Транспорт газов кровью. Транспорт СО2 кровью

Газировка, вулкан, Венера, рефрижератор – что между ними общего? Углекислый газ. Мы собрали для Вас самую интересную информацию об одном из самых важных химических соединений на Земле.

Что такое диоксид углерода

Диоксид углерода известен в основном в своем газообразном состоянии, т.е. в качестве углекислого газа с простой химической формулой CO2. В таком виде он существует в нормальных условиях – при атмосферном давлении и «обычных» температурах. Но при повышенном давлении, свыше 5 850 кПа (таково, например, давление на морской глубине около 600 м), этот газ превращается в жидкость. А при сильном охлаждении (минус 78,5°С) он кристаллизуется и становится так называемым сухим льдом, который широко используется в торговле для хранения замороженных продуктов в рефрижераторах.

Жидкая углекислота и сухой лед получаются и применяются в человеческой деятельности, но эти формы неустойчивы и легко распадаются.

А вот газообразный диоксид углерода распространен повсюду: он выделяется в процессе дыхания животных и растений и является важной составляющей частью химического состава атмосферы и океана.

Свойства углекислого газа

Углекислый газ CO2 не имеет цвета и запаха. В обычных условиях он не имеет и вкуса. Однако при вдыхании высоких концентраций диоксида углерода можно почувствовать во рту кисловатый привкус, вызванный тем, что углекислый газ растворяется на слизистых и в слюне, образуя слабый раствор угольной кислоты.

Кстати, именно способность диоксида углерода растворяться в воде используется для изготовления газированных вод. Пузырьки лимонада – тот самый углекислый газ. Первый аппарат для насыщения воды CO2 был изобретен еще в 1770 г., а уже в 1783 г. предприимчивый швейцарец Якоб Швепп начал промышленное производство газировки (торговая марка Schweppes существует до сих пор).

Углекислый газ тяжелее воздуха в 1,5 раза, поэтому имеет тенденцию «оседать» в его нижних слоях, если помещение плохо вентилируется. Известен эффект «собачьей пещеры», где CO2 выделяется прямо из земли и накапливается на высоте около полуметра. Взрослый человек, попадая в такую пещеру, на высоте своего роста не ощущает избытка углекислого газа, а вот собаки оказываются прямо в густом слое диоксида углерода и подвергаются отравлению.

CO2 не поддерживает горение, поэтому его используют в огнетушителях и системах пожаротушения. Фокус с тушением горящей свечки содержимым якобы пустого стакана (а на самом деле — углекислым газом) основан именно на этом свойстве диоксида углерода.

Углекислый газ в природе: естественные источники

Углекислый газ в природе образуется из различных источников:

  • Дыхание животных и растений.
    Каждому школьнику известно, что растения поглощают углекислый газ CO2 из воздуха и используют его в процессах фотосинтеза. Некоторые хозяйки пытаются обилием комнатных растений искупить недостатки . Однако растения не только поглощают, но и выделяют углекислый газ в отсутствие света – это часть процесса дыхания. Поэтому джунгли в плохо проветриваемой спальне – не очень хорошая идея: ночью уровень CO2 будет расти еще больше.
  • Вулканическая деятельность.
    Диоксид углерода входит в состав вулканических газов. В местностях с высокой вулканической активностью CO2 может выделяться прямо из земли – из трещин и разломов, называемых мофетами. Концентрация углекислого газа в долинах с мофетами столь высока, что многие мелкие животные, попав туда, умирают.
  • Разложение органических веществ.
    Углекислый газ образуется при горении и гниении органики. Объемные природные выбросы диоксида углерода сопутствуют лесным пожарам.

Углекислый газ «хранится» в природе в виде углеродных соединений в полезных ископаемых: угле, нефти, торфе, известняке. Гигантские запасы CO2 содержатся в растворенном виде в мировом океане.

Выброс углекислого газа из открытого водоема может привести к лимнологической катастрофе, как это случалось, например, в 1984 и 1986 гг. в озерах Манун и Ньос в Камеруне. Оба озера образовались на месте вулканических кратеров – ныне они потухли, однако в глубине вулканическая магма все еще выделяет углекислый газ, который поднимается к водам озер и растворяется в них. В результате ряда климатических и геологических процессов концентрация углекислоты в водах превысила критическое значение. В атмосферу было выброшено огромное количество углекислого газа, который наподобие лавины спустился по горным склонам. Жертвами лимнологических катастроф на камерунских озерах стали около 1 800 человек.

Искусственные источники углекислого газа

Основными антропогенными источниками диоксида углерода являются:

  • промышленные выбросы, связанные с процессами сгорания;
  • автомобильный транспорт.

Несмотря на то, что доля экологичного транспорта в мире растет, подавляющая часть населения планеты еще не скоро будет иметь возможность (или желание) перейти на новые автомобили.

Активное сведение лесов в промышленных целях также ведет к повышению концентрации углекислого газа СО2 в воздухе.

CO2 – один из конечных продуктов метаболизма (расщепления глюкозы и жиров). Он выделяется в тканях и переносится при помощи гемоглобина к легким, через которые выдыхается. В выдыхаемом человеком воздухе около 4,5% диоксида углерода (45 000 ppm) – в 60-110 раз больше, чем во вдыхаемом.

Углекислый газ играет большую роль в регуляции кровоснабжения и дыхания. Повышение уровня CO2 в крови приводит к тому, что капилляры расширяются, пропуская большее количество крови, которое доставляет к тканям кислород и выводит углекислоту.

Дыхательная система тоже стимулируется повышением содержания углекислого газа, а не нехваткой кислорода, как может показаться. В действительности нехватка кислорода долго не ощущается организмом и вполне возможна ситуация, когда в разреженном воздухе человек потеряет сознание раньше, чем почувствует нехватку воздуха. Стимулирующее свойство CO2 используется в аппаратах искусственного дыхания: там углекислый газ подмешивается к кислороду, чтобы «запустить» дыхательную систему.

Углекислый газ и мы: чем опасен СO2

Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.

Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.

Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.

Согласно выводам некоторых , уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически , мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.

И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.

Безопасным для самочувствия человека уровнем углекислого газа физиологи считают 800 ppm.

Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от , который разрушает клетки нашего организма.

Углекислый газ в атмосфере Земли

В атмосфере нашей планеты всего около 0,04% CO2 (это приблизительно 400 ppm), а совсем недавно было и того меньше: отметку в 400 ppm углекислый газ перешагнул только осенью 2016 года. Ученые связывают рост уровня CO2 в атмосфере с индустриализацией: в середине XVIII века, накануне промышленного переворота, он составлял всего около 270 ppm.

Из венозной крови можно извлечь 55-58 об.% углекислого газа . Большая часть СО 2 , извлекаемого из крови, происходит из имеющихся в плазме и эритроцитах солей угольной кислоты и только около 2,5 об.% углекислого газа растворено и около 4-5об.% находится в соединении с гемоглобином в виде карбогемоглобина.

Образованно угольной кислоты из углекислого газа происходит в эритроцитах, где содержится фермент карбоангидраза, являющийся мощным катализатором, ускоряющим реакцию гидратации СО 2 .

. Существование этого фермента предполагал еще И. М. Сеченов, но открыт он был лишь в 1932 г. Мелдрумом и Рафтоном.

Связывание углекислого газа кровью в капиллярах большого круга . Углекислый газ, образующийся в тканях, диффундирует в кровь кровеносных капилляров, так как напряжение СО 2 в тканях значительно превышает его напряжение в артериальной крови. Растворяющийся в плазме СО 2 диффундирует внутрь эритроцита, где под влиянием карбоангидразы он мгновенно превращается в угольную кислоту,

Согласно расчетам, активность карбоангидразы в эритроцитах такова, что реакция гидратации углекислоты ускоряется в 1500-2000 раз. Так как весь углекислый газ внутри эритроцита превращается в угольную кислоту, то напряжение СО 2 внутри эритроцита близко к нулю, поэтому все новые и новые количества СО 2 поступают внутрь эритроцита. В связи с образованием угольной кислоты из СО 3 в эритроците концентрация ионов НСО 3 " возрастает, и они начинают диффундировать в плазму. Это возможно потому, что поверхностная мембрана эритроцита проницаема для анионов. Для катионов мембрана эритроцита практически непроницаема. Взамен ионов НСО 3 " в эритроциты входит ион хлора. Переход ионов хлора из плазмы внутрь эритроцита освобождает в плазме ионы натрия, которые связывают поступающие нз эритроцита ионы НСО 3 , образуя NaHCО 3 Химический анализ плазмы венозной крови показывает значительное увеличение в ней бикарбоната.

Накопление внутри эритроцита анионов приводит к повышению осмотического давления внутри эритроцита, а это вызывает переход воды из плазмы через поверхностную мембрану эритроцита. В результате объем эритроцитов в капиллярах большого круга увеличивается. При исследовании с помощью гематокрнта установлено, что эритроциты занимают 40% объема артериальной крови и 40,4% объема венозной крови. Из этого следует, что объем эритроцитов венозной крови больше, чем эритроцитом артериальной, что объясняется проникновением в них воды.

Одновременно с поступлением СО 2 внутрь эритроцита и образованием в нем угольной кислоты происходит отдача кислорода оксигемоглобином и превращение его в редуцированный гемоглобин. Последний является значительно менее диссоциирующей кислотой, чем оксигемоглобин и угольная кислота. Поэтому при превращении оксигемоглобина в гемоглобин Н 2 СО 3 вытесняет из гемоглобина ионы калия и, соединяясь с ними, образует калиевую соль бикарбоната.

Освобождающийся Н˙ ион угольной кислоты связывается гемоглобином. Так как редуцированный гемоглобин является малодиссоциированной кислотой, то при этом не происходит закисления крови и разница рН венозной и артериальной крови крайне невелика. Происходящую в эритроцитах тканевых капилляров реакцию можно представить следующим образом:

КНbO 2 + Н 2 СO 3 = HHb + O 2 + КНСO 3

Из изложенного следует, что оксигемоглобин, превращаясь в гемоглобин и отдавая связанные им основания углекислоте, способствует образованию бикарбоната и транспорту в таком виде углекислоты. Кроме того, гкмоглобин образует химическое соединение с СО 2 - карбогемоглобин. Наличие в крови соединения гемоглобина с углекислым газом было установлено путем следующего опыта. Если к цельной крови прибавить цианистый калий, который полностью инактивирует карбоангидразу, то оказывается, что эритроциты такой крови связывают больше СО 2 , чем плазма. Отсюда был сделан вывод, что связывание СО 2 эритроцитами после инактивирования карбоангидразы объясняется наличием в эритроцитах соединения гемоглобина с СО 2 . В дальнейшем выяснилось, что СО 2 присоединяется к аминной группе гемоглобина, образуя так называемую карбаминовую связь.

Реакция образования карбогемоглобина может идти в одну или другую сторону в зависимости от напряжения углекислого газа в крови. Хотя небольшая часть всего количества углекислого газа, которое может быть извлечено из крови, находится в соединении с гемоглобином (8-10%), однако роль этого соединения в транспорте углекислоты кровью достаточно велика. Примерно 25-30% углекислого газа, поглощаемого кровью в капиллярах большого круга, вступает в соединение с гемоглобином, образуя карбогемоглобин.

Отдача СО2 кровью в легочных капиллярах . Вследствие более низкого парциального давления СО 2 в альвеолярном воздухе по сравнению с напряжением его в венозной крови углекислый газ переходит путем диффузии из крови легочных капилляров в альвеолярный воздух. Напряжение СО 2 в крови падает.

Одновременно с этим вследствие более высокого парциального давления кислорода в альвеолярном воздухе по сравнению с его напряжением в венозной крови кислород поступает из альвеолярного воздуха в кровь капилляров легких. Напряжение О2 в крови возрастает, и гемоглобин превращается в оксигемоглобин. Так как последний является кислотой, диссоциация которой значительно выше, чем гемоглобина угольной кислоты, то он вытесняет угольную кислоту из ее калиевой. Реакция идет следующим образом:

ННb + O 2 + КНСO 3 = КНbO 2 +H 2 CO 3

Освободившаяся из своей связи с основаниями угольная кислота расщепляется карбоангидразой на углекислый газ в воду. Значение карбоангидразы в отдаче углекислого газа в легких видно из следующих данных. Для того чтобы произошла реакция дегидратации Н 2 СО 3 растворенной в воде, с образованием того количества углекислого газа, которое выходит из крови за время ее нахождения в капиллярах легких, требуется 300 секунд. Кровь же проходит через капилляры легких в течение 1-2 секунд, но за это время успевает произойти дегидратация угольной кислоты внутри эритроцита и диффузия образовавшегося СО 2 сначала в плазму крови, а затем в альвеолярный воздух.

Так как в легочных капиллярах уменьшается в эритроцитах концентрация ионов НСО 3 , то эти ионы из плазмы начинают диффундировать в эритроциты, а ионы хлора диффундируют из эритроцитов в плазму. В связис тем что напряжение углекислого газа в крови легочных капилляров уменьшается, карбаминовая связь расщепляется и карбогемоглобин отдает углекислый газ.

Схематически все эти процессы приведены на рис. 57 .

Рис. 57. Схема процессов, происходящих в эритроците при поглощении или отдаче кровью кислорода и углекислого газа.

Кривые диссоциации соединений угольной кислоты в крови . Как мы уже говорили, свыше 85% углекислого газа, которое может быть извлечено из крови подкислении ее, освобождается в результате расщепления бикарбонатов (калия в эритроцитах и натрия в плазме).

Связывание углекислого газа и отдача его кровью зависят от его парциального напряжения. Можно построить кривые диссоциации соединений углекислоты в крови, подобные кривым диссоциации оксигемоглобина. Для этого по оси ординат откладывают объемные проценты связанного кровью углекислого газа, а по оси абсцисс- парциальные напряжения углекислого газа. Нижняя кривая на рис. 58 показывает связывание углекислого газа артериальной кровью, гемоглобин которой почти полностью насыщен кислородом. Верхняя кривая показывает связывание кислого газа венозной кровью.

Точка А на нижней кривой на рис. 58 соответствует напряжению кислоты, равному 40 мм рт. ст., т. е. тому напряжению, которое фактически имеется в артериальной крови. При таком напряжении связано 52 об.% СО 2 . Точка V на верхней кривой соответствует напряжению кислого газа 46 мм рт. ст., т. е. фактически имеющемуся в венозной крови. Как видно из кривой, при таком напряжении венозная кровь связывает 58 об.% углекислого газа. Линия AV, соединяющая верхнюю и нижнюю кривую, соответствует тем изменениям способности связывать углекислый газ, которые происходят при превращении артериальной крови в венозную или, наоборот, венозной крови в артериальную.

Венозная кровь благодаря тому, что содержащийся в ней гемоглобин переходит в оксигемоглобин, в капиллярах легких отдает около 6 об.% СО 2 . Если бы в легких гемоглобин не превращался в оксигемоглобин, то, как видно из кривой, венозная кровь при имеющемся в альвеолах парциальном давлении углекислого газа, равном 40 мм рт. ст.. связывала бы 54 об.% СО 2 , следовательно, отдала бы не 6, а только 4об.%. Равным образом, если бы артериальная кровь в капиллярах большого круга не отдавала своего кислорода, т. е. если бы гемоглобин ее оставался насыщенным кислородом, то эта артериальная кровь при парциальпом давлении углекислого газа, имеющемся в капиллярах тканей тела, смогла бы связат не 58 об.% СО 2 , а лишь 55 об.%.

Таким образом, переход гемоглобина в оксигемоглобин в легких и оксигемоглобина в гемоглобин в тканях тела способствует поглощению и отдаче примерно 3-4 об.% углекислого газа из тех 6 об.%, которые поглощает кровь в тканях и отдает в легких. Около 25-30% выделяемого в легких углекислого газа переносится карбогемоглобином.

Из всего сказанного вытекает, что в механизме транспорта и кислорода, и углекислого газа кровью важнейшая роль принадлежит эритроцитам, в которых содержатся гемоглобин и карбоангидраза.

Оглавление темы "Вентиляция легких. Перфузия легких кровью.":
1. Вентиляция легких. Вентиляция кровью легких. Физиологическое мертвое пространство. Альвеолярная вентиляция.
2. Перфузия легких кровью. Влияние гравитации на вентиляцию легких. Влияние гравитации на перфузию легких кровью.
3. Коэффициент вентиляционно-перфузионных отношений в легких. Газообмен в легких.
4. Состав альвеолярного воздуха. Газовый состав альвеолярного воздуха.
5. Напряжение газов в крови капилляров легких. Скорость диффузии кислорода и углекислого газа в легких. Уравнение Фика.
6. Транспорт газов кровью. Транспорт кислорода. Кислородная емкость гемоглобина.
7. Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

9. Роль эритроцитов в транспорте углекислого газа. Эффект Холдена..
10. Регуляция дыхания. Регуляция вентиляции легких.

Углекислый газ является продуктом метаболизма клеток тканей и поэтому переносится кровью от тканей к легким. Углекислый газ выполняет жизненно важную роль в поддержании во внутренних средах организма уровня рН механизмами кислотно-основного равновесия. Поэтому транспорт углекислого газа кровью тесно взаимосвязан с этими механизмами.

В плазме крови небольшое количество углекислого газа находится в растворенном состоянии; при РС02= 40 мм рт. ст. переносится 2,5 мл/100 мл крови углекислого газа, или 5 %. Количество растворенного в плазме углекислого газа в линейной зависимости возрастает от уровня РС02.

В плазме крови углекислый газ реагирует с водой с образованием Н+ и HCO3. Увеличение напряжения углекислого газа в плазме крови вызывает уменьшение величины ее рН. Напряжение углекислого газа в плазме крови может быть изменено функцией внешнего дыхания, а количество ионов водорода или рН - буферными системами крови и HCO3, например путем их выведения через почки с мочой. Величина рН плазмы крови зависит от соотношения концентрации растворенного в ней углекислого газа и ионов бикарбоната. В виде бикарбоната плазмой крови, т. е. в химически связанном состоянии, переносится основное количество углекислого газа - порядка 45 мл/100 мл крови, или до 90 %. Эритроцитами в виде карбаминового соединения с белками гемоглобина транспортируется примерно 2,5 мл/100 мл крови углекислого газа, или 5 %. Транспорт углекислого газа кровью от тканей к легким в указанных формах не связан с явлением насыщения, как при транспорте кислорода, т. е. чем больше образуется углекислого газа, тем большее его количество транспортируется от тканей к легким. Однако между парциальным давлением углекислого газа в крови и количеством переносимого кровью углекислого газа имеется криволинейная зависимость: кривая диссоциации углекислого газа .

Только 3-6% (2-3 мл) СО 42 0 переносится плазмой крови в растворенном состоянии. Остальная часть переносится в виде химических соединений: в виде бикарбонатов, и с Нв в виде карбгемоглобина.

В тканях.

Благодаря градиентам напряжений, СО 2 , образующийся в тканях, переходит из интерстициальной жидкости в плазму крови, а из нее в эритроциты.

Еще в 1870 г. И.М.Сеченов обнаружил соединение СО 2 с гемоглобином. Это соединение возникает за счет связи СО 2 с аминогруппой гемоглобина (карбгемоглобин - 3-4 мл).

1. НbNH2 + CO2 = HbNHCOOH

Попадая в кровь из ткани СО2 вступает в реакцию с водой и образует угольную кислоту:

2. СО2 + Н2О = Н2СО3

В виде угольной кислоты переносится незначительная часть СО2. Эта реакция в плазме медленнее, а в эритроцитах быстрее, так как там имеется фермент-карбоангидраза,которая ускоряет реакцию в 20000 раз. Под влиянием фермента реакция может протекать как в ту, так и в другую сторону. Все зависит от парциального напряжения СО2.

Когда кровь проходит через ткани, где СО2 много, карбоангидраза в эритроцитах способствует образованию Н2СО3. В легких, где СО2 меньше, карбоангидраза способствует распаду Н2СО3. Угольная кислота легко диссоциирует на ионы Н+ и НСО3-.

Между анионами НСО3-, находящимися в эритроцитах и в плазме существует определенное соотношение. Это соотношение не меняется во всех отделах кровеносного русла:

К=НСО3 эритроциты/нсо3 плазмы = 0,84

Если количество ионов увеличивается, они диффундируют из эритроцита в плазму и наоборот. Такое соотношение существует и для ионов СL в эритроцитах и плазме. Выход НСО3- как правило уравновешивается входом С1-.

Анионы НСО3- в большей своей массе (50 мл) связываются с катионами. В плазме с натрием. Таким образом образуется NаНСО3.

3. Na + НСО3 = NаНСО3

А в эритроците с калием. Образуется КНСО3.

4. К + НСО3 = КНСО3

Итак СО2 переносится кровью в виде:

1. карбгемоглобина в эритроцитах,

2. в растворенном виде в плазме и эритроцитах,

3. в виде бикарбоната натрия в плазме и бикарбоната калия в эритроцитах.

4. в виде угольной кислоты.

Эритроцит Плазма Ткани

СО2 ¦ СО2 _¦ СО2

В связи с образованием в эритроцитах Н2СО3 и карбгемоглобина распадается КНвО2, так как угольная кислота обладает более сильными кислыми свойствами.

КHb + Н2СО3 = КНСО3 + ННb

Так в крови тканевых капилляров одновременно с поступлением СО2 внутрь эритроцита и образованием в нем угольной кислоты происходит отдача кислорода оксигемоглобином. Восстановленный гемоглобин представляет собой более слабую кислоту, чем оксигенированный. Поэтому он легче связывается с СО2.

Таким образом, переход СО2 в кровь способствует выходу О2 из крови в ткани. Поэтому, чем больше в тканях образуется СО2, тем больше ткани получают О2.

В легких.

Эритроцит Плазма Легкие

СО2 _¦ СО2 _¦ СО2

Парциальное давление О2 в легких - 100 мм рт.ст., а в крови 40 мм рт.ст., поэтому кислород идет из альвеол в кровь. В эритроцитах он соединяется с восстановленным гемоглобином (оксигемоглобин). Под влиянием оксигемоглобина карбгемоглобин распадается идет в плазму, а затем в альвеолы.

В плазме NaHCO3 диссоциирует. Анионы идут в эритроциты, где произошла диссоциация КС1. Анионы НСО3 образуют КНСО3, а ионы С1 идут в плазму, соединяясь с Nа. Оксигемоглобин вступает в реакцию с КНСО3 и в результате образуется калиевая соль оксигемоглобина и угольная кислота, которая под влиянием карбоангидразы распадается на воду и СО2.

/Н2СО3=СО2+Н2О/. СО2 входит в плазму, а затем в альвеолы.

Таким образом, для того чтобы СО2 покинул кровь необходимо образование оксигемоглобина.

В состоянии покоя в процессе дыхания из организма человека удаляется 230 мл СО2 в минуту. Поскольку углекислый газ является "летучим" ангидридом угольной кислоты, то при его удалении из крови исчезает примерно эквивалентное количество ионов Н+. Поэтому дыхание играет важную роль в поддержании кислотно-щелочного равновесия во внутренней среде организма. Если в результате обменных процессов в крови увеличивается содержание водородных ионов, то благодаря гуморальным механизмам регуляции дыхания, это приводит к увеличению легочной вентиляции /гипервентиляции/.

Транспорт кислорода и углекислого газа в тканях.

Кислород проникает из крови в клетки тканей путем диффузии, обусловленной разностью его парциальных давлений по обе стороны гистогематического барьера. Величина потребления О2 в различных тканях неодинакова и связана с периодической активностью тканей. Наиболее чувствительны к недостатку О2 клетки мозга, особенно коры больших полушарий, где окислительные процессы очень интенсивны. Именно поэтому мероприятия по реанимации человека приносят успех только в том случае, если они начаты не более чем через 4-5 мин после остановки дыхания.

Кислород, поступающий в ткани, используется в клеточных окислительных процессах, которые протекают на клеточном уровне с участием специальных ферментов, расположенных группами в строгой последовательности на внутренней поверхности мембран митохондрий. Более подробно данный процесс изучает курс биохимии. Для нормального хода окислительных обменных процессов в клетках необходимо, чтобы напряжение кислорода в области митохондрий было не меньше 0,1-1 мм рт.ст. Эта величина называется критическим напряжением кислорода в митохондриях. Поскольку единственным резервом О2 в большинстве тканей служит его физически растворенная фракция, снижение поступления О2 из крови приводит к тому, что потребности тканей в О2 перестают удовлетворяться, развивается кислородное голодание и окислительные обменные процессы замедляются. Единственной тканью, в которой имеется депо О2, является мышечная. Роль депо О2 в данной ткани играет белок миоглобин, близкий по строению к гемоглобину и способный обратимо связывать О2.

Соотношение компонентов дыхательного цикла: длительность фаз инспирации и экспирации, глубина дыхания, динамика давления и потоков в воздухоносных путях - характеризует так называемый рисунок или паттерн дыхания. Во время разговора, приема пищи паттерн дыхания меняется, периодически наступает апноэ - задержки дыхания на вдохе или на выдохе, т.е. при осуществлении некоторых рефлексов /например, глотательного, кашлевого, чихательного/, а также определенных видов деятельности, характерных для человека /речи, пения/, характер дыхания должен изменяться, а химический состав артериальной крови должен оставаться постоянным.

Учитывая все эти разнообразные, и часто очень сложные комбинированные запросы, предъявляемый к дыхательной системе вполне понятно, что для ее оптимального функционирования необходимы сложные регуляторные механизмы.

Регуляция дыхания.

Учение о дыхательном центре берет свое начало с Галена, который наблюдал остановку дыхания у животного после отделения у него головного мозга от спинного. Другой ученый- Лори в 1760 году отметил прекращение дыхания после повреждения стволовой части головного мозга.

В начале Х1Х в. ученым Легаллуа, а потом и Флуранс было установлено, что у всех позвоночных животных после удаления головного мозга выше продолговатого дыхательные движения сохраняются, но они неминуемо и причем сразу прекращаются после разрушения продолговатого мозга или после перерезки спинного мозга под продолговатым. Если, не разрушая продолговатый мозг, выключить его функции путем охлаждения, то результатом также явится остановка дыхания.

В связи с этим, французский физиолог Мари Ж.П.Флуранс в Х1Хв. ввел такое понятие, как "жизненный центр", а т.к. укол иглой в область писчего пера мгновенно останавливал дыхательные движения, то этот участок продолговатого мозга Флуранс назвал "жизненным узлом" /1842/.

Миславский в 1885 году доказал, что дыхательный центр локализован в продолговатом мозге и является парным образованием, т.е. двусторонним: левая и правая части. При чем имеется два антагонистических отдела, отвечающих соответственно за инспирацию и экспирацию, т.е. ритмичное чередование вдоха и выдоха, которое обусловлено взаимодействием различных групп нервных клеток.

Дыхательный центр.

Подавляющая масса дыхательных нейронов сосредоточена в двух группах ядер продолговатого мозга: дорсальной и вентральной.

Большая часть нейронов дорсальной группы - инспираторные. Ядра вентральной дыхательной группы содержат наряду с инспираторными и экспираторные нейроны.

Однако, это грубое деление дыхательных нейронов на инспираторноые и экспираторные. Как показали современные исследования, выполненные при помощи микроэлектродной техники, эти два основных типа подразделяются на разные подтипы, различающиеся между собой как по точному началу, так и по тому куда направляется их импульсация.

В настоящее время различают: а) "полные" инспиратоные и экспираторные нейроны, ритмическое возбуждение которых по времени точно совпадает с соответствующей фазой дыхания, б) "ранние" инспираторные и экспираторнве нейроны, дающие короткие серии импульсов до начала вдоха или выдоха, в) "поздние", проявляющие залповую активность уже после начала инспирации или экспирации, а так-же нейроны, получившие название г) экспиратоно-инспираторных, д) инспираторно-экспираторных и е) непрерывных.

Исследования показали, что в варолиевом мосту также имеются скопления нейронов, имеющих отношение к регуляции дыхания. Данные нейроны участвуют в регуляции длительности фаз вдоха и выдоха, т.е. в переключении фаз дыхательного цикла. Скопление нейронов варолиевого моста, участвующее в регуляции дыхания, принято называть пневмотаксическим центром.

Механизм периодической деятельности ДЦ.

На основе многих экспериментальных исследований в настоящее время созданы различные модельные представления о деятельности дыхательного центра. Их можно кратко обобщить.

У новорожденного первый вдох (первый крик) происходит в момент пережатия пуповины. После прекращения связи с матерью, в крови новорожденного быстро увеличивается концентрация в крови СО2 и уменьшается количество О2. Эти изменения активируют центральные и периферические хеморецепторы. Импульсы от данных рецепторов возбуждают нейроны дорзальной группы дыхательного центра (так называемый "центр вдоха"). Аксоны данной (дорзальной) группы нейронов направляются в шейные сегменты спинного мозга и образуют синапсы с мотонейронами диафрагмального ядра.

Эти нейроны возбуждаются и происходит сокращение диафрагмы. Как вы знаете, диафрагма иннервируется парой диафрагмальных нервов (n.n. phrenici). Волокна, образующие эти нервы, являются аксонами нервных клеток, лежащих в передних рогах Ш-V шейных сегментах спинного мозга и выходят из них в составе Ш-V передних спинномозговых корешков. Одновременно с возбуждением мотонейронов диафрагмального ядра сигналы идут к тем инспираторным нейронам, которые возбуждают- мотонейроны спинного мозга, которые иннервируют наружные межреберные и межхрящевые мышцы. Происходит вдох.

Большое значение для возникновения вдоха имеет активация тактильных и температурных рецепторов, повышающих активность ЦНС.

Поэтому если ребенок долго не делает первый вдох, то необходимо побрызгать в лицо водой, похлопать по пяткам, тем самым усиливая импульсы с экстерорецепторов.

Одновременно информация из центра вдоха поступает к дыхательным нейронам варолиевого моста (так называемый "пневмотаксический центр"), откуда импульсы посылаются к экспираторным нейронам (в так называемый "центр выдоха"). Кроме того, экспираторные нейроны получают информацию прямо от "центра вдоха". Возбуждение экспираторных нейронов усиливается под влиянием импульсов, поступающих от рецепторов растяжения легких. Среди экспираторных нейронов имеются тормозные, активация которых приводит к прекращению возбуждения инспираторных нейронов. В результате вдох прекращается. Наступает пассивный выдох.

Если дыхание усиленное, то пассивный выдох не обеспечивает изгнания из легких необходимого количества воздуха. Тогда активированные экспираторные нейроны посылают импульсы к мотонейронам спинного мозга, иннервирующим внутренние косые межреберные и брюшные мышцы. Эти мотонейроны расположены в грудных и поясничных сегментах спинного мозга. Указанные мышцы сокращаются и следовательно обеспечивают более глубокий выдох.

Следуют подчеркнуть значение в переключении фаз вдоха нейронов варолиевого моста, объединенных в пневмотаксический центр.

Дыхательный центр всегда находится под контролем. Дыхательные нейроны продолговатого отдела и моста постоянно получают информацию из вышележащих отделов головного мозга: гипоталамуса, лимбической системы, коры больших полушарий. Они имеют большое значение к приспособлению дыхания к условиям жизнедеятельности.

Факт изменения дыхания при прямом раздражении коры больших полушарий электрическим током был открыт Данилевским (1876). С этого времени многократно высказывались утверждения, что в коре больших полушарий имеются дыхательные центры, специфическим образом изменяющих дыхание.

Роль коры в регуляции дыхания была убедительно показана в исследованиях Асратяна (1938). Он показал, что бескорковые собаки не могут приспособить дыхания к условиям внешней среды. Стоит бескорковым собакам в течении 1-2 мин сделать несколько шагов по комнате, чтобы у них гначалась резко выраженная и длительная одышка.

Во многих исследованиях было показано условнорефлекторное изменение дыхания. Ольнянская (1950) впервые экспериментально установила, что если за несколько секунд до начала мышечной работы давать звуковые сигналы, то после нескольких опытов звуковой сигнал сам по себе вызывал увеличение легочной вентиляции.

Полушария головного мозга осуществляют свое влияние на дыхательный центр как через кортико-бульбарные пути, так и через подкорковые структуры. И.П.Павлов писал о дыхательном центре: "С самого начала думали, что это точка с булавочную головку в продолговатом мозгу. Но теперь он чрезвычайно расползся, поднялся в головной мозг и спустился в спинной и сейчас границы его точно никто не укажет".

Т.о. дыхательном центром называют совокупность взаимосвязанных нейронов ЦНС, обеспечивающих координированную ритмическую деятельность дыхательных мышц и постоянное приспособление внешнего дыхания к изменяющимся условиям внутри организма и в окружающей среде. Условно дыхательный центр можно подразделить на 3 отдела:

1.Низший - включает в себя мотонейроны спинного мозга, иннервирующие дыхательные мышцы.

2.Рабочий- объединяет нейроны продолговатого отдела и моста.

3.Высший - все вышележащие нейроны, влияющие на процесс дыхания.

В венозной крови содержится около 580 мл / л С02. В крови он содержится в трех формах: связанный в виде угольной кислоты и ее солей, связанный с и в растворенном виде.
С02 образуется в тканях при окислительных процессах. В большинстве тканей Рсо2 составляет 50-60 мм рт. ст. (6,7-8 кПа). В крови, поступающей в артериальное конец капилляров, РаCO2 составляет около 40 мм рт. ст. (5,3 кПа). Наличие градиента заставляет С02 диффундировать из тканевой жидкости до капилляров. Чем активнее в тканях осуществляются процессы окисления, тем больше создается СОТ и тем больше Ртк.со2. Интенсивность окисления в различных тканях различна. В венозной крови, оттекающей от ткани, Pvco приближается к 50 мм рт. ст. (6,7 кПа). А в крови, оттекающей от почек, Pvco2 составляет около 43 мм рт. ст. Поэтому в смешанной венозной крови, поступающей в правого предсердия, в состоянии покоя Pvco2 равна 46 мм рт. ст. (6,1 кПа).
С02 растворяется в жидкостях активнее, чем 02. При РCO2 равный 40 мм рт. ст. (5,3 кПа), в 100 мл крови растворено 2,4-2,5 мл СОГ, что составляет примерно 5% от общего количества газа, который транспортируется кровью. Кровь, проходящая через легкие, отдает далеко не весь С02. Большая часть его остается в артериальной крови, поскольку соединения, которые образуются на основе С02, участвуют в поддержании кислотно-основного равновесия крови - одного из параметров гомеостаза.
Химически связанный С02 находится в крови в одной из трех форм:
1) угольная кислота (Н2С03):
2) бикарбонатный ион (НСОИ)
3) карбогемоглобин (ННЬС02).
В форме угольной кислоты переносится только 7% СОГ, бикарбонатных ионов - 70%, карбогемоглобин - 23%.
С02, который проникает в кровь, сначала подвергается гидратации с образованием угольной кислоты: С02 + Н20 Н2СОз.
Эта реакция в плазме крови происходит медленно. В эритроците, куда С02 проникает по градиенту концентрации, благодаря специальному ферменту - карбоангидразы - этот процесс ускоряется примерно в 10 000 раз. Поэтому эта реакция происходит в основном в эритроцитах. Создаваемая здесь угольная кислота быстро диссоциирует на Н + и НСО3-, чему способствует постоянное образование угольной кислоты: Н2С03 Н + + НСО3-.
При накоплении НСО3-в эритроцитах создается его градиент с плазмой. Возможность выхода НСО3-в плазму определяется условий: выход НСО3-должен сопровождаться одновременным выходом катиона или поступлением другого аниона. Мембрана эритроцита хорошо пропускает отрицательные, но плохо - положительные ионы. Чаще образования и выход НСО3-из эритроцитов сопровождается поступлением в клетку СИ "". Это перемещение называют хлоридным сдвигом.
В плазме крови НСО3-"взаимодействуя с катионами, создает соли угольной кислоты. В виде солей угольной кислоты транспортируется около 510 мл / л С02.
Кроме того, СОТ может связываться с белками: частично - с белками плазмы, но главным образом - с гемоглобином эритроцитов. При этом сог взаимодействует с белковой частью гемоглобина - глобина. Гем же остается свободным и сохраняет способность гемоглобина находиться одновременно в связи как с С02, так и 02. Таким образом, одна молекула НЬ может транспортировать оба газа.
В крови альвеолярных капилляров все процессы осуществляются в противоположном направлении. Главная из химических реакций - дегидратация - происходит в эритроцитах при участии той же карбоангидразы: Н + + НСО3 Н2С03 Н20 + С02.
Направление реакции определяется непрерывным выходом С02 с эритроцита в плазму, а из плазмы в альвеолы. В легких в связи с постоянным его выделением происходит реакция диссоциации карбогемоглобин:
ННЬС02 +02 ННЬ02 + С02-> НЬ02 + Н + + С02.
Взаимосвязь транспорта кислорода и диоксида углерода. Выше указывалось, что форма кривой диссоциации оксигемоглобина влияет на содержание С02 в крови. Эта зависимость связана с тем, что дезоксигемоглобином является слабой кислотой, чем оксигемоглобин, и может присоединять более Н + Вследствие этого при уменьшении содержания оксигемоглобина повышается степень диссоциации Н2СОз, а следовательно, увеличивается транспорт С02 кровью. Эта зависимость называется эффектом Холдейна.
Взаимосвязь обмена двуокиси углерода и кислорода ярко обнаруживается в тканях и легких. К тканям поступает оксигенированный кровь. Здесь под влиянием С02 усиливается диссоциация гемоглобина. Поэтому поступление кислорода в ткани способствует ускорению поглощения С02 кровью.
В легких происходят обратные процессы. Поступление 02 снижает сродство крови к С02 и облегчает диффузию С02 в альвеолы. Это, в свою очередь, активизирует ассоциации гемоглобина с кислородом.