Как найти площадь поверхности образованной вращением. Нахождение площади поверхности тел вращения

I. Объемы тел вращения. Предварительно изучите по учебнику Г. М. Фихтенгольца главу XII, п°п° 197, 198* Разберите подробно примеры, приведенные в п° 198.

508. Вычислить объем тела, образуемого вращением эллипсаВокруг оси Ох.

Таким образом,

530. Найти площадь поверхности, образованной вращением вокруг оси Ox дуги синусоиды у = sin х от точки X = 0 до точки X = It.

531. Вычислить площадь поверхности конуса с высотой h и радиусом г.

532. Вычислить площадь поверхности, образованной

вращением астроиды х3 -)- у* — а3 вокруг оси Ох.

533. Вычислить площадь поверхности, образованной цращением петли кривой 18 уг — х (6 — х)г вокруг оси Ох.

534. Найти поверхность тора, производимого вращением круга X2 - j - (у—З)2 = 4 вокруг оси Ох.

535. Вычислить площадь поверхности, образованной вращением окружности X = a cost, y = asint вокруг оси Ох.

536. Вычислить площадь поверхности, образованной вращением петли кривой х = 9t2, у = St — 9t3 вокруг оси Ох.

537. Найти площадь поверхности, образованной вращением дуги кривой х = е*sint, у = el cost вокруг оси Ox

от t = 0 до t = —.

538. Показать, что поверхность, производимая вращением дуги циклоиды х = a (q> —sin ф), у = а (I — cos ф) вокруг оси Oy, равна 16 и2 о2.

539. Найти поверхность, полученную вращением кардиоидыВокруг полярной оси.

540. Найти площадь поверхности, образованной вращением лемнискатыВокруг полярной оси.

Дополнительные задачи к главе IV

Площади плоских фигур

541. Найтивсю площадь области, ограниченной кривойИ осью Ох.

542. Найти площадь области, ограниченной кривой

И осью Ох.

543. Найти часть площади области, расположенной в первом квадранте и ограниченной кривой

л осями координат.

544. Найти площадь области, содержащейся внутри

петли:

545. Найти площадь области, ограниченной одной петлей кривой:

546. Найти площадь области, содержащейся внутри петли:

547. Найти площадь области, ограниченной кривой

И осью Ох.

548. Найти площадь области, ограниченной кривой

И осью Ох.

549. Найти площадь области, ограниченной осью Oxr

прямойИ кривой

Поверхность вращения - поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси - цилиндрическая, если скрещивается с осью - однополостныйгиперболоид вращения. Одна и та же поверхность может быть получена вращением самых разнообразных кривых. Площадь поверхности вращения, образованной вращением плоской кривой конечной длины вокруг оси, лежащей в плоскости кривой, но не пересекающей кривую, равна произведению длины кривой на длину окружности с радиусом, равным расстоянию от оси до центра масс кривой. Это утверждение называется второй теоремой Гюльдена, или теоремой Паппа о центроиде.

Площадь поверхности вращения, образованной вращением кривой вокруг оси можно вычислить по формуле

Для случая, когда кривая задана в полярной системе координат действительна формула

Механические приложения определённого интеграла (работа сил, статические моменты, центр тяжести).

Вычисление работы сил

Материальная точка движется по непрерывно дифференцируемой кривой, при этом на нее действует сила, направленная по касательной к траектории в направлении движения. Полная работа, совершаeмая силой F(s):

Если положение точки на траектории движения описывается другим параметром, то формула приобретает вид:

Вычисление статических моментов и центра тяжести
Пусть на координатной плоскости Оху некоторая масса М распределена с плотностью р = р(у) на некотором множестве точек S (это может быть дуга кривой или ограниченная плоская фигура). Обозначим s(у) - меру указанного множества (длина дуги или площадь).

Определение 2. Число называется k-м моментом массы М относительно оси Ох.
При k = 0 М 0 = М - масса,
k = 1 М 1 - статический момент,
k = 2 М 2 - момент инерции.

Аналогично вводятся моменты относительно оси Оу. В пространстве подобным же образом вводятся понятия моментов массы относительно координатных плоскостей.
Если р = 1, то соoтветствующие моменты называются геометрическими. Координаты центра тяжести однородной (р - const) плоской фигуры определяются по формулам:

где М 1 y , М 1 x - геометрические статические моменты фигуры относительно осей Оу и Ox; S - площадь фигуры.

Приветствую вас, уважаемые студенты вуза Аргемоны!

Сегодня мы продолжим учиться материализации предметов. В прошлый раз мы вращали плоские фигуры и получали объёмные тела. Некоторые из них - очень даже заманчивые и полезные. Думаю, что многому, что изобретает маг, можно в дальнейшем найти применение.

Сегодня мы будет вращать кривые. Понятно, что таким образом мы можем получить какой-то предмет с очень тонкими гранями (колбочка или флакон для зелий, ваза для цветов, стакан для напитков и т.п.), потому как вращающаяся кривая именно такого рода предметы и может сотворить. Другими словами, вращением кривой мы можем получить какую-то поверхность - замкнутую со всех сторон или нет. Почему прямо сейчас вспомнилась дырявая чаша, из которой всё время пил сэр Шурф Лонли-Локли.

Вот мы и сотворим дырявую чашу и недырявую, и подсчитаем площадь сотворённой поверхности. Думаю, для чего-то она (вообще площадь поверхности) ведь будет нужна - ну хотя бы для нанесения специальной магической краски. А с другой стороны, площади магических артефактов могут потребоваться для расчёта приложенных к ним магических сил или ещё чего-то. Мы научимся это находить, а уж где применить - найдём.

Итак, форму чаши вполне нам может дать кусок параболы. Возьмём самую простейшую y=x 2 на промежутке . Видно, что при вращении её вокруг оси OY получается как раз чаша. Без дна.

Заклинание для расчёта площади поверхности вращения выглядит следующим образом:

Здесь |y| - это расстояние от оси вращения до любой точки кривой, которая вращается. Как известно, расстояние - это перпендикуляр.
Немного труднее со вторым элементом заклинания: ds - это дифференциал дуги. Эти слова нам ничего не дают, поэтому не будем заморачиваться, а перейдём на язык формул, где этот дифференциал явно представлен для всех известных нам случаев:
- декартовой системы координат;
- записи кривой в параметрическом виде;
- полярной системы координат.

Для нашего случая расстояние от оси вращения до любой точки на кривой равно х. Считаем площадь поверхности получившейся дырявой чаши:

Чтобы сделать чашу с дном, нужно взять ещё кусочек, но другой кривой: на интервале это линия y=1.

Ясно, что при её вращении вокруг оси OY получится донышко чаши в виде круга единичного радиуса. И мы знаем, как считается площадь круга (по формуле пи*r^2. Для нашего случая площадь круга будет равна пи), но вычислим его по новой формуле - для проверки.
Расстояние от оси вращения до любой точки этого кусочка кривой также равно х.

Ну вот, расчёты наши верны, что радует.

А теперь домашнее задание .

1. Найти площадь поверхности, полученной вращением ломаной ABC, где A=(1; 5), B=(1; 2), C=(6; 2), вокруг оси ОХ.
Совет. Записать все отрезки в параметрическом виде.
AB: x=1, y=t, 2≤t≤5
BC: x=t, y=2, 1≤t≤6
Кстати, на что похож получившийся предмет?

2. Ну а теперь придумайте что-то сами. Трёх предметов, думаю, хватит.

5. Нахождение площади поверхности тел вращения

Пусть кривая АВ является графиком функции у = f(х) ≥ 0, где х [а; b], а функция у = f(х) и ее производная у" = f"(х) непрерывны на этом отрезке.

Найдем площадь S поверхности, образованной вращением кривой АВ вокруг оси Ох (рис 8).

Применим схему II (метод дифференциала).

Через произвольную точку х [а; b] проведем плоскость П, перпендикулярную оси Ох. Плоскость П пересекает поверхность вращения по окружности с радиусом у – f(х). Величина S поверхности части фигуры вращения, лежащей левее плоскости, является функцией от х, т.е. s = s(х) (s(а) = 0 и s(b) = S).

Дадим аргументу х приращение Δх = dх. Через точку х + dх [а; b] также проведем плоскость, перпендикулярную оси Ох. Функция s = s(х) получит приращение Δs, изображенного на рисунке в виде «пояска».


Найдем дифференциал площади ds, заменяя образованную между сечениями фигуру усеченным конусом, образующая которого равна dl, а радиусы оснований равны у и у + dу. Площадь его боковой поверхности равна: = 2ydl + dydl.

Отбрасывая произведение dу d1 как бесконечно малую высшего порядка, чем ds, получаем ds = 2уdl, или, так как d1 = dx.

Интегрируя полученное равенство в пределах от х = а до х = b, получаем

Если кривая AB задана параметрическими уравнениями x = x(t), y = y(t), t≤ t ≤ t, то формула для площади поверхности вращения принимает вид

S = 2dt.

Пример: Найти площадь поверхности шара радиуса R.

S=2 =

6. Нахождение работы переменной силы

Работа переменной силы

Пусть материальная точка М перемещается вдоль оси Ох под действием переменной силы F = F(х), направленной параллельно этой оси. Работа, произведенная силой при перемещении точки М из положения х = а в положение х = b (а

Какую работу нужно затратить, чтобы растянуть пружину на 0,05 м, если сила 100 Н растягивает пружину на 0,01 м?

По закону Гука упругая сила, растягивающая пружину, пропорциональна этому растяжению х, т.е. F = kх, где k – коэффициент пропорциональности. Согласно условию задачи, сила F = 100 Н растягивает пружину на х = 0,01 м; следовательно, 100 = k 0,01, откуда k = 10000; следовательно, F =10000х.

Искомая работа на основании формулы


A =

Найти работу, которую необходимо затратить, чтобы выкачать через край жидкость из вертикального цилиндрического резервуара высоты Н м и радиусом основания R м (рис 13).

Работа, затрачиваемая на поднятие тела весом р на высоту h, равна р Н. Но различные слои жидкости в резервуаре находятся на различных глубинах и высота поднятия (до края резервуара) различных слоев не одинакова.

Для решения поставленной задачи применим схему II (метод дифференциала). Введем систему координат.

1) Работа, затрачиваемая на выкачивание из резервуара слоя жидкости толщиной х (0 ≤ х ≤ Н), есть функция от х, т.е. А = А(х), где (0 ≤ х ≤ Н) (A(0) = 0, A(H) = А 0).

2) Находим главную часть приращения ΔA при изменении х на величину Δх = dx, т.е. находим дифференциал dА функции А(х).

Ввиду малости dх считаем, что «элементарный» слой жидкости находится на одной глубине х (от края резервуара). Тогда dА = dрх, где dр – вес этого слоя; он равен g АV, где g – ускорение свободного падения, – плотность жидкости, dv – объем «элементарного» слоя жидкости (на рисунке он выделен), т.е. dр = g. Объем указанного слоя жидкости, очевидно, равен , где dx – высота цилиндра (слоя), – площадь его основания, т.е. dv = .

Таким образом, dр = . и

3) Интегрируя полученное равенство в пределах от х = 0 до х = Н, находим

A

8. Вычисление интегралов с помощью пакета MathCAD

При решении некоторых прикладных задач требуется использовать операцию символического интегрирования. При этом программа MathCad может пригодиться как на начальном этапе (хорошо знать ответ заранее или знать, что он существует), так и на заключительном этапе (хорошо проверить полученный результат с использованием ответа из другого источника или решения другого человека).

При решении большого количества задач можно заметить некоторые особенности решения задач при помощи программы MathCad. Попытаемся понять на нескольких примерах, как работает эта программа, проанализируем решения, полученные с её помощью и сравним эти решения с решениями, полученными другими способами.

Основные проблемы при использовании программы MathCad заключаются в следующем:

а) программа даёт ответ не в виде привычных элементарных функций, а виде специальных функций, известных далеко не всем;

б) в некоторых случаях «отказывается» давать ответ, хотя решение у задачи имеется;

в) иногда невозможно воспользоваться полученным результатом из-за его громоздкости;

г) решает задачу не полностью и не делает анализа решения.

Для того чтобы решить эти проблемы, необходимо использовать сильные и слабые стороны программы.

С её помощью легко и просто вычислять интегралы от дробно-рациональных функций. Поэтому рекомендуется использовать метод замены переменной, т.е. предварительно подготовить интеграл для решения. Для этих целей могут быть использованы подстановки, разобранные выше. Также следует иметь в виду, что полученные результаты необходимо исследовать на совпадение областей определения исходной функции и полученного результата. Кроме этого, некоторые полученные решения требуют дополнительного исследования.

Программа MathCad освобождает обучаемого или исследователя от рутинной работы, но не может освободить его от дополнительного анализа как при постановке задачи, так и при получении каких-либо результатов.

В данной работе были рассмотрены основные положения, связанные с изучением приложений определённого интеграла в курсе математики.

– был проведен анализ теоретической основы решения интегралов;

– материал был подвергнут систематизации и обобщению.

В процессе выполнения курсовой работы были рассмотрены примеры практических задач в области физики, геометрии, механики.


Заключение

Рассмотренные выше примеры практических задач, дают нам ясное представление значимости определенного интеграла для их разрешимости.

Трудно назвать научную область, в которой бы не применялись методы интегрального исчисления, в общем, и свойства определенного интеграла, в частности. Так в процессе выполнения курсовой работы нами были рассмотрены примеры практических задач в области физики, геометрии, механики, биологии и экономики. Конечно, это еще далеко не исчерпывающий список наук, которые используют интегральный метод для поиска устанавливаемой величины при решении конкретной задачи, и установлении теоретических фактов.

Также определенный интеграл используется для изучения собственно самой математики. Например, при решении дифференциальных уравнений, которые в свою очередь вносят свой незаменимый вклад в решение задач практического содержания. Можно сказать, что определенный интеграл – это некоторый фундамент для изучения математики. Отсюда и важность знания методов их решения.

Из всего выше сказанного понятно, почему знакомство с определенным интегралом происходит еще в рамках средней общеобразовательной школы, где ученики изучают не только понятие интеграла и его свойства, но и некоторые его приложения.


Литература

1. Волков Е.А. Численные методы. М., Наука, 1988.

2. Пискунов Н.С. Дифференциальное и интегральное исчисление. М., Интеграл-Пресс, 2004. Т. 1.

3. Шипачев В.С. Высшая математика. М., Высшая школа, 1990.