Рлс содержание. Тенофовир рлс инструкция по применению

Тенофовира дизопроксил фумарат является солью фумаровой кислоты и сложного эфира бисизопропоксикарбонилоксиметила, производным тенофовира.In vivo преобразуется в тенофовир, аналог нуклеозидмонофосфата (нуклеотида) аденозина монофосфата.Тенофовир в последующем превращается в активный метаболит – тенофовира дифосфат.Тенофовир – нуклеотидный ингибитор обратной транскриптазы, обладает специфичной активностью по отношению к вирусу иммунодефицита человека (ВИЧ-1 и ВИЧ-2) и вирусу гепатита В.Тенофовира дифосфат является слабым ингибитором ДНК-полимераз млекопитающих.В тестах in vitro тенофовир в концентрациях до 300 мкмоль/л не оказывал влияния на синтез митохондриальной ДНК и образование молочной кислоты.При использовании тенофовира in vitro отмечалась противовирусная активность.В исследованиях комбинированного применения препарата с ингибиторами протеаз ВИЧ и с нуклеозидными и ненуклеозидными аналогами ингибиторов обратной транскриптазы ВИЧ-1 отмечались аддитивные или синергические эффекты.

Противовирусная активность тенофовира в отношении лабораторных и клинических изолятов ВИЧ-1 оценивалась на линиях лимфобластоидных клеток, первичных моноцитах/макрофагах и лимфоцитах периферической крови.

ЕС50 (полумаксимальная эффективная концентрация) составила 0,04 – 8,5 мкмоль.

В культуре клеток тенофовир проявил противовирусную активность в отношении ВИЧ-1 подтипов А, В, С, D, Е, F, G, О (ЕС50 находилась в диапазоне 0,5 – 2,2 мкмоль), а также угнетающее действие на некоторые штаммы ВИЧ-2 (ЕС50 находилась в диапазоне 1,6 – 4,9 мкмоль).

Противовирусную активность тенофовира в отношении вируса гепатита В оценивали на линии клеток HepG2 2.2.15.Показатель эффективной концентрации тенофовира находился в диапазоне 0,14 до 1,5 мкмоль при эффективной цитотоксической концентрации >100 мкмоль.В культурах клеток исследования противовирусной активности комбинаций тенофовира с нуклеозидными ингибиторами обратных транскриптаз, действующих на вирус гепатита В (эмтрицитабин, энтекавир, ламивудин и телбивудин) не обнаружено антагонизма активностей препаратов.

В исследованиях in vitro и у некоторых пациентов, инфицированных ВИЧ-1, наблюдалась резистентность к тенофовиру, возникновение которой было обусловлено мутациями (по типу замены) M184V/I и K65R, соответственно.

Других механизмов появления резистентности к тенофовиру выявлено не было.

Мутаций вируса гепатита В, связанных с резистентностью к тенофовиру, выявлено не было.

После перорального приема у ВИЧ-инфицированных пациентов тенофовира дизопроксила фумарат быстро всасывается и превращается в тенофовир.Максимальные концентрации тенофовира в сыворотке крови наблюдались через час после приема натощак и через два часа после приема с пищей, биодоступность тенофовира из тенофовира дизопроксила фумарата после приема внутрь натощак составляла приблизительно 25 %.

В результате приема тенофовира дизопроксила фумарата с пищей увеличивалась биодоступность при пероральном приеме, при этом площадь под кривой "концентрация- время" и средняя максимальная концентрация тенофовира возрастали приблизительно на 40 % и 14 %.

После первого приема тенофовира дизопроксила фумарата с пищей максимальная концетрация в сыворотке крови составляет от 213 до 375 мг/мл.

Объем распределения при равновесном состоянии после внутривенного введения тенофовира составил приблизительно 800 мл/кг.Связывание тенофовира дизопроксила фумарата с белками плазмы человека in vitro составляет менее 0,7 % и 7,2 % в зависимости от концентрации тенофовира от 0,01 до 25 мкг/мл.

Было доказано, что ни тенофовира дизопроксила фумарат, ни тенофовир не угнетают ферменты цитохрома Р450 человека.Более того, при концентрациях значительно выше терапевтических (более 300 раз) тенофовир не воздействует на метаболические процессы с участием других изоферментов цитохрома Р450 (цитохром РЗА4, Р2Д6, Р2С9, Р2Е1 и др.).Тенофовира дизопроксила фумарат не воздействует на изоферменты цитохрома Р450 за исключением PIA1/2, когда наблюдались небольшие, но статистически значимые изменения (6 %).

Выведение тенофовира главным образом происходит через почки посредством клубочковой фильтрации и активной канальцевой секреции.

После однократного перорального приема дозы препарата период полувыведения (Т1/2) тенофовира составляет примерно 17 часов.

Фармакокинетика тенофовира не зависит от дозы тенофовира дизопроксила фумарата (при режиме дозирования от 75 до 600 мг), также как и в случаях многократного приема препарата при различном режиме дозирования.Тенофовира дизопроксил фумарат не показал значительной канцерогенной активности в длительных исследованиях на крысах при пероральном приеме.У мышей была отмечена низкая частота возникновения опухолей двенадцатиперстной кишки, которые были расценены как вероятно связанные с высокими концентрациями тенофовира дизопроксила фумарата в желудочно-кишечном тракте при введении препарата в достаточно высокой дозе 600 мг/кг.

Ограниченные данные по фармакокинетике тенофовира у женщин указывают на отсутствие существенных половых различий.Не проводилось исследований фармакокинетики с участием детей, подростков до 18 лет и пожилых людей старше 65 лет.Специальных исследований фармакокинетики в разных этнических группах не проводилось.

Препарат Тенофовир-ТЛ предназначен для:

– Лечения ВИЧ-1 инфекции у взрослых в комбинированной терапии с другими антиретровирусными препаратами.

– Лечения хронического вирусного гепатита В у взрослых с компенсированной печеночной недостаточностью, признаками активной репликации вируса, постоянной повышенной активностью в сыворотке крови аланинаминотрансферазы (АЛТ), гистологическими свидетельствами активного воспалительного процесса и/или фиброза.

Тенофовир-ТЛ принимать внутрь, во время приема пищи или с небольшим количеством пищи.

Лечение ВИЧ-1 инфекции: взрослым по 300 мг (1 таблетка) в сутки.

При лечении хронического гепатита В: взрослым по 300 мг (1 таблетка) в сутки.

У HBeAg-положительных пациентов без цирроза печени лечение следует продолжать, по крайней мере, в течение 6-12 месяцев после подтверждения сероконверсии по НВе (исчезновение HBeAg или исчезновение ДНК вируса гепатита В с выявлением анти- НВе), или до сероконверсии по HBs, и до момента утраты эффективности.Для выявления каких – либо отсроченных вирусологических рецидивов после окончания лечения необходимо регулярно измерять уровни АЛТ и ДНК вируса гепатита В, в сыворотке крови.

У HBeAg-отрицательных пациентов без цирроза печени лечение следует продолжать, по крайней мере, до сероконверсии по HBs или до момента утраты эффективности.При продолжительном лечении в течение более 2-х лет рекомендуется регулярно обследовать пациента с целью подтверждения того, что выбранное для конкретного пациента лечение остается адекватным.

С осторожностью подбирать дозу для пожилых пациентов, учитывая большую частоту нарушений функции печени, почек или сердца, а так же сопутствующие заболевания или прием других лекарственных средств.

Со стороны системы крови и кроветворных органов: частота неизвестна – нейтропепия, анемия.

Со стороны обмена веществ: очень часто – гипофосфатемия; не часто – гипергликемия, гипокалиемия, гиперкалиемия.

Со стороны нервной системы: очень часто – головокружение, головная боль, бессонница, депрессия.

Со стороны дыхательной системы: очень редко – одышка.

Со стороны желудочно-кишечного тракта (ЖКТ): очень часто – диарея, рвота, тошнота; часто – метеоризм, повышение концентрации амилазы, боль в животе, вздутие живота; редко – панкреатит, диспепсия, повышение активности липазы.

Со стороны печени и желчевыводящих путей: редко – повышение активности печеночных трансаминаз (чаще всего аспартатаминотрансферазы, аланинаминотрансферазы, гамма-глутамилтранспептидазы); очень редко – стеатоз печени, гипербилирубинемия, обострение гепатита как во время лечения, так и после прекращения.

Со стороны колеи и подколено-эюировой клетчатки: очень часто – кожная сыпь, иногда сопровождающаяся зудом (макуло-папулезная сыпь, крапивница, везикулярно-булезная, пустулезная сыпь); редко – ангионевротический отек, изменение цвета кожи (в основном на ладонях и/или подошвах стоп).

Со стороны опорно-двигательного аппарата: не часто – рабдомиолиз, мышечная слабость; редко – остеомаляция (проявляется болью в костях, изредка приводит к переломам), миопатия.

Со стороны мочевыделительной системы: не часто – повышение уровня креатинина; редко – нарушения функции почек, и в том числе острые, почечная недостаточность, острый тубулярный некроз; очень редко – почечная тубулопатия проксимального типа, в том числе синдром Фанкони; частота неизвестна – нефрит, в том числе интерстициальный нефрит, нефрогенный несахарный диабет, протеинурия, полиурия.Прочие: часто – астения; не часто – утомляемость.

Следующие нелселательные реакции могут проявляться как при моно, так и при комбинированной ретровирусной терапии.

Почечная недостаточность – симптоматика аналогична монотерапии.

Метаболические нарушения – гипертриглицеридемия, гиперхолестеринемия, инсулинорезистентность, гиперлактатемия, липодистрофия, в том числе потеря переферического и лицевого подкожного жира, увеличение внутрибрюшного и висцирального жира, молочная гипертрофия, дорсоцервикальное ожирение (горб буйвола).

Синдром восстановления иммунитета – могут возникнуть воспалительные реакции в ответ на бессимптомные или резидуальные оппортунистические инфекции, такие как цитомегаловирусный ретинит, генерализованная и/или очаговая микобактериальная инфекция и пневмония, аутоиммунные нарушения, например болезнь Грейвса, которые могут возникнуть через несколько месяцев после начала лечения.

Остеонекроз – зарегистрированы случаи остеонекроза, особенно у пациентов с факторами риска или при длительной комбинированной противовирусной терапии.

Если любые из указанных в инструкции побочных эффектов усугубляются, или Вы заметили любые другие побочные эффекты не указанные в инструкции, сообщите об этом врачу.

Противопоказаниями к применению препарата Тенофовир-ТЛ являются:

– Гиперчувствительностью к тенофовиру и любому компоненту препарата.

– Детский возраст до 18 лет.

– Пациенты с клиренсом креатинина менее 30 мл/мин, а также пациенты, которым необходим гемодиализ.

– Дефицит лактазы, непереносимость лактозы, глюкозо-лактозная мальабсорбция, т.к.препарат содержит лактозу.

– Одновременный прием с другими препаратами, содержащими тенофовир; с диданозином, адефовиром.

– Почечная недостаточность с клиренсом креатинина больше 30 мл/мин и меньше 50 мл/мин.

– Пожилой возраст старше 65 лет.

Препарат Тенофовир-ТЛ следует применять во время беременности только в том случае, если ожидаемая польза от лечения для матери превышает потенциальный риск для плода.Не рекомендуется кормить грудью ВИЧ-инфицированным матерям, получавшим терапию препаратом Тенофовир-ТЛ с целью предупреждения риска постнатальной передачи ВИЧ.Женщины детородного возраста во время лечения должны использовать надежные методы контрацепции.Кормящие ВИЧ- инфицированные матери должны быть проинструктированы об исключении грудного вскармливания.

Препарат Тенофовир-ТЛ не следует применять одновременно с препаратами, содержащими тенофовир.

Диданозин.При одновременном приеме тенофовира с диданозином системная экспозиция диданозина увеличивается на 40-60 %, в связи с чем возрастает риск развития побочных эффектов диданозина (таких как панкреатит, лактат-ацидоз, в том числе с летальным исходом).Одновременнное назначение тенофовира и диданозина в дозе 400 мг в суткиприводило к уменьшению количества СП4-лимфоцитов (вероятно, за счет внутриклеточного взаимодействия увеличивается фосфорилирование диданозина).Совместное применение тенофовира и диданозина не рекомендуется.

Адефовир.Тенофовир не следует применять одновременно с адефовиром, так как в исследованиях in vitro показано практически идентичное противовирусное действие тенофовира и адефовира.

Эитекавир.При одновременном назначении тенофовира с энтекавиром не выявлено значимых лекарственных взаимодействий.

Атазанавир/ритонавир.Атазанавир проявил способность повышать концентрацию тенофовира.Механизм такого взаимодействия не установлен.Необходимо тщательно контролировать состояние пациентов, которые вместе с тенофовиром получают атазанавир, на случай возникновения нежелательных явлений, связанных с приемом тенофовира.При совместном назначении с тенофовиром рекомендуется принимать атазанавир 300 мг вместе с ритоиавиром 100 мг.Не следует принимать тренофовир одновременно с атазанавиром без ритонавира.

В исследованиях на здоровых добровольцах не было отмечено клинически значимого взаимодействия при одновременном использовании тенофовира с абакавиром, эфавиренцем, эмтрицитабином, ламивудином, индинавиром, лопинавиром/ритонавиром, нелфинавиром, пероральными контрацептивами, рибавирином, саквинавиром/ритонавиром.

Нефротоксические лекарственные препараты.Тенофовир в основном выводится из организма через почки.Совместное применение тенофовира с препаратами, которые уменьшают почечную функцию или сокрагцают/прекращают активную канальциевую секрецию, может привести к увеличению сывороточной концентрации тенофовира и/или увеличить концентрацию других препаратов, выводимых почками.Необходимо избегать применения тенофовира одновременно или после недавнего лечения нефротоксичными препаратами, такими как аминогликозиды, амфотерицин В, фоскарнет, пентамидин, ванкомицин, такролимус, цидофовир или интерлейкин-2.

Ганцикловир, валганцикловир и цидофовир конкурируют с тенофовиром за активную канальцевую секрецию почками, в результате чего повышается концентрация тенофовира.

Дарунавир: увеличивает концентрацию тенофовира на 20-25 %.Препараты следует применять в стандартных дозах, при этом необходимо тщательно мониторировать нефротоксическое действие тенофовира.

Симптомы передозировки препаратом Тенофовир-ТЛ : признаки токсичности, такие явления как лактат-ацидоза: тошнота, диарея, рвота, боль в животе; неврологическая симптоматика: головокружение, головная боль, нарушение сознания.Во избежание передозировки пациент должен находиться под наблюдением врача.

Лечение: Не существует антидота для тенофовира, поэтому в условиях реанимации проводят стандартную поддерживающую терапию до нормализации общего состояния.Для восполнения водно-электролитного баланса, устранения симптомов рвоты, детоксикационной терапии и нормализации сердечной деятельности можно использовать: микроэлементы, противорвотные препараты, препараты для парентерального питания, адсорбенты, препараты стимулирующие сердечную деятельность, противоаллергические препараты.В том случае, если не удается справиться с вышеизложенными симптомами, пациента направляют на гемодиализ.

Гемодиализом выводится приблизительно 10 % дозы тенофовира дизопроксила фумарата.

В сухом защищенном от света месте при температуре не выше 25 °С.

Хранить в недоступном для детей месте.

Тенофовир-ТЛ – таблетки, покрытые пленочной оболочкой, 300 мг .

По 10 таблеток в контурную ячейковую упаковку из пленки поливинилхлоридной и фольги алюминиевой печатной лакированной.

По 30 или 60 таблеток в банку (флакон) полимерную для лекарственных средств или банку (флакон) для лекарственных средств из пластика.Свободное пространство в банке (флаконе) заполняют ватой медицинской гигроскопической.

Каждую банку (флакон), 3 или 6 контурных ячейковых упаковок вместе с инструкцией по применению помещают в пачку из картона коробочного.

1 таблетка Тенофовир-ТЛ содержит действующее вещество: тенофовира дизопроксил фумарат. 300,0 мг.

Лактозы моногидрат. 90,0 мг

Крахмал кукурузный. 150,0 мг

Крахмал прежелатинизированный. 11,0 мг

Целлюлоза микрокристаллическая. 80,0 мг

Кроскармелоза натрия. 60,0 мг

Магния стеарат. 7,0 мг

Кремния диоксид коллоидный. 2,0 мг

Пленочная оболочка Аквариус Прайм голубой [гипромеллоза – 62,5 %, титана диоксид – 23,62 %, макрогол 3350 – 6 %, триглицериды среднецепочечные – 6,5 %, красителя индигокармина алюминиевый лак – 0,5 %, красителя бриллиантового голубого алюминиевый лак – 0,85 %, красителя хинолинового желтого алюминиевый лак – 0,03 %]. 30,0 мг.

Во время опытов по радиосвязи между кораблями обнаружил явление отражения радиоволн от корабля. Радиопередатчик был установлен на верхнем мостике транспорта «Европа», стоявшем на якоре, а радиоприёмник - на крейсере «Африка». В отчёте комиссии, назначенной для проведения этих опытов, А. С. Попов писал:

Влияние судовой обстановки сказывается в следующем: все металлические предметы (мачты, трубы, снасти) должны мешать действию приборов как на станции отправления, так и на станции получения, потому что, попадая на пути электромагнитной волны, они нарушают её правильность, отчасти подобно тому, как действует на обыкновенную волну, распространяющуюся по поверхности воды, брекватер , отчасти вследствие интерференции волн, в них возбужденных, с волнами источника, то есть влияют неблагоприятно.
…Наблюдалось также влияние промежуточного судна. Так, во время опытов между «Европой» и «Африкой» попадал крейсер «Лейтенант Ильин», и если это случалось при больших расстояниях, то взаимодействие приборов прекращалось, пока суда не сходили с одной прямой линии.

В ходе операции «Брюневаль» , проведённой английскими коммандос на побережье Франции в провинции Приморская Сена (Верхняя Нормандия), тайна немецких радаров была раскрыта. Для глушения радаров союзники применили передатчики, излучающие помеху в определённой полосе частот при средней частоте 560 мегагерц. Сначала такими передатчиками оснащали бомбардировщики. Когда немецкие летчики научились вести истребители на сигналы помех, словно на радиомаяки, вдоль южного побережья Англии расположили громадные американские передатчики «Туба» (Project Tuba ), разработанные в радиолаборатории Гарвардского университета . От их мощных сигналов истребители немцев «слепли» в Европе, а бомбардировщики союзников, избавившись от преследователей, спокойно летели к дому через Ла-Манш.

В СССР

В Советском Союзе осознание необходимости средств обнаружения авиации, свободных от недостатков звукового и оптического наблюдения, привело к разворачиванию исследований в области радиолокации. Идея, предложенная молодым артиллеристом Павлом Ощепковым , получила одобрение высшего командования: наркома обороны СССР К. Е. Ворошилова и его заместителя - М. Н. Тухачевского .

В 1946 году американские специалисты - Реймонд и Хачертон, бывшие сотрудники посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии» .

Большое внимание в системе ПВО уделяется решению проблемы своевременного обнаружения низколетящих воздушных целей (англ. ) .

Классификация

По сфере применения различают:

  • военные РЛС;
  • гражданские РЛС.

По назначению:

  • РЛС обнаружения;
  • РЛС управления и слежения;
  • панорамные РЛС;
  • РЛС бокового обзора;
  • метеорологические РЛС;
  • РЛС целеуказания;
  • РЛС обзора обстановки.

По характеру носителя:

  • береговые РЛС;
  • морские РЛС;
  • бортовые РЛС;
  • мобильные РЛС.

По типу действия:

  • первичные, или пассивные;
  • вторичные, или активные;
  • совмещённые.

По методу действия:

  • надгоризонтный радиолокатор;

По диапазону волн:

  • метровые;
  • дециметровые;
  • сантиметровые;
  • миллиметровые.

Первичный радиолокатор

Первичный (пассивный) радиолокатор, в основном, служит для обнаружения целей, освещая их электромагнитной волной и затем принимая отражения (эхо) этой волны от цели. Поскольку скорость электромагнитных волн постоянна (скорость света), становится возможным определить расстояние до цели, основываясь на измерении различных параметров распространения сигнала.

В основе устройства радиолокационной станции лежат три компонента: передатчик , антенна и приёмник .

Передатчик (передающее устройство) является источником электромагнитного сигнала высокой мощности. Он может представлять собой мощный импульсный генератор. Для импульсных РЛС сантиметрового диапазона - обычно магнетрон или импульсный генератор, работающий по схеме: задающий генератор - мощный усилитель, использующий в качестве генератора чаще всего лампу бегущей волны (ЛБВ), а для РЛС метрового диапазона часто используют триодную лампу. РЛС, которые используют магнетроны, некогерентны или псевдо-когерентны, в отличие от РЛС на основе ЛБВ. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал.

Антенна выполняет фокусировку сигнала передатчика и формирование диаграммы направленности , а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства. В случае, если передача и приём совмещены в одной антенне, эти два действия выполняются поочерёдно, а чтобы мощный сигнал, просачивающийся от передающего передатчика в приёмник, не ослепил приёмник слабого эха, перед приёмником размещают специальное устройство, закрывающее вход приёмника в момент излучения зондирующего сигнала.

Приёмник (приёмное устройство) выполняет усиление и обработку принятого сигнала. В самом простом случае результирующий сигнал подаётся на лучевую трубку (экран), которая показывает изображение, синхронизированное с движением антенны.

Различные РЛС основаны на различных методах измерения параметров отражённого сигнала:

Частотный метод

Частотный метод измерения дальности основан на использовании частотной модуляции излучаемых непрерывных сигналов. В данном методе за период излучается частота, меняющаяся по линейному закону от f1 до f2. Отраженный сигнал придёт промодулированным линейно в момент времени, предшествующий настоящему на время задержки. Т. о. частота отраженного сигнала, принятого на РЛС, будет пропорционально зависеть от времени. Время запаздывания определяется по резкой перемене в частоте разностного сигнала.

Достоинства:

  • позволяет измерять очень малые дальности;
  • используется маломощный передатчик.

Недостатки:

  • необходимо использование двух антенн;
  • ухудшение чувствительности приёмника вследствие просачивания через антенну в приемный тракт излучения передатчика, подверженного случайным изменениям;
  • высокие требования к линейности изменения частоты.

Фазовый метод

Фазовый (когерентный) метод радиолокации основан на выделении и анализе разности фаз отправленного и отражённого сигналов, которая возникает из-за эффекта Доплера , когда сигнал отражается от движущегося объекта. При этом передающее устройство может работать как непрерывно, так и в импульсном режиме. Основным преимуществом данного метода является то, что он «позволяет наблюдать только движущиеся объекты, а это исключает помехи от неподвижных предметов, расположенных между приёмной аппаратурой и целью или за ней» .

Так как при этом используются ультракороткие волны, то однозначный диапазон измерения дальности составляет порядка единиц метра. Поэтому на практике используют более сложные схемы, в которых присутствует две и больше частот.

Достоинства:

  • маломощное излучение, так как генерируются незатухающие колебания;
  • точность не зависит от доплеровского сдвига частоты отражения;
  • достаточно простое устройство.

Недостатки:

  • отсутствие разрешения по дальности;
  • ухудшение чувствительности приёмника вследствие проникновения через антенну в приёмный тракт излучения передатчика, подверженного случайным изменениям.

Импульсный метод

Современные радары сопровождения построены как импульсные радары. Импульсный радар передаёт излучающий сигнал только в течение очень краткого времени, коротким импульсом (обычно приблизительно микросекунда), после чего переходит в режим приёма и слушает эхо, отражённое от цели, в то время как излучённый импульс распространяется в пространстве.

Поскольку импульс уходит далеко от радара с постоянной скоростью, между временем, прошедшим с момента посылки импульса до момента получения эхо-ответа, и расстоянием до цели - прямая зависимость. Следующий импульс можно послать только через некоторое время, а именно после того, как импульс придёт обратно (это зависит от дальности обнаружения радара, мощности передатчика, усиления антенны, чувствительности приёмника). Если импульс посылать раньше, то эхо предыдущего импульса от отдалённой цели может быть спутано с эхом второго импульса от близкой цели. Промежуток времени между импульсами называют интервалом повторения импульса (англ. Pulse Repetition Interval, PRI ), обратная к нему величина - важный параметр, который называют частотой повторения импульса (ЧПИ, англ. Pulse Repetition Frequency, PRF ). Радары низкой частоты дальнего обзора обычно имеют интервал повторения в несколько сотен импульсов в секунду. Частота повторения импульсов является одним из отличительных признаков, по которым возможно дистанционное определение модели РЛС.

Достоинства импульсного метода измерения дальности:

  • возможность построения РЛС с одной антенной;
  • простота индикаторного устройства;
  • удобство измерения дальности нескольких целей;
  • простота излучаемых импульсов, длящихся очень малое время, и принимаемых сигналов.

Недостатки:

  • необходимость использования больших импульсных мощностей передатчика;
  • невозможность измерения малых дальностей;
  • большая мёртвая зона.

Устранение пассивных помех

Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов: земной поверхности, высоких холмов и т. п. Если, к примеру, самолёт находится на фоне высокого холма, отражённый сигнал от этого холма полностью перекроет сигнал от самолёта. Для наземных РЛС эта проблема проявляется при работе с низколетящими объектами. Для бортовых импульсных РЛС она выражается в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта с радиолокатором.

Методы устранения помех используют, так или иначе, эффект Доплера (частота волны, отражённой от приближающегося объекта, увеличивается, от уходящего объекта - уменьшается).

Самый простой радар, который может обнаружить цель в помехах - радар с селекцией движущихся целей (СДЦ) - импульсный радар, который сравнивает отражения более чем от двух или больше интервалов повторения импульса. Любая цель, которая движется относительно радара, производит изменение в параметре сигнала (стадия в последовательном СДЦ), тогда как помехи остаются неизменными. Устранение помех происходит путём вычитания отражений из двух последовательных интервалов. На практике устранение помех может быть осуществлено в специальных устройствах - черезпериодных компенсаторах или алгоритмами в программном обеспечении.

Неустранимым недостатком СДЦ, работающих с постоянной ЧПИ, является невозможность обнаружения целей со специфическими круговыми скоростями (целей, которые производят изменения фаз точно в 360 градусов). Скорость, при которой цель становится невидимой для радиолокатора, зависит от рабочей частоты станции и от ЧПИ. Для устранения недостатка современные СДЦ излучают несколько импульсов с различными ЧПИ. ЧПИ подбираются такими образом, чтобы число «невидимых» скоростей было минимальным.

Импульсно-доплеровские РЛС , в отличие от РЛС с СДЦ, используют другой, более сложный способ избавления от помех. Принятый сигнал, содержащий информацию о целях и помехах, передаётся на вход блока фильтров Доплера. Каждый из фильтров пропускает сигнал определённой частоты. На выходе из фильтров вычисляются производные от сигналов. Способ помогает находить цели с заданными скоростями, может быть реализован аппаратно или программно, не позволяет (без модификаций) определить расстояния до целей. Для определения расстояний до целей можно разделить интервал повторения импульса на отрезки (называемые отрезками дальности) и подавать сигнал на вход блока фильтров Доплера в течение данного отрезка дальности. Вычислить расстояние удаётся только при многократных повторениях импульсов на разных частотах (цель появляется на различных отрезках дальности при разных ЧПИ).

Важное свойство импульсно-доплеровских РЛС - когерентность сигнала, фазовая зависимость отправленных и полученных (отражённых) сигналов.

Импульсно-доплеровские РЛС, в отличие от РЛС с СДЦ, успешнее обнаруживают низколетящие цели. На современных истребителях эти РЛС используются для воздушного перехвата и управления огнём (радары AN/APG-63, 65, 66, 67 и 70). Современные реализации в основном программные: сигнал оцифровывается и отдаётся на обработку отдельному процессору . Часто цифровой сигнал преобразуется в форму, удобную для других алгоритмов, с помощью быстрого преобразования Фурье . Использование программной реализации по сравнению с аппаратной имеет ряд преимуществ:

  • возможность выбора алгоритмов из числа доступных;
  • возможность изменения параметров алгоритмов;
  • возможность добавления/изменения алгоритмов (путём смены прошивки).

Перечисленные достоинства наряду с возможностью хранения данных в ПЗУ) позволяют, в случае необходимости, быстро приспособиться к технике глушения противника.

Устранение активных помех

Наиболее эффективным методом борьбы с активными помехами является использование в РЛС цифровой антенной решётки , позволяющей формировать провалы в диаграмме направленности в направлениях на постановщики помех. . .

Вторичный радиолокатор

Вторичная радиолокация используется в авиации для опознавания. Основная особенность - использование активного ответчика на самолётах.

Принцип действия вторичного радиолокатора несколько отличается от принципа первичного радиолокатора. В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик , антенна , генераторы азимутальных меток, приёмник , сигнальный процессор , индикатор и самолётный ответчик с антенной .

Передатчик служит для формирования импульсов запроса в антенне на частоте 1030 МГц.

Антенна служит для излучения импульсов запроса и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации антенна излучает на частоте 1030 МГц и принимает на частоте 1090 МГц.

Генераторы азимутальных меток служат для генерации азимутальных меток (англ. Azimuth Change Pulse, ACP ) и метки Севера (англ. Azimuth Reference Pulse, ARP ). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток (для старых систем) или 16384 улучшенных малых азимутальных меток (англ. Improved Azimuth Change pulse, IACP - для новых систем), а также одна метка Севера. Метка севера приходит с генератора азимутальных меток при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.

Приёмник служит для приёма импульсов на частоте 1090 МГц.

Сигнальный процессор служит для обработки принятых сигналов.

Индикатор служит для отображения обработанной информации.

Самолётный ответчик с антенной служит для передачи содержащего дополнительную информацию импульсного радиосигнала обратно в сторону РЛС по запросу.

Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика для определения положения воздушного судна. РЛС облучает окружающее пространства запросными импульсами P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Оборудованные ответчиками воздушные суда, находящиеся в зоне действия луча запроса, при получении запросных импульсов, если действует условие P1,P3>P2, отвечают запросившей РЛС серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация о номере борта, высоте и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется интервалом времени между запросными импульсами P1 и P3, например, в режиме запроса А (mode A) интервал времени между запросными импульсами станции P1 и P3 равен 8 микросекундам и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта.

В режиме запроса C (mode C) интервал времени между запросными импульсами станции равен 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту. Также РЛС может посылать запрос в смешанном режиме, например, Режим А, Режим С, Режим А, Режим С. Азимут воздушного судна определяется углом поворота антенны, который, в свою очередь, определяется путём подсчёта малых азимутальных меток .

Дальность определяется по задержке пришедшего ответа. Если воздушное судно находится в зоне действия боковых лепестков, а не основного луча, или находится сзади антенны, то ответчик воздушного судна при получении запроса от РЛС получит на своём входе условие, что импульсы P1,P3

Принятый от ответчика сигнал обрабатывается приёмником РЛС, затем поступает на сигнальный процессор, который проводит обработку сигналов и выдачу информации конечному потребителю и (или) на контрольный индикатор.

Плюсы вторичной РЛС:

  • более высокая точность;
  • дополнительная информация о воздушном судне (номер борта, высота);
  • малая по сравнению с первичными РЛС мощность излучения;
  • большая дальность обнаружения.

Диапазоны РЛС

Обозначение
/ ITU
Этимология Частоты Длина волны Примечания
HF англ. high frequency 3-30 МГц 10-100 м Радары береговой охраны, «загоризонтные» РЛС
P англ. previous < 300 МГц > 1 м Использовался в первых радарах
VHF англ. very high frequency 50-330 МГц 0,9-6 м Обнаружение на больших дальностях, исследования Земли
UHF англ. ultra high frequency 300-1000 МГц 0,3-1 м Обнаружение на больших дальностях (например, артиллерийского обстрела), исследования лесов, поверхности Земли
L англ. Long 1-2 ГГц 15-30 см наблюдение и контроль над воздушным движением
S англ. Short 2-4 ГГц 7,5-15 см управление воздушным движением, метеорология, морские радары
C англ. Compromise 4-8 ГГц 3,75-7,5 см метеорология, спутниковое вещание, промежуточный диапазон между X и S
X 8-12 ГГц 2,5-3,75 см управление оружием, наведение ракет, морские радары, погода, картографирование среднего разрешения; в США диапазон 10,525 ГГц ± 25 МГц используется в РЛС аэропортов
K u англ. under K 12-18 ГГц 1,67-2,5 см картографирование высокого разрешения, спутниковая альтиметрия
K нем. kurz - «короткий» 18-27 ГГц 1,11-1,67 см использование ограничено из-за сильного поглощения водяным паром, поэтому используются диапазоны K u и K a . Диапазон K используется для обнаружения облаков, в полицейских дорожных радарах (24,150 ± 0,100 ГГц).
K a англ. above K 27-40 ГГц 0,75-1,11 см Картографирование, управление воздушным движением на коротких дистанциях, специальные радары, управляющие дорожными фотокамерами (34,300 ± 0,100 ГГц)
mm 40-300 ГГц 1-7,5 мм миллиметровые волны, делятся на два следующих диапазона
V 40-75 ГГц 4,0-7,5 мм медицинские аппараты КВЧ , применяемые для физиотерапии
W 75-110 ГГц 2,7-4,0 мм сенсоры в экспериментальных автоматических транспортных средствах, высокоточные исследования погодных явлений

Обозначения диапазонов частот, принятые в ВС США и НАТО с г.

Обозначение Частоты, МГц Длина волны, см Примеры
A < 100-250 120 - >300 Радары раннего обнаружения и управления воздушным движением, напр. РЛС 1Л13 «НЕБО-СВ»
B 250 - 500 60 - 120
C 500 −1 000 30 - 60
D 1 000 - 2 000 15 - 30
E 2 000 - 3 000 10 - 15
F 3 000 - 4 000 7.5 - 10
G 4 000 - 6 000 5 - 7.5
H 6 000 - 8 000 3.75 - 5.00
I 8 000 - 10 000 3.00 - 3.75 Бортовые многофункциональные РЛС (БРЛС)
J 10 000 - 20 000 1.50 - 3.00 РЛС наведения и подсвета цели (РПН), напр. 30Н6, 9С32
K 20 000 - 40 000 0.75 - 1.50
L 40 000 - 60 000 0.50 - 0.75
M 60 000-100 000 0.30 - 0.50

См. также

  • Трёхкоординатная РЛС

Примечания

  1. radio detection and ranging (неопр.) . TheFreeDictionary.com. Дата обращения 30 декабря 2015.
  2. Translation Bureau. Radar definition (неопр.) . Public Works and Government Services Canada (2013). Дата обращения 8 ноября 2013.
  3. McGraw-Hill dictionary of scientific and technical terms / Daniel N. Lapedes, editor in chief. Lapedes, Daniel N. New York ; Montreal: McGraw-Hill, 1976. , 1634, A26 p.
  4. , с. 13.
  5. Angela Hind. "Briefcase "that changed the world"" (неопр.) . BBC News (5 февраля 2007).
  6. Jamming Enemies Radar His Objective (англ.) . Millennium Project, University of Michigan

В статье рассмотрен принцип работы и общая структурная схема судовой РЛС. Действие радиолокационных станций (РЛС) основано на использовании явления отражения радиоволн от различных препятствий, расположенных на пути их распространения, т. е. в радиолокации для определения положения объектов используется явление эха. Для этого в РЛС имеется передатчик, приемник, специальное антенно-волноводное устройство и индикатор с экраном для визуального наблюдения эхо-сигналов. Таким образом, работу радиолокационной станции можно представить так: передатчик РЛС генерирует высокочастотные колебания определенной формы, которые посылаются в пространство узким лучом, непрерывно вращающимся по горизонту. Отраженные колебания от любого предмета в виде эхо-сигнала принимаются приемником и изображаются на экране индикатора, при этом имеется возможность немедленно определять на экране направление (пеленг) на объект и его расстояние от судна.
Пеленг на объект определяется по направлению узкого радиолокационного луча, который в данный момент падает на объект и отражается от него.
Расстояние до объекта может быть получено путем измерения малых промежутков времени между посылкой зондирующего импульса и моментом приема отраженного импульса, при условии, что радиоимпульсы распрастраняются со скоростью с = 3 Х 108 м/сек. Судовые РЛС имеют индикаторы кругового обзора (ИКО), на экране которого образуется изобр ажение окружающей судно навигационной обстановки.
Широкое распространение нашли береговые РЛС, устанавливаемые в портах, на подходах к ним и на каналах или на сложных фарватерах. С их помощью стало возможным осуществлять ввод судов в порт, руководить движением судов по фарватеру, каналу в условиях плохой видимости, в результате чего значительно снижается простой судов. Эти станции в некоторых портах дополняют специальной телевизионной передающей аппаратурой, которая передает изображение с экрана радиолокационной станции на подходящие к порту суда. Передаваемые изображения принимаются на судне обычным телевизионным приемником, что в значительной степени облегчает судоводителю задачу ввода судна в порт при плохой видимости.
Береговые (портовые) РЛС могут быть использованы также диспетчером порта для наблюдения за передвижением судов, находящихся на акватории порта или на подходах к нему.
Рассмотрим принцип работы судовой РЛС с индикатором кругового обзора. Воспользуемся упрощенной блок-схемой РЛС, объясняющей ее работу (рис. 1).
Запускающий импульс, вырабатываемый генератором ЗИ, осуществляет запуск (синхронизацию) всех блоков РЛС.
При поступлении запускающих импульсов в передатчик модулятор (Мод) вырабатывает прямоугольный импульс длительностью в несколько десятых микросекунд, который подается на магнетронный генератор (МГ).

Магнетрон генерирует зондирующий импульс мощностью 70-80 квт длиной волны 1=3, 2 см, частотой /с = 9400 Мгц. Импульс магнетрона через антенный переключатель (АП) по специальному волноводу подводится к антенне и излучается в пространство узким направленным лучом. Ширина луча в горизонтальной плоскости 1-2°, а вертикальной около 20°. Антенна, вращаясь вокруг вертикальной оси со скоростью 12-30 об/мин, облучает все окружающее судно пространство.
Отраженные сигналы принимаются той же антенной, поэтому АП производит поочередное подключение антенны то к передатчику, то к приемнику. Отраженный импульс через антенный переключатель поступает на смеситель, к которому подключен клистронный генератор (КГ) . Последний генерирует маломощные колебания с частотой f Г=946 0 Мгц.
В смесителе в результате сложения колебаний выделяется промежуточная частота fПР=fГ-fС=60 Мгц, которая затем поступает на усилитель промежуточной частоты (УПЧ), он усиливает отраженные импульсы. С помощью детектора, стоящего на выходе УПЧ, усиленные импульсы преобразуются в видеоимпульсы, которые через видеосмеситель (ВС) поступают на видеоусилитель. Здесь они усиливаются и поступают на катод электроннолучевой трубки (ИКО).
Электроннолучевая трубка представляет собой вакуумную электронную лампу особой конструкции (см. рис. 1).
Она состоит из трех основных частей: электронной пушки с фокусирующим устройством, отклоняющей магнитной системы и стеклянной колбы с экраном, обладающим свойством послесвечения.
Электронная пушка 1-2 и фокусирующее устройство 4 формируют плотный, хорошо сфокусированный луч электронов, а отклоняющая система 5 служит для управления этим электронным лучом.
После прохождения отклоняющей системы электронный луч ударяет в экран 8, который покрыт специальным веществом, обладающим способностью светиться при бомбардировке его электронами. Внутренняя сторона широкой части трубки покрывается специальным проводящим слоем (графитом). Этот слой является основным анодом трубки 7 и имеет контакт, на который подается высокое положительное напряжение. Анод 3 - ускоряющий электрод.
Яркость светящейся точки на экране ЭЛТ регулируется изменением отрицательного напряжения на управляющем электроде 2 с помощью потенциометра «Яркость». В нормальном состоянии трубка заперта отрицательным напряжением на управляющем электроде 2.
Изображение окружающей обстановки на экране индикатора кругового обзора получается следующим образом.
Одновременно с началом излучения передатчиком зондирующего импульса запускается генератор развертки, состоящий из мультивибратора (MB) и генератора пилообразного тока (ГПТ), который генерирует пилообразные импульсы. Эти импульсы подаются на отклоняющую систему 5, имеющую механизм вращения, который связан с принимающим сельсином 6.
Одновременно прямоугольный положительный импульс напряжения подается на управляющий электрод 2 и отпирает ее. С появлением в отклоняющей системе ЭЛТ нарастающего (пилообразного) тока электронный луч начинает плавно отклоняться от центра к краю трубки и на экране появляется светящийся радиус развертки. Радиальное движение луча по экрану видно очень слабо. В момент прихода отраженного сигнала потенциал между сеткой и управляющим катодом возрастает, трубка отпирается и на экране начинает светиться точка, соответствующая положению в данный момент луча, совершающего радиальное движение. Расстояние от центра экрана до светящейся точки будет пропорционально расстоянию до объекта. Отклоняющая система имеет вращательное движение.
Механизм вращения отклоняющей системы связан синхронной передачей с сельсином-датчиком антенны 9, поэтому отклоняющая катушка вращается вокруг горловины ЭЛТ синхронно и синфазно с антенной 12. В результате этого на экране ЭЛТ появляется вращающийся радиус развертки.
При повороте антенны поворачивается линия развертки и на экране индикатора начинают светиться новые участки, соответствующие импульсам, отражающимся от различных объектов, находящихся на различных пеленгах. За полный оборот антенны вся поверхность экрана ЭЛТ покрывается множеством радиальных линий разверток, которые засвечиваются только при наличии на соответствующих пеленгах отражающих объектов. Таким образом, па экране трубки воспроизводится полная картина окружающей судно обстановки.
Для ориентировочного измерения расстояний до различных объектов на экране ЭЛТ наносятся путем электронной подсветки, вырабатываемой в блоке ПКД масштабные кольца (неподвижные круги дальности). Для более точного измерения расстояния в РЛС применяется специальное дальномерное устройство, с так называемым подвижным кругом дальности (ПКД).
Для измерения расстояния до какой-либо цели на экране ЭЛТ необходимо, вращая ручку дальномера, совместить ПКД с меткой цели и взять отсчет в милях и десятых долях по счетчику, механически связанному с рукояткой дальномера.
Кроме эхо-сигналов и дистанционных колец, на экране ЭЛТ засвечивается отметка курса 10 (см. рис. 1). Это достигается путем подачи на управляющую сетку ЭЛТ положительного импульса в тот момент, когда максимум излучения антенны проходит направление, совпадающее с диаметральной плоскостью судна.
Изображение на экране ЭЛТ может быть ориентировано относительно ДП судна (стабилизация по курсу) или относительно истинного меридиана (стабилизация по норду). В последнем случае отклоняющая система трубки имеет также синхронную связь с гирокомпасом.

Компенсировать артериальную гипертензию можно путем применения гипотензивных препаратов. Широкое распространение получили бета-1-адреноблокаторы. Неплохой медикамент данного типа – Метозок.

Активным веществом средства является метопролола сукцинат. Вещество обладает антиаритмическим, гипотензивным и антиангинальным эффектом. Форма выпуска Метозока – таблетки для перорального применения.

Встречаются таблетки по 25, 50 и 100 мг. Они отличаются между собой количеством активного вещества. Ориентировочная стоимость лекарства составляет 250-400 рублей. Цена указана за 30 таблеток. Отпускается Метозок в аптеках по рецепту. Производитель медсредства – компания Акрихин, Россия.

Принцип действия средства

В кардиологии широко применяются бета-1-адреноблокаторы. Данные препараты используются даже в профилактических целях. Установлено, что средства помогут предотвратить инфаркт миокарда и гипертонические кризы.

Метозок является неплохим отечественным бета-1-адреноблокатором. Активное вещество лекарства – метопролола сукцинат. Еще в таблетки Метозок входят вспомогательные компоненты, не обладающие фармакологическим действием – лактозы моногидрат, кремния диоксид, стеарат магния и т.д.

Метопролол блокирует бета-1-адренорецепторы сердца, снижает синтез АМФ из АТФ, снижает ЧСС. Еще вещество способствует уменьшению внутриклеточного тока ионов кальция, снизить сократимость миокарда, предотвратить развитие инфаркта.

Гипотоническое действие обусловлено еще и тем, что метопролола сукцинат снижает минутный объем кровотока и подавляет выработку ренина. Метозок помогает предотвратить аритмию, ввиду того, что активное вещество лекарства снижает потребность миокарда в кислороде, предотвращает тахикардию.

При употреблении данного бета-1-адреноблокатора значительно возрастает восприимчивость к физическим нагрузкам и замедляется AV-проводимость. Препарат хорошо метаболизируется.

Максимальная плазменная концентрация отмечается через 6-12 часов, биодоступность повышается во время употребления еды, препарат связывается с белками плазмы на 10%. Период полувыведения составляет 3,5-7 часов, экскретируется лекарство через печень и почки.

Гипотензивный эффект наступает через 1,5-2 часа. Эффект сохраняется на протяжении суток.

Инструкция по применению препарата

Лекарственный препарат Метозок используется при лечении артериальной гипертензии. Препарат одинаково эффективен как при гипертонии, так и при симптоматической гипертензии.

Также показаниями к использованию являются нарушения сердечного ритма, нарушение сердечной деятельности, сопровождающееся тахикардией, ИБС, хроническая форма сердечной недостаточности.

Таблетку Метозок следует принимать с кратностью 1 раз в день. Кардиологи рекомендуют осуществлять прием натощак. При лечении АГ стартовая дозировка составляет 50 мг. При необходимости доза повышается вплоть до 100-200 мг.

При ИБС, ХСН, тахикардии, нарушениях сердечного ритма стартовая доза 12,5-25 мг. При необходимости дозировка может повышаться до 100-200 мг. Осуществлять повышение дневной дозы следует поступательно и только с разрешения лечащего врача.

Длительность терапии выбирается индивидуально. Метозок можно принимать пожизненно, если есть такая необходимость.

Противопоказания и побочные эффекты

Метозок имеет ряд противопоказаний к применению. Во-первых, препарат противопоказан пациентам с повышенной чувствительностью к его составляющим. Также медикамент не назначается беременным и кормящим женщинам.

Лекарство не используется при лечении людей в несовершеннолетнем возрасте. В список противопоказаний также входят кардиогенный шок, AV-блокада 2-3 степени тяжести, СССУ (синдром слабости синусового узла), брадикардия, острая сердечная недостаточность/декомпенсация ХСН, недавно перенесенный острый инфаркт миокарда, феохромоцитома, прием ингибиторов МАО, дефицит лактазы, непереносимость лактозы, синоатриальная блокада, синдром мальабсорбции глюкозы/галактозы.

Побочные эффекты:

  • Сбои со стороны ССС. Возможно развитие брадикардии, учащение сердцебиение, кардиогенный шок, усиление симптомов сердечной недостаточности, аритмия, нарушение проводимости миокарда.
  • Нарушения в работе ЦНС. Во время приема таблеток может возникнуть повышенная утомляемость, снижение скорости реакции, депрессивные состояния, бессонница/сонливость. При употреблении повышенных дозировок – тремор конечностей, тревожность, астения, нарушение памяти и галлюцинации.
  • Сухость глаз, звон в ушах, нарушение вкуса. При употреблении повышенных дозировок – конъюнктивит.
  • Сбои со стороны пищеварительной системы. Они проявляются чувством тошноты, абдоминальными болями, рвотой, запором/диареей, сухостью во рту, нарушениями функций печени.
  • Аллергические реакции.
  • Одышка.
  • Увеличение ИМТ.
  • Ринит.
  • Повышение плазменной концентрации билирубина.
  • Половая дисфункция.
  • Артралгия.
  • Повышение активности печеночных ферментов.
  • Гипогликемия. Это осложнение возникает при СД 1 типа. При сахарном диабете 2 типа может развиться гипергликемия.
  • Лейкопения.
  • Агранулоцитоз.
  • Сухой кашель.
  • Тромбоцитопения.
  • Бронхоспазм.

При передозировке – нарушение дыхания, кома, потеря сознания, нарушения периферического кровообращения, брадикардия, чрезмерное падение АД, AV-блокада.

Отзывы и аналоги

О препарате Метозок отзываются положительно. Большинству гипертоников препарат помог стабилизировать систолическое и диастолическое давление, а также предотвратить гипертонический криз.

Пациенты, страдающие от ИБС, тахикардии, нарушений сердечного ритма, хронической сердечной недостаточности, тоже отзываются о лекарстве положительно. Люди утверждают, что во время приема таблеток стали чувствовать себя значительно лучше.

Заменители Метозока:

  1. Метокард (350-500 рублей).
  2. Бетаксолол (95-120 рублей).
  3. Кординорм (250-300 рублей).
  4. Вазокардин (80-120 рублей).
  5. Беталок (270-350 рублей).
  6. Небилет (950-1100 рублей).
  7. Эгилок (170-200 рублей).

Отзывы врачей

Метозок является неплохим высокоселективным бета-1-адреноблокатором. Препарат эффективен при гипертонической болезни и других заболеваниях сердечно-сосудистой системы.

У препарата есть как преимущества, так и недостатки. Преимущества – быстрое наступление гипотензивного эффекта, возможность принимать лекарство пожизненно, невысокая стоимость, нормальная совместимость с другими гипотензивными препаратами.

Есть и ряд недостатков. Самый весомый – синдром отмены. После прекращения приема давление вновь может повышаться. Еще минус препарата состоит в том, что он часто вызывает гипо- и гипергликемию у диабетиков.

Переносимость у лекарства не очень хорошая. У большей части пациентов во время приема Метозока возникает одышка, сухой кашель, диспепсические расстройства, головные боли.

ЗАДАТЬ ВОПРОС ДОКТОРУ

как к вам обращаться?:

Email (не публикуется)

Тема вопроса:

Последние вопросы специалистам:
  • Помогают ли капельницы при гипертонии?
  • Если принимать элеутерококк, это понижает или повышает давление?
  • Можно ли голоданием лечить гипертонию?
  • Какое давление нужно сбивать у человека?

Инструкция по применению препарата Леркамен

Неправильное функционирование сердечно-сосудистой системы обычно приводит к проблемам с артериальным давлением. Это стало частым недомоганием практически каждого человека не только в пожилом, но и в молодом возрасте. Вот почему многие люди, которые регулярно сталкиваются с таким недомоганием, ищут наиболее эффективный метод влияния на организм для приведения в норму данного показателя. Одним из наиболее действенных средств, которое справляется с данной проблемой, считается Леркамен – инструкцию по применению к нему требуется внимательно изучить, чем мы и займемся.

  • Состав препарата
  • Способ применения
  • Побочные действия
  • Передозировка препаратом
  • Противопоказания к использованию
  • Леркамен или Амлодипин: что лучше
  • Другие аналоги
Кавинтон: при каком давлении можно применять
  • Винпоцетин: инструкция по применению и противопоказания
  • Состав препарата

    Форма, в которой производится это лекарственное средство, – таблетки. Их активное вещество – гидрохлорид лерканидипина. Помимо этого, в составе Леркамена используются такие дополнительные ингредиенты:

    • моногидрат лактозы;
    • кристаллическая целлюлоза;
    • карбоксиметил натрия;
    • стеарат магния.

    Леркамен – лекарство от давления, которое есть в свободной продаже. Купить его можно практически во всех аптеках. Средняя цена препарата в России составляет 330 руб. В Украине препарат можно купить примерно за 40 грн.

    От какого давления применяется Леркамен? Это эффективный медикаментозный препарат, который оказывает благотворное воздействие на организм при повышенном давлении. Поэтому активно используется для лечения артериальной гипертензии на любой стадии ее развития. Других действий на организм данный препарат не имеет.

    Способ применения

    Суточная доза Леркамена составляет 1 таблетку. Такой способ лечения гипертонии должен длиться около 2 недель. Если по истечении времени улучшения у пациента не наблюдается, то дозировка увеличивается до 2 таблеток в день. В ситуациях, когда и этого количества лекарства недостаточно для гипертоника, то лечащий врач должен оценить целесообразность дальнейшего использования таблеток от давления Леркамен. Скорее всего, пациенту требуется прописать аналогичный лекарственный препарат.

    Побочные действия

    Длительный прием этого лекарственного средства, особенно в излишних дозах, может вызвать ряд недомоганий. У больного могут возникнуть такие побочные эффекты:

    1. Центральная нервная система может вызвать незначительную мигрень, помутнение сознания, сонливость.
    2. Система кровообращения проявляет такие признаки: высокий пульс, чувство резкого жара, болевые ощущения в районе грудной клетки, в крайних случаях может наблюдаться потеря сознания.
    3. Пищеварительная система вызывает такие недомогания: тошнота, иногда вызывающая рвоту, понос, вздутие живота.
    4. На кожных покровах могут появляться аллергические высыпания. Особенно это касается людей с нетипичной реакцией на некоторые составляющие препарата.

    Также пациент на момент лечения Леркаменом может чувствовать сильную усталость и быстро переутомляться.

    Передозировка препаратом

    Излишнее употребление таблеток Леркамен обычно приводит к значительному понижению артериального давления. У человека может наблюдаться помутнение рассудка, вплоть до потери сознания. Если произошла такая ситуация, то больного следует привести в сознание, дать выпить активированного угля и вызвать скорую медицинскую помощь.

    Противопоказания к использованию

    Существует ряд заболеваний, при которых принимать данный лекарственный препарат нецелесообразно, поскольку это может ухудшить общее состояние пациента. Противопоказаниями к лечению Леркаменом являются:

    • сердечная недостаточность тяжелого характера;
    • неправильная работа левого желудочка;
    • период восстановления после инфаркта;
    • тяжелая форма заболеваний печени или почек;
    • гиперчувствительность или личная непереносимость определенных составляющих лекарства;
    • беременность;
    • женщины в лактационный период;
    • детский возраст.

    Леркамен или Амлодипин: что лучше

    Амлодипин является одним из аналогов Леркамена. Какой же препарат обладает большей эффективностью при гипертонии? Что касается Амлодипина, то данное лекарственное средство кроме понижения артериального давления также улучшает работу сердечно-сосудистой системы в целом. Имеет не так много противопоказаний, а также продается по гораздо меньшей цене. В то же время Амлодипин вызывает гораздо чаще недомогания в виде побочных эффектов. Поэтому, какой препарат лучше использовать – Амлодипин или Леркамен – лучше посоветоваться с лечащим врачом.

    Другие аналоги

    Чем можно заменить Леркамен? Современная фармакология не стоит на месте, поэтому существует множество аналогичных препаратов по таким параметрам как состав и действие на организм. Наиболее распространенными лекарственными средствами, снижающими артериальное давление, являются:

    1. Нифедипин. Недорогой медикаментозный препарат, который применяется не только при гипертензии. Также способствует нормальному сердцебиению и кровообращению. Нифедипин не следует применять при заниженном артериальном давлении, недостаточном функционировании почек и печени, пожилым людям, а также лицам, не достигшим 18 лет.
    2. Васкопин. Оказывает благотворное действие на организм при завышенном давлении и стенокардии. Не нужно применят, если наблюдается инфаркт острого характера, в период вынашивания ребенка и лактации. Имеет большое количество выраженных побочных действий.
    3. Тенокс. Применяется при артериальной гипертензии, а также при стенокардии. Прекратить использование требуется, если наблюдается резкое падение показателя давления. Препарат не подходит людям с заболеваниями сердца острого характера и нарушением работы левого желудочка сердца. Побочные действия незначительны, развиваются у человека достаточно редко.
    4. Азомекс. Назначается не только при повышенном артериальном давлении, но и пациентам с диагнозом ишемия. Почти не имеет ограничений в лечении: не рекомендуется употреблять Азомекс беременным женщинам, в период лактации, а также в детском и подростковом возрасте. Имеет большое количество побочных действий, поэтому в период терапии требуется строго соблюдать дозировку, назначенную лечащим врачом.
    5. Коринфар. Данный препарат активно применяется при стенокардии и артериальной гипертонии. Вызывает множество побочных эффектов, особенно при длительном его применении в чрезмерных количествах. Что касается противопоказаний, та Коринфар не рекомендуется употреблять в восстановительный период после инфаркта, при резком снижении показателя давления, при вынашивании ребенка и лактации, а также в возрасте до 18 лет.
    6. Лаципил. Является эффективным медикаментом для комплексной терапии при гипертонии. Других функциональных действий на организм он не оказывает. Особых ограничений в употреблении нет, кроме аллергических проявлений на составляющие препарата и возраста меньше 18 лет. Что касается побочных действий, то Лаципил воздействует только на кровообращение. При длительном лечении может наблюдаться легкое головокружение, головные боли, учащенное сердцебиение, резкий прилив крови.
    7. Норваск. Препарат отличается высокой эффективностью не только при гипертонии, но и при ишемической болезни сердца, стабильной стенокардии хронического характера. Не имеет ограничений в использовании, кроме аллергии или высокой чувствительности к компонентам. Побочные действия являются незначительными, особого дискомфорта и хлопот не вызывают.

    Независимо от выбора медикаментозного средства для лечения артериальной гипертензии, свое решение следует согласовать с лечащим врачом. Он поможет выбрать максимально эффективное и безопасное лекарственное средство, а также назначит корректную дозировку, учитывая индивидуальные особенности течения заболевания каждого пациента.

    Радиолокационная станция (РЛС) или рада́р (англ. radar от Radio Detection and Ranging - радиообнаружение и дальнометрия) - система для обнаружения воздушных, морских и наземных объектов, а также для определения их дальности и геометрических параметров. Использует метод, основанный на излучении радиоволн и регистрации их отражений от объектов. Английский термин-акроним появился в г., впоследствии в его написании прописные буквы были заменены строчными.

    История

    3 января 1934 года в СССР был успешно проведён эксперимент по обнаружению самолёта радиолокационным методом. Самолёт, летящий на высоте 150 метров был обнаружен на дальности 600 метров от радарной установки. Эксперимент был организован представителями Ленинградского Института Электротехники и Центральной Радиолаборатории. В 1934 году маршал Тухачевский в письме правительству СССР написал: «Опыты по обнаружению самолётов с помощью электромагнитного луча подтвердили правильность положенного в основу принципа». Первая опытная установка «Рапид» была опробована в том же же году , в 1936 году советская сантиметровая радиолокационная станция «Буря» засекала самолёт с расстояния 10 километров . В США первый контракт военных с промышленностью был заключён в 1939 году. В 1946 году американские специалисты - Реймонд и Хачертон, бывший сотрудник посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии».

    Классификация радаров

    По предназначению радиолокационные станции можно классифицировать следующим образом:

    • РЛС обнаружения;
    • РЛС управления и слежения;
    • Панорамные РЛС;
    • РЛС бокового обзора;
    • Метеорологические РЛС.

    По сфере применения различают военные и гражданские РЛС.

    По характеру носителя:

    • Наземные РЛС
    • Морские РЛС
    • Бортовые РЛС

    По типу действия

    • Первичные или пассивные
    • Вторичные или активные
    • Совмещённые

    По диапазону волн:

    • Метровые
    • Сантиметровые
    • Миллиметровые

    Устройство и принцип действия Первичного радиолокатора

    Первичный (пассивный) радиолокатор, в основном, служит для обнаружения целей, освещая их электромагнитной волной и затем принимая отражения (эхо) этой волны от цели. Поскольку скорость электромагнитных волн постоянна (скорость света), становится возможным определить расстояние до цели, основываясь на измерении времени распространения сигнала.

    В основе устройства радиолокационной станции лежат три компонента: передатчик , антенна и приёмник .

    Передающее устройство является источником электромагнитного сигнала высокой мощности. Он может представлять из себя мощный импульсный генератор. Для импульсных РЛС сантиметрового диапазона - обычно магнетрон или импульсный генератор работающий по схеме: задающий генератор - мощный усилитель, использующий в качестве генератора чаще всего лампу бегущей волны , а для РЛС метрового диапазона, часто используют - триодную лампу. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал.

    Антенна выполняет фокусировку сигнала приёмника и формирование диаграммы направленности , а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства. В случае, если передача и приём совмещены в одной антенне, эти два действия выполняются поочерёдно, а чтобы мощный сигнал, просачивающийся от передающего передатчика в приёмник не ослепил приёмник слабого эха, перед приёмником размещают специальное устройство, закрывающее вход приёмника в момент излучения зондирующего сигнала.

    Приёмное устройство выполняет усиление и обработку принятого сигнала. В самом простом случае результирующий сигнал подаётся на лучевую трубку (экран), которая показывает изображение, синхронизированное с движением антенны.

    Когерентные РЛС

    Когерентный метод радиолокации основан на выделении и анализе разности фаз отправленного и отражённого сигналов, которая возникает из-за эффекта Доплера , когда сигнал отражается от движущегося объекта. При этом передающее устройство может работать как непрерывно, так и в импульсном режиме. Основным преимуществом данного метода является то, что он «позволяет наблюдать только движущиеся объекты, а это исключает помехи от неподвижных предметов, расположенных между приёмной аппаратурой и целью или за ней.»

    Импульсные РЛС

    Принцип действия импульсного радара

    Принцип определения расстояния до объекта с помощью импульсного радара

    Современные радары сопровождения построены как импульсные радары. Импульсный радар передаёт только в течение очень краткого времени, короткий импульс обычно приблизительно микросекунда в продолжительности, после чего он слушает эхо, в то время как импульс распространяется.

    Поскольку импульс уходит далеко от радара с постоянной скоростью, время прошедшее с момента, когда импульс посылали, ко времени когда эхо получено, - ясная мера прямого расстояния до цели. Следующий импульс можно послать только через некоторое время, а именно после того как импульс придёт обратно, это зависит от дальности обнаружения радара (данным мощностью передатчика, усилением антенны и чувствительностью приёмника). Если бы импульс посылали раньше, то эхо предыдущего импульса от отдалённой цели могло бы быть перепутано с эхом второго импульса от близкой цели.

    Промежуток времени между импульсами называют интервалом повторения импульса , обратная к нему величина - важный параметр, который называют частотой повторения импульса (ЧПИ) . Радары низкой частоты дальнего обзора, обычно имеют интервал повторения в несколько сотен импульсов в секунду (или Герц [Гц]). Частота повторения импульсов является одним из отличительных признаков, по которым возможно дистанционное определение модели РЛС.

    Устранение пассивных помех

    Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов: земной поверхности, высоких холмов и т. п. Если к примеру, самолёт находится на фоне высокого холма, отражённый сигнал от этого холма полностью перекроет сигнал от самолёта. Для наземных РЛС эта проблема проявляется при работе с низколетящими объектами. Для бортовых импульсных РЛС она выражается в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта с радиолокатором.

    Методы устранения помех используют, так или иначе, эффект Доплера (частота волны, отражённой от приближающегося объекта, увеличивается, от уходящего объекта - уменьшается).

    Самый простой радар, который может обнаружить цель в помехах - радар с селекцией движущихся целей (СДЦ) - импульсный радар, который сравнивает отражения более чем от двух или больше интервалов повторения импульса. Любая цель, которая, движется относительно радара, производит изменение в параметре сигнала (стадия в последовательном СДЦ), тогда как помехи остаются неизменными. Устранение помех происходит путём вычитания отражений из двух последовательных интервалов. На практике устранение помех может быть осуществлено в специальных устройствах - черезпериодных компенсаторах или алгоритмами в программном обеспечении.

    СДЦ, работающие с постоянной частотой повторения импульсов, имеют фундаментальную слабость: они являются слепыми к целям со специфическими круговыми скоростями (которые производят изменения фаз точно в 360 градусов), и такие цели не отображаются. Скорость, при которой цель исчезает для радиолокатора, зависит от рабочей частоты станции и от частоты повторения импульсов. Современные СДЦ излучают несколько импульсов с различной частоты повторения - такой, что невидимые скорости в каждой частоте повторения импульсов охвачены другими ЧПИ.

    Другой способ избавления от помех реализован в импульсно-доплеровских РЛС , которые используют существенно более сложную обработку чем РЛС с СДЦ.

    Важное свойство импульсно-доплеровских РЛС - это когерентность сигнала. Это значит, что посланные сигналы и отражения должны иметь определённую фазовую зависимость.

    Импульсно-доплеровские РЛС обычно считаются лучше РЛС с СДЦ при обнаружении низколетящих целей во множественных помехах земли, это - предпочтительная техника, используемая в современном истребителе, для воздушного перехвата/управления огнём, примеры тому AN/APG-63, 65, 66, 67 и 70 радары. В современном доплеровском радаре большинство обработки выполняется отдельным процессором в цифровом виде с помощью цифровых сигнальных процессоров , обычно используя высокопроизводительный алгоритм Быстрое преобразование Фурье для преобразования цифровых данных образцов отражений кое во что более управляемое другими алгоритмами. Цифровые обработчики сигналов очень гибки и используемые алгоритмы могут обычно быстро заменяться другими, заменяя только память (ПЗУ) чипы, таким образом быстро противодействуя техники глушения противника если необходимо.

    Устройство и принцип действия Вторичного радиолокатора

    Принцип действия вторичного радиолокатора несколько отличается, от принципа Первичной радиолокации. В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик , антенна , генераторы азимутальных меток, приёмник , сигнальный процессор , индикатор и самолётный ответчик с антенной .

    Передатчик . Служит для излучения импульсов запроса в антенну на частоте 1030 МГц

    Антенна . Служит для излучения и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации, антенна излучает на частоте 1030МГц, и принимает на частоте 1090 МГц.

    Генераторы Азимутальных меток . Служат для генерации Азимутальных меток (Azimuth Change Pulse или ACP) и генерации Метки Севера (Azimuth Reference Pulse или ARP). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток(для старых систем), или 16384 Малых азимутальных меток (для новых систем), их ещё называет улучшенные малые азимутальные метки (Improved Azimuth Change pulse или IACP), а также одну метку Севера. Метка севера приходит с генератора азимутальных меток, при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.

    Приёмник . Служит для приёма импульсов на частоте 1090 МГц

    Сигнальный процессор . Служит для обработки принятых сигналов

    Индикатор Служит для индикации обработанной информации

    Самолётный ответчик с антенной Служит для передачи импульсного радиосигнала, содержащего дополнительную информацию, обратно в сторону РЛС при получении радиосигнала запроса.

    Принцип Действия Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика, для определения положения Воздушного судна. РЛС облучает окружающее пространства запросными импульсами на частоте P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Воздушные суда оборудованные ответчиками находящиеся в зоне действия луча запроса при получении запросных импульсов, если действует условие P1,P3>P2 отвечают запросившей РЛС, Серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация типа Номер борта, Высота и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется растоянием между запросными импульсами P1 и P3 например в режиме запроса А (mode A), расстояние между запросными импульсами станции P1 и P3 равно 8 микросекунд, и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта. В режиме запроса C (mode C) расстояние между запросными импульсами станции равно 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту. Также РЛС может посылать запрос в смешанном режиме, например Режим А, Режим С, Режим А, Режим С. Азимут Воздушного судна определяется, углом поворота антенны, который в свою очередь определяется путём подсчёта Малых Азимутальных меток. Дальность определяется, по задержке пришедшего ответа Если Воздушное судно не лежит в зоне действия основного луча, а лежит в зоне действия боковых лепестков, или находится сзади антенны, то ответчик Воздушного судна при получении запроса от РЛС, получит на своём входе условие, что импульсы P1,P3

    Плюсы вторичной РЛС, более высокая точность, дополнительная информация о Воздушном Судне (Номер борта, Высота), а также малое по сравнению с Первичными РЛС излучение.

    Другие страницы

    • (нем.) Технология Радиолокационная станция
    • Раздел о радиолокационных станциях в блоге dxdt.ru (рус.)
    • http://www.net-lib.info/11/4/537.php Константин Рыжов - 100 великих изобретений. 1933 г. - Тейлор, Юнг и Хайланд выдвигают идею радара. 1935 г. - Радиолокационная станция CH дальнего обнаружения Уотсона-Уатта.

    Литература и сноски

    Wikimedia Foundation . 2010 .

    Синонимы :
    • РЛС Дуга
    • РМГ

    Смотреть что такое "РЛС" в других словарях:

      РЛС - Русская логистическая служба http://www.rls.ru/​ РЛС радиолокационная станция связь Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. 318 с., С … Словарь сокращений и аббревиатур