Нахождение в природе и организме человека. Какие химические свойства у сахара

Химические свойства сахарозы

В растворе сахарозы не происходит раскрытие циклов, поэтому она не обладает свойствами альдегидов.

1) Гидролиз (в кислотной среде):

C 12 H 22 O 11 + H 2 O → C 6 H 12 O 6 + C 6 H 12 O 6 .

сахароза глюкоза фруктоза

2) Являясь многоатомным спиртом, сахароза дает синее окрашивание раствора при реакции с Cu(OH) 2 .

3) Взаимодействие с гидроксидом кальция с образованием сахарата кальция.

4) Сахароза не реагирует с аммиачным раствором оксида серебра, поэтому ее называют невосстанавливающим дисахаридом.

Полисахариды.

Полисахариды – высокомолекулярные несахароподобные углеводы, содержащие от десяти до сотен тысяч остатков моносахаридов (обычно гексоз), связанных гликозидными связями.

Важнейшие из полисахаридов – это крахмал и целлюлоза (клетчатка). Они построены из остатков глюкозы. Общая формула этих полисахаридов (C 6 H 10 O 5) n . В образовании молекул полисахаридов обычно принимает участие гликозидный (при С 1 -атоме) и спиртовой (при С 4 -атоме) гидроксилы, т.е. образуется (1–4) -гликозидная связь.

С точки зрения общих принципов строения полисахариды можно разделить на две группы, а именно: на гомополисахариды, состоящие из моносахаридных единиц только одного типа, и гетерополисахариды, для которых характерно наличие двух или более типов мономерных звеньев.

С точки зрения функционального назначения полисахариды также могут быть разделены на две группы: структурные и резервные полисахариды. Важными структурными полисахаридами являются целлюлоза и хитин(у растений и животных, а также у грибов, соответственно), а главные резервные полисахариды - гликоген и крахмал (у животных, а также у грибов, и растений соответственно). Здесь будут рассмотрены только гомополисахариды.

Целлюлоза (клетчатка) − наиболее широко распространенный структурный полисахарид растительного мира.

Главная составная часть растительной клетки, синтезируется в растениях (в древесине до 60% целлюлозы). Целлюлоза обладает большой механической прочностью и исполняет роль опорного материала растений. Древесина содержит 50-70% целлюлозы, хлопок представляет собой почти чистую целлюлозу.

Чистая целлюлоза – белое волокнистое вещество, без вкуса и запаха, нерастворимое в воде и в других растворителях.

Молекулы целлюлозы имеют линейное строение и большую молекулярную массу, состоят только из неразветвленных молекул в виде нитей, т.к. форма остатков β-глюкозы исключает спирализацию.. Целлюлоза состоит из нитевидных молекул, которые водородными связями гидроксильных групп внутри цепи, а также между соседними цепями собраны в пучки. Именно такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу идеальным материалом для построения клеточных стенок.

Целлюлоза состоит из остатков α,D-глюкопиранозы в их β-пиранозной форме, т. е. в молекуле целлюлозы β-глюкопиранозные мономерные единицы линейно соединены между собой β-1,4-глюкозидными связями:

При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном гидролизе - D-глюкоза. Молекулярная масса целлюлозы 1 000 000−2 000 000. Клетчатка не переваривается ферментами желудочно-кишечного тракта, так как набор этих ферментов желудочно-кишечного тракта человека не содержит β-глюкозидазу. Вместе с тем известно, что присутствие оптимальных количеств клетчатки в пище способствует формированию кала. При полном исключении клетчатки из пищи нарушается формирование каловых масс.

Крахмал − полимер такого же состава, что и целлюлоза, но с элементарным звеном, представляющим собой остаток α-глюкозы:

Молекулы крахмала свернуты в спираль, большая часть молекул разветвлена. Молекулярная масса крахмала меньше молекулярной массы целлюлозы.

Крахмал – это аморфное вещество, белый порошок, состоящий из мелких зерен, не растворимый в холодной воде, но частично растворимое в горячей.

Крахмал представляет собой смесь двух гомополисахаридов: линейного - амилозы и разветвленного - амилопектина, общая формула которых (С 6 Н 10 O 5) n .

При обработке крахмала теплой водой удается выделить две фракции: фракцию, растворимую в теплой воде и состоящую из полисахарида амилозы, и фракцию, лишь набухающую в теплой воде с образованием клейстера и состоящую из полисахарида амилопектина.

Амилоза имеет линейное строение, α, D- глюкопиранозные остатки связаны (1–4) -гликозидными связями. Элементная ячейка амилозы (и крахмала вообще) представляется следующим образом:

Молекула амилопектина построена подобным образом, однако имеет в цепи разветвления, что создает пространственную структуру. В точках разветвления остатки моносахаридов связаны (1–6) -гликозидными связями. Между точками разветвления располагаются обычно 20-25 глюкозных остатков.

(амилопектин)

Как правило, содержание амилозы в крахмале составляет 10-30%, амилопектина - 70-90%. Полисахариды крахмала построены из остатков глюкозы, соединенных в амилозе и в линейных цепях амилопектина α-1,4-глюкозидными связями, а в точках ветвления амилопектина - межцепочечными α-1,6-глюкозидными связями.

В молекуле амилозы связано в среднем около 1000 остатков глюкозы, отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц.

В воде амилоза не дает истинного раствора. Цепочка амилозы в воде образует гидратированные мицеллы. В растворе при добавлении йода амилоза окрашивается в синий цвет. Амилопектин также дает мицеллярные растворы, но форма мицелл несколько иная. Полисахарид амилопектин окрашивается йодом в красно-фиолетовый цвет.

Крахмал имеет молекулярную массу 10 6 -10 7 . При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины, при полном гидролизе - глюкоза. Крахмал является наиболее важным для человека пищевым углеводом. Крахмал образуется в растениях при фотосинтезе и откладывается в виде "резервного" углевода в корнях, клубнях и семенах. Например, зерна риса, пшеницы, ржы и других злаков содержат 60-80% крахмала, клубни картофеля – 15-20%. Родственную роль в животном мире выполняет полисахарид гликоген, "запасающийся", в основном, в печени.

Гликоген − главный резервный полисахарид высших животных и человека, построенный из остатков α-D-глюкозы. Эмпирическая формула гликогена, как и крахмала (С 6 Н 10 O 5) n . Гликоген содержится практически во всех органах и тканях животных и человека; наибольшее количество его находится в печени и мышцах. Молекулярная масса гликогена 10 7 -10 9 и выше. Его молекула построена из ветвящихся полиглюкозидных цепей, в которых остатки глюкозы соединены α-1,4-глюкозидными связями. В точках ветвления имеются α-1,6-глюкозидные связи. Гликоген по своему строению близок к амилопектину.

В молекуле гликогена различают внутренние ветви - участки полиглюкозидных цепей между точками ветвления, и наружные ветви - участки от периферической точки ветвления до нередуцирующего конца цепи. При гидролизе гликоген, подобно крахмалу, расщепляется с образованием сначала декстринов, затем мальтозы и, наконец, глюкозы.

Хитин − структурный полисахарид низших растений, в особенности грибов, а также беспозвоночных животных (главным образом членистоногих). Хитин состоит из остатков 2-ацетамидо-2-дезокси-D-глюкозы, связанных между собой β-1,4-глюкозидными связями.

Вопрос 1. Сахароза. Её строение, свойства, получение и применение.

Ответ. Опытным путём доказано, что молекулярная форма сахарозы

– C 12 H 22 O 11 . Молекула содержит гидроксильные группы и состоит из взаимно связанных остатков молекул глюкозы и фруктозы.

Физические свойства

Чистая сахарозы – бесцветное кристаллическое вещество сладкого вкуса, хорошо растворимое в воде.

Химические свойства:

1. Подвергается гидролизу:

C 12 H 22 O 11 + H2O C 6 H 12 O 6 + C 6 H 12 O 6

2.Сахароза – невосстанавливающий сахар. Она не даёт реакции «серебряного зеркала», а с гидроксидом меди (II) взаимодействует как многоатомный спирт, не восстанавливая Cu (II) до Cu (I).

Нахождение в природе

Сахарозы входит в состав сока сахарной свеклы (16-20 %) и сахарного тростника (14-26%). В небольших количествах она содержится вместе с глюкозой в плодах и листьях многих зелёных растений.

Получение:

1. Сахарную свекл или сахарный тростник превращают в тонкую стружку и помещают в диффузоры, через которые пропускают горячую воду.

2. Полученный раствор обрабатывают известковым молоком, образуется растворимый сахарат кальция алкоголятов.

3. Для разложения сахарата кальция и нейтрализации избытка гидроксида кальция через раствор пропускают оксид углерода (IV):

C 12 H 22 O 11 CaO 2H 2 + CO 2 = C 12 H 22 O 11 + CaCO 3 + 2H 2 O

4.Полученный после осаждения карбоната кальция раствор фильтруют затем упаривают в вакуумных аппаратах и кристаллики сахара отделяют центрифугированием.

5. Выделенный сахарный песок обычно имеет желтоватый цвет, так как содержит красящие вещества. Для их отделения сахарозу растворяют в воде и пропускают через активированный уголь.

Применение:

Сахароза в основном используется в качестве продукта питания и в кондитерской отрасли промышленности. Путём гидролиза из неё получают искусственный мёд.

Вопрос 2. Особенности размещения электронов в атомах элементов малых и больших периодов. Состояния электронов в атомах.

Ответ. Атом – химически неделимая, электронейтральная частица вещества. Атом состоит из ядра и движущихся по определённым орбиталям вокруг него электронов. Атомная орбиталь – область пространства вокруг ядра, в пределах которой наиболее вероятно нахождение электрона. Орбитали называют также электронными облаками. Каждой орбитали отвечает определённая энергия а также форма и размер электронного облака. Группа орбиталей, для которых значение энергии оказываются близкими, относят к одному энергетическому уровню. На энергетическом уровне не может находится более 2n 2 электронов, где n – номер уровня.

Виды электронных облаков: шаровой формы - s-электроны, одна орбиталь на каждом энергетическом уровне; гантелеобразной формы – p-электроны, три орбитали p x , p y ,p z ; в форме напоминающей две перекрещенные гантеи, - d- электроны, пять орбиталей d xy , d xz , d yz , d 2 z , d 2 x – d 2 y .

Распределение электронов по энергетическим уровням отражает электронная конфигурация элемента.

Правила заполнения электронами энергетических уровней и

подуровней.

1.Заполнение каждого уровня начинается с s- электронов, далее происходит заполнение электронами p-, d- и f- энергетических уровней.

2.Число электронов в атоме равно его порядковому номеру.

3. Число энергетических уровней соответствует номеру периода, в котором находится элемент.

4. максимальное число электронов на энергетическом уровне определяется по формуле

Где n- номер уровня.

5. Общее число электронов на атомных орбиталях одного энергетического уровня.

Например, алюминий, заряд ядра равен +13

Распределение электронов по энергетическим уровням – 2,8,3.

Электронная конфигурация

13 Al:1s 2 2s 2 2p 6 3s 2 3p 1 .

В атомах некоторых элементов наблюдается явление проскока электронов.

Например, у хрома электроны с 4s-подуровня перескакивают на 3d- подуровень:

24 Cr 1s 2 2s 2 2p 6 3s 2 3d 5 3d 5 4s 1 .

Электрон переходит с 4s- подуровня на 3d, потому что конфигурация 3d 5 и 3d 10 являются более энергетически выгодными. Электрон занимает положение, в котором его энергия минимальная.

Заполнение электронами энергетического f-подуровня происходит у элемента 57La -71 Lu.

Вопрос 3. Распознать вещества KOH,HNO 3 ,K 2 CO 3 .

Ответ: KOH + фенолфталиен → малиновая окраска раствора;

NHO 3 + лакмус → красная окраска раствора,

K 2 CO 3 + H 2 SO 4 = K 2 SO 4 + H 2 0 +CO 2

Билет № 20

Вопрос 1. Генетическая связь органических соединений различных классов.

Ответ: Схема цепочки химических превращений:

C 2 H 2 → C 2 H 4 →C 2 H 6 →C 2 H 5 Cl→C 2 H 5 OH→CH 3 CHO→CH 3 COOH

C 6 H 6 C 2 H 5 OH CH 2 =CH-CH=CH 2 CH 3 COOC 2 H 5

C 6 H 5 Cl CH 3 O-C 2 H 5 C 4 H 10

C 2 H 2 + H 2 = C 2 H 4 ,

алкин алкен

C 2 H 4 + H 2 = C 2 H 6 ,

алкен алкан

C 2 H 6 + Cl 2 = C 2 H 5 Cl + HCl,

C 2 H 5 Cl + NaOH = C 2 H 5 OH + NaCl,

хлоралкан спирт

С 2 H 5 OH + 1/2O 2 CH 3 CHO + H 2 O,

спирт альдегид

CH 3 CHO + 2Cu(OH) 2 = CH 3 COOH + 2CuOH + H 2 O,

C 2 H 4 + H 2 O C 2 H 5 OH,

алкен спирт

C 2 H 5 OH + CH 3 OH = CH 3 O-C 2 H 5 + H 2 O,

спирт спирт простой эфир

3С 2 H 2 С 6 Н 6 ,

алкин арен

C 6 H 6 + Cl 2 = C 6 H 5 Cl + HCl,

C 6 H 5 Cl + NaOH = C 6 H 5 OH + NaCl,

C 6 H 5 OH + 3Br 2 = C 6 H 2 Br 3 OH + 3HBr;

2С 2 H 5 OH = CH 2 = CH-CH = CH 2 + 2H 2 O + H 2 ,

спирт диен

CH 2 = CH-CH = CH 2 + 2H 2 = C 4 H 10 .

диен алкан

Алканы- углеводороды с общей формулой С n H 2 n +2 , которые не присоединяют водород и другие элементы.

Алкены- углеводороды с общей формулой С n H 2 n , в молекулах которых между атомами углерода имеется одна двойная связь.

К диеновым углеводородам относят органические соединения с общей формулой С n H 2 n -2 , в молекулах которых имеются две двойные связи.

Углеводороды с общей формулой С n H 2 n -2 , в молекулах которых имеется одна тройная связь, относят к ряду ацетилена и называют алкинами.

Соединения углерода с водородом, в молекулах которых имеется бензольное кольцо, относят к ароматическим углеводородам.

Спиртами называются производные углеводородов, в молекулах которых один или несколько атомов водорода замещены гидроксильными группами.

К фенолам относят производные ароматических углеводородов, в молекулах которых гидроксильные группы связаны с бензольным ядром.

Альдегиды- органические вещества, содержащие функциональную группу- СНО (альдегидную группу).

Карбоновые кислоты- это органические вещества, молекулы которых содержат одну или несколько карбоксильных групп, соединенных с углеводородным радикалом или атомом водорода.

К сложным эфирам относятся органические вещества, которые образуются в реакциях кислот со спиртами и содержат группу атомов С(О)-О-С.

Вопрос 2. Типы кристаллических решеток. Характеристика веществ с различными типами кристаллических решеток.

Ответ. Кристаллическая решетка – пространственное, упорядоченное взаиморасположением частиц вещества, имеющее однозначный, распознаваемый мотив.

В зависимости от вида частиц, расположенных в узлах решетки, различают: ионные (ИКР), атомные (АКР), молекулярные (МКР), металлические (Мет. КР), кристаллические решетки.

МКР – в узлах находится молекула. Примеры: лед, сероводород, аммиак, кислород, азот в твердом состоянии. Силы, действующие между молекулами, сравнительно слабые, поэтому вещества имеют малую твердость, низкие температуры кипения и плавления, плохую растворимость в воде. В обычных условиях это газы или жидкости (азот, пероксид водорода, твердый CO 2). Вещества с МКР относятся к диэлектрикам.

АКР- в узлах атомы. Примеры: бор, углерод (алмаз), кремний, германий. Атомы соединены прочными ковалентными связями, поэтому для веществ характерны высокие температуры кипения и плавления, высокая прочность и твердость. Большинство таких веществ не растворимо в воде.

ИКР – в узлах катионы и анионы. Примеры: NaCl, KF, LiBr. Такой тип решетки имеется у соединений с ионным типом связи (металл-неметалл). Вещества тугоплавкие, малолетучие, сравнительно прочные, хорошие проводники электрического тока, хорошо растворимы в воде.

Мет. КР – решетка веществ, состоящих только из атомов металла. Примеры: Na, K, Al, Zn, Pb и т.д. Агрегатное состояние твердое, нерастворимо в воде. Кроме щелочных и щелочно-земельных металлов, проводники электрического тока, температуры кипения и плавления колеблются от средних до очень высоких.

Вопрос 3. Задача. Для сжигания 70 г серы взяли 30 л кислорода. Определить объем и количество вещества, образовавшегося сернистого газа.

Дано: Найти:

m(S) = 70 г, V(SO 2) = ?

V(O 2) = 30 л. v(SO 2) = ?


Решение:

m=70 г V= 30 л x л

S + O 2 = SO 2 .

v: 1 моль 1 моль 1 моль

M: 32 г/моль -- --

V: -- 22,4 л 22, 4 л

V(O 2) теор. = 70 * 22,4/32 =49 л (O 2 в недостатке, расчет по нему).

Поскольку V(SO 2) = V(O 2), то V(SO 2) = 30 л.

v(SO 2) = 30/22,4 = 1,34 моль.

Ответ. V(SO 2) = 30 л, v = 1,34 моль.

1. Она представляет собой бесцветные кристаллы сладкого вкуса, хорошо растворима в воде.

2. Температура плавления сахарозы 160 °C.

3. При застывании расплавленной сахарозы образуется аморфная прозрачная масса – карамель.

4. Содержится во многих растениях: в соке березы, клена, в моркови, дыне, а также в сахарной свекле и сахарном тростнике.

Строение и химические свойства.

1. Молекулярная формула сахарозы – С 12 Н 22 О 11 .

2. Сахароза имеет более сложное строение, чем глюкоза.

3. Наличие гидроксильных групп в молекуле сахарозы легко подтверждается реакцией с гидроксидами металлов.

Если раствор сахарозы прилить к гидроксиду меди (II), образуется ярко-синий раствор сахарата меди.

4. Альдегидной группы в сахарозе нет: при нагревании с аммиачным раствором оксида серебра (I) она не дает «серебряного зеркала», при нагревании с гидроксидом меди (II) не образует красного оксида меди (I).

5. Сахароза, в отличие от глюкозы, не является альдегидом.

6. Сахароза является важнейшим из дисахаридов.

7. Она получается из сахарной свеклы (в ней содержится до 28 % сахарозы от сухого вещества) или из сахарного тростника.

Реакция сахарозы с водой.

Если прокипятить раствор сахарозы с несколькими каплями соляной или серной кислоты и нейтрализовать кислоту щелочью, а после этого нагреть раствор с гидроксидом меди (II), выпадает красный осадок.

При кипячении раствора сахарозы появляются молекулы с альдегидными группами, которые и восстанавливают гидроксид меди (II) до оксида меди (I). Эта реакция показывает, что сахароза при каталитическом действии кислоты подвергается гидролизу, в результате чего образуются глюкоза и фруктоза:

С 12 Н 22 О 11 + Н 2 О → С 6 Н 12 O 6 + С 6 Н 12 O 6 .

6. Молекула сахарозы состоит из соединенных друг с другом остатков глюкозы и фруктозы.

Из числа изомеров сахарозы, имеющих молекулярную формулу С 12 Н 22 О 11 , можно выделить мальтозу и лактозу.

Особенности мальтозы:

1) мальтоза получается из крахмала под действием солода;

2) она называется еще солодовым сахаром;

3) при гидролизе она образует глюкозу:

С 12 Н 22 О 11 (мальтоза) + Н 2 О → 2С 6 Н 12 O 6 (глюкоза).

Особенности лактозы: 1) лактоза (молочный сахар) содержится в молоке; 2) она обладает высокой питательностью; 3) при гидролизе лактоза разлагается на глюкозу и галактозу – изомер глюкозы и фруктозы, что является важной особенностью.

66. Крахмал и его строение

Физические свойства и нахождение в природе.

1. Крахмал представляет собой белый порошок, не растворимый в воде.

2. В горячей воде он набухает и образует коллоидный раствор – клейстер.

3. Являясь продуктом усвоения оксида углерода (IV) зелеными (содержащими хлорофилл) клетками растений, крахмал распространен в растительном мире.

4. Клубни картофеля содержат около 20 % крахмала, зерна пшеницы и кукурузы – около 70 %, риса – около 80 %.

5. Крахмал – одно из важнейших питательных веществ для человека.

Строение крахмала.

1. Крахмал (С 6 H 10 O 5) n – природный полимер.

2. Образуется он в результате фотосинтетической деятельности растений при поглощении энергии солнечного излучения.

3. Сначала из углекислого газа и воды в результате ряда процессов синтезируется глюкоза, что в общем виде может быть выражено уравнением: 6СO 2 + 6Н 2 О = С 6 Н 12 O 6 + 6O 2 .

5. Макромолекулы крахмала неодинаковы по размерам: а) в них входит разное число звеньев С 6 H 10 O 5 – от нескольких сотен до нескольких тысяч, при этом неодинакова и их молекулярная масса; б) различаются они и по строению: наряду с линейными молекулами с молекулярной массой в несколько сотен тысяч имеются молекулы разветвленного строения, молекулярная масса которых достигает нескольких миллионов.

Химические свойства крахмала.

1. Одно из свойств крахмала – это способность давать синюю окраску при взаимодействии с йодом. Эту окраску легко наблюдать, если поместить каплю раствора йода на срез картофеля или ломтик белого хлеба и нагреть крахмальный клейстер с гидроксидом меди (II), будет видно образование оксида меди (I).

2. Если прокипятить крахмальный клейстер с небольшим количеством серной кислоты, нейтрализовать раствор и провести реакцию с гидроксидом меди (II), образуется характерный осадок оксида меди (I). То есть при нагревании с водой в присутствии кислоты крахмал подвергается гидролизу, при этом образуется вещество, восстанавливающее гидроксид меди (II) в оксид меди (I).

3. Процесс расщепления макромолекул крахмала водой идет постепенно. Сначала образуются промежуточные продукты с меньшей молекулярной массой, чем у крахмала, – декстрины, затем изомер сахарозы – мальтоза, конечным продуктом гидролиза является глюкоза.

4. Реакцию превращения крахмала в глюкозу при каталитическом действии серной кислоты открыл в 1811 г. русский ученый К. Кирхгоф. Разработанный им способ получения глюкозы используется и в настоящее время.

5. Макромолекулы крахмала состоят из остатков молекул циклической L-глюкозы.

Ученые доказали, что сахароза является составной частью всех растений. Вещество в больших количествах находится в сахарном тростнике и сахарной свекле. Роль этого продукта достаточно велика в рационе каждого человека.

Сахароза относится к группе дисахаридов (входит в класс олигосахаридов). Под действием своего фермента или кислоты сахароза распадается на фруктозу (плодовый сахар) и глюкозу, из которой состоит большинство полисахаридов.

Другими словами молекулы сахарозы состоят из остатков D-глюкозы и D-фруктозы.

Главным доступным продуктом, служащим основным источником сахарозы, является обыкновенный сахар, который продается в любом продуктовом магазине. Наука химия обозначает молекулу сахарозы, являющуюся изомером, следующим образом - С 12 Н 22 О 11 .

Взаимодействие сахарозы с водой (гидролиз)

С 12 Н 22 О 11 + Н 2 O → С 6 Н 12 О 6 + С 6 Н 12 О 6

Сахароза считается важнейшим из дисахаридов. Из уравнения можно видеть, что гидролиз сахарозы проводит к образованию фруктозы и глюкозы.

Молекулярные формулы этих элементов одинаковые, а вот структурные абсолютно разные.

Фруктоза - СН 2 - СН - СН - СН -С - СН 2 .

Глюкоза - СН 2 (ОН) -(СНОН) 4 -СОН.

Сахароза и ее физические свойства

Сахароза – это сладкие бесцветные кристаллы, хорошо растворимые в воде. Температура плавления сахарозы составляет 160 °C. При застывании расплавленной сахарозы образуется аморфная прозрачная масса – карамель.

Свойства сахарозы:

  1. Это самый главный дисахарид.
  2. Не относится к альдегидам.
  3. При нагреве с Ag 2 O (аммиачным раствором) не дает эффекта «серебряного зеркала».
  4. При нагревании с Cu(OH) 2 (гидроксидом меди) не появляется оксид меди красного цвета.
  5. Если вскипятить раствор сахарозы с несколькими каплями хлороводородной или серной кислоты, затем ее же нейтрализовать любой щелочью, далее нагреть полученный раствор с Cu(OH)2, можно наблюдать выпадение осадка красного цвета.

Состав

В состав сахарозы, как известно, входит фруктоза и глюкоза, точнее, их остатки. Оба эти элемента между собой тесно соединены. Из числа изомеров, имеющих молекулярную формулу С 12 Н 22 О 11 , нужно выделить такие:

  • молочный сахар ();
  • солодовый сахар (мальтоза).

Продукты питания, в состав которых входит сахароза

  • Ирга.
  • Мушмула.
  • Гранаты.
  • Виноград.
  • Инжир вяленый.
  • Изюм (кишмиш).
  • Хурма.
  • Чернослив.
  • Пастила яблочная.
  • Соломка сладкая.
  • Финики.
  • Пряники.
  • Мармелад.
  • Мед пчелиный.

Как сахароза влияет на человеческий организм

Важно! Вещество обеспечивает человеческий организм полноценным запасом энергии, которая необходима для функционирования всех органов и систем.

Сахароза стимулирует защитные функции печени, улучшает мозговую деятельность, защищает человека от воздействия токсических веществ.

Она поддерживает деятельность нервных клеток и поперечно-полосатой мускулатуры.

По этой причине элемент считается наиважнейшим среди тех, которые содержатся почти во всех пищевых продуктах.

Если организм человека испытывает дефицит сахарозы, можно наблюдать следующие симптомы:

  • упадок сил;
  • нехватка энергии;
  • апатия;
  • раздражительность;
  • депрессия.

Причем самочувствие может постепенно ухудшаться, поэтому нужно вовремя нормализовать количество сахарозы в организме.

Высокий уровень сахарозы тоже очень опасен:

  1. зуд половых органов;
  2. кандидоз;
  3. воспалительные процессы в ротовой полости;
  4. пародонтоз;
  5. избыточный вес;
  6. кариес.

Если мозг человека перегружен активной умственной деятельностью или организм подвергся влиянию токсических веществ, потребность в сахарозе резко возрастает. И, наоборот, эта потребность снижается, если человек имеет избыточный вес или страдает сахарным диабетом.

Как глюкоза и фруктоза влияют на организм человека

В результате гидролиза сахарозы образуется глюкоза и фруктоза. Какие основные характеристики имеют оба эти вещества, и как они влияют на жизнедеятельность человека?

Фруктоза является видом молекулы сахара и в большом количестве содержится в свежих фруктах, придавая им сладость. В связи с этим можно предположить, что фруктоза очень полезна, так как это естественный компонент. Фруктоза, имеющая низкий гликемический индекс, не повышает концентрацию сахара в крови.

Сам по себе продукт очень сладкий, но в состав известных человеку фруктов он входит лишь в малых количествах. Поэтому в организм попадает только минимальное количество сахара, и тот моментально перерабатывается.

Тем не менее, не следует вводить в рацион большое количество фруктозы. Ее неразумное употребление может спровоцировать:

  • ожирение печени;
  • рубцевание печени – цирроз;
  • ожирение;
  • болезни сердца;
  • сахарный диабет;
  • подагру;
  • преждевременное старение кожи.

Исследователи пришли к выводу, что, в отличие от глюкозы, фруктоза значительно быстрее вызывает признаки старения. Говорить о ее заменителях в этом плане, вообще не имеет смысла.

Исходя из всего вышесказанного, можно заключить, что употребление фруктов в разумных количествах для организма человека весьма полезно, так как в их состав входит минимальное количество фруктозы.

Как и фруктоза, глюкоза является видом сахара и самой распространенной формой углеводов. Продукт получают из крахмалов. Глюкоза обеспечивает организм человека, в частности его мозг, запасом энергии на довольно долгое время, но значительно повышает концентрацию сахара в крови.

Обратите внимание! При регулярном употреблении в пищу продуктов, подвергающихся сложной обработке или простых крахмалов (белая мука, белый рис), сахар в крови будет сильно повышаться.

Проблемы:

  • сахарный диабет;
  • незаживающие раны и язвы;
  • высокий уровень липидов в крови;
  • повреждение нервной системы;
  • почечная недостаточность;
  • избыточный вес;
  • ишемическая болезнь сердца, инсульт, инфаркт.

Сахароза

Сахароза C12H32O11, или свекловичный сахар, тростниковый сахар, в быту просто сахар - дисахарид, состоящий из двух моносахаридов - α-глюкозы и β-фруктозы.

Сахароза является весьма распространённым в природе дисахаридом, она встречается во многих фруктах, плодах и ягодах. Особенно велико содержание сахарозы в сахарной свёкле и сахарном тростнике, которые и используются для промышленного производства пищевого сахара.

Сахароза имеет высокую растворимость. В химическом отношении фруктоза довольно инертна,т.е. при перемещении из одного места в другое почти не вовлекается в метаболизм. Иногда сахароза откладывается в качестве запасного питательного вещества.

Сахароза, попадая в кишечник, быстро гидролизуется альфа-глюкозидазой тонкой кишки на глюкозу и фруктозу, которые затем всасываются в кровь. Ингибиторы альфа-глюкозидазы, такие, как акарбоза, тормозят расщепление и всасывание сахарозы, а также и других углеводов, гидролизуемых альфа-глюкозидазой, в частности, крахмала. Это используется в лечении сахарного диабета 2-го типа.

Синонимы: альфа-D-глюкопиранозил-бета-D-фруктофуранозид, свекловичный сахар, тростниковый сахар

Внешний вид

Кристаллы сахарозы - Бесцветные моноклинные кристаллы. При застывании расплавленной сахарозы образуется аморфная прозрачная масса – карамель.

Химические и физические свойства

Молекулярная масса 342,3 а.е.м. Брутто-формула (система Хилла): C12H32O11. Вкус сладковатый. Растворимость (грамм на 100 грамм): в воде 179 (0°C) и 487 (100°C), в этаноле 0,9 (20°C). Малорастворима в метаноле. Не растворима в диэтиловом эфире. Плотность 1,5879 г/см3 (15°C). Удельное вращение для D-линии натрия: 66,53 (вода; 35 г/100г; 20°C). При охлаждении жидким воздухом, после освещения ярким светом кристаллы сахарозы фосфоресцируют. Не проявляет восстанавливающих свойств - не реагирует с реактивом Толленса и реактивом Фелинга. Наличие гидроксильных групп в молекуле сахарозы легко подтверждается реакцией с гидроксидами металлов. Если раствор сахарозы прилить к гидроксиду меди (II), образуется ярко-синий раствор сахарата меди. Альдегидной группы в сахарозе нет: при нагревании с аммиачным раствором оксида серебра (I) она не дает «серебряного зеркала», при нагревании с гидроксидом меди (II) не образует красного оксида меди (I). Из числа изомеров сахарозы, имеющих молекулярную формулу С12Н22О11, можно выделить мальтозу и лактозу.

Реакция сахарозы с водой

Если прокипятить раствор сахарозы с несколькими каплями соляной или серной кислоты и нейтрализовать кислоту щелочью, а после этого нагреть раствор, то появляются молекулы с альдегидными группами, которые и восстанавливают гидроксид меди (II) до оксида меди (I). Эта реакция показывает, что сахароза при каталитическом действии кислоты подвергается гидролизу, в результате чего образуются глюкоза и фруктоза: С12Н22О11 + Н2О → С6Н12O6 + С6Н12O6.

Природные и антропогенные источники

Содержится в сахарном тростнике, сахарной свекле (до 28% сухого вещества), соках растений и плодах (например, берёзы, клёна, дыни и моркови). Источник получения сахарозы - из свеклы или из тростника определяют по соотношению содержания стабильных изотопов углерода 12C и 13C. Сахарная свекла имеет C3-механизм усвоения углекислого газа (через фосфоглицериновую кислоту) и предпочтительно поглощает изотоп 12C; сахарный тростник имеет C4-механизм поглощения углекислого газа (через щавелевоуксусную кислоту) и предпочтительно поглощает изотоп 13C.

Мировое производство в 1990 году - 110 000 000 тонн.

История и получение

Сахарный тростник, из которого до сих пор получают сахарозу, описан еще в хрониках о походах Александра Македонского в Индию. В 1747 г. А. Марграф получил сахар из сахарной свеклы, а его ученик Ахард вывел сорт с высоким содержанием сахара. Эти открытия послужили началом свеклосахарной промышленности в Европе. Когда именно русские люди познакомились с кристаллическим сахаром, точно неизвестно, но историки утверждают, что в Pоссии инициатором производства чистого сахара из привозимого сырца был Петр 1. В Кремле для переработки сладкого лакомства имелась специальная "сахарная палата". Источники сахара могут быть весьма экзотичны. В Канаде, США и Японии, например, из сока сахарного клена (Acer saccharum) вырабатывают кленовый сироп, состоящий на 98% из сахаридов, среди которых сахароза составляет 80-98%. К середине XIX века сложилось представление, что сахароза - единственное природное сладкое вещество, пригодное для промышленного производства. Позже это мнение изменилось, и для специальных целей (питания больных, спортсменов, военных) были разработаны методы получения и других натуральных сладких веществ, конечно, в меньших масштабах.

Важнейший из дисахаридов - сахароза - очень распространен в природе. Это химическое название обычного сахара, называемого тростниковым или свекловичным.

Индусы еще за 300 лет до нашей эры умели получать тростниковый сахар из тростника. В наше время получают сахарозу из тростника, произрастающего в тропиках (на о.Куба и в других странах Центральной Америки).

В середине 18 века дисахарид был обнаружен и в сахарной свекле, а в середине 19 века был получен в производственных условиях. В сахарной свекле содержится 12-15% сахарозы, по другим источникам 16-20% (сахарный тростник содержит 14-26% сахарозы). Сахарную свеклу измельчают и извлекают из нее сахарозу горячей водой в специальных аппаратах-диффузорах. Полученный раствор обрабатывают известью для осаждения примесей, а перешедший частично в раствор избыточный гидролиз кальция осаждают пропусканием диоксида углерода. Далее после отделения осадка раствор упаривают в вакуум-аппаратах, получая мелкокристаллический песок-сырец. После его дополнительной очистки получают рафинированный (очищенный) сахар. В зависимости от условий кристаллизации он выделяется в виде мелких кристаллов или в виде компактных «сахарных голов», которые раскалывают или распиливают на куски. Быстрорастворимый сахар готовят прессованием мелкоизмельченного сахарного песка.

Тростниковый сахар применяется в медицине для изготовления порошков, сиропов, микстур и т.д.

Свекловичный сахар широко применяется в пищевой промышленности, кулинарии, приготовлении вин, пива и т.д.

Роль сахарозы в питании человека.

Переваривание сахарозы начинается в тонком кишечнике. Кратковременное воздействие амилазы слюны существенной роли не играет, так как в просвете желудка кислая среда инактивирует этот фермент. В тонком кишечнике сахароза под действием фермента сахаразы, продуцируемой клетками кишечника, не выделяясь в просвет, а действуя на поверхности клеток (пристеночное пищеварение) Расщепление сахарозы приводит к высвобождению глюкозы и фруктозы. Проникновение моносахаридов через клеточные мембраны (всасывание) происходит путем облегченной диффузии при участии специальных транслоказ. Глюкоза всасывается еще и путем активного транспорта за счет градиента концентрации ионов натрия. Это обеспечивает ее всасывание даже при низкой концентрации в кишечнике. Основной моносахарид, поступающий в кровоток из кишечника, - глюкоза. С кровью воротной вены она доставляется в печень, частично задерживается клетками печени, частично поступает в общий кровоток и извлекается клетками других органов и тканей. Повышение содержания глюкозы в крови на высоте пищеварения увеличивает секрецию инсулина. Он ускоряет ее транспорт к летки, изменяя проницаемость клеточных мембран для нее, активируя транслоказы, ответственные за прохождение глюкозы через клеточные мембраны. Скорость поступления глюкозы в клетки печени и мозга не зависит от инсулина, а лишь от ее концентрации в крови. Затем, проникнув в клетку, глюкоза подвергается фосфорилированию, а затем через ряд последовательных превращений распадается на 6 молекул СО2. Из оодной молекулы глюкозы образуется 2 молекулы пирувата и 1 молекула ацетила. Трудно себе представить, что рассмотренный нами сложный процесс имел единственное назначение – расщепить глюкозу до конечного продукта – углекислоты. Но превращение соединений в процессе обмена сопровождаются высвобождением энергии при реакциях дегидрирования и транспорта водорода до дыхательной цепи, а запасание энергии осуществляется в процессе окислительного фосфорилирования, сопряженном с дыханием, а также в процессе субстратного фосфорилирования. Высвобождение и запасание энергии и составляет биологическую сущность аэробного окисления глюкозы.

Анаэробный гликолиз – источник АТФ в интенсивно работающей мышечной ткани, когда окислительное фосфорилирование не справляется с обеспечением клетки АТФ. В эритроцитах. Вообще не имеющих митохондрий, а следовательно, и ферментов цикла Кребса, потребность в АТФ удовлетворяется только за счет анаэробного распада. Фруктоза также участвует в образовании энергетических молекул АТФ (ее энергетический потенциал гораздо ниже, чем у глюкозы) – в печени превращается по фруктозо-1-фосфатному пути в промежуточный продукт основного пути окисления глюкозы.

Сахароза - известная под именем тростникового или свекловичного сахара, есть тот сахар, который обычно употребляется в пищу. Весьма распространен в растениях. В больших количествах встречается только в ограниченном количестве растительных видов - в сахарном тростнике и в сахарной свекле, из которых С. и добывается техническим путем. Богаты им еще стебли некоторых злаков, особенно в период, предшествующий наливанию зерна, как напр. маиса, сахарного сорго и др. Количество сахара в этих объектах настолько заметно, что были сделаны небезуспешные попытки получения его из них техническим путем. Интерес представляет нахождение тростникового сахара в большом количестве в зародыше семян злаков, так напр. в пшеничном зародыше найдено свыше 20% этого сахара. В небольших же количествах С. встречается, вероятно, во всех хлорофиллоносных растениях, по меньшей мере в известных периодах развития и распространения этого сахара не ограничивается одним каким-либо органом, а встречается он во всех органах, которые до сих пор были на него исследованы: в корнях, стеблях, листьях, цветах и плодах. Такое широкое распространение С. в растениях находится в полном соответствии с выясняющейся в последнее время важною ролью этого сахара в жизни растений. Как известно, один из самых распространенных продуктов процесса усвоения хлорофиллоносными растениями угольной кислоты воздуха, есть крахмал, важное значение которого для жизни растении неоспоримо; по-видимому, не менее важную роль следует приписать и Сахарозе, так как ее образование и потребление в растениях находится в непосредственной связи с образованием, потреблением и отложением крахмала. Так, напр., появление тростникового сахара можно констатировать во всех тех случаях, когда происходит растворение крахмала (прорастание семян); наоборот там, где происходит отложение крахмала, замечается уменьшение количества сахара (наливание семян). Эта связь, указывающая на происходящие в растении взаимные переходы крахмала в С. и наоборот, дает основание думать, что последняя есть, если не исключительно, то одна из форм, в которой крахмал (или шире говоря, углевод) переносится в растении с одного места на другое - с места образования на место потребления или отложения и наоборот. По-видимому, тростниковый сахар представляет собою такую форму углеводов, которая наиболее подходит для тех случаев, когда в силу биологической целесообразности необходим быстрый рост; на это указывает факт преобладания этого сахара в зародыше пшеницы и в цветочной пыльце. Наконец, некоторые наблюдения указывают на то, что С. играет важную роль в процессе усвоения хлорофиллоносными растениями углерода воздуха, являясь одной из первичных форм перехода этого углерода в углеводы.

Важнейшие из полисахаридов - это крахмал, гликоген (животный крахмал), целлюлоза (клетчатка). Все эти три высшие полиозы состоят из остатков молекул глюкозы, различным образом соединенных друг с другом. Состав их выражается общей формулой (С6Н12О6)п. Молекулярные массы природных полисахаридов составляют от нескольких тысяч до нескольких миллионов.

Как известно, углеводы - основной источник энергии в мышцах. Для образования мышечного "топлива" - гликогена - необходимо поступление в организм глюкозы за счет расщепления углеводов из пищи. Далее гликоген по мере необходимости превращается в ту же глюкозу и подпитывает не только мышечные клетки, но и мозг. Вот видите, какой полезный сахар... Скорость усвоения углеводов принято выражать через так называемый гликемический индекс. За 100 в некоторых случаях берется белый хлеб, а в других - глюкоза. Чем выше гликемический индекс, тем быстрее растет уровень глюкозы в крови после приема сахара. Это вызывает выброс поджелудочной железой инсулина, который переносит глюкозу в ткани. Слишком большой приток сахаров приводит к тому, что часть их отводится в жировые ткани и там превращается в жир (так сказать, про запас, который не всем то и необходим). С другой стороны, высокогликемические углеводы быстрее усваиваются, то есть дают быстрый приток энергии. Сахароза, или обычный наш сахар, представляет собой дисахарид, то есть ее молекула составлена из кольцеобразных молекул глюкозы и фруктозы, соединенных между собой. Это наиболее распространенный компонент пищи, хотя в природе сахароза встречается не так уж часто. Именно сахароза вызывает наибольшее возмущение "гуру" диеты. Она-де и провоцирует ожирение, и не дает организму полезных калорий, а только "пустые" (в основном "пустые" калории получаются из алкогольсодержащих продуктов), и для диабетиков вредна. Так вот, по отношению к белому хлебу гликемический индекс сахарозы - 89, а по отношению к глюкозе - всего 58. Следовательно, заявления о том, будто калории из сахара "пустые" и только откладываются в виде жира, сильно преувеличены. Вот насчет диабета, увы, правда. Для диабетика сахароза - яд. А для человека с нормально работающей гормональной системой небольшие количества сахарозы могут быть даже полезны.

Другое обвинение в адрес сахарозы - ее участие в порче зубов. Конечно, есть такой грех, но лишь при неумеренном употреблении. Небольшое количество сахара в кондитерских изделиях даже полезно, поскольку улучшает вкус и текстуру теста. Глюкоза - наиболее распространенный компонент различных ягод. Это простой сахар, то есть ее молекула содержат одно колечко. Глюкоза менее сладка, чем сахароза, но у нее более высокий гликемический индекс (138 по отношению к белому хлебу). Следовательно, она с большей вероятностью будет перерабатываться в жир, поскольку вызывает резкое повышение уровня сахара в крови. С другой стороны, это делает глюкозу наиболее ценным источником "быстрой энергии". К сожалению, за всплеском может последовать спад, чреватый гипогликемической комой (потеря сознания из-за недостаточного обеспечения мозга сахаром; это происходит еще и тогда, когда культурист вводит себе инъекцию инсулина) и развитием диабета. Фруктоза содержится в самых разнообразных фруктах и меде, а также так называемых "инверсных сиропах". Из-за низкого гликемического индекса (31 по отношению к белому хлебу) и сильной сладости она долгое время рассматривалась как альтернатива сахарозе. Кроме того, усвоение фруктозы не требует участия инсулина, по крайней мере, на начальной стадии. Следовательно, ее можно иногда использовать при диабете. Как источник "быстрой" энергии фруктоза малоэффективна. Вся энергия в пище первично образуется благодаря солнцу и его влиянию на жизнь зелёных растений. Солнечная энергия через воздействие на хлорофилл, содержащийся в листьях зелёных растений и взаимодействие углекислого газа из атмосферы и воды поступающей через корни производит сахар и крахмал в листьях зелёных растений. Этот сложный процесс называется фотосинтез. Поскольку человеческое организм не может получать энергию участвуя в процессе фотосинтеза он потребляет её через углеводы, которые производятся растениями. Энергия для человеческого рациона производится из сбалансированного потребления углеводов, белков и жиров. Мы получаем энергию из углеводов (сахар), белков и жиров. Сахар особенно важен, так как он быстро превращается в энергию, когда в этом возникает острая потребность, например, при работе или занятиях спортом. Головной мозг и нервная система в своих функциях почти полностью зависят от сахара. Между приемами пищи нервная система получает постоянное количество углеводов, так как печень освобождает часть накопленных в ней резервов сахара. Этот механизм действия печени обеспечивает уровень сахара крови на нормальном уровне. Процессы обмена веществ идут по двум направлениям: превращают пищевые вещества в энергию и переводят избыток пищевых веществ в энергетические резервы, необходимые вне приема пищи. Если эти процессы протекают правильно, сахар крови поддерживается на нормальном уровне: не слишком высоком и не слишком низком. В организме человека крахмал сырых растений постепенно распадается в пищеварительном тракте, при этом распад начинается еще во рту. Слюна во рту частично превращает его в мальтозу. Вот почему хорошее пережевывание пищи и смачивание ее слюной имеет исключительно важное значение (помните правило - не пить во время еды). В кишечнике мальтоза гидролизируется до моносахаридов, которые проникают через стенки кишечника. Там они превращаются в фосфаты и в таком виде поступают в кровь. Дальнейший их путь - это путь моносахарида. А вот о вареном крахмале отзывы у ведущих натуропатов Уокера и Шелтона отрицательны. Вот что говорит Уокер: «Молекула крахмала нерастворима ни в воде, ни в спирте, ни в эфире. Эти нерастворимые частицы крахмала, попадая в систему кровообращения, как бы засоряют кровь, прибавляя в нее своеобразную „крупу". Кровь в процессе циркуляции имеет тенденцию освобождаться от этой крупы, устраивая для нее складное место. Когда потребляется пища, богатая крахмалами, особенно белая мука, вследствие этого твердеют ткани печени». Вопрос о крахмале и его роли в нашем здоровье сейчас основной, вспомните слова Павлова «кусок хлеба насущного. ..».

Поэтому со всей тщательностью разберем его. Может, доктор Уокер сгущает краски? Возьмем учебник для мединститутов «Гигиена питания» (М., Медицина,1982 г.) К. С. Петровского и В. Д. Войханена и почитаем раздел о крахмале(стр. 74). «В пищевых рационах человека на долю крахмала приходится около

80% общего количества потребляемых углеводов. Крахмал по химическому строению состоит из большого числа молекул моносахаридов. Сложность строения молекул полисахаридов является причиной их НЕРАСТВОРИМОСТИ. Крахмал обладает только свойством коллоидной растворимости. Ни в одном из обычных растворителей он не растворяется. Изучение коллоидных растворов крахмала показало, что раствор его состоит не из отдельных молекул крахмала, а их первичных частиц - мицелл, включающих большое количество молекул (их Уокер называет «крупой»). В крахмале находятся две фракции полисахаридов - амилоза и амилопектин, резко различающиеся по свойствам. Амилозы в крахмале 15-25%. Она растворяется в горячей воде (80 °С), образуя прозрачный коллоидный раствор. Амилопектин составляет 75-85% крахмального зерна. В горячей воде он не растворяется, а лишь подвергается набуханию (требуя для этого жидкость из организма). Таким образом, при воздействии на крахмал горячей воды образуется раствор амилозы, который сгущен набухшим амилопектином. Полученная густая вязкая масса носит название клейстера (эта же картина наблюдается в нашем желудочно-кишечном тракте. И чем из более тонкого помола сделан хлеб, тем качественнее клейстер. Клейстер забивает микро-ворсинки 12-перстной и нижележащие отделы тонкой кишки, выключая их из пищеварения. В толстом кишечнике эта масса, обезвоживаясь, «прикипает» к стенке толстой кишки, образуя каловый камень). Превращение крахмала в организме в основном направлено на удовлетворение потребности в сахаре. Крахмал превращается в глюкозу последовательно, через ряд промежуточных образований. Под влиянием ферментов (амилазы, диастазы) и кислот крахмал подвергается гидролизу с образованием декстринов: сначала крахмал переходит в амило-декстрин, а затем в эритродекстрин, ахродекстрин, мальто-декстрин. По мере этих превращений повышается степень растворимости в воде. Так, образующийся в начале амилодекстрин растворяется только в горячей, а эритродекстрин - и в холодной воде. Ахродекстрин и мальтодекстрин легко растворяются в любых условиях. Конечным превращением декстринов является образование мальтозы, представляющей собой солодовый сахар, обладающий всеми свойствами дисахаридов, в том числе хорошей растворимостью в воде. Полученная мальтоза под влиянием ферментов превращается в глюкозу. Действительно, сложно и долго. И этот процесс легко нарушить, неправильно потребляя воду. К тому же совсем недавно ученые установили, что для образования в организме 1000 килокалорий из 250 граммов белка или углеводов должно израсходоваться значительное количество биологически активных веществ, в частности витамина В1- 0,6 мг, В2-0,7, Вз (РР)-6,6, С-25 и так далее. То есть, для нормального усвоения пищи нужны витамины и микроэлементы, потому что их действия в организме взаимосвязаны. Без соблюдения этого условия крахмал бродит, гниет, отравляя нас. Почти каждый ежедневно отхаркивается крахмалистой слизью, которая переполняет наш организм и вызывает бесконечные насморки и простуды. Если же вы, наоборот, будете в дневном рационе употреблять только 20% крахмалистых продуктов (а не 80%) и соблюдать соответственно к ним соотношение биологически активных веществ, вы, наоборот, будете дышать легко и наслаждаться здоровьем. Если же вы не можете отказаться от термически обработанных крахмалистых продуктов (которые еще труднее усваиваются, чем сырые), то вот вам рекомендации Г. Шелтона: «Более 50 лет в практике гигиенистов было потреблять с крахмалистой пищей большое количество салата из сырых овощей (за исключением помидоров и другой зелени). Такой салат содержит изобилие витаминов и минеральных солей».