстрое время реакции, чем непатогенная проба крови, таким образом, положительное референтное значение достигается до коагуляции пробы крови на чувствительном участке 6а1. Этот тип перекрестной сшивки может быть достигнут за счет правильной концентрации альгината на второй поверхности 4а второго слоя 4. Альгинат смешивают с кровью и начинают желатинизировать, соответственно при коагуляции в результате реакции с ионами кальция внутри пробы крови и(или) дополнительными ионами кальция, предусмотренными на первой поверхности нижнего слоя. Однако специалисты в этой области понимают, что могут быть использованы другие гелеобразующие средства, также применимые для этой реакции.

Во время реакций устройство обработки измерительного блока может сравнивать отсчеты чувствительного к пробе участка 6а1 с отрицательным стандартом 25 и положительным стандартом 26. Как только измеренный сигнал пробы крови, обеспечиваемый чувствительным к пробе участком 6а1, достигает той же величины, что и положительный стандарт (указан выноской 28 на фиг.9), блок обработки измерительного устройства может остановить таймер и оценить конечный результат. Дополнительно блок обработки может выполнить некоторые дополнительные проверки качества для подтверждения правильности выполнения анализа и обеспечения значимых данных для пользователя/пациента. В этом отношении блок обработки может сравнивать фактические измеренные значения положительного и отрицательного стандартов, которые необходимо разделить посредством минимального и заранее запрограммированного значения. Если величина обоих сигналов становится мала, устройство может выдать сообщение об ошибке, указывающее, что определение неуспешно. Дополнительно это устройство может рассчитывать наклон 27 реакции коагуляции и сравнивать его с некоторыми заранее запрограммированными физиологическими значениями, которые описывают наиболее экстремальные значения, наблюдаемые клиницистами.

При мониторинге мутности пробы в широком диапазоне спектра, например путем использования галогенной лампы в качестве источника света, полезно ограничить окно мониторинга узкой частью спектра, если изменения пробы наблюдают по поглощению света. На фиг.10 показан спектр цельной крови в диапазоне от 500 до 700 нм. Распространенной особенностью спектра является двойной пик 40 гемоглобина между 520 и 600 нм. В принципе, можно оценить ход реакции коагуляции по поглощению света в любом месте в предусмотренной области спектра цельной крови. Требования к техническому измерительному устройству менее жесткие, если мониторинг реакции осуществляется при длине волны вне диапазона поглощения гемоглобина, т.е. 600 нм, как указано ссылочным номером 41.

На фиг.11 приводится пример оценки при обеспечении реакции коагуляции по поглощению света при 600 нм. Кровь вводится в тест-элемент коагуляции через отверстие 9 для нанесения пробы, и пропускание света быстро снижается, а поглощение света, соответственно, быстро возрастает, как указано номером 42. Следовательно, состав для коагуляции, предусмотренный на чувствительных к пробе участках 6"а первой поверхности 2а нижнего слоя 2, растворяется, и реакция коагуляции инициируется за счет реакции тканевого фактора (тканевой тромбопластин) с кровью или плазмой пробы. Этот момент времени определен как t=0, и блок обработки запускает запись результатов измерений. Период времени между событиями 42 и 43 можно считать фазой задержки реакции, когда достигается полное растворение реагентов и смешивание с пробой крови или плазмы, и тканевой тромбопластин запускает серию факторов коагуляции наружного канала, показанную в последовательности активации фактора VII, фактора X, фактора V, фактора II. Последние этапы последовательности коагуляции можно контролировать между событиями 43 и 44, когда фибриноген преобразуется в фибрин. Часто сгусток фибрина нестабилен и начинает разрушаться после достижения плато 44. Скорость и степень разрушения зависят от количества волокон фибрина в сгустке и различны для разных пациентов. Обычно пробы крови с высокой вязкостью обнаруживают более медленное разрушение, чем пробы крови с низкой вязкостью.

Результат измерений, в основном, и результат протромбинового времени по приведенному выше примеру следует оценивать между событиями 42-43, указывающими период времени t 1 , и между событиями 43-44, указывающими период времени t 2 , в основном, в соответствии с уравнением 1:

Факторы а и b необходимы, чтобы получить пропорциональные весовые множители для периодов времени t 1 и t 2 , которые дают вклад в различные пропорции результата ПВ, задаваемого функцией fPT. Таким образом, на t 1 больше влияет тип инертных компонентов коагуляционного состава, который управляет растворением тканевого фактора, на t 2 в наибольшей степени влияет активность самого примененного тканевого фактора и концентрация ионов кальция. Дополнительно оба периода времени t 1 и t 2 модулируются температурой реакции, которая в идеале должна быть установлена или близка к 37°С, режимы более низких температур увеличивают время коагуляции. Однако для малогабаритных устройств следует находить оптимальное соотношение между портативностью, энергопотреблением и лабораторными характеристиками.

На фиг.12 показана упрощенная блок-схема измерительного устройства 80 для использования в настоящем изобретении. Измерительное устройство 80 может быть спроектировано на базе блока обработки, такого как микроконтроллер MAXQ2000 (предлагаемый компанией Dallas Semiconductor Corporation, 4401 South Beltwood Parkway,

Даллас, Техас, США). Блок обработки 81 может выполнять следующие функции контроля: (1) таймер всей системы; (2) обработка данных устройства регистрации света; (3) расчет времени ПВ по измеренным данным и (4) вывод времени ПВ или значения MHO на дисплей 83. Схема памяти позволяет сохранять данные и рабочую программу блока обработки. Дисплей 83 может иметь различный вид, такой как жидкокристаллический или светодиодный дисплей. Измерительное устройство 80 также может включать кнопку пуска-останова и может обеспечивать звуковой или визуальный вывод времени для индикации нанесения проб, считывания показаний и т.д., если это необходимо.

Блок 81 обработки может быть запрограммирован для использования в сочетании с измерительным устройством 80 измерения коагуляции. Свет, испущенный источником 20 света, проходит через оптическое устройство 21 и регистрируется регистрирующим устройством 23. Программа блока 81 обработки может дополнительно включать алгоритм расчета времени коагуляции как Международного нормализованного отношения, сформулированный в середине 1980-х годов, чтобы стандартизировать значения ПВ таким образом, чтобы результаты от различных тромбопластинов и анализаторов коагуляции были одинаковы. Ниже приводится Уравнение 2:

где МИЧ - Международный индекс чувствительности, ПВ пациента - время коагуляции пробы крови пациента, среднее нормальное ПВ - среднее ПВ время примерно для 20 людей. Значение МИЧ дано различными изготовителями тромбопластина.

Способ с использованием тест-элемента 1 коагуляции по настоящему изобретению может быть отнесен к блок-схеме измерительного устройства, показанного на фиг.12. Пользователь вводит тест-элемент 1 коагуляции в держатель 82 полоски измерительного устройства 80, который автоматически приводится в действие посредством запуска нажимной кнопки, которая может быть встроена в него. Регистрирующие (позиционирующие) элементы, расположенные на элементе 1, взаимодействуют с регистрирующими элементами на держателе 82 полоски для обеспечения расположения элемента 1 в правильном положении. Такое правильное расположение элемента крайне важно для действия комбинации измерительного устройства 80 и полоски 1. Необязательно измерительное устройство 80 может быть приведено в действие пользователем нажатием кнопки. Соответственно, пользователь делает прокол пальца и наносит цельную кровь на участок 9 нанесения пробы вставленного тест-элемента 1 коагуляции.

Объем крови, необходимой для выполнения теста по настоящему изобретению, составляет примерно 1 мкл. Поскольку гидрофильный реагент, нанесенный печатью на гидрофобную поверхность, сильно смачивается физиологической или водной жидкостью, участки с высокой поверхностной энергией, создающие гидрофильные каналы системы распределения пробы, вызывают положительную силу воздействия капилляров на нанесенную физиологическую жидкость пробы для перенесения жидкости пробы на отдельные чувствительные участки. Следовательно, физиологическая проба быстро распределяется на каждый чувствительный к пробе участок (6а-с) и активирует на нем вызывающие коагуляцию реагенты.

Затем начинается время теста коагуляции, поскольку реагент на чувствительных участках 6а-6с способствует коагуляции, и оптические свойства меняются, чтобы привести к моменту осуществления коагуляции.

Способ изготовления тест-элемента коагуляции

Тест-элемент коагуляции по настоящему изобретению, который предпочтительно изготовлен в виде полоски, можно легко изготовить по методам, известным специалистам в этой области, посредством печати, использования пробивных штампов и ламинирования. Конструкция тест-элемента коагуляции обеспечивает простой и затрато-эффективный способ, который предпочтительно, но необязательно, может быть непрерывным.

На первом этапе способа изготовления структура систему 6 распределения пробы образуют созданием участков с высокой и низкой поверхностной энергией на подложке. В первом варианте осуществления участки с высокой поверхностной энергией, образующие каналы 6b пробы и чувствительные участки 6а, 6"а на первой и второй поверхностях 2а, 4а, создаются нанесением гидрофильного состава на гидрофобную поверхность подложки. Как подробно описано выше, также можно создать участки с высокой и низкой поверхностной энергией нанесением структуры гидрофобных "направляющих элементов" на гидрофильную поверхность. В предпочтительном случае подложка обладает промежуточными гидрофобными свойствами имеющихся в продаже прозрачных полимерных пленок, посредством чего участки с низкой и высокой поверхностной энергией системы распределения пробы и чувствительных к пробе участков созданы печатью гидрофильных каналов под или окруженных гидрофобной структурой гидрофобных направляющих элементов.

Подложка может быть образована из материала типа стекла, поливинил ацетата, полиметилметакрилата, полидиметилсилоксана, полистиролов, сложных полиэфиров и полиэфирных смол, содержащих кольца флюорена, поликарбонаты и привитые сополимеры поликарбоната-полистирола, концевые модифицированные поликарбонаты, полиолефины, циклоолефины и сополимеры циклоолефинов и(или) сополимеры олефина-малеинимида.

Нанесение гидрофильной структуры на гидрофобную подложку и(или) нанесение гидрофобных "направляющих элементов" на гидрофильную подложку или любое их сочетание может быть выполнено по способу флексографии, литографии, глубокой печати, способов переноса на основу твердого красителя или струйной печати.

Однако предпочтительным способом изготовления является способ флексографии, который позволяет выполнить печать с высоким разрешением на ротационных печатных машинах и обеспечивает высокую производительность. Этот способ широко применяют для печати на полимерных пленках и повсеместно используют в упаковочной промышленности. Способ оптической регистрации требует прозрачной и чистой краски с низкой вязкостью для гидрофильной структуры. Краски с низкой вязкостью предпочтительны для получения тонкого и ровного покрытия толщиной примерно 2-4 микрона. Оптическое окно спектра краски должно находиться в диапазоне длин волны, пригодном для оптической регистрации химической реакции. Требования к гидрофобной краске, помимо гидрофобных свойств, менее строгие, и ее можно использовать также для украшения тест-элемента коагуляции нужным цветом, таким образом, для этого этапа предпочтительна непрозрачная краска. Использование четырехцветной машины для флексографической печати получило широкое распространение, и их использование, по существу, не создает проблем. То же относится к литографическому устройству.

Наиболее пригодны для изготовления тест-элемента коагуляции краски на базе растворителя, широко представленные различными изготовителями. Дополнительно, все имеющиеся печатные краски можно подбирать с дополнительными добавками и пигментами для оптимизации требуемых параметров. Многие из этих красок основаны на смесях нитроцеллюлозного этанола или поливинил бутирал этанола и могут быть получены, например, в компании Sun Chemicals Inc. (35 Waterview Boulevard, Parsippany, Нью-Йорк, США) или Flint Ink Inc. (4600 Arrowhead Drive, Ann Arbor, Мичиган, США).

Хотя краски на основе растворителя или закрепляемые под действием ультрафиолетового излучения применимы для изготовления тест-элемента коагуляции, некоторыми предпочтительными свойствами обладают краски, закрепляемые пучком электронов (ЭП). Эти краски обеспечивают самое высокое сопротивление механическим и химическим факторам и содержат 100% полимеров, необязательно с пигментами, но без летучих органических растворителей и фотоингибиторов, которые, как доказано, влияют на стабильность при использовании сенсоров. Эти положительные достижения в улучшении характеристик получены за счет способности электронов создавать сшитые полимерные пленки и проникать вглубь поверхности.

Печатные краски, которые закрепляются в пучке электронов, позволяют использовать способность акриловых мономеров и олигомеров к полимеризации. Использование акриловых соединений для приготовления печатных красок в настоящее время становится все более актуальным (см. J.T.Kunjappu. "The Emergence of Polyacrylates in Ink Chemistry," Ink World, февраль, 1999 г., стр.40.) Простейшее акриловое соединение, а именно акриловая кислота, имеет следующую формулу (I):

Двойная связь в акриловом фрагменте при взаимодействии с электронами (инициация) раскрывается и образует свободный радикал, в результате взаимодействия которого с другими образующими цепь (развитие цепи) мономерами образуются высокомолекулярные полимеры. Как уже было отмечено выше, радиационная полимеризация не требует никакого внешнего инициатора, поскольку излучение высокой энергии само генерирует свободные радикалы, благодаря чему в покрытии не остается никаких остатков инициаторов.

К акриловым мономерам, которые закрепляются в потоке электронов, относится большое количество акриловых мономеров, начиная от простых акрилатов типа 2-феноксиэтилакрилата и изооктилакрилата и заканчивая форполимерами типа эпоксиакрилата бисфенола А и акрилатов сложных/простых полиэфиров (R.Golden. J.Coatings Technol., 69, 1997, с.83). Подобный (электронно-лучевой) способ закрепления печатных красок позволяет создать "функциональные печатные краски" с определенными химическими и физическими свойствами без использования растворителя и необходимых при работе с другими печатными красками систем закрепления, которые заметно усложняют весь технологический процесс изготовления предлагаемых в изобретении тест-элементов.

В основном, пригодные гидрофобные краски могут содержать мономеры, олигомеры и форполимеры с гидрофобными свойствами, например изооктилакрилаты, додецилакрилаты, производные стирола или кремния, соединения с частично фторированными углеродными цепями и дополнительные гидрофобные добавки и (или) наполнители, такие как придающие гидрофобные свойства реагенты, относящиеся к серии TEGO Phobe (компания TEGO Chemie Service, Эссен, Германия), гидрофобные пигменты, такие как фталоцианы меди, углерод, графит, или гидрофобные наполнители, такие как модифицированная кремнием коллоидальная двуокись кремния или порошки ПТФЭ и гранулы ПТФЭ. Благодаря широкому разнообразию добавок, пигментов и наполнителей предложенные выше соединения даны только для примера.

Печатные краски с гидрофильными свойствами могут быть получены путем выбора растворимых в этаноле и воде полимеров и смесей этих полимеров. Можно использовать полимеры и производные полимеров, сополимеры и соединения на основе альгината, целлюлозы и сложного эфира целлюлозы, гидроксиэтил целлюлозы, смол, акриловой кислоты, поливинилового спирта, полиэтиленгликоля, оксида полиэтилена, винилпиролидона, полистирол сульфоната, поли(метилвинилового эфира/малеиновой кислоты), сополимеров винилпиролидона/триметиламмония и производных алкил-фосфохолина. Возможна дополнительная оптимизация за счет использования добавок органомодифицированных силиконакрилатов, которые являются сшиваемыми разновидностями органомодифицированных полисилоксанов, и фторированных поверхностно-активных веществ. Общее пригодное покрытие обычно обеспечивает угол смачивания с водой менее 35° и поверхностную энергию более 50 мН/м.

Второй этап производства включает нанесение коагуляционных составов, содержащих вызывающий коагуляцию реагент и дополнительные реагенты для получения печатных и(или) дозируемых красок, образующих однородный слой в пределах чувствительных к пробе участков.

В предпочтительном варианте осуществления количество тромбопластина на первой поверхности 2а нижнего слоя 2 точно дозировано с использованием соответствующего метода, такого как струйная печать. Действительно, для специалистов очевидно, что можно использовать другие способы дозирования для целей настоящего изобретения.

На всех соответствующих чувствительных к пробе участках противоположная поверхность должна быть обработана требуемым количеством контрольного состава, содержащего нужное количество альгината или другого ускорителя коагуляции, этилендиаминотетрауксусную кислоту или другие ингибиторы коагуляции и флуоресцентный молекулярный ротор в качестве вспомогательного реагента регистрации, если это необходимо для выбранного режима регистрации.

Поскольку уровень концентрации, соответствующий общему количеству вызывающего коагуляцию реагента, нанесенного на заранее определенные чувствительные к пробе участки с 6"а1 по 6"а3, ответственен за чувствительность и динамический диапазон различных описываемых тест-элементов коагуляции, а также уровень концентрации и точность нанесенного количества соединений контроля ответственны за точность результатов теста, для этого применения важно обеспечить тест-элементы коагуляции с точной дозировкой вышеуказанных элементов, соединений и компонентов. Достичь точной дозировки можно, например, за счет использования системы микродозирующего устройства (например, предлагаемого компанией Vermes Technik GmbH & Со. KG, Palnkamer Str. 18-20, D-83624 Otterfing, Германия). Состав покрытия должен быть легко растворимым в жидкой среде пробы, чтобы обеспечить быстрое восстановление без остатков после введения жидкости пробы.

Следующий этап включает процедуру ламинирования, при которой нижний и верхний слои, представляющие собой первую и вторую поверхности системы распределения пробы, наложены слоями на центральный слой, определяя, тем самым, расстояние между первой и второй поверхностями нижнего и верхнего слоев. Центральный слой обеспечивает вырез для создания полости для системы распределения пробы на участках, где система распределения пробы образована на первой и второй поверхности нижнего и верхнего слоев. Структуры с высокой и низкой поверхностной энергией, образованные на первой и второй поверхности нижнего и верхнего слоев, должны быть выровнены практически конгруэнтно, чтобы обеспечивать образование функциональной системы распределения пробы между первой и второй поверхностями.

Точная xy-установка (фиксация) нижнего и верхнего слоев становится критичной для функционирования элемента, если это не достигается, система распределения пробы не будет функционировать правильно и(или) обладать большим отклонением по отношению к указанному объему пробы. Допустимые пределы отклонения должны составлять +/- 5% ширины гидрофильных каналов для достижения надежных характеристик.

На фиг.13 показан вид сверху (слева) и вид в поперечном сечении (справа) тест-элемента коагуляции и влияния качества установки. В случае 13а система распределения пробы собрана правильно с надежным совмещением гидрофильных каналов первой 2а и второй поверхностей 4а. Результат неправильно совмещенного тест-элемента коагуляции показан на фиг.13б. Хотя проставка между нижним 2 и верхним слоем 4 одинакова в случае 13а и 13б, объем пробы ошибочно увеличен в случае b, поскольку жидкость пробы частично покрывает гидрофобные направляющие элементы системы распределения пробы. Это вызвано жидкостью пробы внутри тест-элемента коагуляции, которая стремится обладать минимальной площадью поверхности, граничащей с атмосферой, чтобы достичь наиболее предпочтительного энергетического состояния и, следовательно, преодолеть влияние гидрофобных участков.

В альтернативном варианте осуществления, как показано на фиг.13в, система распределения пробы верхнего слоя 4 выполнена примерно на 10% меньше, чем система распределения пробы нижнего слоя 2, таким образом, общий объем пробы тест-элемента коагуляции определен выступами системы распределения пробы нижнего слоя, обеспечивающим большие допустимые пределы для смещения во время изготовления без ущерба для точности требуемого объема пробы.

Нанесение центрального слоя, который может быть двухсторонней клейкой лентой предпочтительно толщиной 80 микрон или, в альтернативном варианте, клеем-адгезивом, нанесенным с одинаковой толщиной, упрощено за счет относительно большого выреза в материале по сравнению с размером гидрофильных каналов. Правильная фиксация особенно важна на линиях непрерывного производства, где подложка поступает с несколькими измерительными устройствами до десятков измерительных устройств в минуту. Выступы подложки и натяжение полотна затрудняют установку в x-направлении (направление перемещения полотна) по сравнению с y-направлением, перпендикулярным перемещению полотна.

Способ изготовления гибких полимерных пленок, обеспечивающий точную фиксацию структур первой и второй поверхности, показан на фиг.14, где указаны этапы непрерывного производства полотна. На первом этапе производства по фиг.14а структуры системы 6 распределения пробы нижнего и верхнего слоя нанесены печатью на одну подложку 49 полотна, которая представляет собой материал создаваемых тест-элементов коагуляции. Как показано на фиг.14, напечатанные структуры системы 6 распределения пробы расположены на полотне подложек 49 таким образом, что две системы распределения пробы находятся друг напротив друга слева и справа от зеркальной линии. Необязательно, система распределения пробы присоединена на участках, которые образуют участки нанесения пробы. Таким образом, положение заранее определенных чувствительных участков 6а, 6"а фиксировано друг относительно друга и не зависит от выступов материала и натяжения полотна.

Штриховые линии 50 указывают линии будущего разреза для разделения тест-элементов коагуляции на полоски, в то время как штриховые линии 51 указывают зеркальную линию заготовки полоски и будущую линию сгиба подложки полотна.

После печати траекторий потока тест-элемента коагуляции чувствительные участки 6а, 6"а системы распределения пробы покрывают требуемым составом. Например, чувствительные участки 6а верхнего ряда подложки 49 полотна, которые представляют собой вторую поверхность тест-элемента коагуляции, покрывают составом для контроля качества. Один из составов контроля качества (например, расположенный на участке 6"а1) не содержит активных соединений, которые либо ингибируют, либо ускоряют реакцию коагуляции и, следовательно, обеспечивают определенный результат анализа коагуляции, в то время как чувствительные участки 6"а нижнего ряда подложки 49 полотна, который представляет собой первую поверхность тест-элемента коагуляции, покрыты коагуляционными составами, содержащими тканевой тромбопластин для инициации реакции коагуляции. В особых случаях другие соединения помимо тканевого тромбопластина наносят в виде покрытия на чувствительные к пробе участки 6"а, которые запускают и активируют канал коагуляции в различных положениях для определения функциональных возможностей других факторов коагуляции.

После этого дополнительный слой накладывается на одну из поверхностей, например поверхность 2а нижнего слоя 2, представляющую собой центральный слой 52 тест-элемента коагуляции, как показано на фиг.14б. Центральный слой 52 может быть изготовлен из двухсторонней клейкой ленты или клея-адгезива, который обеспечивает прорывы 5, раскрывающие систему 6 распределения пробы для создания полостей для систем распределения пробы в тест-элементах коагуляции после заключительного этапа сборки.

Тест-элемент коагуляции по настоящему изобретению затем собирают посредством сгибания двух боковых сторон вдоль зеркальной линии 51, например, с помощью отгибающего аппарата или другого соответствующего оборудования, как показано на фиг.14в, создающего согнутое и ламинированное полотно 53, как показано на фиг.14г. Следовательно, можно прижимным валиком плотно соединить центральный слой, нижний и верхний слои.

Наконец, ламинированное полотно 53 вырезают или высекают в изделие нужной формы, тогда как линия 50 переносит примерную форму окончательной тест-полоски коагуляции на полотно 53 перед разделением. При способе изготовления, показанном на фиг.14, верхняя часть подложки может быть отогнута на нижнюю часть без риска ухудшения фиксации в x-направлении полотна и обеспечивает более простой способ добиться правильной установки первой и второй поверхностей, образующих систему распределения пробы, по сравнению со способом с одним слоем.

Для специалистов в данной области будет очевидно, что нижний и верхний слои являются взаимозаменяемыми в описанных вариантах осуществления, что не влияет на принцип настоящего изобретения.

Настоящее изобретение обеспечивает тест-систему для определения характеристик коагуляции проб плазмы и цельной крови, состоящую из тест-элемента коагуляции и небольшого простого переносного измерительного устройства, пригодного для установки дома и в лечебном учреждении. Тест-элемент коагуляции снабжен встроенной системой контроля качества для формата тест-полоски с сухими реагентами с очень малым объемом пробы, примерно 0,5 мкл. Изготовление тест-элемента коагуляции по настоящему изобретению не требует выполнения множества технологически сложных операций и позволяет изготавливать недорогие тест-элементы.

1. Тест-элемент для определения коагуляции в пробе плазмы или цельной крови, имеющий первую (2а) и вторую (4а) поверхности, расположенные на заданном расстоянии напротив друг друга и обе содержащие две по существу одинаковые структуры, образующие участки с высокой и низкой поверхностной энергией, выровненные в основном конгруэнтно относительно друг друга, так что участки с высокой поверхностной энергией образуют систему (6) распределения пробы с, по меньшей мере, двумя чувствительными к коагуляции участками (6а1, 6а2), причем, по меньшей мере, один чувствительный участок (6а, 6"а) на первой и второй поверхностях (2а, 4а) снабжен, по меньшей мере, одним вызывающим коагуляцию реагентом.

2. Тест-элемент по п.1, в котором, по меньшей мере, один чувствительный к коагуляции участок снабжен составом, содержащим ускоритель коагуляции, который способствует быстрой и полной коагуляции жидкости пробы.

3. Тест-элемент по п.1, в котором, по меньшей мере, один чувствительный к коагуляции участок снабжен составом, содержащим ингибитор коагуляции, который подавляет коагуляцию в жидкости пробы.

4. Тест-элемент по п.1, в котором система (6) распределения пробы содержит, по меньшей мере, три чувствительных к коагуляции участка, по меньшей мере, один из которых снабжен составом, ускоряющим коагуляцию жидкости пробы, и, по меньшей мере, один снабжен составом, подавляющим коагуляцию в жидкости пробы.

5. Тест-элемент по одному из предшествующих пунктов, в котором вызывающим коагуляцию реагентом(ами) являются тромбопластин и(или) ионы кальция.

6. Тест-элемент по п.2, в котором состав, ускоряющий коагуляцию жидкости пробы, содержит гелеобразующее средство.

7. Тест-элемент по одному из пп.1, 4 или 6, в котором состав, подавляющий коагуляцию в жидкости пробы, содержит гепарин лития и (или) этилендиаминотетрауксусную кислоту.

8. Тест-элемент по одному из пп.1-4 или 6, в котором первая и(или) вторая поверхности (2а, 4а) чувствительного участка(ов) (6а, 6"а) снабжены соединением, позволяющим определить реакцию коагуляции по фотометрии пропускания или поглощения.

9. Тест-элемент по одному из пп.1-4 или 6, в котором первая и(или) вторая поверхности (2а, 4а) чувствительного участка(ов) (6а, 6"а) снабжены(а) соединением(ями), позволяющими определить реакцию коагуляции посредством флуоресценции.

10. Тест-элемент по п.9, в котором соединение(я), позволяющее(ие) определить реакцию коагуляции посредством флуоресценции, является флуоресцентным молекулярным ротором.

11. Способ изготовления тест-элемента коагуляции, включающий следующие шаги:
формирование участков с высокой и низкой поверхностной энергией на нижнем слое (2) с первой поверхностью (2а), причем участки с высокой поверхностной энергией образуют гидрофильную систему (6) распределения пробы с, по меньшей мере, двумя заранее определенными чувствительными участками (6а1, 6а2),
формирование соответствующей структуры участков с высокой и низкой поверхностной энергией на верхнем слое (4) со второй поверхностью (4а), покрытие, по меньшей мере, одного заранее определенного чувствительного участка(ов) (6а, 6"а) первой поверхности (2а) и(или) второй поверхности (4а), по меньшей мере, одним вызывающим коагуляцию реагентом,
наложение слоев первой и второй поверхностей на противоположные участки центрального слоя (3) с вырезом (5), обеспечивающим полость для системы (6) распределения пробы, образованную участками с высокой поверхностной энергий на первой и второй поверхностях (2а, 4а) первого и второго слоев (2, 4).

12. Способ по п.11, включающий следующие дополнительные шаги:
покрытие первой и(или) второй поверхностей (2а, 4а) дополнительного чувствительного к коагуляции участка (6а2) составом, содержащим ускоритель коагуляции, способствующий быстрой и полной коагуляции жидкости пробы,
покрытие первой и(или) второй поверхности (2а, 4а) другого чувствительного к коагуляции участка (6а3) составом, содержащим ингибитор коагуляции, подавляющим коагуляцию в жидкости пробы.

13. Способ по п.11 или 12, включающий дополнительный шаг покрытия первой и(или) второй поверхностей (2а, 4а) чувствительного к коагуляции участка(ов) соединением, позволяющим определить реакцию коагуляции посредством флуоресценции.

14. Способ по п.11 или 12, в котором указанные участки с высокой поверхностной энергией создают посредством нанесения нерастворимого в воде гидрофильного состава на первую и вторую поверхности (2а, 4а).

15. Способ по п.11 или 12, в котором указанные участки с низкой поверхностной энергией создают посредством нанесения гидрофобных составов на первую и вторую поверхности (2а, 4а).

16. Способ по п.14, в котором указанные гидрофильный и(или) гидрофобный состав(ы) наносят печатью на первую и вторую поверхности (2а, 4а) посредством флексографии, литографии, глубокой печати, переноса твердого красителя или струйной печати.

17. Способ по п.15, в котором указанные гидрофильный и(или) гидрофобный состав(ы) наносят печатью на первую и вторую поверхности (2а, 4а) посредством флексографии, литографии, глубокой печати, переноса твердого красителя или струйной печати.

18. Способ по п.11 или 12, в котором на чувствительные участки (6а, 6"а) первой и(или) второй поверхностей (2а, 4а) посредством микроконтактной печати или напыления микрочастиц наносят покрытие указанного вызывающего коагуляцию реагента(ов) и(или) контрольного состава(ов), и(или) вспомогательной добавки(ок) для регистрации флуоресценции.

19. Способ по п.13, в котором на чувствительные участки (6а, 6"а) первой и(или) второй поверхностей (2а, 4а) посредством микроконтактной печати или напыления микрочастиц наносят покрытие указанного вызывающего коагуляцию реагента(ов) и(или) контрольного состава(ов), и(или) вспомогательной добавки(ок) для регистрации флуоресценции.

20. Способ по п.14, в котором на чувствительные участки (6а, 6"а) первой и(или) второй поверхностей (2а, 4а) посредством микроконтактной печати или напыления микрочастиц наносят покрытие указанного вызывающего коагуляцию реагента(ов) и(или) контрольного состава(ов), и(или) вспомогательной добавки(ок) для регистрации флуоресценции.

21. Способ по п.15, в котором на чувствительные участки (6а, 6"а) первой и(или) второй поверхностей (2а, 4а) посредством микроконтактной печати или напыления микрочастиц наносят покрытие указанного вызывающего коагуляцию реагента(ов) и(или) контрольного состава(ов), и(или) вспомогательной добавки(ок) для регистрации флуоресценции.

22. Тест-система коагуляции для определения коагуляции в пробе плазмы или цельной крови, содержащая
тест-элемент коагуляции по одному из пп.1-10,
устройство регистрации для регистрации изменений поглощения света или флуоресценции в сыворотке или жидкости пробы цельной крови, расположенное на заранее определенном чувствительном участке(ах), обрабатывающее устройство для обработки данных от указанного устройства регистрации и расчета времени коагуляции и(или) значения международного нормализованного отношения (MHO), и
устройство отображения для индикации выходных значений пользователю.

23. Способ определения коагуляции в сыворотке или жидкости пробы цельной крови, в котором:
наносят сыворотку или жидкость пробы цельной крови на тест-элемент коагуляции по одному из пп.1-10,
вводят тест-элемент коагуляции в измерительное устройство, содержащее устройства регистрации и обработки,
считывают выходные значения с устройства отображения.

Изобретение относится к области медицины, а именно к диагностике, точнее к биохимическим методам исследования крови. .

Тест-система коагуляции

Огромную роль в функционировании человеческого организма играет такой защитный механизм как свертываемость крови. Если бы он отсутствовал, любое кровотечение приводило бы к смерти. Хорошая свертываемость кровяной субстанции – это замечательно, плохая или чересчур быстрая – можно говорить о наличии в организме патологий. Анализ-тест на свертываемость крови называется коагулограммой. Чтобы узнать о ее свойствах и пристально изучить показатели исследований, человеку придется обратиться в экспресс-лабораторию или взять направление у терапевта. В любом случае, без анализов и скрупулезного исследования здесь не обойтись.

Проводя лабораторное исследование, коагулограмму, оценивается способность крови к свертыванию. В конечном итоге у врача на руках будет расшифровка результатов, на основании которых он определит клиническую картину состояния организма и его отдельных функций. Система данного механизма достаточно сложная. Чтобы кровь свернулась на месте травмы кожного покрова, должно произойти слипание кровяных частиц. Образовавшийся тромб будет препятствовать дальнейшему вытеканию жидкости, а также предотвратит инфицирование.

Однако до полного свертывания дело не доходит. В процессе образования пробки, немалую роль играют две противоположные реакции. То есть в результате гемостаза активируются свертывающая и разжижающая функции. По завершению коагулограммы врач может составить график, на основании которого сделает выводы о работе такого процесса как гемостаз. Сдавать кровь на подобный анализ крайне важно, так как в ходе исследований могут выявиться серьезные патологии.

Норма свертываемости крови зависит от двух величин: коагуляции и антикоагуляции. Если правильный баланс нарушится, жидкость, текущая в организме, станет либо слишком густой или чересчур жидкой, что плохо в обоих случаях. На коагуляционный гемостаз влияет множество факторов. В их числе: функциональная полноценность тромбоцитов, система антикоагуляции, состояние сосудов и др. Врач может назначить гемостазиограмму по своему усмотрению, если для него будет важен такой показатель как норма свертываемости крови или при подозрении на определенный тип заболеваний:

  • диагностика геморрагических патологий;
  • определение ВСД синдрома;
  • протекающие гестозы;
  • для составления клинической картины гемостаза;
  • диагностирование тромбозов;
  • плановое исследование и пр.

Обычно данную процедуру совмещают с общим анализом крови. Определяется число эритроцитов, тромбоцитов, гемоглобина и других частиц. Если патология обнаружилась при базовом исследовании, врач назначает расширенный тест-анализ.

Что необходимо перед процедурой

Сдавать кровь на коагуляционный гемостаз принято с утра, натощак. Это условие играет ключевую роль и определяет вероятность точных результатов. Чтобы показатели отражали реальную картину процессов, протекающих в организме, человек обязан придерживаться нескольких правил.

  • За 7-10 часов до забора крови нельзя есть и употреблять алкоголь.
  • Не курить в течение 3-4 часов.
  • До посещения процедурного кабинета пребывать в нормальном, спокойном состоянии, не испытывать нервозные ощущения.

В зависимости от цели исследования, кровь могут брать как из пальца, так и из вены. Забор крови осуществляется по общим правилам. Если потребовался ее забор из вены, кровь должна центрифугироваться в течение двух часов. Далее, образовавшуюся плазму возьмут за основу, чтобы определить нужные показатели.


Полученная расшифровка предоставит врачу ключ к пониманию текущих процессов, которые вызывают подозрение. Норма полученных результатов после коагуляционного гемостаза – это усредненный показатель, впрочем, как и в любом другом анализе. При ее правильной интерпретации должны быть учтены все сопутствующие факторы: возможные травмы, обезвоживание организма, женские «дела», прием антикоагулянтов, гормональных контрацептивов и пр. В целом, норма времени кровотечения ограничивается значениями 3-10 минут. Расшифровка данных может сказать о том, что, если кровотечение увеличенное, возможны следующие патологии:

  • геморрагические лихорадки;
  • гемофилия;
  • передозировка лекарственными средствами;
  • тромбоцитопения;
  • цирроз;
  • тромбоцитопатия.

Свертывающая составляющая минимальна: ошибка при исследовании. В общем, она не имеет диагностического значения.

Какие тесты входят в исследование

Ведущую роль на показатели крови оказывает исследование АЧТВ. Оно отражает плазменные свойства, интерпретирует коагуляционный гемостаз и считается самым точным анализом. Между тем, два проведенных исследования в разных лабораториях на предмет активированного частичного тромбопластинового времени могут отличаться показательными величинами, так как на получение исходных данных влияют применяемые реагенты, активаторы. В среднем, норма АЧТВ колеблется в границах 25,4-36,9 секунд.


Если расшифровка показывает завышенное значение – это может свидетельствовать о болезни Хагемана, фибренолизе, тяжелых печеночных, аутоиммунных патологиях, ДВС синдроме, гемофилии, инфузии реополиглюкина. Меньшее время АЧТВ – беременность, тромбоэмболия, ДВС синдром первой фазы, ошибка в исследовании.

В состав коагулограммы входит и другое исследование. Называется оно, свертываемость крови по Сухареву. Данный метод констатирует способность организма к самозащите, то есть, демонстрирует свертываемость крови в результате возможной травмы или аварии, но не несет в себе функций определения.

Свертываемость крови по Сухареву может показать, что какая- либо система в организме человека работает неправильно, например, эндокринная или нервная.

Данный тест является составным звеном коагулограммы и назначается врачом для получения общей картины гемостаза. В процессе взятия крови по Сухареву определяется временной интервал сворачивания между взятием жидкости и образованием фибринового тромба. Помимо вышеописанного способа практикуют еще метод Ли-Уайта. Вкупе, они предоставляют врачу динамику картины состояния сворачивания крови.

Как сдают анализ по Сухареву

Поскольку апробирование по Сухареву играет большую роль в оценке свертывания кровяной жидкости, к сдаче анализа нужно подходить со всей ответственностью. От этого зависит, какой будет норма, то есть, не окажутся ли результаты искаженными.

Поскольку забор крови проводится из пальца, натощак, следует:

  • перед процедурой ничего не пить кроме воды;
  • не принимать лекарства, которые влияют на свойства крови;
  • накануне не употреблять спиртных напитков;
  • за пару часов до процедуры не курить.

Весь процесс протекает быстро и безболезненно. Взятая кровь помещается в аппарат Панченкова для проведения исследований. У здорового человека норма свертывания крови должна быть: начало — от 30 секунд до 2-х минут. Окончание: 3-5 минут. Показатели могут варьироваться по причине текущих заболеваний или тогда, когда пациент принимает различные антикоагулянты.

Если анализ на свертываемость крови по Сухареву не выявил отклонений, человек скорей всего здоров. Об этом будет свидетельствовать норма коагуляции, которая определяет ведущую роль, то есть ее отсутствие, укажет на наличие каких-либо отклонений . Так, уменьшенное значение свертываемости крови может быть признаком тромбоэмболии, а увеличенное время свертываемости – прием препаратов, способных разжижать кровяной поток или нарушение функций протромбинов. Ускоренный процесс часто связан с менструальными кровотечениями, сепсисом, приеме противозачаточных таблеток (у женщин), при травмах, ожогах, васкулите и других заболеваниях.

Наиболее распространенные тесты (время свертывания цельной крови, время рекальцификации плазмы, толерантность плазмы к гепарину) позволяют судить лишь об общем состоянии ге­мостаза. Длительность времени свертывания крови (ВС) по Ли-Уайту находится в пределах 5-10 мин, нормальное фи­зиологическое значение толерантности плазмы к гепарину (ТП) по Сиггу - 9-13 мин, времени рекальцификации плазмы (ВР) по Бергерхофу - Рокку 90-120 с. Укорочение времени каждо­го из этих тестов свидетельствует о гиперкоагуляции, удлине­ние- о гипокоагуляции.

Тестами тромбоцитарной функции являются:

1. Время кровотечения (ВК). Нормальное время кровотече­ния по Дькжу составляет 1-3 мин. Увеличение ВК наблюдает­ся при болезни Виллебранда, тромбоцитопении, тромбоцитопатиях, после приема ацетилсалициловой кислоты. ВК в опреде­ленной степени отражает также функцию и контрактильную способность сосудистой стенки.

2. Число тромбоцитов. Нормальное содержание тромбоци­тов 150-400-10 9 /л. Тромбоцитопения может считаться непо­средственной причиной кровотечения при снижении числа тром­боцитов до 50-10 9 /л и ниже.

3. Агрегация тромбоцитов. Если к плазме, обогащенной тромбоцитами и хорошо перемешанной, добавить АДФ, то тромбоциты начинают образовывать агрегаты и конгломераты. При постоянной концентрации АДФ выраженность агрегаций зависит от числа тромбоцитов, способности их к агрегации, на­личия плазменных факторов коагуляции, в частности фибрино­гена. Таким образом, при перечисленных условиях тест позво­ляет получить представление об агрегационных способностях тромбоцитов и, следовательно, оценить степень возможного участия качества тромбоцитов в процессе гемостаза и при гиперкоагуляционном состоянии.

4. Фактор 3 тромбоцитов. Тест потребления протромбина (см. ниже) наиболее прост для оценки активности фактора 3. Нормальные тромбоциты вызывают постепенное укорочение времени свертывания, которое колеблется между 20 и 40 мин.

Тесты на активность факторов коагуляции :

1. Протромбиновое время (тест Квика) (ПВ). В норме со­ставляет 12-14 с. Продолжительность теста 15 с принимается за 100% (протромбиновый индекс). Тест позволяет оценить активность факторов внешнего механизма свертывания крови. Укорочение ПВ (увеличение протромбинового индекса) свиде­тельствует об усилении тромбообразования в крови и увеличе­нии тромбогенной опасности. Гепарин, поскольку он дает глав­ным образом антитромбиновый эффект, обесценивает протром­биновый тест. Показатель теста можно считать условно достовер­ным только через 5 ч после последнего введения гепарина. Ис­пользование тканевых прокоагулянтов при выполнении про­тромбинового теста нивелирует роль факторов VIII, IX, XI и тромбоцитов в ходе коагуляционного процесса. В связи с этим протромбиновый тест в таких условиях дает возможность оце­нить дефицит факторов II, V, VII, X и фибриногена. Заболева­ния печени, дефицит витамина К проявляются удлинением ПВ. Наблюдается также увеличение ПВ в поздних стадиях ДВС-синдрома. ПВ является наиболее точным методом контро­ля эффективности терапии антикоагулянтами непрямого дей­ствия.

2. Активированное частичное тромбопластиновое время (АЧТВ). Представляет собой тест, отражающий совокупность активности всех факторов внутреннего механизма свертыва­ния крови. Определяемое по Раппопорту АЧТВ в норме состав­ляет 22-40 с. Укорочение АЧТВ является признаком усиления тромбопластической активности крови и повышенного темпа образования тромбина в крови. Удлинение АЧТВ наблюдается при гемофилии, циррозе печени, применении антикоагулянтов прямого действия, а также ДВС-синдроме, сопровождаемом «потреблением» факторов коагуляции крови. Хотя тест АЧТВ чувствителен к дефицитам всех факторов коагуляции, за ис­ключением фактора VII, обычно он используется для того, что­бы определить степень участия в процессах коагуляции первых стадий механизма коагуляции, т. е. тех, которые контролируют­ся факторами XII, XI, IX и VII.

Как видно из изложенного, протромбиновое время по Квику не отражает дефектов коагуляции в I стадии (период генера­ции тромбопластина), определяемых дефицитом факторов вну­треннего механизма. Тест АЧТВ, выполненный в сочетании с ПВ, позволяет отличить дефекты коагуляции в I стадии от дефектов коагуляции во II стадии (образование тромбина), когда проявляют активность факторы II, X, V и когда прояв­ляется уже развившаяся активность фактора VII, или в III ста­дии, когда из фибриногена образуется фибрин. Удлинение АЧТВ при нормальном ПВ неоспоримо указывает на дефицит одного из факторов в I стадии.

3. Тест потребления протромбина. Превращение протромби­на в тромбин (потребление протромбина) является функцией скорости появления в крови протромбинпревращающих факто­ров во время активного процесса образования сгустка. Осно­вой теста является сравнение содержания протромбина в сыво­ротке крови через 1 ч после образования сгустка с содержани­ем протромбина в исходной плазме, из которой получен сгусток. Отклонения от нормы могут отмечаться при состояниях, кото­рые характеризуются дефицитом факторов, ответственных за развитие комплексов, превращающих протромбин в тромбин. Это факторы VIII, IX, X, XI, XII, а также тромбоциты и фак­тор V. Тест позволяет отличить дефицит всех предшественников в генерации активного фактора X (Ха) и, следовательно, само­го фактора X от дефицита фактора VII, поскольку для пробы, осуществляемой in vitro, фактор VII не требуется. Таким об­разом, у больного с дефицитом фактора VII тест потребления протромбина будет нормальным при удлиненном ПВ. Наоборот, у больного с дефицитом фактора X будет наблюдаться удли­ненное ПВ при сниженном тесте потребления протромбина.

Тесты, характеризующие фибриноген, фибринолиз и действие гепарина:

1. Тромбиновое время (ТВ) по Сирмаи (норма 25-30 с) может отражать изменения концентрации и структуры фибри­ногена. Оно может быть увеличено введением гепарина и повы­шением уровня в крови продуктов деградации фибриногена или фибрина (ПДФ). При потреблении фибриногена в условиях ДВС-синдрома ТВ удлиняется. Протамин не удлиняет ТВ. У больных с острым первичным фибринолизом наблюдается ускоренный лизис сгустка, полученного при постановке теста ТВ. При этом фибриновый сгусток не должен начать раство­ряться раньше чем через 5 мин.

2. Рептилазное время (РВ). Удлинение РВ (норма 20-22 с) наблюдается при гипофибриногенемии или при увеличе­нии содержания ПДФ, в частности при ДВС-синдроме или вто­ричном фибринолизе. Поскольку гепарин не влияет на РВ, сравнение последнего с ТВ или ПВ может быть показателем участия гепарина в сдвигах гемокоагуляции.

Оценка фибринолиза .

1. Время лизиса эуглобулино-вого сгустка по Ковальскому должно составлять в норме 4-5 ч. Укорочение его до 1-2 ч (вместе с появлением ПДФ) указы­вает на повышение активности фибринолитической системы.

2. Продукты деградации фибрина (фибриногена) (ПДФ). В норме содержание ПДФ не должно превышать 10 мкг/мл. Повышение концентрации ПДФ всегда указывает на процесс фибринолиза, который может быть первичным, обусловленным повышением уровня плазмина (фибринолизина), или вторич­ным как результат непрерывного избыточного образования фиб­рина или его аномальных форм, в частности при ДВС-синдро­ме. Поздние стадии ДВС-синдрома характеризуются высокой концентрацией ПДФ (свыше 80-100 мкг/мл).

3. Количественное определение плазминогена и плазмина основано на использовании теста на фибриновой пленке и счи­тается чувствительным и точным показателем фибринолиза. Патологический фибринолиз может быть точно диагностирован только в течение 24 ч. В связи с этим в клинической практике метод не имеет практической ценности. Вместе с тем он может быть полезен при оценке эффективности антифибринолитиче-ской терапии с помощью е-аминокапроновой кислоты.

Рис. 6.1. Основные тесты, характеризующие состояние гемостаза.

Сплошные стрелки - АЧТВ, пунктирные - протромбиновое время, штрихпунктир-ная - тромбиновое и рептилазное время, светлая - время лизиса эуглобулинового сгустка.

Оценка антитромботической активности . Уровень антитромбина-III ниже 80% свидетельствует о потреб­лении этого фактора, которое может быть связано с развитием ДВС-синдрома. Это один из самых чувствительных показателей развития внутрисосудистого свертывания крови. К сожалению, проба на антитромбин-Ш в присутствии гепарина и ПДФ в крови становится невозможной. Концентрация антитромбина-III иногда зависит от гемодилюции, поэтому необходимо тракто­вать его осторожно и всегда учитывать уровень гематокрита, при котором оценивается этот фактор.

Таким образом, описанные тесты (рис. 6.1) могут дифферен­цированно отражать дефекты гемокоагуляционного процесса и фибринолиза на различных уровнях.

Ход процесса свертывания крови и последующего лизиса образующегося сгустка может быть оценен также методом тромбоэластограммы (ТЭГ), получаемой с помощью специаль­ного прибора - тромбоэластографа. ТЭГ дает довольно широ­кое представление о ходе коагуляционного процесса и коагуля-ционном потенциале. Следует помнить, что антикоагулянтная терапия существенно меняет ТЭГ и в ряде наблюдений делает ее результаты недостоверными.

Варианты расстройств системы гемостаза

Клиническая ориентировка в диагностике . У большинства боль­ных с врожденными расстройствами гемостаза болезнь прояв­ляется еще в детском возрасте. Обычно после незначительных травм, экстракции зубов, при малых оперативных вмешатель­ствах возникают неостанавливаемые или с трудом останавли­ваемые кровотечения. При подозрении на врожденные анома­лии гемокоагуляции больного необходимо тщательно обследо­вать, а также провести гематологическое обследование членов семьи.

Кровотечение, возникшее вследствие патологического состоя­ния тромбоцитов или их дефицита в крови, может быть оста­новлено продолжительным давлением в месте повреждения и обычно после этого не возобновляется. В противоположность этому при кровотечениях, обусловленных дефектами коагуляци­онного процесса, т. е. когда невозможно образование сгустка или замедление его образования и повышен фибринолиз, дав­ление в месте повреждения сосуда эффекта не дает. Прекра­тившись, такое кровотечение, как правило, вскоре возобновля­ется (обычно из-за лизиса сгустка). Подобные кровотечения нередко возникают через несколько часов после операции и бывают не слишком интенсивными. Это классический вариант кровотечения, обусловленного расстройствами коагуляции кро­ви. Если не проводится лечение, то такое кровотечение может продолжаться буквально сутками. Другой характерной чертой подобных кровотечений является отсутствие образования сгуст­ка излившейся крови.

Хирургические кровотечения (если у больного коагуляционная система в норме) развиваются весьма драматично, с высо­кой начальной интенсивностью и никогда не бывают генерали­зованными, т. е. не сопровождаются кровотечением из мест уколов при инъекциях в других областях тела (если не ослож­няются ДВС-синдромом).

Патология тромбоцитов. Основными лабораторными теста­ми для оценки роли тромбоцитов в процессе гемокоагуляции являются подсчет тромбоцитов в камерах и определение вре­мени кровотечения. При нормальных показателях этих тестов можно быть уверенным, что кровотечение не связано с рас­стройством функции тромбоцитов или их дефицитом. Нормальное содержание тромбоцитов в крови 150-400-10 9 /л. Спонтанные кровотечения, обусловленные дефицитом тромбоцитов, возни­кают тогда, когда количество тромбоцитов существенно сни­жается и достигает 50-20-10 9 /л. Обычно наблюдаются крово­точивость слизистых оболочек, например рта, десен, петехиаль-ные высыпания в местах давления на кожу, например после наложения жгутов на конечности или измерения артериального давления с помощью манжетки сфигмоманометра. Время кро­вотечения обычно удлиняется при снижении числа тромбоцитов до уровня ниже 100-10 9 /л.

Тромбоцитопения может быть результатом снижения про­дукции костного мозга, избыточной периферической утилиза­ции, или деструкции клеток, или их активного поглощения уве­личенной селезенкой. Продукцию тромбоцитов можно оценить путем подсчета числа мегакариоцитов в пунктате костного моз­га. Снижение числа тромбоцитов в сочетании с уменьшением числа мегакариоцитов может свидетельствовать об апластиче-ской анемии или злокачественной инфильтрации костного моз­га при лейкемическом или вторичном раковом процессе.

Утилизация (потребление) тромбоцитов может иметь; место также при ДВС-синдроме, когда в формирующиеся внутри со­судов тромбы включается большое число тромбоцитов, а кост­ный мозг не успевает их продуцировать. Существуют и другие зоны потребления тромбоцитов, например образование внутрисосудистых гиалиновых тромбов при тромботической тромбо-цитопенической пурпуре или гемолитическом уремическом синд­роме.

Тромбоцитопения может быть также обусловлена актива­цией тромбоцитов и их последующей утилизацией в результате дефицита простациклина. Трансфузия плазмы или ее замена может прервать процесс избыточной тромбоцитарной активно­сти, поскольку при этом в кровь поступает достаточное коли­чество плазменных факторов, способствующих высвобождению простациклина из сосудистой стенки {Byrnes J. S., Liam E., 1979].

Иммунные механизмы также играют роль в процессах изме­нения физиологической активности тромбоцитов и в процессах их потребления. На оболочке тромбоцитов находятся аутоантитела иммуноглобулинов класса G [Идельсон Л. И., 1980]. Это обусловливает их преждевременную деструкцию и фагоцитов преимущественно макрофагами в селезенке и печени. Такие антитела могут быть определены радиоиммунными методами. В большинстве случаев острая иммунная Тромбоцитопения вы­зывается каким-либо острым заболеванием, например острой бактериальной или вирусной инфекцией, однако может сущест­вовать и в хроническом варианте (как идиопатическое забо­левание) или сопровождать системную красную волчанку и хро­ническую лимфоидную лейкемию.

Тромбоцитопения может быть обусловлена и лекарственны­ми веществами. В плазме крови лекарства или их метаболиты могут образовывать комплексы с белками, которые способны проявлять себя как антигены. На поверхности тромбоцитов об­разуются антитела к иммуноактивным комплексам антигенов. Происходит вторичная адсорбция комплексов на поверхности тромбоцитов, преждевременно разрушающая их. Как известно, нормальная продолжительность жизни тромбоцитов около 10 дней. В случаях иммунных конфликтов продолжительность жизни тромбоцитов укорачивается до нескольких дней, а в большинстве случаев - до нескольких часов.

Нормальная селезенка взрослого человека (масса 150- 200 г) способна аккумулировать одновременно около 30%, тромбоцитной массы. В норме эта аккумулированная часть на­ходится в постоянном обмене с массой циркулирующих в кро­ви тромбоцитов. При патологическом увеличении селезенка спо­собна потреблять значительно большее число тромбоцитов, осо­бенно если продукция их в костном мозге повреждена каким-либо патологическим процессом. Возникает Тромбоцитопения.

Во всех случаях патологической и необъяснимой кровоточи­вости кожи или слизистых оболочек следует исключить пато­логию тромбоцитов, даже если общее число их в перифериче­ской крови не изменено. Расстройства функционального состоя­ния тромбоцитов могут быть первичными, связанными с каким-либо изменением качества самих тромбоцитов, например с изме­нением их метаболизма, или вторичными, возникающими в ре­зультате основного заболевания, например сепсиса.

Основными функциональными качествами тромбоцитов, как известно, являются их способность прилипания к поврежденной, поверхности, т. е. адгезия, склеивание между собой, т. е. агре­гация, выделение образовавшейся массой факторов, которые инициируют процесс коагуляции фибриногена, и веществ, спо­собствующих последующей ретракции образовавшегося сгуст­ка. Следовательно, функции тромбоцитов чрезвычайно много­образны. Расстройства этих функций врожденного или приобре­тенного характера могут существенно расстроить весь процесс коагуляции крови и гемостаза. Такие расстройства хорошо описаны R. M. Hardisty (1977).

Тромбоциты могут приклеиваться к коллагеновой и неколлагеновой поверхности эндотелия. Для адгезии к коллагену ко­фактор не требуется. При врожденном синдроме Элерса-Данлоса наклонность к кровотечениям связана с тем, что нормаль­ные тромбоциты не могут достаточно прочно соединиться с патологически измененной структурой коллагена . Адгезия тромбоцитов к неколлагеновым структу­рам зависит от их взаимодействия с двухвалентными катио­нами (прежде всего Са 2+), фибриногеном и фактором Виллебранда. Таким образом, дефекты процесса адгезии тромбоцитов к поврежденной поверхности могут быть связаны с патологией фибриногена, болезнью Виллебранда, гипокальциемией, дефектами самой мембраны тромбоцитов.

Описана также группа патологических синдромов, обуслов­ленных дефицитом сиаловой кислоты и гликопротеина I в обо­лочке тромбоцитов. Эта группа патологических состояний, объ­единенных общим названием «синдром Бернара - Сулье», харак­теризуется тромбоцитопенией и потерей адгезивной способности тромбоцитов из-за отсутствия на их оболочке рецепторов фак­тора Виллебранда. В лабораторных условиях заболевание мо­жет быть установлено при выявлении потери тромбоцитами спо­собности адгезироваться на стандартизированной стеклянной поверхности или поврежденной интиме аорты крысы в перфузионной камере.

После адгезии коллаген, тромбин и АДФ связываются со специфическими рецепторами на оболочке тромбоцита и таким образом активируют ферментную систему, которая высвобож­дает свободную арахидоновую кислоту из связанных с мембра­ной фосфолипидов. Арахидоновая кислота под влиянием цикло-оксигеназы превращается в эндопероксид, который является предшественником тромбоксана А 2 и других простагланДинов. Эндопероксид, инициирующий реакцию высвобождения из плот­ных гранул и тромбоксана А 2 ,- наиболее мощный активатор агрегации тромбоцитов. Эти реакции показаны на схеме 6.3. Возможно, существуют другие механизмы агрегации, которые не зависят от метаболизма арахидоновой кислоты. Это актива­ция коллагеном и большими количествами тромбина, Са 2+ и, на­конец, тромбоцитоактивирующим фактором .

Тромбастения (или болезнь Гланцманна-Негели) пред­ставляет собой врожденный дефицит гликопротеина II на мем­бране тромбоцита, в результате которого нарушается агрегация тромбоцитов при сохраненной способности к адгезии и ристо-цетинобусловленной способности их к агрегации [Баркаган 3. С., 1980].

Врожденный дефицит ферментов циклооксигеназы или тром-боксансинтетазы встречается очень редко, но приобретенный дефицит циклооксигеназы наблюдается чаще. Действие ацетил­салициловой кислоты - его классический пример. Эта кислота необратимо ингибирует циклооксигеназу путем ее ацетилирова-ния . Поскольку циркулирующие тромбоци­ты не способны самостоятельно синтезировать этот белок, дей­ствие разовой дозы ацетилсалициловой кислоты продолжается до полного исчезновения старых тромбоцитов и замены их но­выми, т. е. практически до 10 дней. В клинической практике после приема 300 мг ацетилсалициловой кислоты нарушение агрегационной и адгезивной функций тромбоцитов и возможная наклонность к кровотечениям могут поддерживаться 4-7 дней, т. е. в течение периода, необходимого для наработки костным мозгом достаточного количества мегакариоцитов и появления достаточного количества тромбоцитов новой генерации.

Некоторые лекарственные вещества, например индометацин и другие нестероидные противовоспалительные средства, ингибируют циклооксигеназу, но кратковременно, и геморрагическая тенденция после их приема может продолжаться не более 24 ч. Агрегационная способность может быть оценена на агрегометре по результатам воздействия индуцирующих агрегацию веществ на плазму, обогащенную тромбоцитами.

Известны две группы врожденных дефектов освобождения. Одна из них связана с полным отсутствием плотных гранул и содержащейся в них АДФ, другая - с недостаточностью ме­ханизмов освобождения плотных гранул тромбоцитов, несмотря на достаточное количество самих гранул.

В клинических условиях кровотечения могут быть связаны с рядом различных отклонений в функциональной активности тромбоцитов. При уремии, например, это чаще всего нарушения адгезивной и агрегационной способности тромбоцитов . Возможно, что такие расстройства связаны с мно­жеством факторов. Нельзя исключить также влияние различ­ных диализируемых субстанций на функциональную активность поверхности тромбоцитов.

В настоящее время известен ряд плазменных факторов, которые стимулируют освобождение простациклина из эндоте­лия сосудистой стенки и, следовательно, способны ингибировать адгезивную и агрегационную активность тромбоцитов . Простациклин ингибирует агрегацию тром­боцитов путем связывания со специфическим мембранным ре­цептором, который повышает внутриклеточное содержание цАМФ. Последний тормозит синтез тромбоксана А 2 .

В расстройствах тромбоцитарных функций могут играть роль и нарушения миелопролиферативных процессов. Появле­ние тромбоцитов из злокачественно измененного клона мегака­риоцитов предполагает возможность нарушений ферментатив­ных функций таких тромбоцитов . Полицитемия и увеличение эритроцитной массы или тромбоцитоз могут быть причиной парадоксального сочетания тромбозов и кровотечений. При этом повышение вязкости крови ухудша­ет кровоток и предрасполагает к тромбозам, а дефекты тромбоцитарной мембраны обусловливают геморрагическую тен­денцию.

У больных с гипергаммаглобулинемией происходит адсорб­ция гамма-глобулина на поверхности тромбоцитов. Возникает повышенная наклонность тромбоцитов к агрегации и адгезии и следовательно, к тромбозам. Это наблюдается при макроглобулинемии Вальденстрема, множественной миеломе, системной красной волчанке. Известны также нарушения функции тром­боцитов при цинге, пернициозной анемии, болезнях печени (осо­бенно при печеночной недостаточности), клапанных пороках сердца. Описаны расстройства тромбоцитарной функции после переливания низкомолекулярных декстранов и гидроксиэтилкрахмала.

Тромбоцитемия начинает клинически проявляться тогда, ког­да число тромбоцитов превышает 900-700-10 9 /л. Резко возрас­тает риск тромбозов и тромбоэмболии, особенно артериальных сосудов. Тромбоцитемия может быть первичной, вследствие злокачественной гиперпродукции костным мозгом мегакариоци-тов, или вторичной, как реакция на какие-либо патологические состояния, например обширную травму, оперативное вмешательство, инфаркт миокарда, коллагенозы, лимфоматозы. У ря­да больных выраженная тромбоцитемия возникает после спленэктомии. В связи с этим очевидно, что нормализация числа тромбоцитов должна быть достигнута как можно быстрее, же­лательно путем устранения индуцирующего фактора. Возможны также другие лечебные мероприятия. Производят контролируе­мую сепарацию тромбоцитов, применяют методы подавления функции костного мозга бисульфаном или подавление функцио­нальной активности тромбоцитов ацетилсалициловой кислотой. Все это существенно снижает риск тромбозов.

Тромбоцитопения имеет множество причин. При необходи­мости лечения тромбоцитопенических кровотечений иногда ис­пользуют трансфузию цельной свежей крови, однако предпоч­тительнее трансфузия тромбоцитной массы. Необходимость ле­чения тромбоцитопении в клинических условиях возникает в тех случаях, когда число тромбоцитов становится меньше 50-10 9 /л. Однако следует помнить о технических трудностях. Это прежде всего быстрая потеря функциональной активности тромбоцитов при их хранении после забора и сепарации. Обыч­но функциональная активность их остается удовлетворительной не более 48-72 ч. Тромбоциты, хранимые при температуре 4 С, имеют короткие сроки жизни после переливания и эф­фективны не более 24 ч . Их предпочтительнее использовать для лечения острых кровотече­ний или их последствий. Если тромбоциты хранятся при темпе­ратуре 22 °С, то продолжительность их жизни после перелива­ния (и эффект) увеличивается примерно до 48-72 ч. Более целесообразно производить их переливание некровоточащим больным с тромбоцитопенией

Нарушения коагуляционной функции. Как уже указывалось, ориентировочную информацию о первичном звене расстройства коагуляции как причины геморрагического синдрома можно по­лучить, применяя скрининговые тесты. Каждый из трех при­веденных тестов способен в наибольшей степени отражать уз­кий диапазон дефекта, поскольку характеризует один из трех механизмов образования сгустка: внутренний, внешний и непо­средственный механизм превращения фибриногена в фибрин. Следовательно, специфичность каждого из тестов для отдель­ных факторов коагуляции можно представить следующим об­разом (табл. 6.2).

Таблица 6.2. Информативность коагуляционных тестов для отдельных факторов свертывания *

* См. также рис. 6.1.

АЧТВ максимально отражает более ранние стадии образо­вания сгустка, т. е. те, на которых начинается действие фак­торов внутреннего механизма - XII, XI, IX, наконец, VIII. На­оборот, сдвиги ПВ в большей степени отражают более поздние этапы коагуляции крови - образование фактора Ха, дефицит фактора V (акселератор), недостаток протромбина или дефи­цит (избыток) фибриногена.

Если обнаружено удлинение АЧТВ, подтверждающееся при повторных постановках теста с использованием 50% смеси плазмы больного и нормальной плазмы, то это может свиде­тельствовать о дефиците какого-либо из названных факторов или их ингибиции, например иммуноглобулином G, который инактивирует один из коагуляционных белков. Дефицит плаз­менных факторов можно корригировать инфузией нормальной плазмы, тогда как ингибирующее влияние иммуноглобулина корригировать трансфузией плазмы нельзя и удлинение АЧТВ останется прежним.

Причины дефицита коагуляционных факторов различны. Он может быть связан с нарушением или полным прекращением синтеза коагуляционных протеинов в печени, качественными нарушениями молекул белков, из которых образуется коагуляционный протеин, или, наконец, с дефицитом ферментов, не­обходимых для синтеза. Дефицит коагулирующих факторов нередко связан с повышенным потреблением фактора в коагуля-ционном процессе, в частности при ДВС-синдроме, наконец, при инактивации факторов циркулирующими в крови патогенными антителами или ингибиторами [,Machin S. J., 1983].

Все факторы коагуляции крови, кроме VIII (антигемофильный глобулин), синтезируются в печени. Фактор VIII образу­ется в эндотелиальных клетках как антиген и приобретает коа-гуляционную активность уже в кровотоке. Точная последова­тельность этого процесса неизвестна, однако предполагается, что происходит образование комплекса с какими-то низкомоле­кулярными субстанциями .

Врожденные расстройства коагуляции. Опи­саны различные состояния, связанные с дефицитами коагуляци-онных факторов, но все они весьма редки, за исключением ге­мофилии, болезни Кристмаса (гемофилия В) и болезни Вил-лебранда. Гемофилия и болезнь Кристмаса передаются как сцепленный с полом рецессивный признак. Болезнь Виллебранда обычно обусловлена передачей аутосомного доминантного признака. Все остальные врожденные болезни коагуляции кро­ви являются, как считают, аутосомными рецессивными.

Классическая гемофилия является результатом синтеза пато­логической молекулы фактора VIII, не проявляющей специфи­ческой биологической активности, но повышающей уровень иммунологически активных веществ (антиген). Содержание тром­боцитов в крови обычно нормальное, так же как их функция . Клинически тяжесть заболевания обычно тесно коррелирует с дефицитом нормального фактора VIII. При дефиците его менее 50% признаки болезни, как правило, от­сутствуют. При наличии его менее 5% нормы развиваются про­должительные эпизоды кровотечения, которые трудно контроли­руются. Характерны гемартрозы. При полном отсутствии фак­тора VIII, если не проводится специальная терапия, очень часты тяжелые спонтанные кровотечения после незначительных повреждений. Иногда возможен смертельный исход.

Основой терапии гемофилии (гемофилических кровотечений) является возмещение дефицита фактора VIII донорским препа­ратом. Благодаря такой профилактической терапии стала воз­можной нормальная жизнь тяжелобольных. Поскольку продол­жительность жизни донорского фактора VIII в крови больного невелика и через 10-14 ч остается половина перелитой дозы, для уверенного контроля в случаях острого кровотечения необ­ходимо двукратное в течение суток введение донорского пре­парата.

Криопреципитат готовят из свежей крови, лиофилизируют и многократно фракционируют для получения концентрата. При­готовленные концентраты чисты, имеют дозированную актив­ность фактора VIII в малом объеме и могут быть легко вве­дены самостоятельно в домашних условиях. Однако при вве­дении антигемофильных препаратов высок риск заболевания вирусным гепатитом, хроническим заболеванием печени, приоб­ретения аллоантител к эритроцитам, тромбоцитам, HLA и плаз­менным белковым антигенам .

В последние годы лечение и поддержание больных с гемо­филией осложняет проблема СПИДа. Приблизительно у 5-10% больных гемофилией постепенно увеличивается количество ин­гибиторов фактора VIII, развивается резистентность к лечению криопреципитатами и лиофилизированными концентратами. Эпизоды кровотечений становятся чаще и в конце концов воз­никает необходимость применения стероидных препаратов, иммуносупрессоров, интенсивного плазмообмена, применения бычь­его или свиного фактора VIII или очень высоких доз человече­ского фактора VIII .

Весьма сходна с истинной гемофилией ситуация при болезни Кристмаса (дефицит фактора IX - антигемофильного фактора В), при которой также наблюдается тенденция к спонтанным кровотечениям. Период полураспада фактора IX в циркули­рующей крови довольно короткий (до 24 ч), поэтому лечение болезни Кристмаса предпочтительнее проводить с использова­нием свежезамороженной плазмы и концентратов фактора IX.

Болезнь Виллебранда характеризуется продолжительным временем кровотечения, снижением адгезивной способности тромбоцитов, уменьшением содержания коагулоактивного фак­тора VIII и его иммунной антигенной активности . При классической болезни Виллебранда одновременно снижаются все три показателя активности фактора VIII, хотя описано, например, состояние, при котором нормальное содер­жание антигена сочеталось со снижением адгезивной активно­сти тромбоцитов и изменением их электрофоретической активно­сти. У некоторых больных с синдромом Виллебранда в молекуле фактора VIII уменьшается содержание одного из углеводов, в результате чего тормозятся процессы адгезии и ристоцетиновой агрегации. Некоторые приобретенные формы болезни Вилле­бранда могут возникать у больных с аутоиммунными заболева­ниями . У них накапливаются анти­тела, которые преципитируют часть молекулы фактора VIII и нарушают нормальный процесс адгезии тромбоцитов. Обычно наблюдаются лимфоматозы и коллагенозы. Наиболее эффектив­ны при лечении подобных больных криопреципитаты и менее эффективны концентраты фактора VIII.

Как уже указывалось, другие врожденные расстройства функции плазменных факторов свертывания крови встречаются реже. Они могут быть достаточно просто выявлены скрининговыми тестами. Обычно их лечение связано с необходимостью возмещения недостающего фактора, и это, как правило, может быть достигнуто инфузией свежезамороженной плазмы. Скри-нинговым методом не удается выявить дефицит фактора XIII (фибринстабилизирующий фермент), поскольку дефицит обна­руживается не ранее 2-3 сут после образования фибринового сгустка. Дефицит фактора XIII диагностируют обычно по уско­ренному лизису образовавшегося сгустка в моче.

Дефицит витамина К. Жирорастворимый витамин К необхо­дим для синтеза печенью факторов II (Протромбина), VII, IX и X. В связи с этим названные факторы принято именовать витамин-К-зависимыми. Витамин К синтезируется в кишечнике при участии кишечных бактерий. Его абсорбция в кишечнике происходит с участием желчи. Витамин К действует путем кар-боксилирования глутаминовых остатков молекул аминокислот . Механизм действия его заключается в связывании одного из названных факторов с поверхностью фосфолипида в присутствии Са 2+ . Благодаря этому фактор стано­вится функционально активным и участвует в процессах даль­нейшего каскада, т. е. превращается из профермента в фермент. При дефиците и в отсутствие витамина К печень синтези­рует неполноценные белки, которые не способны связываться с поверхностью фосфолипида. В печени образуется некоторое количество иммуноактивных аминокислотных соединений, кото­рые сходны с нормальными белками и могут быть выявлены иммунологическими методами. В иностранной литературе эти соединения названы PIVKA (протеины, вызванные отсутствием витамина К или антагонизмом к нему). Сами по себе они так­же могут несколько ингибировать коагуляционный процесс. Их появление в крови неопровержимо свидетельствует об отсут­ствии витамина К. Однако при заболеваниях печени, приводя­щих к нарушению синтеза белков, продукция PIVKA прекра­щается. Если уровень витамина К в организме снижается, то активность витамин-К-зависимых факторов снижается со скоростью, соответствующей периоду их полураспада в крови (фактора VII-2-4 ч, IX -25 ч, фактора X -40 ч, факто­ра II -60 ч).

У новорожденных в течение первых 3-5 дней имеется де­фицит витамин-К-зависимых факторов из-за функциональной незрелости печени и сниженных запасов витамина К (стериль­ность кишечника и отсутствие витамина К в материнском мо­локе). Введение ребенку 1 мг витамина K 1 полностью подавляет геморрагический синдром. Большие дозы витамина К неже­лательны, так как могут вызвать гемолитическую желтуху из-за дефицита гликолитических ферментов.

Дефицит витамина К наблюдается у больных с механиче­ской желтухой, поскольку желчь у них не попадает в область образования витамина - в кишечник. Среди других причин дефицита витамина К могут быть названы язвенный стоматит, длительная диарея, фиброзный цистит, длительное лечение ми­неральными маслами (вазелин). Стерилизация кишечника, на­пример длительное применение антибиотиков, также снижает синтез витамина К. Для коррекции этих состояний необходимо внутривенное введение 10 мг витамина K 1 ежедневно в тече­ние недели.

Длительный прием производных кумарина (пелентан, фенилин) внутрь также ингибирует активирующее действие витами­на К на факторы II, VII, IX, X. Поскольку существует множест­во лекарственных веществ, которые при комбинации с кумариновыми препаратами могут либо усиливать, либо ослаблять их действие, необходим контроль за эффективностью лечения кумаринами с применением ПВ-теста. Если передозировка кумариновых препаратов приводит к ятрогенному кровотечению, то больному необходимо ввести свежезамороженную плазму или концентрат протромбинового комплекса.