Наиболее частая причина мутации гена. Генные мутации: причины, примеры, классификация

Как возникают вредоносные гены?

Хотя основное свойство генов заключается в точном самокопировании, благодаря чему и происходит наследственная передача множества признаков от родителей к детям, свойство это не является абсолютным. Природа генетического материала двойственна. Гены обладают еще и способностью изменяться, приобретать новые свойства. Такие изменения генов называются мутациями. И именно мутации генов создают изменчивость, необходимую для эволюции живой материи, многообразия форм жизни. Мутации возникают в любых клетках организма, но передаваться потомству могут только гены половых клеток.

Причины мутаций заключаются в том, что многие факторы внешней среды, с которыми на протяжении жизни взаимодействует каждый организм, могут нарушать строгую упорядоченность процесса самовоспроизведения генов, хромосом в целом, приводить к ошибкам в наследовании. В экспериментах установлены следующие факторы, вызывающие мутации: ионизирующее излучение, химические вещества и высокая температура. Очевидно, что все эти факторы имеются и в естественной среде обитания человека (например, естественный фон радиации, космического излучения). Мутации существовали всегда как вполне обычное природное явление.

Будучи в своей сути ошибками в передаче генетического материала, мутации носят случайный и ненаправленный характер, то есть могут быть как полезными, так и вредными и относительно нейтральными для организма.

Полезные мутации закрепляются в ходе эволюции и составляют основу прогрессивного развития жизни на Земле, а вредные - снижающие жизнеспособность, являются как бы обратной стороной медали. Они и лежат в основе наследственных болезней во всем их многообразии.

Мутации бывают двух типов:

  • генные (на молекулярном уровне)
  • и хромосомные (меняющие число или структуру хромосом на клеточном уровне)

Как те, так и другие могут вызываться одними и теми же факторами.

Как часто возникают мутации?
Часто ли появление больного ребенка связано с новой мутацией?

Если бы мутации возникали слишком часто, то изменчивость в живой природе преобладала бы над наследственностью и никаких устойчивых форм жизни не существовало бы. С очевидностью логика подсказывает, что мутации являются редкими событиями, во всяком случае намного более редкими, чем возможность сохранения свойств генов при передаче от родителей к детям.

Реальная частота мутаций для отдельных генов человека составляет в среднем от 1:105 до 1:108. Это значит, что примерно одна из миллиона половых клеток в каждом поколении несет новую мутацию. Или, другими словами, хотя это и упрощение, можно сказать, что на миллион случаев нормальной передачи гена приходится один случай мутации. Важно то обстоятельство, что, однажды возникнув, та или иная новая мутация может затем передаваться в последующие поколения, то есть закрепляться механизмом наследования, поскольку обратные мутации, возвращающие ген в исходное состояние, столь же редки.

В популяциях соотношение в численности мутантов и унаследовавших вредоносный ген от родителей (сегрегантов) среди всех больных зависит как от типа наследования, так и от их способности оставлять потомство. При классических рецессивных заболеваниях вредная мутация может незаметно передаваться через множество поколений здоровых носителей до тех пор, пока в брак не вступят два носителя одного и того же вредного гена, и тогда практически каждый такой случай рождения больного ребенка связан с наследованием, а не с новой мутацией.

При доминантных же заболеваниях доля мутантов находится в обратной зависимости от детородной способности больных. Очевидно, что когда заболевание приводит к ранней смерти или неспособности больных иметь детей, то наследование заболевания от родителей невозможно. Если же заболевание не сказывается на продолжительности жизни или способности иметь детей, то, наоборот, будут преобладать унаследованные случаи, а новые мутации будут редки по сравнению с ними.

Например, при одной из форм карликовости (доминантной ахондроплазии) по социальным и биологическим причинам размножение карликов значительно ниже среднего, в этой группе населения примерно в 5 раз меньше детей по сравнению с другими. Если принять средний коэффициент размножения в норме за 1, то для карликов он будет равен 0,2. Это означает, что 80 % больных в каждом поколении - результат новой мутации, и только 20 % больных наследуют карликовость от родителей.

При наследственных заболеваниях, генетически сцепленных с полом, доля мутантов среди больных мальчиков и мужчин также зависит от относительной плодовитости больных, но здесь всегда будут преобладать случаи наследования от матерей, даже при тех болезнях, когда больные вообще не оставляют потомства. Максимальная доля новых мутаций при таких летальных заболеваниях не превышает 1/3 части случаев, поскольку на долю мужчин приходится именно одна треть Х-хромосом всего населения, а две трети их приходится на женщин, которые, как правило, бывают здоровыми.

Может ли у меня родиться ребенок с мутацией, если я получил повышенную дозу облучения?

Отрицательные последствия загрязнения окружающей среды как химического, так и радиоактивного - проблема века. Генетики сталкиваются с ней не так редко, как хотелось бы в широком спектре вопросов: от профессиональных вредностей до ухудшения экологической ситуации в результате аварий на атомных электростанциях. И понятна обеспокоенность, например людей, переживших чернобыльскую трагедию.

Генетические последствия загрязнения окружающей среды действительно связаны с увеличением частоты мутаций, в том числе и вредных, приводящих к наследственным болезням. Однако эти последствия, к счастью, не столь катастрофичны, чтобы говорить об опасности генетического вырождения человечества, по крайней мере на современном этапе. Кроме того, если рассматривать проблему относительно конкретных лиц и семей, то можно с уверенностью сказать, что риск рождения больного ребенка из-за облучения или иного вредного воздействия именно в результате мутации никогда не бывает высоким.

Частота мутаций хотя и повышается, но не настолько, чтобы превысить десятую, а то и сотую долю процента. Во всяком случае для любого человека, даже подвергшегося явному воздействию мутагенных факторов, риск отрицательных последствий для потомства намного меньше, чем свойственный всем людям генетический риск, связанный с носительством патологических генов, унаследованных от предков.

Кроме того, далеко не все мутации приводят к немедленному проявлению в виде заболевания. Во многих случаях, даже если ребенок получит новую мутацию от одного из родителей, он родится совершенно здоровым. Ведь значительная часть мутаций является рецессивными, то есть не проявляет своего вредного действия у носителей. А таких случаев, чтобы при исходно нормальных генах обоих родителей ребенок получил одну и ту же новую мутацию одновременно от отца и матери, практически не бывает. Вероятность подобного случая так ничтожно мала, что для ее реализации недостаточно всего населения Земли.

Из этого также следует, что повторное возникновение мутации в одной и той же семье практически нереально. Поэтому, если у здоровых родителей появился больной ребенок с доминантной мутацией, то их остальные дети, то есть братья и сестры больного, должны быть здоровыми. Однако для потомства больного ребенка риск унаследования заболевания составит 50 % в соответствии с классическими правилами.

Бывают ли отклонения от обычных правил наследования и с чем они связаны?

Да, бывают. Как исключение - иногда лишь в силу своей редкости, как, например, появление больных гемофилией женщин. Встречаются и чаще, но в любом случае отклонения обусловлены сложными и многочисленными взаимосвязями генов в организме и их взаимодействием с окружающей средой. По сути дела, исключения отражают все те же фундаментальные законы генетики, но на более сложном уровне.

Например, для многих доминантно наследуемых заболеваний характерна сильная изменчивость их выраженности, вплоть до того, что иногда симптомы заболевания у носителя патологического гена могут вообще отсутствовать. Это явление называется неполной пенетрантностью гена. Поэтому в родословных семей с доминантными заболеваниями иногда встречаются так называемые проскакивающие поколения, когда заведомые носители гена, имеющие как больных предков, так и больных потомков, практически здоровы.

В некоторых случаях при более тщательном обследовании таких носителей обнаруживаются хотя и минимальные, стертые, но вполне определенные проявления. Но бывает и так, что имеющимися в нашем распоряжении методами никаких проявлений патологического гена обнаружить не удается, несмотря на явные генетические доказательства того, что он есть у конкретного человека.

Причины этого явления изучены пока недостаточно. Считается, что вредный эффект мутантного гена может быть модифицирован и компенсирован другими генами или внешнесредовыми факторами, но конкретные механизмы такой модификации и компенсации при тех или иных заболеваниях неясны.

Бывает и так, что в некоторых семьях, в нескольких поколениях подряд передаются рецессивные заболевания так, что их можно спутать с доминантными. Если больные вступают в брак с носителями гена того же заболевания, то половина их детей также наследует "двойную дозу" гена - условие, необходимое для проявления заболевания. То же самое может произойти и в следующих поколениях, хотя такая "казуистика" встречается только при многократных кровнородственных браках.

Наконец, не носит абсолютного характера и деление признаков на доминантные и рецессивные. Иногда это деление просто условно. Один и тот же ген можно в одних случаях считать доминантным, а в других - рецессивным.

Применяя тонкие методы исследования, нередко можно распознать действие рецессивного гена в гетерозиготном состоянии, даже у совершенно здоровых носителей. Например, ген серповидноклеточного гемоглобина в гетерозиготном состоянии обусловливает серповидную форму эритроцитов, что не сказывается на здоровье человека, а в гомозиготном приводит к тяжелому заболеванию - серповидно-клеточной анемии.

В чем отличие генных и хромосомных мутаций.
Что такое хромосомные болезни?

Хромосомы являются носителями генетической информации на более сложном - клеточном уровне организации. Наследственные болезни могут быть вызваны и хромосомными дефектами, возникшими при образовании половых клеток.

Каждая хромосома содержит свой набор генов, располагающихся в строгой линейной последовательности, то есть те или иные гены располагаются не только в одних и тех же у всех людей хромосомах, но и в одних и тех же участках этих хромосом.

Нормальные клетки организма содержат строго определенное число парных хромосом (отсюда и парность находящихся в них генов). У человека в каждой клетке, кроме половых, 23 пары (46) хромосом. Половые клетки (яйцеклетки и сперматозоиды) содержат 23 непарные хромосомы - одинарный набор хромосом и генов, так как парные хромосомы расходятся в процессе клеточного деления. При оплодотворении, когда сперматозоид и яйцеклетка сливаются, из одной клетки (теперь уже с полным двойным набором хромосом и генов) развивается плод - эмбрион.

Но образование половых клеток происходит иногда с хромосомными "ошибками". Это мутации, приводящие к изменению числа или структуры хромосом в клетке. Вот почему оплодотворенная яйцеклетка может содержать избыток или недостаток хромосомного материала по сравнению с нормой. Очевидно, что такой хромосомный дисбаланс приводит к грубым нарушениям развития плода. Проявляется это в виде самопроизвольных выкидышей и мертворождений, наследственных болезней, синдромов, получивших название хромосомных.

Наиболее известным примером хромосомной болезни является болезнь Дауна (трисомия - появление лишней 21-й хромосомы). Симптомы этого заболевания легко выявляются по внешнему виду ребенка. Это и кожная складка во внутренних углах глаз, которая придает лицу монголоидный вид, и большой язык, короткие и толстые пальцы, при тщательном обследовании у таких детей обнаруживаются и пороки сердца, зрения и слуха, умственная отсталость.

К счастью, вероятность повторения в семье этой болезни и многих других хромосомных аномалий мала: в подавляющем большинстве случаев они обусловлены случайными мутациями. Кроме того, известно, что хромосомные мутации случайного характера чаще происходят в конце детородного периода.

Так, с увеличением возраста матерей увеличивается и вероятность хромосомной ошибки во время созревания яйцеклетки, и следовательно, такие женщины имеют повышенный риск рождения ребенка с хромосомными нарушениями. Если общая частота появления синдрома Дауна среди всех новорожденных детей составляет примерно 1:650, то для потомства молодых матерей (25 лет и моложе) она существенно ниже (менее 1:1000). Индивидуальный риск достигает среднего уровня к 30-летнему возрасту, выше он к 38 годам - 0,5 % (1:200), а к 39 годам - 1 % (1:100), в возрасте же свыше 40 лет возрастает до 2-3 %.

А могут ли быть здоровыми люди, имеющие хромосомные аномалии?

Да, могут при некоторых типах хромосомных мутаций, когда изменяется не число, а структура хромосом. Дело в том, что структурные перестройки в первоначальный момент своего появления могут оказаться сбалансированными - не сопровождаться избытком или недостатком хромосомного материала.

Например, могут обменяться своими участками, несущими разные гены, две непарные хромосомы, если при разрывах хромосом, иногда наблюдающихся в процессе клеточного деления, их концы становятся как бы липкими и склеиваются со свободными фрагментами других хромосом. В результате таких обменов (транслокаций) число хромосом в клетке сохраняется, но так возникают новые хромосомы, в которых нарушен принцип строгой парности генов.

Другая разновидность транслокаций - склеивание двух практически целых хромосом своими "липкими" концами, в результате чего общее число хромосом уменьшается на одну, хотя потери хромосомного материала не происходит. Человек - носитель такой транслокации, совершенно здоров, однако имеющиеся у него сбалансированные структурные перестройки уже не случайно, а вполне закономерно приводят к хромосомному дисбалансу в его потомстве, поскольку существенная часть половых клеток носителей таких транслокаций имеет лишний или, наоборот, недостаточный хромосомный материал.

Иногда такие носители вообще не могут иметь здоровых детей (правда, подобные ситуации исключительно редки). Например, у носителей подобной хромосомной аномалии - транслокации между двумя одинаковыми хромосомами (скажем, слияние концов той же 21-й пары), 50 % яйцеклеток или сперматозоидов (в зависимости от пола носителя) содержат 23 хромосомы, включая сдвоенную, а остальные 50 % содержат на одну хромосому меньше, чем полагается. При оплодотворении же клетки со сдвоенной хромосомой получат еще одну, 21-ю хромосому, и в результате будут рождаться дети с болезнью Дауна. Клетки же с недостающей 21-й хромосомой при оплодотворении дают нежизнеспособный плод, который спонтанно абортируется в первой половине беременности.

Носители транслокаций других типов могут иметь и здоровое потомство. Однако существует риск хромосомного дисбаланса, приводящего к грубой патологии развития в потомстве. Этот риск для потомства носителей структурных перестроек существенно выше, чем риск появления хромосомных аномалий в результате случайных новых мутаций.

Кроме транслокаций, существуют и другие типы структурных перестроек хромосом, приводящих к сходным негативным последствиям. К счастью, наследование хромосомных аномалий с высоким риском патологии встречается в жизни намного реже, чем случайные хромосомные мутации. Соотношение случаев хромосомных болезней среди их мутантных и наследственных форм, примерно 95 % и 5 % соответственно.

Сколько уже известно наследственных болезней?
Увеличивается или уменьшается их число в истории человечества?

Исходя из общебиологических представлений, можно было бы ожидать примерного соответствия между числом хромосом в организме и числом хромосомных болезней (и точно так же между числом генов и генных болезней). И действительно, в настоящее время известно несколько десятков хромосомных аномалий со специфическими клиническими симптомами (что фактически превышает число хромосом, потому что разные количественные и структурные изменения одной и той же хромосомы обусловливают разные болезни).

Намного больше и превышает 2000 число известных болезней, вызванных мутациями единичных генов (на молекулярном уровне). Подсчитано, что число генов во всех хромосомах человека намного больше. Многие из них не являются уникальными, так как представлены в виде многократно повторяющихся копий в разных хромосомах. Кроме того, многие мутации могут проявляться не в виде заболеваний, а приводить к эмбриональной гибели плода. Так что и число генных болезней примерно соответствует генетической структуре организма.

По мере развития медико-генетических исследований во всем мире число известных наследственных болезней постепенно увеличивается, а многие из них, ставшие классическими, были известны людям очень давно. Сейчас в генетической литературе наблюдается своеобразный бум публикаций о предположительно новых случаях и формах наследственных болезней и синдромов, многие из которых принято называть по именам первооткрывателей.

Каждые несколько лет известнейший американский генетик Виктор Мак-Кьюсик издает каталоги наследственных признаков и болезней человека, составляемые на основании компьютерного анализа данных мировой литературы. И всякий раз каждое последующее издание отличается от предыдущего увеличивающимся числом таких болезней. Очевидно, что тенденция эта будет сохраняться и далее, но скорее она отражает улучшение распознавания наследственных болезней и более пристальное внимание к ним, чем реальное увеличение их числа в процессе эволюции.

Генные мутации происходят на мо­лекулярном уровне и затрагивают, как правило, один или несколько нуклеотидов внутри отдельного гена. Этот тип мутаций можно разделить на две большие группы. Первую из них обуславливает сдвиг рамки счи­тывания. Ко второй группе относят генные мутации, связанные с заменой пар оснований. Последние составля­ют не более 20% спонтанных мутаций, остальные 80% мутаций происходят в результате различных делеций и вста­вок.

Мутации со сдвигом рамки считы­вания представляют собой вставки или выпадения одной или нескольких пар нуклеотидов. В зависи­мости от места нарушения изменяется то или иное количество кодонов. Соот­ветственно в белке могут появиться дополнительные аминокислоты или измениться их последовательность. Большая часть мутаций этого типа об­наружена в молекулах ДНК, состоя­щих из одинаковых оснований.

Типы замены осно­ ваний :

    Транзиции заключаются в замене одного пуринового на пуриновое осно­вание или одного пиримидинового на пиримидиновое основание

    Трансверсии , при которых пури­новое основание меняется на пирими­диновое или наоборот.

Значимость генных мутаций для жизнеспособности организма неоди­накова. Различные изменения в нуклеотидной последовательности ДНК по-разному проявляются в фенотипе. Не­которые «молчащие мутации» не ока­зывают влияния на структуру и функ­цию белка. Примером такой мутации может служить замена нуклеотидов, не приводящая к замене аминокислот.

По функциональному значению выделяют генные мутации:

    ведущие к полной потере функ­ции;

    в результате которых происходят количественные изменения мРНК и первичных белковых продуктов;

    доминантно-негативные, изменя­ющие свойства белковых молекул та­ким образом, что они оказывают по­вреждающее действие на жизнедея­тельность клеток.

Наибольшим повреждающим дейст­вием обладают так называемые нон сенс-мутации , связанные с появлени­ем кодонов-терминаторов, вызываю­щих остановку синтеза белка. Причем, чем ближе мутации к 5"-концу гена (к началу транскрипции), тем короче бу­дут белковые молекулы. Делеции или инсерции (вставки), некратные трем нуклеотидам и, следовательно, вызы­вающие сдвиг рамки считывания, мо­гут также приводить к преждевремен­ному окончанию синтеза белка или к образованию бессмысленного белка, который быстро деградирует.

Миссенс-мутации связаны с заме­ной нуклеотидов в кодирующей части гена. Фенотипически проявляется в виде замены аминокислоты в белке. В зависимости от природы аминокислот и функциональной значимости нару­шенного участка, наблюдается полная или частичная потеря функциональ­ной активности белка.

Сплайсинговые мутации затрагива­ют сайты на стыке экзонов и интронов и сопровождаются либо вырезанием экзона и образованием делегированно­го белка, либо вырезанием интронной области и трансляцией бессмысленно­го измененного белка. Как правило, та­кие мутации обусловливают тяжелое течение болезни.

Регуляторные мутации связаны с количественным нарушением в регуляторных областях гена. Они не при­водят к изменениям структуры и функции белков. Фенотипическое проявление таких мутаций определя­ется пороговым уровнем концентра­ции белка, при котором еще сохраня­ется его функция.

Динамические мутации или мутации экспансии представляют собой патоло­гическое увеличение числа тринуклеотидных повторов, локализованных в ко­дирующих и регуляторных частях гена. Многие тринуклеотидные последова­тельности характеризуются высоким уровнем популяционной изменчивости. Фенотипическое нарушение проявля­ется в случае превышения определенно­го критического уровня по числу повто­ров.

Хромосомные мутации

Этот тип мутаций объединяет хромо­сомные нарушения, связанные с изме­нением структур хромосом (хромосомные аберрации).

Хромосомные аберрации можно классифицировать, используя различ­ные подходы. В зависимости от того, в какой момент клеточного цикла - до или после репликации хромосом возникли перестройки - выделяют аберра­ции хромосомного ихроматидного ти­пов. Аберрации хромосомного типа воз­никают на предсинтетической стадии - G 1 фазе, когда хромосома представлена однонитевой структурой. Аберрации хроматидного типа возникают после репликации хромосом в фазах S и G 2 и затрагивают структуру одной из хрома-тид. В результате хромосома на стадии метафазы содержит одну измененную и одну нормальную хроматиды.

Если же перестройка произошла после реплика­ции и затронула обе хроматиды, появ­ляется изохроматидная аберрация. Морфологически она неотличима от аберраций хромосомного типа, хотя по происхождению относятся к хроматидному типу. Среди аберраций хромосом­ного и хроматидного типов выделяют простые и обменные аберрации. В их основе лежат нарушения одной или не­скольких хромосом. Простые аберра­ции - фрагменты (делеции) - возника­ют в результате простого разрыва хро­мосомы. В каждом случае при этом об­разуется 2 типа фрагментов - центри­ческие и ацентрические. Различают тер­минальные (концевые) и интерстициальные (средних участков хромосом) делеции или фрагменты.

Обменные аберрации очень разно­образны. В их основе лежит обмен уча­стками хромосом (или хроматид) меж­ду разными хромосомами (межхромосомный обмен) или внутри одной хро­мосомы (внутрихромосомный обмен) при перераспределении генетического материала. Обменные перестройки бывают двух типов: симметричные и асимметричные. Асимметричные об­мены приводят к образованию поли­центрических хромосом и ацентричес­ких фрагментов. При симметричных же обменах происходит соединение ацентрических фрагментов с центрическими, в результате чего хромосомы, вовлеченные в обменную аберрацию, остаются моноцентрическими.

Внутрихромосомные обмены могут происходить как внутри одного (внутриплечевой обмен), так и между обо­ими плечами хромосомы (межплечевой обмен). Кроме того, обмены могут быть простыми и сложными, когда в процесс вовлечены несколько хромо­сом. В результате могут образоваться необычные и достаточно сложные кон­фигурации хромосом. Любой обмен (симметричный и асимметричный, межхромосомный и внутрихромосомный) может быть полным (реципрок ным) или неполным (нереципрок ным) . При полном обмене происходит соединение всех поврежденных участ­ков, а при неполном обмене часть из них может остаться с открытым по­врежденным участком.

Геномные мутации

Геномные мутации изменяют число хромосом. Такие изменения возника­ют обычно при нарушении распреде­ления хромосом по дочерним клет­кам.

Различают два основных типа ге­номных мутаций:

    Полиплоидия и моноплоидия.

    Анеуплодия.

При полиплоидии число наборов негомологичных хромосом в кариотипе отличается от двух (Зn; 4n и т.д.). Это результат нарушений в митотическом цикле, когда удвоение хромосом происходит без последующего деления ядра и клетки. Одной из причин по­добного феномена может быть эндомитоз, при котором происходит блоки­рование ахроматического аппарата в клетке и сохранение ядерной мембра­ны в течение всего митотического цик­ла. Разновидностью эндомитоза явля­ется эндоредупликация - редуплика­ция хромосом, происходящая вне кле­точного деления. При эндоредуплика-ции как бы повторяются два следую­щих друг за другом S периода митоти­ческого цикла. В результате этого в по­следующем митозе будет наблюдаться двойной (тетраплоидный) набор хро­мосом. Такие мутации чаще всего при­водят к гибели плода еще в эмбриоге­незе. Триплоидия обнаруживается в 4%, а тетраплоидия приблизительно в 1% всех выкидышей. Для индивидуу­мов с такими кариотипами характерны многочисленные пороки развития, в том числе асимметричное телосложе­ние, слабоумие, гермафродитизм. Тетраплоидные эмбрионы погибают на ранних сроках беременности, эмбрио­ны же с триплоидными клетками из­редка выживают, но только если одно­временно с триплоидными содержат клетки с нормальным кариотипом. Впервые синдром триплоидии (69, XXY) был обнаружен у человека в 60-хх гг. XX в. В литературе описано око­ло 60 случаев триплоидии у детей. Максимальная продолжительность их жизни составила 7 дней.

Анеуплоидия - некратное гаплоид­ному уменьшение или увеличение чис­ла хромосом (2n+1; 2n+2; 2n-1 и т.д.) - возникает в результате ненормального поведения гомологических хромосом в мейозе или сестринских хроматид в митозе.

При нерасхождении хромосом на одной из стадий гаметогенеза в поло­вых клетках могут оказаться лишние хромосомы. В результате при последу­ющем слиянии с нормальными гапло­идными гаметами образуются зиготы 2n +1 - или трисомии по какой-либо из хромосом. Если же в гамете оказывает­ся на одну хромосому меньше, то при последующем оплодотворении образу­ется зигота 2 n - 1, или моносомик по одной из хромосом. Нерасхождение может затронуть не одну, а несколько пар хромосом, что ведет к трисомии или моносомии по нескольким хромо­сомам. Часто лишние хромосомы обус­ловливают депрессию развития или гибель особи, их несущей.

Т Е М А № 6 Типы наследования у человека

Менделирующие признаки

Всем эукариотическим организмам присущи открытые Г.Менделем общие закономерности наследования призна­ков. Для их изучения необходимо вспомнить основные термины и поня­тия, используемые в генетике. Глав­ный постулат Менделя, который он доказал в своих известных экспери­ментах на горохе огородном, состоит в том, что каждый признак определяется парой наследственных задатков, позже получивших название аллельных ге­нов. С развитием хромосомной теории наследственности выяснилось, что аллельные гены находятся в одинаковых локусах гомологичных хромосом и ко­дируют один и тот же признак. Пара аллельных генов может быть одинако­ва (АА) или (аа), тогда говорят, что особь гомозиготна по данному призна­ку. Если же аллельные гены в паре раз­ные (Аа), то особь по данному призна­ку гетерозиготна. Совокупность генов данного организма называется геноти­пом. Правда часто под генотипом по­нимают одну или несколько пар ал­лельных генов, которые отвечают за один и тот же признак. Совокупность признаков данного организма называ­ют фенотипом, фенотип формируется в результате взаимодействия генотипа с внешней средой.

Г. Мендель ввел понятия доминант­ных и рецессивных генов. Аллель, ко­торый определяет фенотип гетерозиготы, он назвал доминантным. Напри­мер, ген А в гетерозиготе Аа. Другой аллель, не проявляющий себя в гетеро­зиготном состоянии, назван им рецес­сивным. В нашем случае это ген а.

Основные закономерности наследования признаков по Менделю (закон единообразия гибридов первого поколения, расщепление на фенотипические классы гибридов второго поколения и независимого комбинирования генов) реализуются благодаря существованию закона чистоты гамет. Суть последнего состоит в том, что пара аллельных генов, определяющая тот или иной признак: а) никогда не смешивается; б) в процессе гаметогенеза расходится в разные гаметы, то есть в каждую из них попадает один ген из аллельной пары. Цитологически это обеспечивается мейозом: аллельные гены лежат в гомологичных хромосомах, которые в анафазе мейоза расходятся к разным полюсам и попадают в разные гаметы.

Генетика человека опирается на общие принципы, полученные первоначально в исследованиях на растениях и животных. Как и у них, у человека имеются менделирующие, т.е. наследуемые по законам, установленным Г. Meнделем, признаки. Для человека, как и для других эукариот, характерны все типы наследования: аутосомно-доминантный, аутосомно-рецессивный, наследование признаков, сцепленных с поло­выми хромосомами, и за счет взаимо­действия неаллельных генов. Разрабо­тал Г.Мендель и основной метод гене­тики - гибридологический. Он осно­ван на скрещивании особей одного ви­да, обладающих альтернативными при­знаками, и количественном анализе по­лученных фенотипических классов. Естественно, этот метод не может ис­пользоваться в генетике человека.

Первое описание аутосомно-доминантного наследования аномалий у человека дано в 1905 г. Фараби. Ро­дословная была составлена для се­мьи с короткопалостью (брахидактилией). У больных укорочены и час­тично редуцированы фаланги паль­цев рук и ног, кроме того, в результа­те укорочения конечностей, для них характерен низкий рост. Признак пере­дается от одного из родителей при­мерно половине детей, независимо от пола. Анализ родословных других се­мей свидетельствует, что брахидактилия отсутствует среди потомства ро­дителей, не являющихся носителями данного гена. Поскольку признак не может существовать в скрытом виде, следовательно, он является доминант­ным. А его проявления, независимо от пола, позволяют заключить, что он не сцеплен с полом. На основании изло­женного, можно сделать вывод, что брахидактилия определяется геном, находящимся в аутосомах, и является доминантной патологией.

Использование генеалогического метода позволило выявить доминант­ные, не сцепленные с полом признаки у человека. Это - темный цвет глаз, вьющиеся волосы, переносица с гор­бинкой, прямой нос (кончик носа смо­трит прямо), ямочка на подбородке, раннее облысение у мужчин, праворукость, способность свертывать язык в трубочку, белый локон надо лбом, «габ­сбургская губа» - нижняя челюсть уз­кая, выступающая вперед, нижняя гу­ба отвислая и полуоткрытый рот. По аутосомно-доминантному типу насле­дуются также некоторые патологичес­кие признаки человека: полидактилия или многопалость (когда на руке или ноге имеется от 6 до 9 пальцев), син­дактилия (сращение мягких или кост­ных тканей фаланг двух и более паль­цев), брахидактилия (недоразвитость дистальных фаланг пальцев, приводя­щая к короткопалости), арахнодактилия (сильно удлиненные "паучьи" пальцы, один из симптомов синдрома Марфана), некоторые формы близору­кости. Большинство носителей аутосомно-доминантной аномалии явля­ются гетерозиготами. Иногда случает­ся, что два носителя одной и той же до­минантной аномалии вступают в брак и имеют детей. Тогда четверть из них будут гомозиготами по мутантному доминантному аллелю (АА). Многие случаи из медицинской практики ука­зывают на то, что гомозиготы по доми­нантным аномалиям поражены тяже­лее, чем гетерозиготы. Например, в браке между двумя носителями брахидактилии родился ребенок, у которого не только не доставало пальцев на ру­ках и ногах, но и имелись множествен­ные уродства скелета. Он умер в возра­сте одного года. Другой ребенок в этой семье был гетерозиготным и имел обычные симптомы брахидактилии.

Аутосомно-рецессивные менделирующие признаки у человека опреде­ляются генами, локализованными в аутосомах, и могут проявиться у по­томства в браке двух гетерозигот, двух рецессивных гомозигот или гетерози­готы и рецессивной гомозиготы. Ис­следования показывают, что большин­ство браков, среди потомков которых наблюдаются рецессивные заболева­ния, происходит между фенотипически нормальными гетерозиготами (Аа х Аа). В потомстве такого брака геноти­пы АА, Аа и аа будут представлены в соотношении 1:2:1, и вероятность того, что ребенок окажется пораженным, со­ставит 25%. По аутосомно-рецессивному типу наследуются мягкие прямые волосы, курносый нос, светлые глаза, тонкая кожа и резус-отрицательная первая группы крови, многие болезни обмена веществ: фенилкетонурия, галактоземия, гистидинимия и др., а так­же пигментная ксеродерма.

Пигментная ксеродерма - одно из рецессивных заболеваний - относи­тельно недавно привлекла внимание молекулярных биологов. Эта патоло­гия обусловлена неспособностью кле­ток кожи больного репарировать по­вреждения ДНК, вызванные ультра­фиолетовым излучением. В результате развивается воспаление кожи, особен­но на лице, с последующей атрофией. Наконец, развивается рак кожи, при­водящий в отсутствие лечения к ле­тальному исходу. У больных редким рецессивным заболеванием степень кровного родст­ва между родителями обычно значи­тельно выше среднего уровня в попу­ляции. Как правило, родители насле­дуют этот ген от общего предка и явля­ются гетерозиготами. Подавляющее большинство больных аутосомно-рецессивными заболеваниями - это дети двух гетерозигот.

Помимо аутосомно-доминантного и аутосомно-рецессивного типов насле­дования у человека выявляются также неполное доминирование, кодоминированиеи сверхдоминирование.

Неполное доминирование связано с промежуточным проявлением призна­ка при гетерозиготном состоянии ал­лелей (Аа). Например, большой нос определяется двумя аллелями АА, ма­ленький нос - аллелями аа, нормаль­ный нос средних размеров - Аа. По типу неполного доминирования у че­ловека наследуются выпуклость губ и размеры рта и глаз, расстояние между глазами.

Кодоминирование - это такое взаи­модействие аллельных генов, при ко­тором в гетерозиготном состоянии оказываются и работают вместе два доминантных гена одновременно, то есть каждый аллель детерминирует свой признак. Наиболее удобно рас­смотреть кодоминирование на приме­ре наследования групп крови.

Группы крови системы АВ0 опреде­ляются тремя аллелями: А, В и 0. При­чем аллели А и В являются доминант­ными, а аллель 0 - рецессивным. Попарное сочетание этих трех аллелей в генотипе дает четыре группы крови. Аллельные гены, определяющие груп­пы крови, находятся в девятой паре хромосом человека и обозначаются со­ответственно: I A , I в и I°. Первая группа крови определяется наличием в генотипе двух рецессивных аллелей I° I°. Фенотипически это проявляется нали­чием в сыворотке крови антител альфа и бетта. Вторая группа крови может определяться двумя доминантными аллеля­ми I A I A , если человек гомозиготен, или аллелями I A I°, если он гетерозиготен. Фенотипически вторая группа крови проявляется наличием на поверхности эритроцитов антигенов группы А и присутствием в сыворотке крови анти­тел бетта. Третья группа определяется функционированием аллеля В. И в этом случае генотип может быть гете­розиготен (I в I°) или гомозиготен (I в I в). Фенотипически у людей с треть­ей группой крови на поверхности эри­троцитов выявляются антигены В, а фракции белков крови содержат анти­тела альфа. Люди с четвертой группой кро­ви сочетают в генотипе два доминант­ных аллеля АВ (I A I в), причем оба они функционируют: поверхность эритро­цитов несет оба антигена (А и В), а сы­воротка крови во избежание агглюти­нации соответствующих сывороточ­ных белков альфа и бетта не содержит. Таким образом, люди с четвертой группой крови являют примеры кодоминирования, поскольку у них одновременно работают два доминантных аллельных гена.

Явление сверхдоминирования свя­зано с тем, что в ряде случаев доми­нантные гены в гетерозиготном состо­янии проявляются сильнее, чем в го­мозиготном. Это понятие коррелирует с эффектом гетерозиса и связано с та­кими сложными признаками, как жиз­неспособность, общая продолжитель­ность жизни и др.

Таким образом, у человека, как и у остальных эукариот, известны все ти­пы взаимодействия аллельных генов и большое количество менделирующих признаков, определяемых этими взаи­модействиями. Используя менделевские законы наследования, можно рас­считать вероятность рождения детей с теми или иным моделирующими при­знаками.

Наиболее удобным методическим подходом к анализу наследования признаков в нескольких поколениях является генеалогический метод, осно­ванный на построении родословных.

Взаимодействие генов

До сих пор мы рассматривали толь­ко признаки, контролируемые моногенно. Однако на фенотипическое про­явление одного гена обычно влияют другие гены. Зачастую признаки фор­мируются при участии нескольких ге­нов, взаимодействие между которыми отражается в фенотипе.

Примером сложного взаимодейст­вия генов могут служить закономерно­сти наследования системы резус-фак­тор: резус плюс (Rh +) и резус минус (Rh-). В 1939 г. при исследовании сы­воротки крови женщины, родившей мертвый плод и имевшей в анамнезе переливание совместимой по АВ0 группе крови мужа, были обнаружены особые антитела, сходные с получаемыми при иммунизации эксперимен­тальных животных эритроцитами макаки-резус. Выявленные у больной ан­титела получили название резус-анти­тел, а ее группа крови - резус-отрица­тельной. Группа крови резус-положи­тельная определяется присутствием на поверхности эритроцитов особой группы антигенов, кодируемых струк­турными генами, несущими информа­цию о мембранных полипептидах. Ге­ны, определяющие резус-фактор, на­ходятся в первой паре хромосом чело­века. Резус-положительная группа крови является доминантной, резус-отрицательная - рецессивной. Резус-положительные люди могу быть гете­розиготными (Rh + /Rh-) или гомози­готными (Rh + /Rh +). Резус-отрица­тельные - только гомозиготными (Rh-/Rh-).

Позже выяснилось, что антигены и антитела резус фактора имеют слож­ную структуру и состоят из трех ком­понентов. Условно антигены резус-фактора обозначают буквами латин­ского алфавита С, D, Е. На основе ана­лиза генетических данных о наследова­нии резус-фактора в семьях и популя­циях была сформулирована гипотеза о том, что каждый компонент резус-фак­тора определяется своим геном, что эти гены сцеплены вместе в один локус и имеют общий оператор или промотор, который регулирует их количествен­ную экспрессию. Поскольку антигены обозначаются буквами С, D, Е, то таки­ми же строчными буквами обозначают гены, отвечающие за синтез соответст­вующего компонента.

Генетические исследования в семьях показывают возможность кроссинговера между тремя генами в локусе ре­зус-фактора у гетерозигот. Популяционные исследования выявили разно­образные фенотипы: CDE, CDe, cDE, cDe, CdE, Cde, cdE, cde. Взаимодейст­вия между генами, определяющими резус-фактор, сложные. По всей види­мости, главным фактором, определяю­щим резус-антиген, является антиген D. Он обладает гораздо большей иммуногенностью, чем антигены С и Е. Отрица­тельный резус-фактор выявляется у людей с генотипом d/d, положитель­ный - у людей с генотипом DD и D/d. У гетерозигот CDe/Cde и Cde/cDe с сочетанием генов Cde в резус-локусе экспрессия фактора D изменяется, в результате чего формируется фенотип D u со слабой реакцией в ответ на вве­дение резус-положительных антиге­нов. Следовательно, работа генов в ре­зус локусе может регулироваться количественно, и фенотипическое прояв­ление резус-фактора у резус-положи­тельных людей бывает различным: большим или меньшим.

Несовместимость по резус-фактору плода и матери способна стать причи­ной развития патологии у плода или самопроизвольного выкидыша на ран­них сроках беременности. С помощью специальных чувствительных методов удалось выявить, что во время родов около 1 мл крови плода может попа­дать в кровоток матери. Если мать - резус-отрицательная, а плод - резус-положительный, то после первых ро­дов мать будет сенсибилизирована к резус-положительным антигенам. При последующих беременностях резус-несовместимым плодом титр анти-Rh-антител в ее крови может резко возра­сти, и под влиянием их разрушающего действия у плода возникает характер­ная клиническая картина гемолитиче­ской патологии, выражающейся в ане­мии, желтухе или водянке.

В классической генетике наиболее изученными являются три типа взаи­модействия неаллельных генов: эпистаз, комплементарность и полимерия. Они определяют многие наследуемые признаки человека.

Эпистаз - это такой тип взаимодей­ствия неаллельных генов, при котором одна пара аллельных генов подавляет действие другой пары. Различают эпи­стаз доминантный и рецессивный. До­минантный эпистаз проявляется в том, что доминантный аллель в гомозигот­ном (АА) или гетерозиготном (Аа) со­стоянии подавляет проявление другой пары аллелей. При рецессивном эпистазе ингибирующий ген в рецессив­ном гомозиготном состоянии (аа) не дает возможность проявиться эпистатируемому гену. Подавляющий ген на­зывают супрессором или ингибитором, а подавляемый - гипостатическим. Этот тип взаимодействия наибо­лее характерен для генов, участвую­щих в регуляции онтогенеза и иммун­ных систем человека.

Примером рецессивного эпистаза у человека может служить «бомбейский феномен». В Индии была описана се­мья, в которой родители имели вторую (А0) и первую (00) группу крови, а их дети - четвертую (АВ) и первую (00). Чтобы ребенок в такой семье имел группу крови АВ, мать должна иметь группу крови В, но ни­как ни 0. Позже было выяснено, что в системе групп крови АВ0 имеются ре­цессивные гены-модификаторы, кото­рые в гомозиготном состоянии подав­ляют экспрессию антигенов на поверх­ности эритроцитов. Например, чело­век с третьей группой крови должен иметь на поверхности эритроцитов ан­тиген группы В, но эпистатирующий ген-супрессор в рецессивном гомози­готном состоянии (h/h) подавляет действие гена В, так что соответствую­щие антигены не образуются, и фенотипически проявляется группа крови 0. Описанный локус гена-супрессора не сцеплен с локусом АВ0. Гены-супрессоры наследуются независимо от генов, определяющих группы крови АВ0. Бомбейский феномен имеет час­тоту 1 на 13 000 среди индусов, говоря­щих на языке махарати и живущих в окрестностях Бомбея. Он распростра­нен также в изоляте на острове Реюнь­он. По-видимому, признак детермини­рован нарушением одного из фермен­тов, участвующих в синтезе антигена.

Комплементарность - это такой тип взаимодействия, при котором за признак отвечают несколько неаллельных генов, причем разное сочетание доминантных и рецессивных аллелей в их парах изменяет фенотипическое проявление признака. Но во всех слу­чаях, когда гены расположены в раз­ных парах хромосом, в основе расщеп­лений лежат цифровые законы, уста­новленные Менделем.

Так, чтобы человек имел нор­мальный слух, необходима согласо­ванная деятельность нескольких пар генов, каждый из которых может быть представлен доминантными или ре­цессивными аллелями. Нормальный слух развивается только в том случае, если каждый из этих генов имеет хотя бы один доминантный аллель в дипло­идном наборе хромосом. Если хотя бы одна пара аллелей представлена рецес­сивной гомозиготой, то человек будет глухим. Поясним сказанное простым примером. Предположим, что нор­мальный слух формирует пара генов. В этом случае людям с нормальным слухом присущи генотипы ААВВ, ААВb, АаВВ, АаВb. Наследственная глухота определяется генотипами: ааbb, Ааbb, ААbb, ааВb, ааВВ. Исполь­зуя законы Менделя для дигибридного скрещивания, легко рассчитать, что глухие родители (ааВВ х ААbb) могут иметь детей с нормальным слухом (АаВb), а нормально слышащие роди­тели при соответствующем сочетании генотипов АаВb х АаВb с высокой долей вероятности (более 40%) - глу­хих детей.

Полимерия - обусловленность оп­ределенного признака несколькими парами неаллельных генов, обладаю­щих одинаковым действием. Такие ге­ны называются полимерными. Если число доминантных аллелей влияет на степень выраженности признака, по­лимерия именуется кумулятивной. Чем больше доминантных аллелей, тем более интенсивно выражен при­знак. По типу кумулятивной полиме­рии обычно наследуются признаки, которые можно выразить количест­венно: цвет кожи, цвет волос, рост.

Цвет кожи и волос человека, а также цвет радужной оболочки глаз обеспе­чивает пигмент меланин. Формируя окраску покровов, он предохраняет ор­ганизм от воздействия ультрафиолето­вых лучей. Существует два типа мела­нинов: эумеланин (черный и темно-ко­ричневый) и феумеланин (желтый и рыжий). Меланин синтезируется в клетках из аминокислоты тирозина в несколько этапов. Регуляция синтеза осуществляется многими путями и за­висит, в частности, от скорости деле­ния клеток. При ускорении митозов клеток в основании волоса образуется феумеланин, а при замедлении - эу­меланин. Описаны некоторые формы злокачественного перерождения кле­ток кожного эпителия, сопровождаю­щиеся накоплением меланина (меланомы).

Все цвета волос, за исключением рыжих, составляют непрерывный ряд от темного до светлого (соответствен­но уменьшению концентрации мела­нина) и наследуются полигенно по ти­пу кумулятивной полимерии. Счита­ется, что эти различия обусловлены чисто количественными изменениями в содержании эумеланина. Цвет рыжих волос зависит от наличия феумеланина. Окраска волос обычно меняется с возрастом и стабилизируется с наступлением половой зрелости.

Цвет радужной оболочки глаз определяют несколько факторов. С одной стороны, он зависит от присутствия гранул меланина, а с другой - от характера отражения света. Черный и коричневый цвета обусловлены много­численными пигментными клетками в переднем слое радужной оболочки. В светлых глазах содержание пигмента значительно меньше. Преобладание голубого цвета в свете, отраженном от переднего слоя радужной оболочки, не содержащей пигмента, объясняется оп­тическим эффектом. Различное содер­жание пигмента, определяет весь диа­пазон цвета глаз.

По типу кумулятивной полимерии наследуется также пигментация кожи человека. На основе генетических ис­следований семей, члены которых имеют разную интенсивность кожной пигментации, предполагается, что цвет кожи человека определяют три или четыре пары генов.

Признание принципа взаимодейст­вия генов наводит на мысль о том, что все гены так или иначе взаимосвязаны в своем действии. Если один ген ока­зывает влияние на работу других ге­нов, то он может влиять на проявление не только одного, но и нескольких при­знаков. Такое множественное действие гена называют плейотропией . Наибо­лее ярким примером плейотропного действия гена у человека является синдром Марфана, уже упоминавшая­ся аутосомно-доминантная патология. Арахнодактилия ("паучьи" пальцы) - один из симптомов синдрома Марфа­на. Другими симптомами являются высокий рост из-за сильного удлине­ния конечностей, гиперподвижность суставов, ведущий к близорукости, подвывих хрусталика и аневризм аор­ты. Синдром с одинаковой частотой встречается у мужчин и женщин. В ос­нове указанных симптомов лежит де­фект развития соединительной ткани, возникающий на ранних этапах онто­генеза и приводящий к множествен­ным фенотипическим проявлениям.

Плейотропным действием обладают многие наледственные патологии. Оп­ределенные этапы метаболизма обес­печивают гены. Продукты метаболиче­ских реакций, в свою очередь регули­руют, а возможно, и контролируют другие метаболические реакции. По­этому нарушения метаболизма на од­ном этапе отразятся на последующих этапах, так что нарушение экспрессии одного гена окажет влияние на не­сколько элементарных признаков.

Наследственность и среда

Фенотипическое проявление при­знака определяется генами, отвечаю­щими за этот признак, взаимодействи­ем детерминирующих с другими гена­ми и условиями внешней среды. Сле­довательно, степень фенотипической выраженности детерминированного признака (экспрессивность ) может изменяться: усиливаться или ослаб­ляться. Для многих доминантных признаков характерно, что ген прояв­ляется у всех гетерозигот, но в разной степени. Многие доминантные заболе­вания обнаруживают значительную индивидуальную изменчивость и по возрасту начала, и по тяжести прояв­ления, и внутри одной семьи, и в раз­ных семьях.

В ряде случаев признак может вооб­ще не выражаться фенотипически, не­смотря на генотипическую предопре­деленность. Частота фенотипического проявления данного гена среди его но­сителей называется пенетрантностью и выражается в процентах. Пенетрантность бывает полной, если признак проявляется у всех носителей данного гена (100%), и неполной, если признак проявляется только у части носите­лей. В случае неполной пенетрантности иногда при передаче признака одно поколение пропускается, хотя лишен­ный его индивид, судя по родослов­ной, должен быть гетерозиготным. Пе-нетрантность - это статистическое понятие. Оценка ее величины часто зависит от применяемых методов об­следования.

Генетика пола

Из 46 хромосом (23 пары) в кариотипе человека 22 пары одинаковы у муж­чин и женщин (аутосомы), а одна пара, называемая половой, у разных полов отличается: у женщин - XX, у муж­чин - XY. Половые хро­мосомы представлены в каждой сома­тической клетке индивида. При образо­вании гамет во время мейоза гомоло­гичные половые хромосомы расходятся в разные половые клетки. Следователь­но, каждая яйцеклетка помимо 22 аутосом несет одну половую хромосому X. Все сперматозоиды также имеют гаплоидный набор хромосом, из кото­рых 22 - аутосомы, а одна - половая. Половина сперматозоидов содержит X, другая половина - Y хромосому.

Поскольку женские половые хромо­сомы одинаковы и все яйцеклетки несут Х-хромосому, то женский пол у че­ловека называют гомогаметным. Муж­ской же пол из-за различия половых хромосом (X или Y) в сперматозоидах именуют гетерогаметным.

Пол человека определяется в мо­мент оплодотворения. Женщина имеет один тип гамет - X, мужчина - два ти­па гамет: X и Y, причем, согласно зако­нам мейоза, образуются они в равной пропорции. При оплодотворении хро­мосомные наборы гамет объединяют­ся. Напомним, что зигота содержит 22 пары аутосом и одну пару половых хромосом. Если яйцеклетку оплодо­творил сперматозоид с Х-хромосомой, то в зиготе пара половых хромосом бу­дет XX, из нее разовьется девочка. Ес­ли же оплодотворение произвел спер­матозоид с Y-хромосомой, то набор по­ловых хромосом в зиготе - XY. Такая зигота даст начало мужскому организ­му. Таким образом, пол будущего ре­бенка определяет гетерогаметный по половым хромосомам мужчина. Соот­ношение полов при рождении, по дан­ным статистики, соответствует при­мерно 1:1.

Хромосомное определение пола - не единственный уровень половой дифференцировки. Большую роль в этом процессе у человека играет гор­мональная регуляция, происходящая с помощью половых гормонов, которые синтезируются половыми железами.

Закладка половых органов человека начинается у пятинедельного эмбрио­на. В зачатки гонад из желточного мешка мигрируют первичные клетки зародышевого пути, которые, размно­жаясь митозом, дифференцируются в гонии и становятся предшественника­ми гамет. У зародышей обоих полов миграция проходит одинаково. Если же в клетках зачатков гонад присутст­вует Y-хромосома, то начинают развиваться семенники, причем начало диф­ференцировки связано с функциони­рованием эухроматинового района Y-хромосомы. Если же Y-хромосома от­сутствует, то развиваются яичники, что соответствует женскому типу.

Человек по своей природе бисексуа­лен. Зачатки половой системы одина­ковы у зародышей обоих полов. Если активность Y - хромосомы подавлена, то зачатки половых органов развива­ются по женскому типу. При полном отсутствии всех элементов становле­ния мужского пола формируются жен­ские половые органы.

Тип вторичных половых признаков обусловлен дифференцировкой гонад. Половые органы формируются из мюллеровых и вольфовых каналов. У женщин мюллеровы протоки развива­ются в фаллопиевы трубы и матку, а вольфовы атрофируются. У мужчин вольфовы каналы развиваются в се­менные протоки и семенные пузырьки. Под влиянием хорионического гонадотропина матери лежащие в эмбрио­нальных семенниках клетки Лейдига синтезируют стероидные гормоны (те­стостерон), которые участвуют в регу­ляции развития особи по мужскому типу. Одновременно в семенниках в клетках Сертоли синтезируется гор­мон, ингибирующий дифференциров­ку мюллеровых протоков. Нормаль­ные особи мужского пола развиваются только в случае, если все гормоны, действующие на зачатки внешних и внутренних половых органов, «сраба­тывают» в определенное время в задан­ном месте.

В настоящее время описано около 20 разнообразных дефектов генов, ко­торые при нормальном (XY) кариотипе по половым хромосомам приводят к нарушению дифференцировки внеш­них и внутренних половых признаков, (гермафродитизму). Эти мутации свя­заны с нарушением: а) синтеза поло­вых гормонов; б) восприимчивости ре­цепторов к ним; в) работы ферментов, участвующих в синтезе регулирующих факторов и т.д.

Наследование признаков, сцепленных с полом

Х- и Y-хромосомы гомологичны, по­скольку обладают общими гомологич­ными участками, где локализованы аллельные гены. Однако, несмотря на го­мологию отдельных локусов, эти хро­мосомы различаются по морфологии. Ведь, помимо общих участков, они несут большой набор раз­личающихся генов. В Х-хромосоме ле­жат гены, которых нет в Y-хромосоме, а ряд генов Y-хромосомы отсутствуют в Х-хромосоме. Таким образом, у мужчин в половых хромосомах некоторые гены не имеют второго аллеля в гомологич­ной хромосоме. В таком случае признак определяется не парой аллельных ге­нов, как обычный менделирующий признак, а только одним аллелем. По­добное состояние гена называется гемизиготным, а признаки, раз­витие которых обусловлено одиноч­ным аллелем, расположенным в одной из альтернативных половых хромосом, получили название сцепленных с по­лом. Она преимущественно развивают­ся у одного из двух полов и по-разному наследуются у мужчин и женщин.

Признаки, сцепленные с Х-хромосомой, могут быть рецессивными и до­минантными. К рецессивным относят­ся: гемофилия, дальтонизм (неспособ­ность различать красный и зеленый цвета), атрофия зрительного нерва и миопатия Дюшена. К доминантным - рахит, не поддающийся лечению вита­мином Д, и темная эмаль зубов.

Рассмотрим наследование, сцеплен­ное с Х-хромосомой, на примере ре­цессивного гена гемофилии. У мужчи­ны ген гемофилии, локализованный в Х-хромосоме, не имеет аллеля в Y-xpoмосоме, то есть находится в гемизиготном состоянии. Следовательно, несмо­тря на то, что признак рецессивный, у мужчин он проявляется:

N - ген нормальной свертываемос­ти крови,

h - ген гемофилии;

X h Y - мужчина с гемофилией;

X N Y - мужчина здоров.

У женщин признак определяется парой аллельных генов в половых хро­мосомах XX, следовательно, гемофи­лия может проявиться только в гомо­зиготном состоянии:

X N X N - женщина здорова.

X N X h - гетерозиготная женщина, но­сительница гена гемофилии, здорова,

X h X h - женщина с гемофилией.

Законы передачи признаков, сцеп­ленных с Х-хромосомами, были впер­вые изучены Т. Морганом.

Помимо Х-сцепленных, у мужчин имеются Y-сцепленные признаки. Они называются голандрическими. Опре­деляющие их гены локализованы в тех районах Y-хромосом, которые не име­ют аналогов в Х-хромосомах. Голандрические признаки также опре­деляются только одним аллелем, а по­скольку их гены находятся только в Y-хромосоме, то выявляются они у муж­чин и передаются от отца к сыну, вер­нее - ко всем сыновьям. К голандрическим признакам относятся: волоса­тость ушей, перепонки между пальца­ми ног, ихтиоз (кожа имеет глубокую исчерченность и напоминает рыбью чешую).

Гомологичные районы Х- и Y-хро­мосом содержат аллельные гены, с рав­ной вероятностью встречающиеся у лиц мужского и женского пола.

К числу определяемых ими призна­кам относятся общая цветовая слепота (отсутствие цветового зрения) и пиг­ментная ксеродерма. Оба эти признака являются рецес­сивными. Признаки, связанные с аллельными генами, находящимися в X- и Y-хромосомах, наследуются по клас­сическим менделевским законам.

Наследование, ограниченное и контролируемое полом

Признаки человека, наследование которых каким-то образом связано с полом, подразделяются на несколько категорий.

Одна из категорий - признаки, ог­ раниченные полом . Их развитие обус­ловлено генами, расположенными в аутосомах обоих полов, но проявляющимися только у одного пола. Напри­мер, гены, определяющие ширину таза женщины, локализованы в аутосомах, наследуются и от отца и от матери, но проявляются только у женщин. То же касается возраста полового созревания девочек. Среди мужских признаков, ограниченных полом, можно назвать количество и распределение волосяно­го покрова на теле.

К иной категории относятся призна­ ки, контролируемые полом , или зави­симые от пола. Развитие соматических признаков обусловлено генами, распо­ложенными в аутосомах, проявляются они у мужчин и женщин, но по-разно­му. Например, у мужчин раннее облы­сение - признак доминантный, он проявляется как у доминантных гомо­зигот (Аа) так и у гетерозигот (Аа). У женщин этот признак рецессивный, он проявляется только у рецессивных го­мозигот (аа). Поэтому лысых мужчин гораздо больше, чем женщин. Другим примером может служить подагра, у мужчин ее пенетрантность выше: 80% против 12% у женщин. Значит, чаще подагрой болеют мужчины. Экспрес­сивность признаков, контролируемых полом, обусловлена половыми гормо­нами. Например, тип певческого голо­са (бас, баритон, тенор, сопрано, мец­цо-сопрано и альт) контролируется по­ловой конституцией. Начиная с перио­да полового созревания, признак нахо­дится под влиянием половых гормо­нов.

Сцепление генов и карты хромосом

Хромосомная теория наследствен­ности была сформулирована и экспе­риментально доказана Т. Морганом и его сотрудниками. Согласно этой тео­рии, гены находятся в хромосомах и расположены в них линейно. Гены, ло­кализованные в одной хромосоме, называются сцепленными, наследуются вместе и образуют группу сцепления. Количество групп сцепления соответ­ствует числу пар гомологичных хромо­сом. У человека 46 хромосом: 22 пары аутосом и одна пара половых хромо­сом (XX или XY), следовательно, у женщин 23 группы сцепления, а у мужчин - 24, так как половые хромо­сомы мужчины (XY) не полностью го­мологичны друг другу. Каждая из по­ловых хромосом мужчины имеет гены, характерные только для Х- и только для Y-хромосомы, которым соответст­вуют группы сцепления Х- и Y-хромо­сомы.

Гены, локализованные в одной хро­мосоме и образующие группу сцепле­ния, сцеплены не абсолютно. В зиготене профазы первого мейотического де­ления гомологичные хромосомы сли­ваются вместе с образованием бива­лентов, затем в пахитене происходит кроссинговер-обмен участками между хроматидами гомологичных хромосом. Кроссинговер - обязательный про­цесс. Он осуществляется в каждой па­ре гомологичных хромосом. Чем даль­ше друг от друга расположены гены в хромосоме, тем чаще между ними про­исходит кроссинговер. Благодаря это­му процессу, возрастает разнообразие сочетания генов в гаметах. Например, пара гомологичных хромосом содер­жит сцепленные гены АВ и ab. В про­фазе мейоза гомологичные хромосомы конъюгируют и образуют бивалент: АВ ab

Если кроссинговер между генами А и В не произойдет, то в результате мей­оза образуется два типа некроссоверных гамет: АВ и ab. Если же кроссин­говер состоится, то получатся кроссоверные гаметы: Ab иаВ, то есть группы сцепления изменятся. Чем более удалены друг от друга гены А и В, тем больше возрастает вероятность обра­зования и, соответственно число кроссоверных гамет.

Если гены в большой хромосоме расположены на достаточном расстоя­нии друг от друга и между ними в мейозе происходят многочисленные пере­кресты, то они могут наследоваться не­зависимо.

Открытие кроссинговера позволило Т. Моргану и сотрудникам его школы в первые два десятилетия XX века раз­работать принцип построения генети­ческих карт хромосом. Явление сцеп­ления было использовано ими для вы­яснения локализации генов, располо­женных в одной хромосоме, и созда­ния генных карт плодовой мушки Drosophila melanogaster. На генетичес­ких картах гены располагаются линей­но друг за другом на определенном расстоянии. Расстояние между генами определяется в процентах кроссинго­вера, или в морганидах (1 % кроссин­говера равен одной морганиде).

Для построения генетических карт у растений и животных проводят анали­зирующие скрещивания, в которых до­статочно просто рассчитать процент особей, образовавшихся в результате кроссинговера, и построить генетичес­кую карту по трем сцепленным генам. У человека анализ сцепления генов классическими методами невозможен, поскольку невозможны эксперимен­тальные браки. Поэтому для изучения групп сцепления и составления карт хромосом человека используют другие методы, в первую очередь генеалогиче­ский, основанный на анализе родо­словных.

Т Е М А № 7 Наследственные заболевания человека

Проблема здоровья людей и генети­ка тесно взаимосвязаны. Ученые-гене­тики пытаются ответить на вопрос, по­чему одни люди подвержены различ­ным заболеваниям, в то время как дру­гие в этих или даже худших условиях остаются здоровы. В основном это свя­зано с наследственностью каждого че­ловека, т.е. свойствами его генов, за­ключенных в хромосомах.

В последние годы отмечаются быст­рые темпы развития генетики челове­ка и медицинской генетики. Это объ­ясняется многими причинами и, преж­де всего резким увеличением доли на­следственной патологии в структуре заболеваемости и смертности населе­ния. Статистика показывает, что из 1000 новорожденных у 35-40 выявля­ются различные типы наследственных болезней, а в смертности детей в возра­сте до 5 лет хромосомные болезни со­ставляют 2-3%, генные - 8-10%, мультифакториальные - 35-40%. Ежегодно в нашей стране рождается 180 тыс. де­тей с наследственными заболевания­ми. Более половины из них имеют врожденные пороки, около 35тыс. - хромосомные болезни и свыше 35 тыс. - генные болезни. Следует отме­тить, что число наследственных болез­ней у человека с каждым годом растет, отмечаются новые формы наследст­венной патологии. В 1956 г. было изве­стно 700 форм наследственных заболе­ваний, а к 1986 году число их увеличи­лось до 2000. В 1992 количество изве­стных наследственных болезней и признаков возросло до 5710.

Все наследственные болезни делят­ся на три группы:

    Генные (моногенные - в основе патологии одна пара аллельных генов)

    Хромосомные

    Болезни с наследственным пред­расположением (мультифакториальные).

Генные болезни человека

Генные болезни - это большая груп­па заболеваний, возникающих в резуль­тате повреждения ДНК на уровне гена.

Общая частота генных болезней в популяции составляет 1-2%. Условно частоту генных болезней считают вы­сокой, если она встречается с частотой 1 случай на 10.000 новорожденных, средней - 1 на 10.000-40.000 и далее - низкой.

Моногенные формы генных заболе­ваний наследуются в соответствии с законами Г. Менделя. По типу насле­дования они делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х- или Y-хромосомами.

Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов - белков. Любая мутация гена ведет к изменению структуры или количества белка.

Начало любой генной болезни свя­зано с первичным эффектом мутантного аллеля. Основная схема генных болезней включает ряд звеньев:

    мутантный аллель;

    измененный пер­вичный продукт;

    цепь последующих биохимических процессов клетки;

  1. организм.

В результате мутации гена на моле­кулярном уровне возможны следую­щие варианты:

    синтез аномального белка;

    выработка избыточного количе­ства генного продукта;

    отсутствие выработки первично­го продукта;

    выработка уменьшенного коли­чества нормального первичного про­дукта.

Не заканчиваясь на молекулярном уровне в первичных звеньях, патогенез генных болезней продолжается на кле­точном уровне. При различных болез­нях точкой приложения действия мутантного гена могут быть как отдель­ные структуры клетки - лизосомы, мембраны, митохондрии, так и органы человека. Клиничес­кие проявления генных болезней, тя­жесть и скорость их развития зависят от особенностей генотипа организма (гены-модификаторы, доза генов, вре­мя действия мутантного гена, гомо- и гетерозиготность и др.), возраста боль­ного, условий внешней среды (пита­ние, охлаждение, стрессы, переутомле­ние) и других факторов.

Особенностью генных (как и вооб­ще всех наследственных) болезней яв­ляется их гетерогенность. Это означа­ет, что одно и то же фенотипическое проявление болезни может быть обус­ловлено мутациями в разных генах или разными мутациями внутри одно­го гена.

К генным болезням у человека отно­сятся многочисленные болезни обмена веществ. Они могут быть связаны с на­рушением обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов и др. Пока еще нет единой классификации наследст­венных болезней обмена веществ. На­учной группой ВОЗ предложена сле­дующая классификация:

1) болезни аминокислотного обмена (фенилкетонурия, алкаптонурия и др.);

    наследственные нарушения обме­на углеводов (галаюгоземия, гликогеновая

болезнь и др.);

    болезни, связанные с нарушением липидного обмена (болезнь Ниманна-

Пика, болезнь Гоше и др.);

    наследственные нарушения обме­на стероидов;

    наследственные болезни пуринового и пиримидинового обмена (пода­гра,

синдром Леша-Найяна и др.);

6) болезни нарушения обмена со­единительной ткани (болезнь Марфана,

мукополисахаридозы и др.);

7) наследственные нарушения гема- и порфирина (гемоглобинопатии и др.);

    болезни, связанные с нарушением обмена в эритроцитах (гемолитичес­кие

анемии и др.);

    наследственные нарушения обме­на билирубина;

    наследственные болезни обмена металлов (болезнь Коновалова-Виль­сона

    наследственные синдромы нару­шения всасывания в пищеваритель­ном

тракте (муковисцидоз, неперено­симость лактозы и др.).

Рассмотрим наиболее часто встреча­ющиеся и генетически наиболее изу­ченные в настоящее время генные бо­лезни.

Мутациями называются спонтанные изменения в структуре ДНК живых организмов, ведущие к возникновению всевозможных отклонений в росте и развитии. Итак, рассмотрим, что такое мутация, причины ее возникновения и существующие в Стоит также обратить внимание на влияние изменений генотипа на природу.

Ученые заявляют, что мутации существовали всегда и присутствуют в организмах абсолютно всех живых существ на планете, более того, их может наблюдаться до нескольких сотен в одном организме. Проявление же их и степень выраженности зависят от того, какими причинами они были спровоцированы и какая генетическая цепочка пострадала.

Причины мутаций

Причины мутаций могут быть самыми разнообразными, и возникнуть они могут не только естественным путем, но и искусственно, в лабораторных условиях. Ученые-генетики выделяют следующие факторы возникновения изменений:

2) генные мутации - изменения в последовательности построения нуклеотидов при образовании новых цепочек ДНК (фенилкетонурия).

Значение мутаций

В большинстве случаев они наносят вред всему организму, поскольку мешают его нормальному росту и развитию, и иногда приводят к смерти. Полезные мутации не встречаются никогда, даже если они наделяют сверхспособностями. Они становятся предпосылкой для активного действия и влияют на селекцию живых организмов, приводя к появлению новых видов или вырождению. Таким образом, отвечая на вопрос: «Что такое мутация?» - стоит отметить, что это малейшие изменения в структуре ДНК, нарушающие развитие и жизнедеятельность всего организма.

Причины мутаций

Мутации делятся на спонтанные и индуцированные . Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 в −9 степени - 10 в −12 на нуклеотид за клеточную генерацию. Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК , нарушения репарации ДНК и генетическая рекомбинация.

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за деаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция.

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер . Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой - делеция.

Связь мутаций с репарацией ДНК

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах белков, ответственных за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов.

Мутагены

Существуют факторы, способные заметно увеличить частоту мутаций - мутагенные факторы . К ним относятся:

  • химические мутагены - вещества, вызывающие мутации,
  • физические мутагены - ионизирующие излучения , в том числе естественного радиационного фона, ультрафиолетовое излучение, высокая температура и др.,
  • биологические мутагены - например, ретровирусы , ретротранспозоны .

Классификации мутаций

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлени, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурного на бурый) и неоморфные .

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • генные
  • хромосомные
  • геномные .

Последствия мутаций для клетки и организма

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, - апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Роль мутаций в эволюции

При существенном изменении условий существования те мутации, которые раньше были вредными, могут оказаться полезными. Таким образом, мутации являются материалом для естественного отбора . Так, мутанты-меланисты (темноокрашенные особи) в популяциях березовой пяденицы (Biston betularia) в Англии впервые были обнаружены учеными среди типичных светлых особей в середине XIX века. Темная окраска возникает в результате мутации одного гена. Бабочки проводят день на стволах и ветвях деревьев, обычно покрытых лишайниками, на фоне которых светлая окраска является маскирующей. В результате промышленной революции, сопровождающейся загрязнением атмосферы, лишайники погибли, а светлые стволы берез покрылись копотью. В результате к середине XX века (за 50-100 поколений) в промышленных районах темная морфа почти полностью вытеснила светлую. Было показано, что главная причина преимущественного выживания черной формы - хищничество птиц, которые избирательно выедали светлых бабочек в загрязненных районах.

Если мутация затрагивает «молчащие» участки ДНК, либо приводит к замене одного элемента генетического кода на синонимичный, то она обычно никак не проявляется в фенотипе (проявление такой синонимичной замены может быть связано с разной частотой употребления кодонов). Однако методами генного анализа такие мутации можно обнаружить. Поскольку чаще всего мутации происходят в результате естественных причин, то в предположении, что основные свойства внешней среды не менялись, получается, что частота мутаций должна быть примерно постоянной. Этот факт можно использовать для исследования филогении - изучения происхождения и родственных связей различных таксонов , в том числе и человека . Таким образом, мутации в молчащих генах служат для исследователей своеобразными «молекулярными часами». Теория "молекулярных часов" исходит также из того, что большинство мутаций нейтральны, и скорость их накопления в данном гене не зависит или слабо зависит от действия естественного отбора и потому остается постоянной в течение длительного времени. Для разных генов эта скорость, тем не менее, будет различаться.

Исследование мутаций в митохондриальной ДНК (наследуется по материнской линии) и в Y-хромосомах (наследуется по отцовской линии) широко используется в эволюционной биологии для изучения происхождения рас и народностей, реконструкции биологического развития человечества.

Проблема случайности мутаций

В 40-е годы среди микробиологов была популярна точка зрения, согласно которой мутации вызываются воздействием фактора среды (например. антибиотика), к которому они позволяют адаптироваться. Для проверки этой гипотезы был разработан флуктуационный тест и метод реплик .
Флуктуационный тест Лурия-Дельбрюка заключается в том, что небольшие порции исходной культуры бактерий рассеивают в пробирки с жидкой средой, а после нескольких циклов делений добавляют в пробирки антибиотик. Затем (без последующих делений) на чашки Петри с твердой средой высевают выживших устойчивых к антибиотику бактерий. Тест показал. что число устойчивых колоний из разных пробирок очень изменчиво - в большинстве случаев оно небольшое (или нулевое), а в некоторых случаях очень высокое. Это означает, что мутации, вызвавшие устойчивость к антибиотику, возникали в случайные моменты времени как до, так и после его воздействия.
Метод реплик (в микробиологии) заключается в том, что с исходной чашки Петри, где на твердой среде растут колонии бактерий, делается отпечаток на ворсистую ткань, а затем с ткани бактерии переносятся на несколько других чашек, где рисунок их расположения оказывается тем же, что на исходной чашке. После воздействия антибиотиком на всех чашках выживают колонии, расположенные в одних и тех же точках. Высевая такие колонии на новые чашки, можно показать, что все бактерии внутри колонии обладают устойчивостью.
Таким образом, обоими методами было доказано, что «адаптивные» мутации возникают независимо от воздействия того фактора, к которому они позволяют приспособиться, и в этом смысле мутации случайны. Однако несомненно, что возможность тех или иных мутаций зависит от генотипа и канализована предшествующим ходом эволюции (см. Закон гомологических рядов в наследственной изменчивости). Кроме того, закономерно различается частота мутирования разных генов и разных участков внутри одного гена. Также известно, что высшие организмы используют «целенаправленные» (то есть происходящие в определенных участках ДНК) мутации в механизмах иммунитета . С их помощью создаётся разнообразие клонов лимфоцитов , среди которых в результате всегда находятся клетки, способные дать иммунный ответ на новую, неизвестную для организма болезнь. Подходящие лимфоциты подвергаются положительной селекции , в результате возникает иммунологическая память.

См. также

Ссылки

Инге-Вечтомов С.В. Генетика с основами селекции. М., Высшая школа, 1989.

Примечания


Wikimedia Foundation . 2010 .

По причинам возникновения различают спонтанные и индуцированные мутации.

Спонтанные (самопроизвольные) мутации возникают без видимых причин. Эти мутации иногда рассматривают как ошибки трех Р : процессов репликации, репарации и рекомбинации ДНК . Это означает, что процесс возникновения новых мутаций находится под генетическим контролем организма. Например, известны мутации, которые повышают или понижают частоту других мутаций; следовательно, существуют гены-мутаторы и гены-антимутаторы.

В то же время, частота спонтанных мутаций зависит и от состояния клетки (организма). Например, в условиях стресса частота мутаций может повышаться.

Индуцированные мутации возникают под действием мутагенов .

Мутагены – это разнообразные факторы, которые повышают частоту мутаций .

Впервые индуцированные мутации были получены отечественными генетиками Г.А. Надсоном и Г.С. Филипповым в 1925 г. при облучении дрожжей излучением радия.

Различают несколько классов мутагенов:

Физические мутагены : ионизирующие излучения, тепловое излучение, ультрафиолетовое излучение.

Химические мутагены : аналоги азотистых оснований (например, 5-бромурацил), альдегиды, нитриты, метилирующие агенты, гидроксиламин, ионы тяжелых металлов, некоторые лекарственные препараты и средства защиты растений.

Биологические мутагены : чистая ДНК, вирусы, антивирусные вакцины.

Аутомутагены – промежуточные продукты обмена веществ (интермедиаты). Например, этиловый спирт сам по себе мутагеном не является. Однако в организме человека он окисляется до ацетальдегида, а это вещество уже является мутагеном.

Вопрос №21.

(Хромосомные мутации, их классификация: делеций и дубликаций, инверсий, транслокации. Причины и механизмы возникновения. Значение в развитии патологических состояний человека)

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай - объединение целых хромосом

В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности - разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями.

Разрывы хромосом происходят закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологами. Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводит к появлению новых групп сцепления, где отдельные участки выпадают - делении - или удваиваются - дупликации . При таких перестройках изменяется число генов в группе сцепления.

Разрывы хромосом могут возникать также под влиянием различных мутагенных факторов, главным образом физических (ионизирующего и других видов излучения), некоторых химических соединений, вирусов.

Нарушение целостности хромосомы может сопровождаться поворотом ее участка, находящегося между двумя разрывами, на 180° - инверсия. В зависимости от того, включает ли данный участок область центромеры или нет, различают перицентрические и парацентрические инверсии .

Фрагмент хромосомы, отделившийся от нее при разрыве, может быть утрачен клеткой при очередном митозе, если он не имеет центромеры. Чаще такой фрагмент прикрепляется к одной из хромосом - транслокация. Возможно присоединение фрагмента к своей же хромосоме, но в новом месте - транспозиция . Таким образом, различные виды инверсий и транслокаций характеризуются изменением локализации генов.

Таким образом, изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала.

Вопрос №22.

(Геномные мутации: классификация, причины, механизмы. Роль в возникновении хромосомных синдромов. Антимутационные механизмы).

Геномные: - полиплоидизация изменение числа хромосом, не кратное гаплоидному набору. В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома

К геномным мутациям относят гаплоидию, полиплоидию и анеуплоидию.

Анеуплоидией называют изменение количества отдельных хромосом- отсутствие (моносомия) или наличие дополнительных (трисомия, тетрасомия, в общем случае полисомия) хромосом,т.е. несбалансированный хромосомный набор. Клетки с измененным числом хромосом появляются вследствие нарушений в процессе митоза или мейоза, в связи с чем различают митотическую и мейотическую.

Причины мутаций

Мутации делятся на спонтанные и индуцированные. Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около - на нуклеотид за клеточную генерацию.

Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК, нарушения репарации ДНК и генетическая рекомбинация.

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за дезаминированияцитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер. Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой - делеция.

Связь мутаций с репарацией ДНК

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах, кодирующих белки, ответственные за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов.

Классификации мутаций

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные.

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

геномные;

хромосомные;

Геномные: - полиплоидизацияизменение числа хромосом, не кратное гаплоидному набору. В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай - объединение целых хромосом.

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях

Антимутационные механизмы обеспечивают обнаружение, устранение или подавление активности онкогенов. Реализуются антимутационные механизмы при участии онкосупрессоров и систем репарации ДНК.

Вопрос №23.

(Человек как объект генетических исследований. Цитогенетический метод: его значение для диагностики хромосомных синдромов. Правила составления идиограмм здоровых людей. Идиограммы при хромосомных синдромах(аутосомных и гоносомных). Примеры)

Человек как объект генетических исследований. Антропогенетика, ее место в системе наук о человеке, основные генетические маркеры этногенетики. Наследственные болезни, как часть общей наследственной изменчивости человека.

Человек, как объект генетических исследований представляет сложность:

Нельзя принимать гибридологический метод.

Медленная смена поколения.

Малое кол-во детей.

Большое число хромосомю

Генетика человека – это особый раздел генетики, который изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения.

В настоящее время твердо установлено, что законы генетики носят всеобщий характер.

Однако, поскольку человек – это не только биологическое, но и социальное существо, генетика человека отличается от генетики большинства организмов рядом особенностей:

– для изучения наследования человека неприменим гибридологический анализ (метод скрещиваний); поэтому для генетического анализа используются специфические методы: генеалогический (метод анализа родословных), близнецовый, а также цитогенетические, биохимические, популяционные и некоторые другие методы;

– для человека характерны социальные признаки, которые не встречаются у других организмов, например, темперамент, сложные коммуникационные системы, основанные на речи, а также математические, изобразительные, музыкальные и иные способности;

– благодаря общественной поддержке возможно выживание и существование людей с явными отклонениями от нормы (в дикой природе такие организмы оказываются нежизнеспособными).

Генетика человека изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения. Известно несколько тысяч собственно генетических заболеваний, которые почти на 100% зависят от генотипа особи. К наиболее страшным из них относятся: кислотный фиброз поджелудочной железы, фенилкетонурия, галактоземия, различные формы кретинизма, гемоглобинопатии, а также синдромы Дауна, Тернера, Кляйнфельтера. Кроме того, существуют заболевания, которые зависят и от генотипа, и от среды: ишемическая болезнь, сахарный диабет, ревматоидные заболевания, язвенные болезни желудка и двенадцатиперстной кишки, многие онкологические заболевания, шизофрения и другие заболевания психики.

Задачи медицинской генетики заключаются в своевременном выявлении носителей этих заболеваний среди родителей, выявлении больных детей и выработке рекомендаций по их лечению. Большую роль в профилактике генетически обусловленных заболеваний играют генетико-медицинские консультации и пренатальная диагностика (то есть выявление заболеваний на ранних стадиях развития организма).

Существуют специальные разделы прикладной генетики человека (экологическая генетика, фармакогенетика, генетическая токсикология), изучающие генетические основы здравоохранения. При разработке лекарственных препаратов, при изучении реакции организма на воздействие неблагоприятных факторов необходимо учитывать как индивидуальные особенности людей, так и особенности человеческих популяций.

Наследственные болезни - заболевания, вызываемые нарушениями в генетическом (наследственном) аппарате половых клеток. Наследственные болезни обусловлены мутациями (см. Изменчивость), возникающими в хромосомном аппарате половой клетки одного из родителей или у более отдаленных предков

Вопрос №24.

(Биохимический метод изучения генетики человека; его значение для диагностики наследственных болезней обмена веществ. Роль транскрипционных, посттранскрипционных и посттрансляционных модификаций в регуляции клеточного обмена. Примеры).

В отличие от цитогенетического метода, который позволяет изучать структуру хромосом и кариотипа в норме и диагностировать наследственные болезни, связанные с изменением их числа и нарушением организации, наследственные заболевания, обусловленные генными мутациями, а также полиморфизм по нормальным первичным продуктам генов изучают с помощью биохимических методов.

Дефекты ферментов устанавливают путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и побочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме.

Биохимическую диагностику наследственных нарушений обмена проводят в два этапа.

На первом этапе отбирают предположительные случаи заболеваний, на втором -более точными и сложными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия, как, например, в случае фенилкетонурии.

Для определения содержания в крови, моче или амниотической жидкости промежуточных, побочных и конечных продуктов обмена кроме качественных реакций со специфическими реактивами на определенные вещества используют хроматографические методы исследования аминокислот и других соединений.

Транскрипционые факторы - белки, взаимодействующие с определёнными регуляторными сайтами и ускоряющие или замедляющие процесс транскрипции. Соотношение информативной и неинформативной частей в транскриптонах эукариотов составляет в среднем 1:9 (у прокариотов 9:1).Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК. Разделение ДНК на множество транскриптонов позволяет осуществлять с разной активностью индивидуальное считывание (транскрипцию) разных генов.

В каждом транскриптоне транскрибируется только одна из двух цепей ДНК, которая называется матричной, вторая, комплементарная ей цепь, называется кодирующей. Синтез цепи РНК идёт от 5"- к З"-концу, при этом матричная цепь ДНК всегда антипараллельна синтезируемой нуклеиновой кислоте

Посттранскрипционные модификации первичного транскрипта тРНК (процессинг тРНК)

ПервичныйтранскрипттРНК содержит около 100 нуклеотидов, а после процессинга - 70-90 нуклеотидньгх остатков. Посттранскрипционные модификации первичныхтранскриптовтРНК происходят при участии РНК-аз (рибонуклеаз). Так, формирование 3"-конца тРНК катализирует РНК-аза, представляющая собой 3"-экзонуклеазу, "отрезающую" по одному нук-леотиду, пока не достигнет последовательности -ССА, одинаковой для всех тРНК. Для некоторых тРНК формирование последовательности -ССА на 3"-конце (акцепторный конец) происходит в результате последовательного присоединения этих трёх нуклеотидов. Пре-тРНК содержит всего один интрон, состоящий из 14-16 нуклеотидов. Удаление интрона и сплайсинг приводят к формированию структуры, называемой "антикодон", - триплета нуклеотидов, обеспечивающего взаимодействие тРНК с комплементарным кодоном мРНК в ходе синтеза белков

Посттранскрипционные модификации (процессинг) первичноготранскриптарРНК. Формирование рибосом

В клетках человека содержится около сотни копий гена рРНК, локализованных группами на пяти хромосомах. Гены рРНК транскрибируются РНК-полимеразой I с образованием идентичныхтранскриптов. Первичныетранскрипты имеют длину около 13 000 нуклеотид-ных остатков (45S рРНК). Прежде чем покинуть ядро в составе рибосомной частицы, молекула 45 S рРНК подвергается процессин-гу, в результате образуется 28S рРНК (около 5000 нуклеотидов), 18S рРНК (около 2000 нуклеотидов) и 5,88 рРНК (около 160 нуклеотидов), которые являются компонентами рибосом (рис. 4-35). Остальная часть транскрипта разрушается в ядре.

Вопрос №25.

(Генеалогический метод генетики человека. Основные правила составления и анализа родословных схем (на примере собственной семейной родословной схеме). Значение метода в изучении закономерностей наследования признаков).

В основе этого метода лежит составление и анализ родословных. Этот метод широко применяют с древних времен и до наших дней в коневодстве, селекции ценных линий крупного рогатого скота и свиней, при получении чистопородных собак, а также при выведении новых пород пушных животных. Родословные человека составлялись на протяжении многих столетий в отношении царствующих семейств в Европе и Азии.

При составлении родословных исходным является человек - пробанд, родословную которого изучают. Обычно это или больной, или носитель определенного признака, наследование которого необходимо изучить. При составлении родословных таблиц используют условные обозначения, предложенные Г. Юстом в 1931 г. (рис. 6.24). Поколения обозначают римскими цифрами, индивидов в данном поколении - ар

Условные обозначения при составлении родословных (по Г. Юсту)

С помощью генеалогического метода может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования (аутосомно-доминантный, аутосомно-рецессивный, X-сцепленный доминантный или рецессивный, Y-сцепленный). При анализе родословных по нескольким признакам может быть выявлен сцепленный характер их наследования, что используют при составлении хромосомных карт. Этот метод позволяет изучать интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля. Он широко используется в медико-генетическом консультировании для прогнозирования потомства. Однако необходимо отметить, что генеалогический анализ существенно осложняется при малодетности семей.

Родословные при аутосомно-доминантном наследовании. Для аутосомного типа наследования в целом характерна равная вероятность встречаемости данного признака как у мужчин, так и у женщин. Это обусловлено одинаковой двойной дозой генов, расположенных в аутосомах у всех представителей вида и получаемых от обоих родителей, и зависимостью развивающегося признака от характера взаимодействия аллельных генов.

Если анализируется признак, не влияющий на жизнеспособность организма, то носители доминантного признака могут быть как гомо-, так и гетерозиготами. В случае доминантного наследования какого-то патологического признака (заболевания) гомозиготы, как правило, нежизнеспособны, а носители этого признака - гетерозиготы.

Таким образом, при аутосомно-доминантном наследовании признак может встречаться в равной мере у мужчин и у женщин и прослеживается при достаточном по численности потомстве в каждом поколении по вертикали. Первое описание родословной с аутосомно-доминантным типом наследования аномалии у человека было дано в 1905 г. В ней прослеживается передача в ряду поколений брахидактилии (короткопалости).

Родословные при аутосомно-рецессивном наследовании. Рецессивные признаки проявляются фенотипически лишь у гомозигот по рецессивным аллелям. Эти признаки, как правило, обнаруживаются у потомков фенотипически нормальных родителей - носителей рецессивных аллелей. Вероятность появления рецессивного потомства в этом случае равна 25%. Если один из родителей имеет рецессивный признак, то вероятность проявления его в потомстве будет зависеть от генотипа другого родителя. У рецессивных родителей все потомство унаследует соответствующий рецессивный признак.

Для родословных при аутосомно-рецессивном типе наследования характерно, что признак проявляется далеко не в каждом поколении. Чаще всего рецессивное потомство появляется у родителей с доминантным признаком, причем вероятность появления такого потомства возрастает в близкородственных браках, где оба родителя могут являться носителями одного и того же рецессивного аллеля, полученного от общего предка. Примером аутосомно-рецессивного наследования является родословная семьи с псевдогипертрофической прогрессивной миопатией, в которой часты близкородственные браки.

Родословные при доминантном Х-сцепленном наследовании признака. Гены, расположенные в Х-хромосоме и не имеющие аллелей в Y-хромосоме, представлены в генотипах мужчин и женщин в разных дозах. Женщина получает две свои Х-хромосомы и соответствующие гены как от отца, так и от матери, а мужчина наследует свою единственную Х-хромосому только от матери. Развитие соответствующего признака у мужчин определяется единственным аллелем, присутствующим в его генотипе, а у женщин он является результатом взаимодействия двух аллельных генов. В связи с этим признаки, наследуемые по Х-сцепленному типу, встречаются в популяции с разной вероятностью у мужского и женского пола.

При доминантном Х-сцепленном наследовании признак чаще встречается у женщин в связи с большей возможностью получения ими соответствующего аллеля либо от отца, либо от матери. Мужчины могут наследовать этот признак только от матери. Женщины с доминантным признаком передают его в равной степени дочерям и сыновьям, а мужчины - только дочерям. Сыновья никогда не наследуют от отцов доминантного Х-сцепленного признака.

Примером такого типа наследования служит описанная в 1925 г. родословная с фолликулярным кератозом -кожным заболеванием, сопровождающимся потерей ресниц, бровей, волос на голове.

Родословные при рецессивном Х-сцепленном наследовании признаков. Характерной особенностью родословных при данном типе наследования является преимущественное проявление признака у гемизиготных мужчин, которые наследуют его от матерей с доминантным фенотипом, являющихся носительницами рецессивного аллеля. Как правило, признак наследуется мужчинами через поколение от деда по материнской линии к внуку. У женщин он проявляется лишь в гомозиготном состоянии, вероятность чего возрастает при близкородственных браках.

Наиболее известным примером рецессивного Х-сцепленного наследования является гемофилия.Другим примером наследования по данному типу является дальтонизм - определенная форма нарушения цветоощущения.

Родословные при Y-сцепленном наследовании. Наличие Y-хромосомы только у представителей мужского пола объясняет особенности Y-сцепленного, или голандрического, наследования признака, который обнаруживается лишь у мужчин и передается по мужской линии из поколения в поколение от отца к сыну.

Одним из признаков, Y-сцепленное наследование которого у человека все еще обсуждается, является гипертрихоз ушной раковины, или наличие волос на внешнем крае ушной раковины.

Вопрос №26.

(Методы генетики человека: популяционно–статистический; дерматоглифический (на примере анализа собственного дерматоглифа), генетики соматических клеток, изучения ДНК; их роль в изучении наследственной патологии человека).

С помощью популяционно-статистического метода изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Этим методом можно рассчитать частоту встречаемости в популяции различных аллелей гена и разных генотипов по этим аллелям, выяснить распространение в ней различных наследственных признаков, в том числе заболеваний. Он позволяет изучать мутационный процесс, роль наследственности и среды в формировании фенотипического полиморфизма человека по нормальным признакам, а также в возникновении болезней, особенно с наследственной предрасположенностью. Этот метод используют и для выяснения значения генетических факторов в антропогенезе, в частности в расообразовании.

При статистической обработке материала, получаемого при обследовании группы населения по интересующему исследователя признаку, основой для выяснения генетической структуры популяции является закон генетического равновесия Харди - Вайнберга. Он отражает закономерность, в соответствии с которой при определенных условиях соотношение аллелей генов и генотипов в генофонде популяции сохраняется неизменным в ряду поколений этой популяции. На основании этого закона, имея данные о частоте встречаемости в популяции рецессивного фенотипа, обладающего гомозиготным генотипом (аа), можно рассчитать частоту встречаемости указанного аллеля (а) в генофонде данного поколения. Распространив эти сведения на ближайшие поколения, можно предсказать частоту появления в них людей с рецессивным признаком, а также гетерозиготных носителей рецессивного аллеля.

Математическим выражением закона Харди - Вайнберга служит формула (рА. + qa)2, где р и q - частоты встречаемости аллелей А и а соответствующего гена. Раскрытие этой формулы дает возможность рассчитать частоту встречаемости людей с разным генотипом и в первую очередь гетерозигот - носителей скрытого рецессивного аллеля: p2AA + 2pqAa + q2аа. Например, альбинизм обусловлен отсутствием фермента, участвующего в образовании пигмента меланина и является наследственным рецессивным признаком. Частота встречаемости в популяции альбиносов (аа) равна 1:20 000. Следовательно, q2 = 1/20 000, тогда q = 1/141, up = 140/141. В соответствии с формулой закона Харди - Вайнберга частота встречаемости гетерозигот = 2pq, т.е. соответствует 2 х (1/141) х (140/141) = 280/20000 = 1/70. Это означает, что в данной популяции гетерозиготные носители аллеля альбинизма встречаются с частотой один на 70 человек.

Анализ частот встречаемости разных признаков в популяции в случае их соответствия закону Харди - Вайнберга позволяет утверждать, что признаки обусловлены разными аллелями одного гена.В том случае, если ген в генофонде популяции представлен несколькими аллелями, например ген группы крови системы АВО, соотношение различных генотипов выражается формулой (pIA + qIB + rI0) 2.

В настоящее время установлена наследственная обусловленность кожных узоров, хотя характер наследования окончательно не выяснен. Вероятно, этот признак наследуется по полигенному типу. На характер пальцевого и ладонного узоров организма большое влияние оказывает мать через механизм цитоплазматической наследственности.

Дерматоглифические исследования важны при идентификации зиготности близнецов. Считают, что если из 10 пар гомологичных пальцев не менее 7 имеют сходные узоры, это указывает на однояйцевость. Сходство узоров лишь 4-5 пальцев свидетельствует в пользу разнояйцевости близнецов.

Изучение людей с хромосомными болезнями выявило у них специфические изменения не только рисунков пальцев и ладоней, но и характера основных сгибательных борозд на коже ладоней. Характерные изменения этих показателей наблюдаются при болезни Дауна, при синдромах Клайнфельтера, Шерешевского - Тернера, что позволяет использовать методы дерматоглифики и пальмоскопии в диагностике этих заболеваний. Определяются специфические Дерматоглифические изменения и при некоторых хромосомных аберрациях, например при синдроме «кошачьего крика». Менее изучены Дерматоглифические изменения при генных болезнях. Однако описаны специфические отклонения этих показателей при шизофрении, миастении, лимфоид-ной лейкемии.

Применяют эти методы и с целью установления отцовства. Подробнее они описаны в специальной литературе.

Вопрос №27.

(Понятие наследственных болезней: моногенные, хромосомные и мультифакторные болезни человека, механизм их возникновения и проявления. Примеры).

Моногенным называется такой тип наследования, когда наследственный признак контролируется одним геном.

Моногенные заболевания подразделяются по типу наследования :
аутосомно-доминантные (то есть, если хоть один из родителей болен, то и ребенок будет болеть), например
-синдром Марфана, нейрофиброма-тоз, ахондроплазия
– аутосомно-рецессивные (ребенок может заболеть, если оба родителя носители этого заболевания, или один родитель болен, а второй – носитель мутаций гена, вызывающих это
заболевание)
– муковисцидоз, спинальная миоатрофия.
Пристальное внимание к этой группе болезней обусловлено и тем, что, как оказалось, число их значительно выше, чем думали раньше. У всех болезней совершенно различная распространенность, которая может колебаться в зависимости и от географии и от национальности, например, хорея Хангтингтона встречается у 1 на 20 000 европейцев и почти не встречается в Японии, болезнь Тея-Сакса характерна для евреев-ашкенази и крайне редка у других народов.
В России наиболее распространнеными моногенно наследуемыми заболеваниями являются муковисцидоз (1/12000 новорожденных), группа миоатрофий (1/10000 новорожденных), гемофилия А (1/5000 новорожденных мальчиков).
Конечно, многие моногенные заболевания выявлены уже давно и хорошо известны медицинским генетикам.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3-5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.

Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.

Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом

синдром Дауна - трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики;

синдром Патау - трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто - полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;

синдром Эдвардса - трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

Болезни, связанные с нарушением числа половых хромосом

Синдром Шерешевского - Тёрнера - отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);

полисомия по Х-хромосоме - включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;

полисомия по Y-хромосоме - как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

Синдром Клайнфельтера - полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия

триплоидии, тетраплоидии и т. д.; причина - нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин - 69, XXX); почти всегда летальны до рождения

Мультифакториальные заболевания , или болезни с наследственным предрасположенность

Группа болезней отличается от генных болезней тем, что для своего проявления нуждается в действии факторов внешней среды. Среди них также различают моногенные, при которых наследственная предрасположенность обусловлена одним патологически измененным геном, и полигенные. Последние определяются многими генами, которые в нормальном состоянии, но при определенном взаимодействии между собой и с факторами среды создают предрасположение к появлению заболевания. Они называются мультифакториальными заболеваниями (МФЗ).

Заболевания моногенные с наследственным предрасположением относительно немногочисленны. К ним применим метод менделевского генетического анализа. Учитывая важную роль среды в их проявлении, они рассматриваются как наследственно обусловленные патологические реакции на действие различных внешних факторов (лекарственных препаратов, пищевых добавок, физических и биологических агентов), в основе которых лежит наследственная недостаточность некоторых ферментов.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11