С 23 преобразование выражений содержащих корни. Использование свойств корней при преобразовании иррациональных выражений, примеры, решения

Муниципальное казенное образовательное учреждение

«Новоникольская средняя общеобразовательная школа»

Быковского муниципального района Волгоградской области

Урок алгебры в 8 классе

Выполнила : учитель математики

Новоникольское – 2015

Урок алгебры в 8 классе

по теме «Преобразование выражений, содержащих квадратные корни»

Цели урока:

    повторить определение арифметического квадратного корня, свойства арифметического квадратного корня;

    закрепить навыки и умения решения примеров на тождественные преобразования выражений, содержащих арифметические квадратные корни;

    научить освобождаться от иррациональности в знаменателе дроби;

    воспитывать навыки самоконтроля и взаимоконтроля, интерес к предмету.

Оборудование : мультимедийный проектор, интерактивная доска, оценочные листы, карточки с тестом, карточки с домашним заданием.

Ход урока:

I . Организационный момент

Сегодня на уроке мы с вами продолжим преобразование выражений, содержащих квадратные корни. Подвести итоги сегодняшнего урока поможет оценочный лист. Подпишите свои листы и ответьте на первый вопрос «Настроение в начале урока», выбрав один из смайликов.

В математике есть нечто,

вызывающее человеческий восторг.
Ф. Хаусдорф

II . Устная работа

1) Фронтальный опрос.

    Дайте определение арифметического квадратного корня. (Арифметическим квадратным корнем из числа а называется неотрицательное число, квадрат которого равен а ).

    Перечислите свойства арифметического квадратного корня. (Арифметический квадратный корень из произведения неотрицательных множителей равен произведению корней из этих множителей. Арифметический квадратный корень из дроби, числитель которой неотрицателен, а знаменатель положителен, равен корню из числителя, делённому на корень из знаменателя ).

    Чему равно значение арифметического квадратного корня из х 2 ? (|х| ).

    Чему равно значение арифметического квадратного корня из х 2 , если х≥0? хх. –х ).

2) Устный счёт: Ну-ка в сторону карандаши!

Ни костяшек. Ни ручек. Ни мела.

"Устный счёт!" Мы творим это дело

Только силой ума и души.

Цифры сходятся где-то во тьме,

И глаза начинают светиться,

И кругом только умные лица.

Потому что считаем в уме!

Вычислите устно:

1. Вынесите множитель из-под знака корня:

2. Внесите множитель под знак корня:

3. Возведите в квадрат:

4. Приведите подобные слагаемые:

III . Диктант:

Вариант-1

Вариант- 2

Ответы:

Ответы:

IV .ФИЗКУЛЬТМИНУТКА

V . Историческая справка

Radix - имеет два значения: сторона и корень. Греческие математики вместо «извлечь корень» говорили «найти сторону квадрата по его данной величине (площади)»

Начиная с XIII века, итальянские и другие европейские математики обозначали корень латинским словом Radix или сокращенно R (отсюда произошёл термин «радикал»).

Немецкие математики XV в. для обозначения квадратного корня пользовались

точкой ·5

Позднее вместо точки стали ставить ромбик ¨5

Затем Ú 5 . Затем знак Ú и черту стали соединять.

VI этап. Работа над новым материалом.

Если знаменатель алгебраической дроби содержит знак квадратного корня, то обычно говорят, что в знаменателе содержится иррациональность.

Ставится проблема: « Какое выражение проще вычислить: или ? Почему? (Потому, что делить на рациональное число проще, чем на иррациональное.)

Сегодня на уроке мы и будем изучать тему

« Освобождение от иррациональности в знаменателе дроби». Попробуем освободиться от иррациональности в знаменателе в следующих примерах:

а); б) ; в); г).

На какое выражение нужно умножить знаменатель дроби, чтобы корни «исчезли»? А для того чтобы дробь не изменилась, что нужно сделать? Получаем следующую запись решения.

г)=

Сделаем вывод.

Преобразование, при котором в знаменателе дроби исчезают корни, называют освобождением от иррациональности в знаменателе. Мы увидели два основных приема освобождения от иррациональности в знаменателе:

VII . Закрепление темы : Учебник. Стр.98 № 431(а,б,ж,з), №433(а,б,в)

Освободитесь от иррациональности в знаменателе дроби:

а) ; б) в); г) .

VII I . Тест (работа в парах )

Английский философ Герберт Спенсер говорил: «Дороги не те знания, которые откладываются в мозгу, как жир, дороги те, которые превращаются в умственные мышцы».

На этом этапе урока необходимо применить свои знания к решению упражнений в ходе выполнения теста. (тест прилагается )

Самопроверка:

Код правильных ответов: I вариант – 12312 , II вариант - 32132.

Домашнее задание: №431(з,и), №432, №433(г,д,е)

IX . Итог урока:

Заполните до конца оценочный лист. Оценки за урок.

Закончить урок я хочу стихотворением великого математика Софьи Ковалевской.

Небо покроется черною мглой,

В этом стихотворении выражено стремление к знаниям, умение преодолевать все преграды, которые встречаются на пути. А как мы сегодня с вами преодолевали преграды? Чем мы занимались на уроке?

- Сегодня мы повторили определение и свойства арифметического квадратного корня; вынесение множителя за знак корня, внесение множителя под знак корня, формулы сокращённого умножения; ознакомились и закрепили некоторые способы преобразования выражений, содержащих квадратные корни. Расширили свой кругозор и узнали, кто впервые ввёл современный знак корня во всеобщее употребление.

Все работали плодотворно, активно и коллективно в течении урока.

Урок окончен. Всем спасибо за урок!

ЛИСТ-ОПРОСНИК

Ф.И. ученика____________________________

1. Настроение в начале урока: а) б) в)

2. Мое восприятие темы урока:

а) усвоил(а) все; б) усвоил(а) почти все; в) усвоил(а) частично, нуждаюсь в помощи.

3.Оценка за диктант:

4. Количество неправильных ответов теста: _________

5. Я работал(а) на уроке:

а) отлично; б) хорошо; в) удовлетворительно; г) неудовлетворительно.

6. Я оцениваю свою работу на ______ (поставьте оценку)

7. Я оцениваю урок на _____ (поставьте оценку)

8. Настроение в конце урока: а) б в)

Тест

I вариант

1. Упростите выражение

1) 2) 3)

2. Раскройте скобки и упростите выражение:

1) 18; 2) 12; 3) 22.

3. Упростите:

1); 2) ; 3) .

4. Освободитесь от иррациональности в знаменателе =

1) ; 2) ; 3) .

1) ; 2) ; 3); 4)

Тест

II вариант

1. Упростите выражение

1); 2) ; 3)

2. Раскройте скобки и упростите

1) 8; 2) 12; 3) 10.

3. Упростите:

4. Освободитесь от иррациональности в знаменателе:

1) ; 2); 3) .

5. Вынесите множитель из-под знака корня:

1) ; 2) ; 3)

  • Чему равен квадратный корень из произведения неотрицательных множителей?.
  • Чему равен квадратный корень из дроби?
  • Чему равно значение арифметического квадратного корня из х 2 ?

  • Ни костяшек, ни ручек, ни мела.

    Ну-ка, в сторону карандаши!

    "Устный счёт!" Мы творим это дело

    Только силой ума и души.

    Цифры сходятся где-то во тьме,

    И глаза начинают светиться,

    И кругом только умные лица.

    Потому что считаем в уме!


    Устный счёт

    Вынесите множитель из-под знака

    корня:

    Немного подумайте


    Устный счёт

    • Внесите множитель под знак корня:
    • Внесите множитель под знак корня:
    • Внесите множитель под знак корня:
    • Внесите множитель под знак корня:

    Немного подумайте


    Устный счёт

    Возведите в квадрат:

    Немного подумайте


    Устный счёт

    Приведите подобные слагаемые:

    Немного подумайте







    III . Диктант:

    Вариант-1

    Вариант- 2

    Ответы:

    Ответы:



    • Radix - имеет два значения: сторона и корень. Греческие математики вместо «извлечь корень» говорили «найти сторону квадрата по его данной величине (площади)»
    • Начиная с XIII века, итальянские и другие европейские математики обозначали корень латинским словом Radix или сокращенно R (отсюда произошёл термин «радикал»)

    Немецкие математики XV в. для обозначения квадратного корня пользовались точкой ·5

    Позднее вместо точки стали ставить ромбик  5

    Затем  5 .

    Затем знак  и черту стали соединять.



    Взаимопроверка

    I вариант

    II вариант

    п.19, стр. 96, пример 3

    431 (з, и), №432, №433 (г, д, е)

    Если в жизни ты хоть на мгновенье

    Истину в сердце своем ощутил,

    Если луч света сквозь мрак и сомненье

    Ярким сияньем твой путь озарил:

    Что бы в решенье твоем неизменном

    Рок ни назначил тебе впереди,

    Память об этом мгновенье священном

    Вечно храни, как святыню в груди.

    Тучи сберутся громадой нестройной,

    Небо покроется черною мглой,

    С ясной решимостью, с верой спокойной

    Бурю ты встреть и померься с грозой.

    Добрый день!

    Всех гостей приветствуют учитель I категории

    Гирина Ирина Валерьевна

    и обучающиеся 8 класса

    ОУ «Луговская школа»!


    Философия Фалеса Милетского

    Что легко?

    Что трудно?

    Кто счастлив?

    Давать советы другим

    Познать самого себя

    Тот, кто здоров телом, одарен спокойствием духа и развивает свои дарования




    Упростите выражения:

    Сравните выражения:


    15.02.17. Классная работа

    Тождественные преобразования выражений, содержащих

    квадратные корни.


    Цель: изучение…

    способов тождественных преобразований выражений, содержащих квадратные корни

    1. Определить способы;

    2. Сформулировать правила;

    3. Составить алгоритм;

    4. Научиться применять алгоритм для преобразования выражений, содержащих квадратные корни


    Тождественные преобразования выражений, содержащих квадратные корни

    Вынесение множителя из-под знака корня

    Внесение множителя под знак корня


    Вынесение множителя из-под знака корня

    Внесение множителя под знак корня

    Для вынесения множителя из-под знака корня, надо подкоренное выражение разложить на множители так, чтобы один из них являлся полным квадратом

    Для внесения множителя под знак корня, надо множитель возвести в квадрат; произведение квадрата множителя и подкоренного выражения записать под знак корня


    3. Применить данный способ для выполнения задания.


    Выводы: изучили…

    способы тождественных преобразований выражений, содержащих квадратные корни

    Для этого мы решили следующие задачи:

    1. Определили способы;

    2. Сформулировали правило;

    3. Составили алгоритм;

    4. Научились применять алгоритм для тождественных преобразований выражений, содержащих квадратные корни


    Рефлексия

    Результатом нашего урока

    будет то, что мы

    правила внесения множителя под знак корня и вынесения множителя из-под знака корня

    ПРИМЕНЯТЬ правила внесения множителя под знак корня и вынесения множителя из-под знака корня

    Выполните тест

    «Диагностика уровня математических способностей»


    Итог урока и домашнее задание

    Закрепить знание правил.

    По № 524 - № 528 составить тест

    из 10 вопросов с 4 вариантами ответов.



    Материал этой статьи стоит рассматривать как часть темы преобразование иррациональных выражений . Здесь мы на примерах разберем все тонкости и нюансы (которых немало), возникающие при проведении преобразований на базе свойств корней.

    Навигация по странице.

    Вспомним свойства корней

    Коль скоро мы собрались разбираться с преобразованием выражений с использованием свойств корней, то не помешает вспомнить основные , а еще лучше записать их на бумагу и расположить перед собой.

    Сначала изучаются квадратные корни и следующие их свойства (a , b , a 1 , a 2 , …, a k - действительные числа):

    А позже представление о корне расширяется, вводится определение корня n-ой степени, и рассматриваются такие свойства (a , b , a 1 , a 2 , …, a k - действительные числа, m , n , n 1 , n 2 , ..., n k - натуральные числа):

    Преобразование выражений с числами под знаками корней

    По обыкновению сначала учатся работать с числовыми выражениями, а уже после этого переходят к выражениям с переменными. Так поступим и мы, и сначала разберемся с преобразованием иррациональных выражений, содержащих под знаками корней только числовые выражения, а уже дальше в следующем пункте будем вводить под знаки корней и переменные.

    Как это может быть использовано для преобразования выражений? Очень просто: например, иррациональное выражение мы можем заменить выражением или наоборот. То есть, если в составе преобразовываемого выражения содержится выражение, совпадающее по виду с выражением из левой (правой) части любого из перечисленных свойств корней, то его можно заменить соответствующим выражением из правой (левой) части. В этом и состоит преобразование выражений с использованием свойств корней.

    Приведем еще несколько примеров.

    Упростим выражение . Числа 3 , 5 и 7 положительные, поэтому мы можем спокойно применять свойства корней. Здесь можно действовать по-разному. Например, корень на базе свойства можно представить как , а корень с использованием свойства при k=3 - как , при таком подходе решение будет иметь такой вид:

    Можно было поступить иначе, заменив на , и дальше на , в этом случае решение выглядело бы так:

    Возможны и другие варианты решения, например, такой:

    Разберем решение еще одного примера. Преобразуем выражение . Взглянув на список свойств корней, выбираем из него нужные нам свойства для решения примера, понятно, что здесь пригодятся два из них и , которые справедливы для любых a . Имеем:

    Как вариант, сначала можно было преобразовать выражения под знаками корней с использованием

    а уже дальше применять свойства корней

    До этого момента мы преобразовывали выражения, которые содержат только квадратные корни. Пришло время поработать с корнями, имеющими другие показатели.

    Пример.

    Преобразуйте иррациональное выражение .

    Решение.

    По свойству первый множитель заданного произведения можно заменить числом −2 :

    Идем дальше. Второй множитель в силу свойства можно представить как , а 81 не помешает заменить четверной степенью тройки, так как в остальных множителях под знаками корней фигурирует число 3 :

    Корень из дроби целесообразно заменить отношением корней вида , которое можно преобразовать и дальше: . Имеем

    Полученное выражение после выполнения действий с двойками примет вид , и остается преобразовать произведение корней.

    Для преобразования произведений корней их обычно приводят к одному показателю, в качестве которого целесообразно брать показателей всех корней. В нашем случае НОК(12, 6, 12)=12 , и к этому показателю придется приводить лишь корень , так как остальные два корня уже имеют такой показатель. Справиться с этой задачей позволяет равенство , которое применяют справа налево. Так . Учитывая этот результат, имеем

    Теперь произведение корней можно заменить корнем произведения и выполнить остальные, уже очевидные, преобразования:

    Оформим краткий вариант решения:

    Ответ:

    .

    Отдельно подчеркнем, что для применения свойств корней необходимо учитывать ограничения, наложенные на числа под знаками корней (a≥0 и т.п.). Их игнорирование может спровоцировать возникновение неверных результатов. Например, мы знаем, что свойство имеет место для неотрицательных a . На его основе мы спокойно можем перейти, к примеру, от к , так как 8 – положительное число. А вот если взять имеющий смысл корень из отрицательного числа, например, , и на базе указанного выше свойства заменить его на , то мы фактически заменим −2 на 2 . Действительно, , а . То есть, при отрицательных a равенство может быть и неверным, как могут быть неверными и другие свойства корней без учета оговоренных для них условий.

    Но сказанное в предыдущем пункте вовсе не означает, что выражения с отрицательными числами под знаками корней невозможно преобразовывать с использованием свойств корней. Их просто предварительно нужно «подготовить», применив правила действий с числами или воспользовавшись определением корня нечетной степени из отрицательного числа, которому соответствует равенство , где −a – отрицательное число (при этом a – положительное). Например, нельзя сразу заменить на , так как −2 и −3 – отрицательные числа, но позволяет нам от корня перейти к , и уже дальше применять свойство корня из произведения: . А в одном из предыдущих примеров переходить от корня к корню восемнадцатой степени нужно было не так , а так .

    Итак, для преобразования выражений с использованием свойств корней, надо

    • выбрать подходящее свойство из списка,
    • убедиться, что числа под корнем удовлетворяют условиям для выбранного свойства (в противном случае требуется выполнить предварительные преобразования),
    • и провести задуманное преобразование.

    Преобразование выражений с переменными под знаками корней

    Для преобразования иррациональных выражений, содержащих под знаком корня не только числа, но и переменные, свойства корней, перечисленные в первом пункте этой статьи, приходится применять аккуратно. Связано это по большей части с условиями, которым должны удовлетворять числа, участвующие в формулах. Например, опираясь на формулу , выражение можно заменить выражением лишь для таких значений x , которые удовлетворяют условиям x≥0 и x+1≥0 , так как указанная формула задана для a≥0 и b≥0 .

    Чем опасно игнорирование этих условий? Ответ на этот вопрос наглядно демонстрирует следующий пример. Допустим, нам нужно вычислить значение выражения при x=−2 . Если сразу подставить вместо переменной x число −2 , то получим нужное нам значение . А теперь представим, что мы, исходя из каких-то соображений, преобразовали заданное выражение к виду , и только после этого решили вычислить значение. Подставляем вместо x число −2 и приходим к выражению , которое не имеет смысла.

    Давайте проследим, что происходит с областью допустимых значений (ОДЗ) переменной x при переходе от выражения к выражению . ОДЗ мы упомянули не случайно, так как это серьезный инструмент контроля допустимости проделанных преобразований, и изменение ОДЗ после преобразования выражения должно как минимум насторожить. Найти ОДЗ для указанных выражений не составляет труда. Для выражения ОДЗ определяется из неравенства x·(x+1)≥0 , его решение дает числовое множество (−∞, −1]∪∪}