Связь тригонометрической функции и медицины. Связь тригонометрии с реальной жизнью

Тригонометрия - это раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Тригонометрические функции используются для описания свойств различных углов, треугольников и периодических функций. Изучение тригонометрии поможет вам понять эти свойства. Занятия в школе и самостоятельная работа помогут вам усвоить основы тригонометрии и понять многие периодические процессы.

Шаги

Изучите основы тригонометрии

    Ознакомьтесь с понятием треугольника. В сущности, тригонометрия занимается изучением различных соотношений в треугольниках. Треугольник имеет три стороны и три угла. Сумма углов любого треугольника составляет 180 градусов. При изучении тригонометрии необходимо ознакомиться с треугольниками и связанными с ними понятиями, такими как:

    • гипотенуза ― самая длинная сторона прямоугольного треугольника;
    • тупой угол ― угол более 90 градусов;
    • острый угол ― угол менее 90 градусов.
  1. Научитесь строить единичную окружность. Единичная окружность дает возможность построить любой прямоугольный треугольник так, чтобы гипотенуза была равна единице. Это удобно при работе с тригонометрическими функциями, такими как синус и косинус. Освоив единичную окружность, вы легко сможете находить значения тригонометрических функций для определенных углов и решать задачи, в которых фигурируют треугольники с этими углами.

    • Пример 1. Синус угла величиной 30 градусов составляет 0,50. Это означает, что длина противолежащего данному углу катета равна половине длины гипотенузы.
    • Пример 2. С помощью данного соотношения можно вычислить длину гипотенузы треугольника, в котором есть угол величиной 30 градусов, а длина противолежащего этому углу катета равна 7 сантиметрам. В этом случае длина гипотенузы составит 14 сантиметров.
  2. Ознакомьтесь с тригонометрическими функциями. Существует шесть основных тригонометрических функций, которые необходимо знать при изучении тригонометрии. Эти функции представляют собой соотношения между различными сторонами прямоугольного треугольника и помогают понять свойства любого треугольника. Вот эти шесть функций:

    • синус (sin);
    • косинус (cos);
    • тангенс (tg);
    • секанс (sec);
    • косеканс (cosec);
    • котангенс (ctg).
  3. Запомните соотношения между функциями. При изучении тригонометрии крайне важно понимать, что все тригонометрические функции связаны между собой. Хотя синус, косинус, тангенс и другие функции используются по-разному, они находят широкое применение благодаря тому, что между ними существуют определенные соотношения. Эти соотношения легко понять с помощью единичной окружности. Научитесь пользоваться единичной окружностью, и с помощью описываемых ею соотношений вы сможете решать многие задачи.

    Применение тригонометрии

    1. Узнайте об основных областях науки, в которых используется тригонометрия. Тригонометрия полезна во многих разделах математики и других точных наук. С помощью тригонометрии можно найти величины углов и прямых отрезков. Кроме того, тригонометрическими функциями можно описать любой циклический процесс.

      • Например, колебания пружины можно описать синусоидальной функцией.
    2. Подумайте о периодических процессах. Иногда абстрактные понятия математики и других точных наук трудны для понимания. Тем не менее, они присутствуют в окружающем мире, и это может облегчить их понимание. Приглядитесь к периодическим явлениям вокруг вас и попробуйте связать их с тригонометрией.

      • Луна имеет предсказуемый цикл, продолжительность которого составляет около 29,5 дня.
    3. Представьте себе, как можно изучать естественные циклы. Когда вы поймете, что в природе протекает множество периодических процессов, подумайте о том, как можно изучать эти процессы. Мысленно представьте, как выглядит изображение таких процессов на графике. С помощью графика можно составить уравнение, которое описывает наблюдаемое явление. При этом вам пригодятся тригонометрические функции.

      • Представьте себе приливы и отливы на берегу моря. Во время прилива вода поднимается до определенного уровня, а затем наступает отлив, и уровень воды падает. После отлива вновь следует прилив, и уровень воды поднимается. Этот циклический процесс может продолжаться бесконечно. Его можно описать тригонометрической функцией, например косинусом.

    Изучайте материал заранее

    1. Прочтите соответствующий раздел. Некоторым людям тяжело усвоить идеи тригонометрии с первого раза. Если вы ознакомитесь с соответствующим материалом перед занятиями, то лучше усвоите его. Старайтесь чаще повторять изучаемый предмет - таким образом вы обнаружите больше взаимосвязей между различными понятиями и концепциями тригонометрии.

      • Кроме того, это позволит вам заранее выявить неясные моменты.
    2. Ведите конспект. Хотя беглый просмотр учебника лучше, чем ничего, при изучении тригонометрии необходимо неспешное вдумчивое чтение. При изучении какого-либо раздела ведите подробный конспект. Помните, что знание тригонометрии накапливается постепенно, и новый материал опирается на изученный ранее, поэтому записи уже пройденного помогут вам продвинуться дальше.

      • Помимо прочего, записывайте возникшие у вас вопросы, чтобы затем задать их учителю.
    3. Решайте приведенные в учебнике задачи. Даже если вам легко дается тригонометрия, необходимо решать задачи. Чтобы убедиться, что вы действительно поняли изученный материал, попробуйте перед занятиями решить несколько задач. Если при этом у вас возникнут проблемы, вы определите, что именно вам нужно выяснить во время занятий.

      • Во многих учебниках в конце приведены ответы к задачам. С их помощью можно проверить, правильно ли вы решили задачи.
    4. Берите на занятия все необходимое. Не забывайте свой конспект и решения задач. Эти подручные материалы помогут вам освежить в памяти уже пройденное и продвинуться дальше в изучении материала. Проясняйте также все вопросы, которые возникли у вас при предварительном чтении учебника.

    Другие разделы

    Слово «тригонометрия» впервые встречается (1505 г.) в заглавии книги немецкого теолога и математика Питискуса. Происхождение этого слова греческое: xpiyrovov - треугольник, цетресо - мера. Иными словами, тригонометрия - наука об измерении треугольников. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.

    Длительную историю имеет понятие
    синуса. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III в. до н. э. в работах великих математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем (1в. н.э.), хотя и не приобрели специального названия.

    В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учеными. В IV-V вв. появился, в частности, уже специальный термин в трудах по астрономии великого индийского ученого Ариабхаты (476 - ок. 550), именем которого назван первый индийский спутник Земли. Отрезок он назвал ардхаджива
    .

    Позднее привилось более краткое название джива. Арабскими математиками в IX в. слово джива (или джиба) было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в XII в. это слово было заменено латинским
    синус (sinus - изгиб, кривизна).

    Слово косинус намного моложе.
    Косинус - это сокращение латинского выражения complementy sinus, т. е. «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cos а = sin (90° - а)).

    Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс, секанс и косеканс) введен в X в. арабским математиком Абул-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты в XIV в. сначала английским ученым Т. Бравердином, а позднее немецким математиком, астрономом Региомонтаном (1467 г.). 

    Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов - это касательная к единичной окружности).


    Современные обозначения
    arcsin и arctg появляются в 1772 г. в работах венского математика Шерфера и известного французского ученого Лагранжа, хотя несколько ранее их уже рассматривал Я. Бернулли, который употреблял иную символику. Но общепринятыми эти символы стали лишь в конце XVIII столетия. Приставка «арк» происходит от латинского arcus (лук, дуга), что вполне согласуется со смыслом понятия: arcsin х, например, - это угол (а можно сказать, и дуга), синус которого равен х.

    Длительное время тригонометрия развивалась как часть геометрии
    . Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затмений и т. д.).

    Астрономов интересовали соотношения между сторонами и углами сферических треугольников, составленных из больших кругов, лежащих на сфере.


    Во всяком случае в геометрической форме многие формулы тригонометрии открывались и переоткрывались древнегреческими, индийскими, арабскими математиками. (Правда, формулы разности тригонометрических функций стали известны только в XVII в.- их вывел английский математик Непер для упрощения вычислений с тригонометрическими функциями. А первый рисунок синусоиды появился в 1634 г.)


    Принципиальное значение имело составление К. Птолемеем первой таблицы синусов (долгое время она называлась таблицей хорд): появилось практическое средство решения ряда прикладных задач, и в первую очередь задач астрономии.


    Современный вид тригонометрии придал крупнейший математик XVIII столетия Л . Эйлер (1707-1783), швейцарец по происхождению, долгие годы работавший в России и являвшийся членом Петербургской Академии наук. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Все это малая доля того, что за долгую жизнь Эйлер успел сделать в математике: он оставил свыше 800 работ, доказал многие ставшие классическими теоремы, относящиеся к самым разным областям математики. (Несмотря на то что в 1776 г. Эйлер потерял зрение, он до последних дней продолжал диктовать все новые и новые работы.)

    После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее, проще.

    Область применения тригонометрии охватывает самые разные сферы математики, некоторые разделы естествознания и техники.

    Тригонометрия имеет несколько разновидностей:

      Сферическая тригонометрия занимается изучением сферических треугольников.

      Прямолинейная или плоская тригонометрия изучает обычнее треугольники.


    Значительно развили тригонометрию древнегреческие и эллинистические ученые. Однако в работах Евклида и Архимеда тригонометрия представлена в геометрическом виде. Теоремы о длине хорд применяются в законах синусов. А теорема Архимеда для деления хорд соответствует формулам для синусов суммы и разности углов.

    В настоящее время математики используют новую запись известных теорем, например, sin α/ sin β < α/β < tan α/ tan β, где 0° < β < α < 90°, тем самым, компенсируют недостатки таблиц хорд, времен Аристарха Самосского.

    Предположительно первые тригонометрические таблицы были составлены Гиппархом Никейским , которого по праву считают «отцом тригонометрии». Ему принадлежит заслуга в создании сводной таблицы величин дуг и хорд для серии углов. Более того именно Гиппарх Никейский впервые стал использовать 360° окружности.

    Клавдий Птолемей значительно развил и расширил учение Гиппарха. Теорема Птолемея гласит: сумма произведений противоположных сторон циклического четырехугольника равна произведению диагоналей. Следствием теоремы Птолемея стало понимание эквивалентности четырех формул суммы и разности для синуса и косинуса. Кроме того, Птолемей вывел формулу половинного угла. Все свои результаты Птолемей использовал при составлении тригонометрических таблиц. К сожалению, ни одной подлинной тригонометрической таблицы Гиппарха и Птолемея не сохранилось до наших дней.

    Тригонометрические вычисления нашли свое применение почти во всех областях геометрии, физики и инженерного дела.
    С помощью тригонометрии (техника триангуляции) можно измерять расстояния между звездами, между ориентирами в географии, производить контроль над системами навигации спутников.


    Тригонометрия успешно применяется в технике навигации, теории музыки, акустике, оптике, при анализе финансовых рынков, электронике, теории вероятности, статистике, биологии и медицине, химии и теории чисел (криптографии), сейсмологии, метеорологии, океанологии, картографии, топографии и геодезии, архитектуре и фонетике, машиностроении и компьютерной график
    е .

    «Юность, творчество, поиск»

    МБОУ «Тирянская СОШ»

    Научно-исследовательская работа по теме

    «Тригонометрия и тригонометрические уравнения»

    Работу выполнил

    ученик 10 класса

    Субботин Антон.

    Руководитель

    учитель математики

    Кезикова Л.Н.

    Нетризово

    План.


    1. Введение. Стр. 3.

    2. История возникновения тригонометрии. Стр. 4.

    3. Тригонометрические уравнения. Стр. 7.
    3.1. Простейшие тригонометрические уравнения. Стр. 7.

    3.2. Схема решения тригонометрических уравнений. Стр. 9.

    3.3. Введение вспомогательного аргумента. Стр. 11.

    3.4. Универсальная тригонометрическая подстановка. Стр. 12.

    3.5. Решение тригонометрических уравнений с помощью

    формул. Стр. 14.

    3.6. Решение тригонометрических уравнений с помощью

    разложения на множители. Стр. 15.

    3.7.Решение однородных тригонометрических уравнений. Стр. 16.

    3.8. Решение нестандартных тригонометрических

    уравнений. Стр. 17.


    1. Практические применения тригонометрии. Стр. 19.
    4.1.Применение тригонометрии в искусстве и архитектуре.Стр. 19.

    4.2. Тригонометрия в биологии. Стр. 21.

    4.3.Тригонометрия в медицине. Стр. 22.


    1. Заключение. Стр. 23.

    2. Список литературы. Стр. 24.

    1. В в едение
    В школьной программе по математике есть очень важный раздел «тригонометрия». «Тригонометрические уравнения» - одна из самых сложных тем в школьном курсе математики. Тригонометрические уравнения возникают при решении задач по планиметрии, стереометрии, астрономии, физики и в других областях. Тригонометрические уравнения и неравенства из года в год встречаются среди заданий централизованного тестирования. Я решил писать данную работу, чтобы узнать побольше об истории появления тригонометрии, способах решения тригонометрических уравнений и рассмотреть применение тригономентрии в современной жизни.

    Объект исследования: тригонометрия и тригонометрические уравнения.

    Предмет исследования: практическое применение тригонометрии.

    Цель исследования: установить картину возникновения понятий тригонометрии и выявить примеры применения.


    1. История возникновения тригонометрии
    Слово «тригонометрия» впервые встречается в 1505 г. в заглавии книги немецкого теолога и математика Бартоломеуса Питискуса (Bartholomäus Pitiscus, 1561-1613), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, геодезии и архитектуре.

    Происхождение этого слова греческое: τρίγωνον - треугольник, μετρεω - мера. Иными словами, тригонометрия - наука об измерениях треугольников. Возникновение тригонометрии связано с землемерением, астрономией и строительным делом. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже 2000 лет назад

    Длительную историю имеет понятие синуса. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в 3 в. до н.э. в работах великих математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем (I в. н. э.), хотя и не приобрели специального названия. Современный синус угла α, например, изучается как полухорда, на которую опирается центральный угол величиной α, или как хорда удвоенной дуги.

    В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учёными. В 4-5 веках появился, в частности, уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты (476-ок. 550), именем которого назван первый индийский спутник Земли. Отрезок он назвал ардхаджива (ардха-половина, джива-тетива лука, которую напоминает хорда). Позднее привилось более краткое название джива. Арабскими математиками в IXв. слово джива (или джиба) было заменено на арабское словоджайб (выпуклость). При переводе арабских математических текстов в XIIв. это слово было заменено латинскимсинус (sinus-изгиб, кривизна).

    Слово косинус намного моложе. Косинус - это сокращение латинского выражения complementlysinus, т.е. «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cosα= sin(90° - a)).

    Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

    Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

    Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

    Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности).

    Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) , Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

    Долгое время тригонометрия носила чисто геометрический характер, т. е. факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.

    Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.


    1. Тригонометрические уравнения

      1. Простейшие тригонометрические уравнения
    Простейшие тригонометрические уравнения - это уравнения вида , где - одна из тригонометрических функций: , , tgx . Элементарные тригонометрические уравнения имеют бесконечно много корней. Например, уравнению удовлетворяют следующие значения: , , , и т. д. Общая формула по которой находятся все корни уравнения , где , такова:

    Здесь может принимать любые целые значения, каждому из них соответствует определенный корень уравнения; в этой формуле (равно как и в других формулах, по которым решаются элементарные тригонометрические уравнения) называют параметром . Записывают обычно , подчеркивая тем самым, что параметр принимать любые целые значения.

    Решения уравнения , где , находятся по формуле

    Особо отметим некоторые частные случаи простейших тригонометрических уравнений, когда решение может быть записано без применения общих формул:

      1. Схема решения тригонометрических уравнений

    Основная схема, которой мы будем руководствоваться при решении тригонометрических уравнений следующая:

    решение заданного уравнения сводится к решению элементарных уравнений. Средства решения: преобразования, разложения на множители, замена неизвестных. Ведущий принцип: не терять корней. Это означает, что при переходе к следующему уравнению (уравнениям) мы не опасаемся появления лишних (посторонних) корней, а заботимся лишь о том, чтобы каждое последующее уравнение нашей "цепочки" (или совокупность уравнений в случае ветвления) являлось следствием предыдущего. Одним из возможных методов отбора корней является проверка. Сразу заметим, что в случае тригонометрических уравнений трудности, связанные с отбором корней, с проверкой, как правило, резко возрастают по сравнению с алгебраическими уравнениями. Ведь проверять приходится серии, состоящие из бесконечного числа членов.

    Особо следует сказать о замене неизвестных при решении тригонометрических уравнений. В большинстве случаев после нужной замены получается алгебраическое уравнение. Более того, не так уж и редки уравнения, которые, хотя и являются тригонометрическими по внешнему виду, по существу таковыми не являются, поскольку уже после первого шага - замены переменных - превращаются в алгебраические, а возращение к тригонометрии происходит лишь на этапе решения элементарных тригонометрических уравнений.

    Еще раз напомним: замену неизвестного следует делать при первой возможности, получившееся после замены уравнение необходимо решить до конца, включая этап отбора корней, а уж затем возвратится к первоначальному неизвестному.

    Одна из особенностей тригонометрических уравнений заключается в том, что ответ во многих случаях может быть записан различными способами. Даже для решения уравнения ответ может быть записан следующим образом:

    1) в виде двух серий: , , ;

    2) в стандартной форме представляющей собой объединение указанных выше серий: , ;

    3) поскольку , то ответ можно записать в виде , . (В дальнейшем наличие параметра , , или в записи ответа автоматически означает, что этот параметр принимает всевозможные целочисленные значения. (Исключения будут оговариваться.)

    Очевидно, что тремя перечисленными случаями не исчерпываются все возможности для записи ответа рассматриваемого уравнения (их бесконечно много).

    Обычно ответ записывается на основании пункта 2. Полезно запомнить следующую рекомендацию: если на решении уравнения работа не заканчивается, необходимо еще провести исследование, отбор корней, то наиболее удобна форма записи, указанная в пункте 1. (Аналогичную рекомендацию следует дать и для уравнения .)

      1. Введение вспомогательного аргумента

    Стандартным путем преобразования выражений вида является следующий прием: пусть - угол, задаваемый равенствами , . Для любых и такой угол существует. Таким образом . Если , или , , , в других случаях .

    Пример. Решим уравнение 12cosx - 5sinx = -13

    Решение: разделим обе части уравнения на , получим

    cosx - sinx = -1.

    Одним из решений системы cos = 12/13, sin = 5/13 является = = arccos (12/13). Учитывая это, запишем уравнение в виде:

    и, применив формулу для косинуса суммы аргументов, получим

    Откуда т.е.

    Эта формула и дает все решения исходного уравнения.


      1. Универсальная тригонометрическая подстановка
    Многие тригонометрические уравнения можно решить с помощью формул универсальной тригонометрической подстановки

    Следует отметить, что применение формул может приводить к сужению ОДЗ исходного уравнения, поскольку не определен в точках , поэтому в таких случаях нужно проверять, являются ли углы , корнями исходного уравнения.

    Пример. Решим уравнение

    Решение:


    Обращение к функции предполагает, что , то есть ,.

    По формулам универсальной тригонометрической подстановки исходное уравнение примет вид:

    ;

    ;

    |:2

    ;


    ;

    или

    ;

    ,;

    ,;

    Ответ: ,; ,.
      1. Решение тригонометрических уравнений с помощью формул

    Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений.

    Пример.


    1) Уравнения, сводящиеся к квадратным.

    Это уравнение является квадратным относительно cosx. Введем замену переменных cosx=y, тогда получим уравнение: . Его корни , . Таким образом решение сводится к решению двух уравнений:

    cosx=1 имеет корни ,

    cosx=-2 не имеет корней.

    2) Уравнения, допускающие понижение степени.

    Понижение степени происходит с использованием формул:



    cos2α =2cos 2 α - 1

    cos2α =1-2sin 2 α

    .

    Выразим через cos2x.

      1. Решение тригонометрических уравнений с помощью разложения на множители

    Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

    Пример.


    1) sin2x+cosx=0

    2sinxcosx+cosx=0

    cosx (2sinx+1) =0


    ,

    2) cos3x+sin5x=0


      1. Решение однородных тригонометрических уравнений
    Решим уравнение .

    Решение. Это уравнение однородное второй степени. Разделим обе чести уравнения на , получим: tg.

    Пусть tg, тогда

    , , ; , , .

    Ответ. .


      1. Решение нестандартных тригонометрических уравнений
    Пример 1. Решим уравнение

    Решение. Преобразуем выражение :

    Уравнение запишется в виде:


      1. Применение тригонометрии в искусстве и архитектуре
    С того времени как человек стал существовать на земле, основой улучшения быта и других сфер жизни стала наука. Основы всего, что создано человеком – это различные направления в естественных и математических науках. Одна из них – геометрия. Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

    Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения (рис.1)

    На рис.2 ситуация меняется, так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 + sin 2  = 1.

    Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу


    РИС. 1

    А
    С


    Н
    А
    РИС. 2
    Н
    С


      1. Тригонометрия в биологии.
    Биоритмы.

    Экологические ритмы: суточные, сезонные (годовые), приливные и лунные циклы

    Физиологические ритмы: ритмы давления, биения сердца, артериальное давление, три биоритма, лежащие в основе «теории трех биоритмов»

    Теория трех ритмов.


    • Физический цикл -23 дня. Определяет энергию, силу, выносливость, координацию движения

    • Эмоциональный цикл - 28 дней. Состояние нервной системы и настроение

    • Интеллектуальный цикл - 33 дня. Определяет творческую способность личности


      1. Тригонометрия в медицине.

    1. Бета-ритм - 14-30 Гц, активная умственная деятельность
    Альфа-ритм – 8-13 Гц, монотонная, рутинная деятельность

    Тета-ритм – 4-8 Гц, состояние близкое ко сну, полудрема

    Дельта-ритм - 1-4 Гц, глубокий сон


    1. Многим людям приходится делать кардиограмму сердца, но немногие знают, что кардиограмма человеческого сердца – график синуса или косинуса.

    1. Заключение
    В результате выполнения данной исследовательской работы:

    • Я подробнее узнал об истории возникновения тригонометрии.

    • Систематизировал методы решения тригонометрических уравнений.

    • Узнал о применениях тригонометрии в архитектуре, биологии, медицине.

    Список литературы.

    1. А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницин и др. "Алгебра и начала анализа" Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2010.

    2. Глейзер Г.И. История математики в школе: VII-VIII кл. - М.: Просвещение, 1982.

    3. Глейзер Г.И. История математики в школе: IX-X кл. - М.: Просвещение, 1983.

    4. Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994.

    История тригонометрии неразрывно связана с астрономией, ведь именно для решения задач этой науки древние ученые стали исследовать соотношения различных величин в треугольнике.

    На сегодняшний день тригонометрия является микроразделом математики, изучающим зависимость между значениями величин углов и длин сторон треугольников, а также занимающимся анализом алгебраических тождеств тригонометрических функций.

    Термин «тригонометрия»

    Сам термин, давший название этому разделу математики, впервые был обнаружен в заголовке книги под авторством немецкого ученого-математика Питискуса в 1505 году. Слово «тригонометрия» имеет греческое происхождение и означает «измеряю треугольник». Если быть точнее, то речь идет не о буквальном измерении этой фигуры, а об её решении, то есть определении значений её неизвестных элементов с помощью известных.

    Общие сведения о тригонометрии

    История тригонометрии началась более двух тысячелетий назад. Первоначально ее возникновение было связано с необходимостью выяснения соотношений углов и сторон треугольника. В процессе исследований выяснилось, что математическое выражение данных соотношений требует введения особых тригонометрических функций, которые первоначально оформлялись как числовые таблицы.

    Для многих смежных с математикой наук толчком к развитию стала именно история тригонометрии. Происхождение единиц измерения углов (градусов), связанное с исследованиями ученых Древнего Вавилона, опирается на шестидесятиричную систему исчисления, которая дала начала современной десятиричной, применяемой во многих прикладных науках.

    Предполагается, что изначально тригонометрия существовала как часть астрономии. Затем она стала использоваться в архитектуре. А со временем возникла целесообразность применения данной науки в различных областях человеческой деятельности. Это, в частности, астрономия, морская и воздушная навигация, акустика, оптика, электроника, архитектура и прочие.

    Тригонометрия в ранние века

    Руководствуясь данными о сохранившихся научных реликвиях, исследователи сделали вывод, что история возникновения тригонометрии связана с работами греческого астронома Гиппарха, который впервые задумался над поиском способов решения треугольников (сферических). Его труды относятся ко 2 веку до нашей эры.

    Также одним из важнейших достижений тех времен является определение соотношения катетов и гипотенузы в прямоугольных треугольниках, которое позже получило название теоремы Пифагора.

    История развития тригонометрии в Древней Греции связана с именем астронома Птоломея - автора геоцентрической господствовавшей до Коперника.

    Греческим астрономам не были известны синусы, косинусы и тангенсы. Они пользовались таблицами, позволяющими найти значение хорды окружности с помощью стягиваемой дуги. Единицами для измерения хорды были градусы, минуты и секунды. Один градус приравнивался к шестидесятой части радиуса.

    Также исследования древних греков продвинули развитие сферической тригонометрии. В частности, Евклид в своих «Началах» приводит теорему о закономерностях соотношений объемов шаров различного диаметра. Его труды в этой области стали своеобразным толчком в развитии еще и смежных областей знаний. Это, в частности, технология астрономических приборов, теория картографических проекций, система небесных координат и т. д.

    Средневековье: исследования индийских ученых

    Значительных успехов достигли индийские средневековые астрономы. Гибель античной науки в IV веке обусловила перемещение центра развития математики в Индию.

    История возникновения тригонометрии как обособленного раздела математического учения началась в Средневековье. Именно тогда ученые заменили хорды синусами. Это открытие позволило ввести функции, касающиеся исследования сторон и углов То есть именно тогда тригонометрия начала обосабливаться от астрономии, превращаясь в раздел математики.

    Первые таблицы синусов были у Ариабхаты, они была проведены через 3 о, 4 о, 5 о. Позже появились подробные варианты таблиц: в частности, Бхаскара привел таблицу синусов через 1 о.

    Первый специализированный трактат по тригонометрии появился в X—XI веке. Автором его был среднеазиатский учёный Аль-Бируни. А в своем главном труде «Канон Мас‘уда» (книга III) средневековый автор еще более углубляется в тригонометрию, приводя таблицу синусов (с шагом 15") и таблицу тангенсов (с шагом 1°).

    История развития тригонометрии в Европе

    После перевода арабских трактатов на латынь (XII-XIII в) большинство идей индийских и персидских ученых были заимствованы европейской наукой. Первые упоминания о тригонометрии в Европе относятся к XII веку.

    По мнению исследователей, история тригонометрии в Европе связана с именем англичанина Ричарда Уоллингфордского, который стал автором сочинения «Четыре трактата о прямых и обращенных хордах». Именно его труд стал первой работой, которая целиком посвящена тригонометрии. К XV веку многие авторы в своих трудах упоминают о тригонометрических функциях.

    История тригонометрии: Новое время

    В Новое время большинство ученых стало осознавать чрезвычайную важность тригонометрии не только в астрономии и астрологии, но и в других областях жизни. Это, в первую очередь, артиллерия, оптика и навигация в дальних морских походах. Поэтому во второй половине XVI века эта тема заинтересовала многих выдающихся людей того времени, в том числе Николая Коперника, Франсуа Виета. Коперник отвел тригонометрии несколько глав своего трактата «О вращении небесных сфер» (1543). Чуть позже, в 60-х годах XVI века, Ретик - ученик Коперника - приводит в своем труде «Оптическая часть астрономии» пятнадцатизначные тригонометрические таблицы.

    В «Математическом каноне» (1579) дает обстоятельную и систематическую, хотя и бездоказательную, характеристику плоской и сферической тригонометрии. А Альбрехт Дюрер стал тем, благодаря кому на свет появилась синусоида.

    Заслуги Леонарда Эйлера

    Придание тригонометрии современного содержания и вида стало заслугой Леонарда Эйлера. Его трактат «Введение в анализ бесконечных» (1748) содержит определение термина «тригонометрические функции», которое эквивалентно современному. Таким образом, этот ученый смог определить Но и это еще не все.

    Определение тригонометрических функций на всей числовой прямой стало возможным благодаря исследованиям Эйлера не только допустимых отрицательных углов, но и углов боле 360°. Именно он в своих работах впервые доказал, что косинус и тангенс прямого угла отрицательные. Разложение целых степеней косинуса и синуса тоже стало заслугой этого ученого. Общая теория тригонометрических рядов и изучение сходимости полученных рядов не были объектами исследований Эйлера. Однако, работая над решением смежных задач, он сделал много открытий в этой области. Именно благодаря его работам продолжилась история тригонометрии. Кратко в своих трудах он касался и вопросов сферической тригонометрии.

    Области применения тригонометрии

    Тригонометрия не относится к прикладным наукам, в реальной повседневной жизни ее задачи редко применяются. Однако этот факт не снижает ее значимости. Очень важна, например, техника триангуляции, которая позволяет астрономам достаточно точно измерить расстояние до недалеких звезд и осуществлять контроль за системами навигации спутников.

    Также тригонометрию применяют в навигации, теории музыки, акустике, оптике, анализе финансовых рынков, электронике, теории вероятностей, статистике, биологии, медицине (например, в расшифровке ультразвуковых исследований УЗИ и компьютерной томографии), фармацевтике, химии, теории чисел, сейсмологиии, метеорологии, океанологии, картографии, многих разделах физики, топографии и геодезии, архитектуре, фонетике, экономике, электронной технике, машиностроении, компьютерной графике, кристаллографиии и т. д. История тригонометрии и ее роль в изучении естественно-математических наук изучаются и по сей день. Возможно, в будущем областей ее применения станет еще больше.

    История происхождения основных понятий

    История возникновения и развития тригонометрии насчитывает не один век. Введение понятий, которые составляют основу этого раздела математической науки, также не было одномоментным.

    Так, понятие «синус» имеет очень долгую историю. Упоминания о различных отношениях отрезков треугольников и окружностей обнаруживаются еще в научных трудах, датируемых III веком до нашей эры. Работы таких великих древних ученых, как Евклид, Архимед, Апполоний Пергский, уже содержат первые исследования этих соотношений. Новые открытия требовали определенных терминологических уточнений. Так, индийский учёный Ариабхата дает хорде название «джива», означающее «тетива лука». Когда арабские математические тексты переводились на латынь, термин заменили близким по значению синусом (т. е. «изгиб»).

    Слово «косинус» появилось намного позже. Этот термин является сокращенным вариантом латинской фразы «дополнительный синус».

    Возникновение тангенсов связано с расшифровкой задачи определения длины тени. Термин «тангенс» ввел в X веке арабский математик Абу-ль-Вафа, составивший первые таблицы для определения тангенсов и котангенсов. Но европейские ученые не знали об этих достижениях. Немецкий математик и астроном Регимонтан заново открывает эти понятия в 1467 г. Доказательство теоремы тангенсов - его заслуга. А переводится этот термин как «касающийся».

    Применение тригонометрии в физике и ее задачах

    Практическое применение тригонометрических уравнений в реальной жизни

    Существует множество областей, в которых применяются тригонометрия. Например, метод триангуляции используется в астрономии для измерения расстояния до ближайших звезд, в географии для измерения расстояний между объектами, а также в спутниковые навигационных системах. Синус и косинус имеют фундаментальное значение для теории периодических функций, например при описании звуковых и световых волн.

    Тригонометрия используются в астрономии (особенно для расчётов положения небесных объектов, когда требуется сферическая тригонометрия), в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятностей, в статистике, в биологии, в медицинской визуализации (например, компьютерная томография и ультразвук), в аптеках, в химии, в теории чисел, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.


    В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

    Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

    Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

    Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.

    Камень брошен на склоне горы под углом α к ее поверхности. Определите дальность полета камня, если начальная скорость камня равна v 0 , угол наклона горы к горизонту β. Сопротивление воздуха не учитывать.

    Решение. Сложное движение камня по параболе нужно представить как результат наложения двух прямолинейных движений: одного вдоль поверхности Земли, другого - по нормали к ней.

    Выберем прямоугольную систему координат с началом отсчета в точке бросания камня так, чтобы оси OX и OY совпали с указанными направлениями, и найдем составляющие векторов начальной скорости v 0 и ускорения свободного падения g по осям. Проекции этих составляющих на оси OX и OY равны соответственно:
    v 0 cosα v 0 ; -g sinβ -g cosβ



    После этого сложное движение можно рассматривать как два более простых: равнозамедленное движение вдоль поверхности Земли с ускорением g sinβ и равнопеременное движение, перпендикулярное склону горы, с ускорением g cosβ .

    Составляем уравнения движения для каждого направления с учетом того, что за время t всего движения перемещение камня по нормали к поверхности (по оси OY ) оказалось равным нулю, а вдоль поверхности (по оси OX ) - равным s:

    По условию задачи v 0 ,α и β нам заданы, поэтому в составленных уравнениях имеется две неизвестные величины s и t1.

    Из первого уравнения определяем время полета камня:

    Подставляя это выражение во второе уравнение, находим:

    S= v 0 cosα∙ =
    =

    Анализируя решение приведенной задачи, можно сделать вывод, что математика имеет аппарат и использование его при реализации меж предметной связи физики и математики ведет к осознанию единства мира и интеграции научных знаний.

    Математика выступает как своеобразный язык, необходимый для кодирования содержательной физической информации.

    Использование меж предметной связи физики и математики ведет к сравниванию этих двух наук и позволяет усиливать качественную теоретическую и практическую подготовку обучаемых.


    Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

    Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1-2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах - секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты - широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. - ок. 120 до н. э.)