Припухлость в очаге воспаления. Патологическая физиология воспаления

Каждое воспаление развивается в ответ на то или иное повреждение ткани.

Поврежденная ткань существенно отличается от здоровой по своим свойствам и химическому составу. В поврежденной ткани развиваются ацидоз, увеличение осмотического давления, увеличение количества воды в ткани, изменение коллоидного состава протоплазмы, освобождение биологически активных веществ (гистамин, брадикинин и др.). Изменение состава и свойств поврежденной ткани является раздражителем, вызывающим изменения микроциркуляции крови в капиллярах, артериолах и венулах. Эти изменения обусловливают сосудистую воспалительную реакцию. Альтерация ткани при воспалении сопровождается рядом изменений ее структуры. Развиваются разные выражения ее дистрофии (вакуольная, белковая, жировая и др.).

Изменения обмена веществ в воспаленной ткани

Повреждение клеток, в ответ на которое возникает воспаление, распространяется на субклеточные структуры - митохондрии, которые являются основными носителями окислительно-восстановительных ферментов. Поэтому окислительные процессы в воспаленной ткани, измеряемые по количеству поглощенного кислорода, обычно менее интенсивны, чем таковые в здоровых, неповрежденных тканях. Кроме того, окислительные процессы в воспаленной ткани вследствие нарушения активности ферментов цикла Кребса в некоторой части не заканчиваются выделением СО 2 , а останавливаются на промежуточных продуктах этого цикла с образованием пировиноградной, альфа-кетоглютаровой, яблочной, янтарной и других кислот. Отсюда возникает понижение дыхательного коэффициента в воспаленной ткани. Снижение окислительных процессов в воспаленной ткани выражается также в снижении ее окислительно-восстановительного потенциала.



Выделяемая при дыхании воспаленной ткани углекислота связывается буферными системами экссудата в меньшем количестве, чем в крови, вследствие истощения буферных систем экссудата за счет связывания указанных органических кислот.

Повреждение других субклеточных структур в воспаленной ткани - лизосом - сопровождается освобождением большого количества гидролитических ферментов (катепсинов), ферментов гликолиза и липолиза.

Источником этих ферментов являются лизосомы нейтрофилов крови, микрофагов и паренхиматозных клеток той ткани, где происходит воспаление. Следствием активации процессов протеолиза, гликолиза и липолиза является освобождение большого количества органических кислот цикла Кребса, жирных кислот, молочной кислоты, полипептидов и аминокислот. Следствием этих процессов является увеличение осмотического давления - гиперосмия. Увеличение осмотического давления происходит в связи с распадом крупных молекул на большое количество мелких (возрастает молекулярная концентрация). Накопление указанных кислых продуктов приводит к увеличению концентрации водородных ионов в воспаленной ткани - гиперионии и ацидозу (рис. 21). Разрушение кислот сопровождается накоплением в воспаленной ткани ионов калия, натрия, хлора, анионов фосфорной кислоты и др.

Боль и жар при воспалении

Раздражение чувствительных нервных окончаний в воспаленной ткани осмотически активными веществами, кислотами, полипептидами (брадикинин), гистамином, ионами калия вызывает характерный признак воспаления - боль. Имеет значение также повышение возбудимости рецепторов в воспаленной ткани под влиянием ионов водорода и калия.

Расширение артериол и возникновение капиллярного пульса в воспаленной ткани (см. ниже) вызывают механическое раздражение чувствительных нервных окончаний в очаге воспаления. Это приводит к характерным пульсирующим болям, хорошо известным при пульпите, панариции и других острых гнойных воспалениях.

Одним из важных признаков воспаления является «жар» - гипертермия, т. е. повышение температуры в воспаленной ткани. В механизме этого явления участвуют следующие процессы. Если воспаление развивается на поверхности тела (например, на коже), активная гиперемия способствует быстрому поступлению более теплой артериальной крови в область тела с относительно низкой температурой (25-30°) и вызывает ее нагревание. Именно эту форму повышения температуры в воспаленной ткани наблюдали древние врачи, когда описывали «жар» как признак воспаления. Повышение температуры в воспаленной ткани наблюдается, однако, и в глубоколежащих внутренних органах, имеющих в норме высокую температуру (например, печень имеет нормальную температуру 40°). В этих случаях повышение температуры вызывается освобождением, тепла в результате повышения обмена веществ.

Расстройства кровообращения и микроциркуляции в воспаленной ткани

Расстройство кровообращения в воспаленной ткани можно наблюдать под микроскопом на прозрачных тканях холоднокровных животных. Классическими объектами являются препараты языка или брыжейки лягушки, брыжейки крысы и морской свинки. Используют также ткани мочевого пузыря и плавательной перепонки лягушки. Подробное описание расстройств кровообращения в этих тканях было сделано Копгеймом и известно в истории изучения воспаления как «опыт Конгейма». Он заключается в следующем: язык или брыжейку лягушки растягивают на пробковом кольце вокруг отверстия на препаровальной доске, которую устанавливают под микроскопом. Фактором, вызывающим воспаление, является часто уже само приготовление препарата. Повреждение ткани можно вызвать также, положив на нее кристаллик поваренной соли. Под малым увеличением легко наблюдать процесс расширения артериол, капилляров и венул, маятникообразные движения крови и стаз. Под большим увеличением отмечаются процессы прилипания лейкоцитов к стенке кровеносных сосудов и эмиграции их в воспаленную ткань (рис. 22).

В настоящее время для изучения расстройств микроциркуляции при воспалении у теплокровных животных вживляют прозрачные пластинки в серозные полости, используют методы микроскопии терминальных сосудов защечного мешка хомячка, мигательной перепонки глаза кролика и пр. Широко используются микрокиносъемки, инъекции сосудов коллоидными и флюоресцирующими красками. Широко применяются методы введения меченных изотопами белков и других веществ.

Расстройства кровообращения в воспаленной ткани развиваются в виде следующих четырех стадий:

  • 1) кратковременное сужение артериол;
  • 2) расширение капилляров, артериол и венул - стадия активной или артериальной гиперемии;
  • 3) застой крово- и лимфообращения в воспаленной ткани - стадия пассивной, или венозной, гиперемии;
  • 4) остановка кровообращения в воспаленной ткани - стаз.

Кратковременное сужение артериол при воспалении вызывается раздражением сосудосуживающих нервов и гладкомышечных клеток артериол повреждающими агентами, которые вызывают воспаление. Сужение артериол является кратковременным потому, что первичное раздражающее действие быстро проходит. Медиатор симпатической иннервации артериол - норадреналин - разрушается моноаминоксидазой, количество которой увеличивается в воспаленной ткани.

Развивается расширение артериол, капилляров и вен, сопровождающееся ускорением тока крови - артериальная гиперемия . Увеличивается как линейная, так и объемная скорость тока крови (см. табл. 16). Вследствие преобладания притока крови из расширенных артериол в воспаленную ткань над ее оттоком повышается давление крови в капиллярах и венах воспаленной ткани.

Стадия артериальной гиперемии характеризуется:

  • 1) расширением артериол, капилляров и венул;
  • 2) ускорением тока крови в сосудах воспаленной ткани;
  • 3) повышением кровяного давления в капиллярах и венулах.

Как видно из табл. 17, сокращение артериол вызывается главным образом нервнорефлекторным путем, а при воспалении - путем аксон-рефлекса. Сокращение прекапилляров и капилляров регулируется гуморальными факторами - медиаторами воспаления.

Расширенные артериолы вокруг воспаленного очага хорошо заметны на коже в виде красной каймы, окружающей очаг воспаления (например, воспаление волосяного мешочка на коже - фурункул).

По мере нарастания воспалительного процесса по венозной системе затрудняется отток крови и артериальная гиперемия постепенно переходит в венозную. Существует несколько факторов, способствующих переходу артериальной гиперемии в венозную в ходе развития воспаления. Факторы эти следующие.

Внутрисосудистые факторы :

  • а) сгущение крови вследствие перехода ее жидкой части в воспаленную ткань (экссудация;)
  • б) набухание форменных элементов и стенки сосуда в кислой среде;
  • в) пристеночное стояние лейкоцитов;
  • г) увеличение свертываемости крови в воспаленной ткани вследствие повреждения сосудистых стенок, кровяных пластинок и различных клеточных элементов.

Повреждение указанных клеток вызывает освобождение и активацию многих факторов свертывающей системы крови (факторы I, II, III, V, VII, X, XII и др.). Ускорение свертывания крови в сосудах воспаленной ткани способствует тромбообразованию и дальнейшему затруднению оттока крови по венозной системе. Активация свертывающих кровь процессов в воспаленной ткани вызывает также затруднение оттока лимфы из очага воспаления вследствие закупорки лимфатических сосудов массами выпавшего фибрина.

Внесосудистые факторы :

  • а) выхождение жидкой части крови в воспаленную ткань (экссудация);
  • б) выхождение форменных элементов крови (эмиграция).

Это создает условия для сдавления стенок вен и лимфатических сосудов и также способствует затруднению оттока крови из воспаленной ткани по венам и лимфатическим сосудам.

Расширение венул в воспаленной ткани - сложный процесс. Он возникает частично, как и расширение капилляров, под влиянием медиаторов воспаления (гистамин, брадикинин). Кроме того, большое значение в механизме расширения мелких и мельчайших вен при воспалении имеет разрушение (деструкция) мелких и мельчайших (эластических, коллагеновых) соединительнотканных волокон и волоконец, удерживающих в здоровой ткани стенки вен и не допускающих их растяжения. Система соединительнотканных волокон удерживается в здоровой ткани специальными ультраструктурными укрепляющими образованиями, называемыми десмосомами. Они стали доступны наблюдению только с помощью электронного микроскопа. Повреждение ткани при воспалении разрушает (расплавляет) этот соединительнотканный скелет вокруг. мельчайших вен и они растягиваются током крови. На значение деструкции соединительнотканного скелета вокруг вен в механизме- их расширения при воспалении указывал еще В. В. Воронин (1902).

Стадия венозной гиперемии при воспалении сопровождается нарастающим замедлением тока крови в сосудах воспаленной ткани вплоть до стаза. Перед остановкой кровообращения в сосудах воспаленной ткани возникают своеобразные, синхронные с ритмом сердечных сокращений изменения направления токов крови. Они называются маятникообразными движениями крови: в момент систолы кровь движется в капиллярах воспаленной ткани в обычном направлении - от артерии к венам, а в момент диастолы направление крови становится обратным - от вен к артериям. Механизм маятникообразных движений крови в воспаленной ткани состоит в том, что во время систолы пульсовая волна проскакивает через расширенные артериолы и создает картину, известную под названием капиллярного пульса. В момент диастолы кровь встречает препятствия к оттоку по венозной системе и отливает обратно вследствие падения кровяного давления в капиллярах и артериолах во время диастолы.

От маятникообразных движений крови в воспаленной ткани следует отличать передвижения крови из одной сосудистой территории в другую под влиянием прорыва тромбов, открытия или закрытия просвета капилляров вследствие их сдавления, регионарного расширения, закупорки агломерированными форменными элементами и других факторов перераспределения крови внутри сосудисто-капиллярной сети воспаленной ткани.

Эти перемещения масс крови из одной сосудистой территории в другую в очаге воспаления чаще возникают в стадий венозной гиперемии и наблюдаются в виде потоков крови по капиллярам, не синхронных с сердечными сокращениями, как при маятникообразных движениях.

Медиаторы воспаления

Расширение капилляров и венул при воспалении возникает вследствие воздействия на них различных продуктов повреждения воспаленной ткани. Они называются медиаторами воспаления. Среди них важнейшими являются: гистамин, серотонин, активные полипептиды (кинины). К последним относятся брадикинин й другие полипептиды. Брадикинин образуется в крови из сывороточного альфа-2-глобулина под влиянием фермента калликреина, активированного фактором Хагемана (плазматический фактор XII свертывания крови). Процесс этот заключается в том, что из альфа-глобулина сначала образуется полипептид из 10 аминокислот, называемый каллидином. После отщепления от него под влиянием аминопептидазы аминокислоты лизина образуется брадикинин.

Источником образования гистамина и серотонина в воспаленной ткани являются гранулы тучных клеток. При повреждении гранулы набухают и выходят из клеток в окружающую среду.

Воспалительный отек

Вокруг очага воспаления нередко развивается отек; между эндотелиальными клетками образуются просветы, куда входят вода и белки.

Примером воспалительного отека является отек мягких тканей лица при воспалении тканей зубной лунки и пульпы зуба (флюс).

В механизме воспалительного отека важную роль играет увеличение проницаемости кровеносных капилляров под влиянием гистамина, брадикинина и других биологически активных веществ.

По имеющимся данным, это влияние на проницаемость реализуется при участии макроэргических соединений (АТФ). Так, выключение с помощью цианидов тканевого дыхания, в ходе которого синтезируется АТФ, ослабляет действие медиаторов проницаемости.

Большую роль в механизме воспалительного отека играет затруднение оттока крови и лимфы из очага воспаленной ткани. Задержка оттока крови и лимфы вызывает выход плазмы крови и лимфы в ткань и развитие отека.

Воспалительный отек имеет некоторое защитное значение. Белки отечной жидкости связывают токсические вещества воспаленной ткани, нейтрализуют токсические продукты распада тканей при воспалении. Это задерживает поступление указанных выше веществ из очага воспаления в общую циркуляцию и предупреждает распространение их по организму.

Экссудация и экссудаты

Выход жидкой части крови в воспаленную ткань называется экссудацией, а вышедшая в ткань жидкость - экссудатом. Увеличение объема воспаленной ткани вследствие выхода в нее плазмы крови и лейкоцитов называют «воспалительным отеком», или «воспалительной опухолью». Экссудаты представляют собой патологические жидкости воспалительного происхождения, нередко инфицированные различными микробами. Эти жидкости могут быть прозрачными, опалесцирующими, окрашенными кровью. Гнойные экссудаты часто имеют желто-зеленую окраску. В зависимости от вида экссудата в нем содержится большее или меньшее количество клеток - лейкоцитов, эритроцитов, эндотелиальных клеток и различных продуктов их повреждения (рис. 23).

Экссудаты следует отличать от отечной и водяночной жидкостей (транссудаты). Ближе всего к транссудату серозный экссудат, однако и он отличается от транссудата по удельному весу, белковому, клеточному составу и рН (табл. 18).

Выход жидкой части крови в воспаленную ткань, или экссудация, представляет собой сложный процесс. Процесс этот определяется прежде всего увеличением кровяного (фильтрационного) давления в венозной части капилляров воспаленной ткани.

Вторым фактором, обусловливающим образование экссудата, является повышение проницаемости капиллярной стенки. Электронномикроскопические исследования показали, что фильтрация воды и растворенных в ней белков плазмы крови через клетки эндотелия происходит через мельчайшие ходы (поры) размером до 25 А. Они возникают и исчезают в зависимости от изменений фильтрационного давления и различных «факторов проницаемости»: α 1 -, α 2 -глобулинов, гистамина, брадикинина и др. Увеличение фильтрационного гидростатического кровяного давления в капиллярах и венулах воспаленной ткани вызывает также расширение межэндотелиальных щелей, размеры которых составляют от 80 до 100 А (рис. 24).

Проницаемость капилляров при воспалении, по мнению некоторых исследователей, увеличивается также вследствие округления эндотелиальных клеток и растягивания межклеточных щелей.

Кроме фильтрации белков плазмы через ультрамикроскопические каналы, экссудация совершается также с помощью активных процессов захватывания и проведения через эндотелиальную стенку мельчайших капель плазмы крови. Процесс этот носит название везикуляции, ультрапиноцитоза, или цитопемпсиса (от греч. pempsis - проведение). В мельчайших пузырьках - везикулах протоплазмы эндотелиальной клетки находятся ферменты (5-нуклеотидаза и др.), что свидетельствует о наличии активного транспортного механизма плазмы крови в воспаленной ткани. Экссудацию с этой точки зрения можно рассматривать как своеобразный микросекреторный процесс. Различные повреждающие агенты, например бактериальные токсины, в зависимости от их природы и концентрации влияют на экссудацию. В зависимости от характера этого влияния в воспаленную ткань поступают белки плазмы крови (фибриноген, глобулины, альбумины) в различных комбинациях и количествах. Отсюда белковый состав различных видов экссудата существенно отличается (см. «Виды экссудатов»).

Старое представление о том, что состав белков экссудата определяется степенью повреждения (разрыхления) сосудистой стенки факторами, вызывающими воспаление, оказалось неверным. Действительно, в фибринозном экссудате, например, содержится много фибриногена и мало глобулинов и альбуминов, хотя известно, что молекула фибриногена значительно больше молекулы альбумина, и если рассматривать эндотелиальную стенку как простой фильтр, то прохождение фибриногена должно было бы гарантировать прохождение белков с меньшей величиной молекулы - глобулинов и альбуминов.

Некоторое значение в механизме образования белкового состава экссудатов имеют также процессы резорбции белков, вышедших в воспаленную ткань белков из кровеносных сосудов. Так, относительно большая резорбция альбуминов в лимфатические сосуды может способствовать увеличению содержания в экссудате глобулинов. Эти механизмы не имеют существенного значения, так как лимфатические сосуды в воспаленной ткани уже в ранних стадиях развития воспаления блокируются осадками выпавшего фибрина, глобулинов, конгломератами лимфоцитов и пр.

Наконец, третьим фактором экссудация является увеличение осмотического и онкотического давления в очаге воспаления, создающее диффузионные и осмотические токи жидкости в воспаленную ткань.

Выход лейкоцитов в воспаленную ткань (эмиграция лейкоцитов)

Выход лейкоцитов в воспаленную ткань начинается в стадии активной гиперемии и достигает максимума в стадии пассивной гиперемии и стаза. Известно, что с наружной стороны эндотелиальная клетка граничит с непрерывной базальной мембраной толщиной 400 - 600 А. Она состоит из волокон, содержащих фибрин в различных стадиях полимеризации. В условиях - нормального капиллярного кровообращения поверхность эндотелия, по современным данным (Копли, 1964), покрыта тончайшей пленкой «цемент-фибрина», к которой примыкает неподвижный слой плазмы, а с ним уже граничит подвижный слой плазмы. «Цемент-фибрин» состоит из:

  • 1) фибрина,
  • 2) фибрината-кальция,
  • 3) продуктов фибринолиза.

Различают три периода выхода лейкоцитов в воспаленную ткань:

  • 1) краевое стояние лейкоцитов у внутренней поверхности эндотелия капилляров воспаленной ткани;
  • 2) выход лейкоцитов через эндотелиальную стенку;
  • 3) движение лейкоцитов в воспалённой ткани.

Процесс краевого стояния длится от нескольких минут до получаса и больше. Выход лейкоцита через эндотелиальную клетку происходит также в течение нескольких минут. Движение лейкоцитов в воспаленной ткани продолжается много часов и суток.

Краевое стояние, как показывает название, заключается в том, что нейтрофильные лейкоциты располагаются у внутреннего края эндотелиальной стенки (рис. 25). При нормальном кровообращении они не соприкасаются с пленкой фибрина, покрывающей эндотелиальные клетки изнутри.

При повреждении капилляров в воспаленной ткани в их просвете появляется клейкое вещество в виде нежелатинированного фибрина. Нити этого фибрина могут перекидываться через просвет капилляра от одной его стенки к другой.

При замедлении кровообращения в капиллярах воспаленной ткани лейкоциты соприкасаются с фибринной пленкой и удерживаются с нитями некоторое время. Первые секунды соприкосновения лейкоцита с фибринной пленкой еще позволяют ему как бы перекатываться по этой поверхности. Следующим фактором удержания лейкоцитов у внутренней поверхности эндотелиальной стенки, по-видимому, являются электростатические силы. Поверхностный заряд (ς-потенциал) лейкоцитов и эндотелиальной клетки, имеет отрицательный знак. Однако в ходе эмиграции лейкоцит теряет свой отрицательный заряд - как бы разряжается, по-видимому за счет действия на него ионов кальция и других положительных ионов. В механизме. прилипания лейкоцитов к эндотелиальной стенке, возможно, участвуют также процессы прямой химической связи через ионы Са. Эти ионы вступают в соединение с карбоксильными группами поверхности лейкоцита и эндотелиальной клетки и образуют так называемые кальциевые мостики.

Находясь у внутренней поверхности эндотелиальной стенки, нейтрофильный лейкоцит выпускает тонкие плазматические отростки, которые протискиваются в межэндотелиальные щели, пробуравливают базальную мембрану капилляра я выходят за пределы кровеносного сосуда в воспаленную ткань. Факторами, стимулирующими передвижение лейкоцита в воспаленную ткань, являются различные вещества, обладающие положительным химиотаксисом: полипептиды, глобулины, бактериальные эндотоксины, соли и пр. Впервые на роль положительного химиотаксиса в механизме эмиграции указал И. И. Мечников.

Следует заметить, что прохождению лейкоцита через эндотелиальные щели в значительной степени содействуют токи жидкости экссудата, которые также частично проходят в этом месте.

Вслед за нейтрофилами в воспаленную ткань выходят моноциты и лимфоциты. Эту последовательность эмиграции различных видов лейкоцитов в воспаленную ткань описал И. И. Мечников; ее называют законом эмиграции лейкоцитов Мечникова. Более поздний выход моно-нуклеарных клеток объясняли их меньшей чувствительностью к химиотаксическим раздражениям. В настоящее время электронномикроскопические исследования показали, что механизм эмиграции моно-нуклеаров отличается от такового у нейтрофилов.

Мононуклеары внедряются в тело эндотелиальной клетки. Вокруг мононуклеаров образуется большая вакуоль; находясь в ней, они проходят через протоплазму эндотелия и выходят по другую его сторону, разрывая базальную мембрану (рис. 26). Процесс этот напоминает своеобразный фагоцитоз, в котором большую активность проявляет поглощаемый объект. В отношении некоторых подвижных микробов, этот процесс был известен еще И. И. Мечникову. Он подробно изучался В. К. Высоковичем и многими другими.

Процесс прохождения мононуклеарных клеток через эндотелий более медленный, чем прохождение нейтрофилов через щели между эндотелиальными клетками. Поэтому они появляются в воспаленной ткани позже и выражают собой как бы второй этап, или вторую очередь лейкоцитов, выходящих в воспаленную ткань (см. рис. 23).

Виды экссудатов

В зависимости от причин, вызывающих воспаление, и особенностей развития воспалительного процесса различают следующие виды экссудатов:

  • 1) серозный,
  • 2) фибринозный,
  • 3) гнойный,
  • 4) геморрагический.

Соответственно наблюдается серозное, фиброзное, гнойное и геморрагическое воспаление. Встречаются и комбинированные виды воспаления: серо-фибринозное, фибринозно-гнойное, гнойно-геморрагическое. Раньше выделяли еще гнилостный, или ихорозный, экссудат. В настоящее время известно, что гнилостным экссудатом может стать любой экссудат после его заражения гнилостными микробами. Поэтому выделение такого экссудата в самостоятельную рубрику вряд ли целесообразно. Экссудаты, содержащие большое количество жировых капелек (хилус), называются хилезными, или хилоидными. Следует заметить, что поступление жировых капелек возможно в экссудат любого указанного выше типа. Оно может быть вызвано локализацией воспалительного процесса в местах скопления крупных лимфатических сосудов в брюшной полости и другими побочными влияниями. Поэтому выделять хилезный тип экссудата как самостоятельный также вряд ли целесообразно. Примером серозного экссудата при воспалении является содержимое пузыря от ожога на коже (ожог II степени). Примером фибринозного экссудата или воспаления служат фибринозные налеты в зеве или гортани при дифтерии. Фибринозный экссудат образуется в толстом кишечнике при дизентерии, в альвеолах легких при крупозном воспалении.

Особенностью химического состава фибринозного экссудата является выход фибриногена и выпадение его в виде фибрина в воспаленной ткани. В дальнейшем выпавший фибрин растворяется за счет активации фибринолитических процессов. Источниками фибринолизина (плазмина) служат как плазма крови, так и сама воспаленная ткань. Увеличение фибринолитической активности плазмы крови в период фибринолизиса при крупозной пневмонии, например, легко видеть, определяя эту активность в экссудате искусственного волдыря, созданного на коже больного. Таким образом, процесс развития фибринозного экссудата в легком как бы отражается в любом другом месте организма больного, где возникает в той или иной форме воспалительный процесс.

Геморрагический экссудат образуется при бурно развивающемся воспалении с выраженным повреждением сосудистой стенки, когда в воспаленную ткань выходят - эритроциты. Геморрагический экссудат наблюдается в оспенных пустулах при так, называемой черной оспе. Он возникает при сибиреязвенном карбункуле, при аллергических воспалениях (феномен Артюса) и других остро развивающихся и бурно протекающих воспалительных процессах.

Гнойный экссудат и гнойное воспаление вызываются гноеродными микробами (стрепто-стафилококками и другими патогенными микробами).

В ходе развития гнойного воспаления гнойный экссудат поступает в воспаленную ткань и лейкоциты пропитывают, инфильтрируют ее, располагаясь в большом количестве вокруг кровеносных сосудов и между собственными клетками воспаленных тканей. Воспаленная ткань в это время обычно плотна на ощупь. Клиницисты определяют эту стадию развития гнойного воспаления как стадию гнойной инфильтрации.

Источником ферментов, вызывающих разрушение (расплавление) воспаленной ткани, являются лейкоциты и клетки, поврежденные в ходе воспалительного процесса. Особенно богаты гидролитическими ферментами зернистые лейкоциты (нейтрофилы). Гранулы нейтрофилов содержат лизосомы, в которых имеются протеазы, катепсин, химотрипсин, щелочная фосфатаза и другие ферменты. При разрушении лейкоцитов, их гранул и лизосом ферменты выходят в ткань и вызывают разрушение ее белковых, белково-липоидных и других составных частей.

Под влиянием ферментов воспаленная ткань становится мягкой, и клиницисты определяют эту стадию ка» стадию гнойного расплавления, или гнойного размягчения. Типичным и хорошо заметным выражением этих стадий развития гнойного воспаления является воспаление околоволосяного мешочка кожи (фурункул) или слияние многих фурункулов в один воспалительный очаг - карбункул и острое разлитое гнойное воспаление; подкожной клетчатки - флегмона. Гнойное воспаление не считается завершенным, «созревшим», пока не произойдет гнойное расплавление ткани. В результате гнойного расплавления тканей образуется продукт, этого расплавления - гной .

Гной обычно представляет собой густую сливкообразную жидкость желто-зеленого цвета, сладковатого вкуса, имеющую специфический запах. При центрифугирований гной разделяется на две части:

  • 1) осадок, состоящий из клеточных элементов,
  • 2) жидкую часть - гнойную сыворотку.

При стоянии гнойная сыворотка иногда свертывается.

Клетки гноя называют гнойными тельцами. Они представляют собой лейкоциты крови (нейтрофилы, лимфоциты, моноциты) в различных стадиях повреждения и распада. Повреждение протоплазмы гнойных телец заметно в виде появления в них большого количества вакуолей, нарушения контуров протоплазмы и стирания границ между гнойным тельцем и окружающей его средой. При специальных окрасках в гнойных тельцах обнаруживается большое количество гликогена и капелек жира. Появление свободного гликогена и жира в гнойных тельцах является следствием нарушения комплексных полисахаридных и белково-липоидных соединений в протоплазме лейкоцитов. Ядра гнойных телец уплотняются (пикноз) и распадаются на части (кариорексис). Наблюдаются также явления разбухания и постепенного растворения ядра или его частей в гнойном тельце (кариолизис). Распад ядер гнойных телец вызывает значительное увеличение в гное количества нуклеопротеидов и нуклеиновых кислот.



Гоппезейлер определил следующий состав гнойных телец сухого вещества (в процентах): нуклеопротеиды - 34, белки - 14, жиры и лецитин - 15, холестерин - 7, церебрин - 5, экстрактивные вещества - 4, соли - 21, из них NaCl - 4,3, Са 3 (РО 4) 2 - 2,2.

Гнойная сыворотка не отличается существенно по составу от плазмы крови (табл. 19).

Содержание сахара в экссудатах вообще и в гнойном экссудате в частности обычно ниже, чем в крови (50-60 мг%), вследствие интенсивных процессов глюколиза. Соответственно в гнойном экссудате значительно больше молочной кислоты (90-120 мг% и выше). Интенсивные протеолитические процессы в гнойном очаге вызывают увеличение содержания полипептидов и аминокислот.

Восстановительные процессы в воспаленной ткани

Роль соединительнотканных клеток . В зависимости от вида воспаления ткань всегда в большей или меньшей степени разрушается. Это разрушение достигает наибольших размеров при гнойном воспалении. После того как гнойник прорывается или вскрывается хирургическим путем, из него вытекает или удаляется гной, а на месте бывшего воспаления остается полость. В дальнейшем эта полость, или дефект ткани; вызванный воспалением, постепенно восполняется за счет размножения местных соединительнотканных клеток - гистиоцитов и фибробластов. Гистиоциты (макрофаги по И. И. Мечникову), а также моноциты крови дольше сохраняются в очаге воспаления, чем нейтрофилы и другие гранулоциты. Более того, продукты распада в воспаленной ткани, вызывающие гибель гранулоцитов, оказывают стимулирующее влияние на фагоцитарную активность макрофагов. Макрофаги поглощают и переваривают продукты распада в воспаленной ткани, оставшиеся после истечения или удаления гноя. Они очищают воспаленную ткань от этих продуктов распада путем внутриклеточного пищеварения. Одновременно среда воспаленной ткани оказывает стимулирующее влияние на размножение этих клеток и метаплазию их в фибробласты и фиброцисты. Они образуют таким путем новую, молодую, богатую кровеносными сосудами грануляционную ткань, которая постепенно превращается в волокнистую ткань, называемую рубцом (рис. 27).

Важно отметить, что разрушение, вызванное воспалением в различных органах и тканях, например в мозгу, миокарде, никогда не приводит к восстановлению дифференцированных паренхиматозных клеток воспаленного органа. На месте бывшего ранее гнойника образуется соединительнотканный рубец. Это часто приводит ко многим вторичным осложнениям, связанным с постепенным рубцовым стягиванием, к «спайкам», деформирующим нормальную структуру органа и нарушающим его функцию. Хорошо известно вредоносное влияние рубцового спаечного процесса после воспаления в брюшине, после ранения нервных стволов, ранения или воспаления сухожилий, суставов и многих других органов.

Классификация воспаления По этиологии воспаления (в зависимости от вида флогогенного агента):

1. Экзогенные факторы:

1. Механические.

2. Физические (лучевая, электрическая энергия, тепло, холод).

3. Химические (кислоты, щелочи).

5. Антигенные (аллергическое воспаление).

1. Эндогенные факторы:

1. Продукты тканевого распада - инфаркт, некроз, кровоизлияние.

2. Тромбоз и эмболия.

3. Продукты нарушенного метаболизма - токсические или биологически активные вещества (например, при уремии токсические вещества, образующиеся в организме, выделяются из крови слизистыми оболочками, кожей, почками и вызывают в этих тканях воспалительную реакцию).

4. Отложение солей или выпадение биологических соединений в виде кристаллов.

5. Нервно-дистрофические процессы.

По участию микроорганизмов:

· Инфекционное (септическое).

· Неинфекционное (асептическое).

По реактивности:

· Гиперэргическое.

· Нормэргическое.

· Гипоэргическое.

По течению:

· Острое.

· Подострое.

· Хроническое.

По преобладанию стадии:

· Альтеративное возникает в паренхиматозных органах (в последнее время отрицается).

· Экссудативное возникает в клетчатке и сосудах (крупозное, серозное, фибринозное, гнойное, гнилостное, геморрагическое, катаральное, смешанное).

· Пролиферативное (продуктивное) возникает в костной ткани.

Стадии воспаления

I. Стадия альтерации (повреждение) бывает:

· первичная,

· вторичная.

II. Стадия экссудации в неё входят:

· сосудистые реакции,

· собственно экссудация,

· маргинация и эмиграция лейкоцитов,

· внесосудистые реакции (хемотаксис и фагоцитоз).

III. Стадия пролиферации (восстановление поврежденных тканей):

Аутохтонность - это свойство воспаления раз начавшись, протекать через все стадии до логического завершения, т.е. включается каскадный механизм, когда предыдущая стадия порождает последующую.

Местные признаки воспаления были описаны римским энциклопедистом Цельсом. Он назвал 4 признака воспаления: краснота (rubor), припухлость (tumor), местный жар (color), боль (dolor). Пятый признак назвал Гален - это нарушение функции - functio laesa.

1. Покраснение связано с развитием артериальной гиперемии и "артериализацией" венозной крови в очаге воспаления.

2. Жар обусловлен увеличенным притоком теплой крови, активацией метаболизма, разобщением процессов биологического окисления.

3. "Опухоль" ("припухлость") возникает вследствие развития экссудации и отека, набухания тканевых элементов, увеличения суммарного диаметра сосудистого русла в очаге воспаления.



4. Боль развивается в результате раздражения нервных окончаний различными биологически активными веществами (гистамин, серотонин, брадикинин и др.), сдвига активной реакции среды в кислую сторону, возникновения дисионии, повышения осмотического давления и механического растяжения или сдавления тканей.

5. Нарушение функции воспаленного органа связано с расстройством его нейроэндокринной регуляции, развитием боли, структурными повреждениями.

Рис. 10.1. Карикатура P. Cull на описание доктором A. A. Willoughby классических местных признаков воспаления.

Общие признаки воспаления

1. Изменение количества лейкоцитов в периферичес­кой крови : лейкоцитоз (развивается при подав­ляющем большинстве воспалительных процессов) или значительно реже лейкопения (например, при воспалении вирусного происхождения). Лейкоцитоз обусловлен активацией лейкопоэза и перераспределени­ем лейкоцитов в кровеносном русле. К числу основных причин его развития относятся стимуляция САР, воздействие некоторых бактериаль­ных токсинов, продуктов тканевого распада, а также ряда медиаторов воспаления (например, ИЛ 1 , фактора индукции моноцитопоэза и др.).

2. Лихорадка развивается под влиянием поступающих из очага воспаления пирогенных факторов, таких как липополисахариды, катионные белки, ИЛ 1 и др.

3. Изменение белкового “профиля” крови выражает­ся в том, что при остром процессе в крови накапливают­ся синтезируемые печенью так называемые “белки ост­рой фазы” (БОФ) воспаления - С-реактивный белок, церулоплазмин, гаптоглобин, компоненты комплемента и др. Для хронического течения воспаления характерно увеличение в крови содержания a- и особенно g-глобулинов.

4. Изменения ферментного состава крови выражаются в увеличении активности трансаминаз (например, аланинтрансаминазы при гепатите; аспартаттрансаминазы при миокардите), гиалуронидазы, тромбокиназы и т.д.



5. Увеличение скорости оседания эритроцитов (СОЭ) из-за снижения отрицательного заряда эритроцитов, по­вышения вязкости крови, агломерации эритроцитов, из­менения белкового спектра крови, подъема температу­ры.

6. Изменения содержания гормонов в крови заключа­ются, как правило, в увеличении концентрации катехоламинов, кортикостероидов.

7. Активация иммунной системе и аллергизация ор­ганизма выражаются в нарастании титра антител, появ­лении сенсибилизированных лимфоцитов в крови, раз­витии местных и общих аллергических реакций.

II. Механизмы первичной и вторичной альтерации. Медиаторы воспаления, их происхождение и основные эффекты. Схема механизма образования в очаге воспаления брадикинина и простагландинов.

Первичная альтерация вызывается непосредственным действием повреждающего агента (например, механическая травма молотком).

Для неё характерны ацидоз повреждения, снижение макроэргов, нарушение работы насосов, накопление недоокисленных продуктов, изменение рН, повышение проницаемости мембранных структур, набухание клетки.

Вторичная альтерация возникает в динамике воспалительного процесса и обусловлена как воздействием флогогенного агента, так и факторов первичной альтерации (в основном нарушениями кровообращения).

Для неё характерно непосредственное воздействие лизосомальных ферментов (гидролазы, фосфолипазы, пептидазы, коллагеназы и т.д.), их повреждающее влияние. Опосредованное действие оказывают медиаторы, система комплемента, кининовая система.

Проявления альтерации:

1. Нарушение биоэнергетических процессов в тканях.

Отвечают на повреждение все элементы поврежденной ткани: микроциркуляторные единицы (артериолы, капилляры, венулы), соединительная ткань (волокнистые структуры и клетки), тучные клетки, нервные клетки.

Нарушение биоэнергетики в этом комплексе проявляются в снижении потребления кислорода тканью, снижении тканевого дыхания . Повреждение митохондрий клеток является важнейшей предпосылкой для этих нарушений.

В тканях преобладает гликолиз . В результате возникает дефицит АТФ, дефицит энергии. Преобладание гликолиза ведет к накоплению недоокисленных продуктов (молочной кислоты), возникает ацидоз .

Развитие ацидоза в свою очередь приводит к нарушению активности ферментных систем , к дезорганизации метаболического процесса.

2. Нарушение транспортных систем в поврежденной ткани.

Это связано с повреждением мембран, недостатком АТФ, необходимой для функционирования калий-натриевого насоса .

Универсальным проявлением повреждения любой ткани всегда будет выход калия из клеток, и задержка в клетках натрия. С задержкой натрия в клетках связано еще одно тяжелое или летальное повреждение - задержка в клетках воды, то есть внутриклеточный отек .

Выход калия ведет к углублению процесса дезорганизации метаболизма, стимулирует процессы образования биологически активных веществ - медиаторов .

3. Повреждение мембран лизосом.

При этом высвобождаются лизосомальные ферменты . Спектр действия лизосомальных ферментов чрезвычайно широк, фактически лизосомальные ферменты могут разрушать любые органические субстраты. Поэтому при их высвобождении наблюдаются летальные повреждения клеток .

Кроме этого лизосомальные ферменты, действуя на субстраты, образуют новые биологические активные вещества, токсические действующие на клетки, усиливающие воспалительную реакцию - это лизосомные флогогенные вещества .

При альтерации возможны метаболические (гипоксия) или структурные изменения (механическая травма), поэтому выделяют два ее патогенетических механизма:

· повреждение биоэнергетики (ишемия, гипоксия),

· повреждение мембран и транспортных систем.

Воспаление (inflamatio) - выработанный в ходе эволюции типовой патологический процесс, в основе которого лежит местная реакция целостного организма на действие повреждающего (флогогенного) раздражителя, проявляющаяся на месте повреждения ткани или органа деструкцией клеток, изменениями кровообращения, повышением сосудистой проницаемости в сочетании с пролиферацией тканей.

Возникновение и развитие воспаления определяется двумя факторами - местным повреждением ткани или органа (альтерация) и реактивностью организма. Все факторы, способные вызвать местное повреждение и развитие воспаления, получили название флогогенных (греч. phlogosis - воспаление).

Этиология воспаления

Флогогенные факторы подразделяются на две основные группы: экзо- и эндогенные. К экзогенным факторам относятся механические, физические, химические, биологические, иммунологический конфликт, возникающий при действии аллергена на сенсибилизированный организм. К эндогенным флогогенам относят отложение солей, тромбоз, эмболию и др. Деление флогогенов на экзо- и эндогенные условное, ибо все так называемые эндогенные флогогены возникают в результате экзогенных влияний.

В зависимости от причины, вызывающей воспаление, последнее подразделяется на инфекционное, неинфекционное (асептическое) и аллергическое.

Признаки воспаления

При анализе развития воспаления можно выделить морфологические, физико-химические и клинические признаки (табл. 1).

Первые четыре клинических признака воспаления были описаны Цельсом (25 г. до н.э.- 45 г. н.э.). Пятый клинический признак добавлен Галеном (130-210 г. н. э.). Важный вклад в изучение физико-химических признаков воспаления внес Шаде; расстройства кровообращения, в том числе микроциркуляции и реологических свойств исследованы в работах Ю. Конгейма и советских ученых В. А. Воронина, А. М. Чернуха, Д. Е. Альперна и их учеников.

  • Альтерация и ее патофизиологические механизмы [показать] . Явления альтерации прогрессируют по мере формирования физико-химических арушений в очаге воспаления.

    Для понимания патогенеза воспаления важно знать, какие структуры органа или ткани повреждаются при действии флогогенных факторов. Четкому представлению об этом способствует концепция А. М. Чернуха о функциональном элементе органа. Согласно этой концепции, функциональный элемент представляет "пространственно ориентированный структурнофункциональный комплекс", в состав которого входят специализированные (например, печеночные, нервные, мышечные) соединительно-тканные клеточные элементы, кровеносное и лимфатическое микроциркуляторное русло, рецепторы, афферентные и эфферентные нервные проводники. Функциональный элемент регулируется нервной, эндокринной системами и гуморальными медиаторами. По современным представлениям регуляция его осущевтвляется преимущественно гуморальным путем.

    По мнению А. М. Чернуха, деятельность функционального элемента обусловлена наличием локальных и циркулирующих медиаторов. Локальные медиаторы образуются тучными клетками и тромбоцитами (гистамин, серотонин). Особое место занимают тромбоксаны и простагландины. Последние содержатся в неактивном состоянии в любой клетке (за исключением эритроцитов) и активируются при ее повреждении. Норадреналин и ацетилхолин, образующиеся в адрен- и холинэргических нервных окончаниях, также относятся к локальным медиаторам. В процессе жизнедеятельности выделяются также биологически активные вещества полиморфноядерными лейкоцитами, лимфоцитами, макрофагами.

    Циркулирующие медиаторы представлены кининами, фибринолитической системой и системой комплемента.

    При действии различных флогогенов на функциональный элемент органа возникают метаболические и структурные нарушения различной степени выраженности - от небольших и обратимых до обширных, приводящих к гибели клеток. Выделяют два патогенетических механизма острого летального повреждения клетки (А. М. Чернух, 1979) - нарушение транспортных систем и биоэнергетики клетки. Полагают, что даже длительное и значительное нарушение синтеза белка, нуклеиновых кислот без повреждения мембран не ведет к гибели клеток.

    Таким образом, при действии флогогенного фактора в первую очередь повышается проницаемость клеточных мембран и ее органелл (митохондрий, лизосом, эндоплазматического ретикулума). Калий выходит из клетки, а натрий и вода поступают в клетку и ее органеллы, следствием чего является их набухание. Набухание митохондрий сопровождается разобщением дыхания и окислительного фосфорилирования и снижением образования макроэргов, которые особенно необходимы для поддержания натрий-калиевого баланса в клетке. Последние изменения усугубляют нарушения электролитного обмена, и отечность клеток и ее органелл нарастает. Это ведет к разрыву мембран клеток, митохондрий, лизосом и поступлению из последних около 40 гидролитических ферментов, способных вызывать расщепление белков, жиров и углеводов. Лизируются мембраны органелл, ядра, что и ведет к фрагментации клетки.

    Большинство исследователей (А. Д. Адо, 1973; А. И. Струков, 1972; и др.) подчеркивают, что под влиянием воспалительного фактора (особенно в период формирования артериальной гиперемии) в пораженном участке повышается потребление кислорода, наблюдается увеличение обмена веществ и последующее его снижение по мере усугубления расстройств кровообращения. С указанных первичных альтеративных изменений и начинается острое воспаление.

  • Физико-химические нарушения в очаге воспаления [показать]

    В настоящее время показано важное значение в развитии воспаления нейтрофилов и макрофагов. Из них лизосомальные ферменты освобождаются не только при разрушении клеток, но и при действии на них С 3а и С 5а компонентов комплемента. При этом клетка не погибает. Медиаторы воспаления, иммунные комплексы в присутствии комплемента так же, как и комплемент, стимулируют процесс дегрануляции лизосом. В то же время ЦАМФ, колхицин, простагландин Н угнетают освобождение лизосомальных ферментов, тормозя, таким образом, дальнейшее развитие воспаления (А. Хорст, 1982).

    Хорошо известно, что в клетке содержится в 30 раз больше калия, чем в межклеточном пространстве, и поэтому при разрушении клеток в очаге воспаления нарастает количество калия и формируется такой физико-химический признак воспаления, как гиперкалиемия. Степень выраженности гиперкалиемии зависит от интенсивности повреждения клеток. Описаны увеличения калия в очаге воспаления в 10-20 раз (Шаде).

    В результате повышения активности гидролитических ферментов, а также возникающей позже вследствие нарушения микроциркуляции гипоксии и преобладания липолиза накапливаются кислоты-молочная, пировиноградная, аминокислоты, жирные кислоты и др. pH в очаге воспаления постепенно уменьшается, и развивается Н-гипериония. Гидролиз белков, жиров и углеводов и рост количества молекул в очаге воспаления обеспечивают увеличение осмотического давления.

    Распад клеточных элементов и возникающее позже повышение проницаемости и выход в очаг воспаления из кровеносного русла белков крови, несмотря на преобладание протеолиза за счет ферментов лизосом клеток, вызывают повышение онкотического давления в очаге воспаления.

    Сразу же после действия флогогенных факторов наряду с вышеописанными физико-химическими изменениями происходит накопление количества биологически активных веществ, оказывающих влияние на сосуды микроциркуляторного русла, клеточные реакции очага воспаления. Все медиаторы воспаления оказывают влияние на диаметр и проницаемость сосудов микроциркуляторного русла, на хемотаксис и фагоцитоз.

    Первыми медиаторами, образующимися при дегрануляции тучных клеток, базофилов и разрушении пластинок, являются гистамин и серотонин. Важным биологическим эффектом их является расширение сосудов, повышение проницаемости капилляров и венул. Гистамин выделяется только в начале воспаления (в течение часа), а затем исчезает.

    При повреждении флогогенными факторами эндотелия сосудов происходит активация XII плазменного фактора свертывания крови (фактора Хагемана) и ряда протеолитических ферментов (особенно плазмина), следствием чего является образование из α 2 -глобулина крови низкомолекулярных соединений, называемых кининами. Их представителями являются каллидин и брадикинин. Это типичные медиаторы воспаления, ибо, действуя на микрососудистое русло функционального элемента, расширяют сосуды, повышают их проницаемость и принимают участие в формировании болевого ощущения. Показано, что в сравнении с гистамином брадикинин в три раза сильнее повышает проницаемость и является самым мощным болевым агентом (А. Хорст, 1982).

    Активация ферментов крови при воспалении носит цепной и даже каскадный характер, при этом каждый последующий этап идет быстрее предыдущего, и реакция протекает по аутокаталитическому варианту. В этой связи приобретают важное значение ингибиторы. Дефицит ингибиторов воспаления может облегчать возникновение и утяжелять течение воспаления. Например, дефицит ингибитора С 1 комплемента или С 1 эстеразы ведет к чрезмерной активации системы комплемента с высвобождением анафилотоксина, гистамина и других медиаторов, повышающих проницаемость кровеносных сосудов (А. Хорст, 1982).

    Хорошо известно, что в любой клетке (кроме эритроцитов) содержатся в неактивном состоянии простагландины. При повреждении клеток происходит их активация. Медиаторную функцию при воспалении выполняют простагландины E 1 и Е 2 . Они образуются из арахидоновой и линолевой кислот под действием фермента простагландинсинтетазы. Простагландины очень нестойкие вещества и при прохождении через легкие теряют 98% своей активности.

    Некоторые простагландины тормозят агрегацию тромбоцитов, выделение из них серотонина, а также стимулируют образование ЦАМФ, что предотвращает дегрануляцию тучных клеток и выделение гистамина. Все эти реакции тормозят развитие воспаления. В плазме крови человека обнаружен естественный ингибитор простагландинов. Под влиянием глюкокортикоидов он активируется и, ингибируя синтез простагландинов, тормозит воспаление (А. Хорст).

    Анализируя образование медиаторов воспаления, исследователи считают, что на самых ранних этапах воспалительной реакции выделяются гистамин и серотонин, несколько позже за счет активации калликреин-кининовой системы образуются каллидин и брадикинин. Выделение простагландинов происходит на более поздних этапах воспаления.

    Наряду с вышеописанными при аллергическом воспалении образуются медленно реагирующее вещество анафилаксии (МРС-А) и вещество Р, вызывающие повышение проницаемости сосудов.

    Лейкоциты очага воспаления выделяют пептиды, получившие название лейкокининов, основным эффектом которых является повышение проницаемости сосудов и снижение системного артериального давления.

    Установлена важная роль комплемента в механизме воспаления. Активация комплемента происходит в очаге воспаления антителами крови и С-реактивным белком, образующимся при воспалении, а также веществами бактериального происхождения (липополисахариды, эндотоксины) и др. Активация системы комплемента представляет ферментативный процесс, вследствие чего на мембранах клеток образуются такие медиаторы воспаления, как С 2a , С 3a , С 5a , обладающие свойствами кининов, хемотаксиса, анафилатоксина; они освобождают лизосомальные ферменты и активируют фагоцитоз, и, в конечном итоге, активированный комплемент приводит к лизису клеток (А. Хорст, 1982).

    Кроме медиаторов, влияющих на процессы микроциркуляции, проницаемость сосудов и формирование боли, в очаге воспаления образуются медиаторы, стимулирующие хемотаксис и фагоцитоз. В последнее время показана исключительно важная роль ПМЯ-лейкоцитов в патогенезе воспаления, особенно в повышении проницаемости, некроза и кровоизлияний, что подтверждается торможением указанных эффектов в условиях лейкопении. Механизм патогенных эффектов связан с образованием в результате их дегрануляции катионных белков или полипептидов, протеаз, кининов, МРС-А.

    Катионные белки вызывают дегрануляцию тучных клеток. При фагоцитозе ПМЯ-лейкоциты выделяют фактор проницаемости. Кислые протеазы или катепсины лизосом ПМЯ-лейкоцитов и коллагеназа гидролизуют белки и преципитаты антиген - антитело с образованием активных полипептидов.

    В результате физико-химических изменений и особенно образования медиаторов воспаления происходят расстройства микроциркуляции и реологических свойств крови в очаге воспаления.

  • Нарушения микроциркуляции и гемореологии в очаге воспаления [показать]

    А. М. Чернух (1979), А. И. Струков (1982) выделяют три стадии расстройств кровообращения:

    • 1 стадия - кратковременный спазм и последующее формирование артериальной гиперемии;
    • 2 стадия - венозная гиперемия;
    • 3 стадия - стаз крови.

    Флогогенные факторы вызывают раздражение рецепторов функционального элемента и рефлекторное сокращение артериол и прекапиллярных сфинктеров, обеспечивая кратковременную ишемию (в течение 5-10 с до 5 мин.). Развитие ее обусловлено также действием катехоламинов и, вероятно, серотонина, выделяющегося из агрегированных в микрососудах тромбоцитов. Однако образующиеся очень быстро гистамин, кинины, простагландины и другие медиаторы воспаления расширяют артерии и артериолы и обеспечивают формирование артериальной гиперемии. Важная роль в развитии артериальной гиперемии и ее поддержании принадлежит изменению чувствительности α-адренорецепторов сосудов. По данным А. Н. Гордиенко (1955), Zweifach (1955), прекапиллярные сфинктеры сокращаются на аппликацию адреналина 1:25000. При воспалении же в связи с ацидозом, дизионией сосудосуживающий эффект сфинктеров снижается. Такое снижение реакции на адреналин и симпатические влияния способствует расширению артериол и прекапиллярных сфинктеров и формированию артериальной гиперемии воспалительного происхождения. Воспалительная гиперемия может развиваться также при раздражении рецепторов по типу аксон-рефлекса.

    Артериальная гиперемия характеризуется увеличением линейной и объемной скорости кровотока, количества функционирующих капилляров. Возрастает гидростатическое давление. Так, по данным Цвайфаха, кровяное давление увеличивается в мелких артериях на 35, артериолах - на 25, капиллярах - на 7, венулах - на 9 см водного столба. Увеличение притока крови, богатой кислородом, способствует усилению окислительно-восстановительных процессов и теплообразования. Поэтому в стадии артериальной гиперемии субъективно и объективно регистрируется повышение температуры в очаге воспаления.

    Медиаторы воспаления повышают проницаемость сосудов и выход в очаг воспаления воды и белков различного молекулярного веса в следующей последовательности: альбумины, глобулины, фибриноген. Этот процесс ведет к сгущению (гемоконцентрации), увеличению динамической вязкости и, следовательно, ухудшению текучести крови.

    В результате скопления жидкости, а позже и форменных элементов в ткани сдавливаются лимфатические и кровеносные сосуды, что затрудняет отток крови. Кроме того, в сосудах развивается агрегация форменных элементов, склеивание их и формирование сладжей. Параллельно с этим активируется свертывающая система крови с образованием тромбов и эмболов. Все эти изменения способствуют дальнейшему нарастанию динамической вязкости крови и ухудшению реологических свойств ее.

    Причиной образования микротромбов и кровоизлияний часто является прямое повреждение стенки сосудов, а также действие медиаторов (лизосомальных ферментов, трипсина, брадикинина, каллидина). Кровоизлияния в значительной степени являются следствием повреждения сосудов протеолитическими ферментами, особенно ПМЯ-лейкоцитов. Эритроциты покидают сосуды через межэндотелиальные пространства.

    В стадии венозной гиперемии нарушается отток крови из очага воспаления, следствием чего является уменьшение линейной и объемной скорости кровотока, дальнейшее нарастание гидростатического давления, развитие толчкообразного и маятникообразного движения крови, что связано с повышением сопротивления току крови. В конечном итоге происходит остановка (стаз) движения крови. Стаз первоначально регистрируется в отдельных капиллярах и венулах, в последующем он охватывает все больше сосудов.

    Позже всего стаз развивается в артериолах. В зависимости от тяжести воспаления стаз может быть кратковременным или сохраняться в течение часов и дней.

  • Экссудация [показать]

    Типы и характеристика эксудатов

    В зависимости от состава (качества и количества белков, форменных элементов) выделяют серозный, фибринозный, геморрагический, гнойный эксудат. Если каждый из перечисленных эксудатов инфицируется гнилостными микроорганизмами, то он превращается в гнилостный эксудат.

    • Серозный эксудат [показать]

      Серозный эксудат нередко образуется при воспалении серозных полостей организма (плевральной, брюшинной, оболочек мозга, яичек и т. д.), при котором нарушения проницаемости и эмиграция лейкоцитов проявляются нерезко. Это также наблюдается при аллергическом воспалении, укусах насекомых, при ожогах волдырной стадии и др. Удельный вес такого эксудата больше, чем 1,018, обнаруживаются белки типа альбуминов и глобулинов, pH снижается только до 7,2, количество лейкоцитов около 3000 в 1 мкл. Осмотическое давление, определяемое по точке замерзания, повышается (АС 0,6-1°). Если при воспалении накапливается много слизи, говорят о катаральном воспалении.

    • Фибринозный эксудат [показать]

      Образуется при дифтерии, скарлатине, дизентерии, когда проницаемость сосудов повышается более резко и в эксудате накапливается крупномолекулярный белок крови - фибриноген. В очаге воспаления от может свертываться с образованием фибриновой пленки.

    • Геморрагический эксудат [показать]

      Возникает при резком повреждении сосудистой стенки, что ведет к выходу из сосудов эритроцитов и образованию кровоизлияний. Геморрагический эксудат наблюдается при чуме, сибирской язве, феномене Шварцмана, Артюса.

    • Гнойное воспаление [показать]

      Возникает при обширных воспалительных процессах, особенно вызванных стрепто-, стафилококками и другими биологическими флогогенами. Образующиеся при этом хемотаксические вещества способствуют выходу большого количества лейкоцитов и лейкоцитарной инфильтрации. В результате резкого снижения pH многие полиморфноядерные лейкоциты гибнут, а при pH 6,7 гибнут все виды лейкоцитов. Из лизосом выделяется большое количество гидролитических ферментов, которые и вызывают лизис лейкоцитов, расщепление белков, жиров и углеводов. Возникает гнойное расплавление и образование гноя. В гное содержатся преимущественно нейтрофильные лейкоциты на различных стадиях разрушения. Они и представляют собой так называемые гнойные тельца. Гнойное воспаление характерно для фурункула, карбункула, флегмоны, абсцесса, эмпиемы. Гнойному воспалению могут подвергаться и слизистые оболочки. В гное нередко содержатся колонии микроорганизмов, грибки.

    Механизмы эксудации

    Эксудация - это выход жидкой части крови в очаг воспаления. Установлены две фазы повышения проницаемости (Г. 3. Мовэт, 1975).

    1. Мгновенно нарастающая проницаемость сосудов, обусловленная действием вазоактивных медиаторов.
    2. Поздняя (замедленная и продолжительная) сосудистая проницаемость (в течение часов), связанная с преимущественным действием ПМЯ-лейкоцитов.

    Гранулы их содержат ряд биологически активных веществ, которые освобождаются при дегрануляции и фагоцитозе. Процесс накопления ПМЯ-лейкоцитов и дегрануляции их длителен. Вот почему они и обеспечивают замедленную фазу повышенной сосудистой проницаемости. Поздняя фаза подавляется на фоне экспериментально воспроизведенной лейкопении.

    Эксудация в очаге воспаления обусловлена как прямым повреждением сосудов микроциркуляторного русла, так и эффектами медиаторов воспаления.

    Эксудация осуществляется тремя путями; через межэндотелиальные щели, размер которых увеличивается за счет сокращения микрофиорилл эндотелиальных клеток, через тело эндотелиальных клеток по специализированным каналам, а также микропинопитозом в виде активного проведения мельчайших капель через тело клетки. Чтобы подчеркнуть именно процесс проведения жидкости, предложен термин цитопемсис (клеточное всасывание или проведение, передача с помощью клеток). До настоящего времени остается не совсем ясным выход воды и растворов через базальную мембрану капилляров.

    По механизму развития эксудация обусловлена прежде всего эффектами медиаторов воспаления (гистамин, серотонин, кинины, простагландины и др.), а также ПМЯ-лейкоцитами. Важное значение имеет и увеличение гидростатического давления. Например, при застойных явлениях проницаемость повышается всего лишь на 2-4%, но в условиях воспаления сочетание с повышением проницаемости, вызванной медиаторами, является существенным фактором эксудации.

    На более поздних этапах воспаления эксудация обусловлена увеличением осмотического и онкотического давления в тканях.

    При эксудации вода, соли, мелкие молекулы (мол. масса 1000) свободно проходят через поры эндотелиальных клеток. Макромолекулы транспортируются в виде пиноцитозных пузырьков эндотелия или через межэндотелиальные щели.

    Важное значение в развитии воспалительного отека принадлежит лимфатическому микроциркуляторному руслу. Имеются непостоянные связи внесосудистых тканевых каналов интерстиция с терминальными лимфатическими капиллярами. При наполнении каналов межтканевой жидкостью они как бы опорожняются в межэдотелиальные отверстия, спадаются и отделяются от капилляров, а межэндотелиальные щели закрываются. Считают (А. И. Струков, 1983), что благодаря этому регулируется фильтрация, реабсорбция тканевой жидкости, белков, солей и поддерживается гомеостаз. При воспалении повреждается эндотелий первичных лимфатических капилляров. Это ведет к отхождению внесосудистых тканевых каналов от межэндотелиальных щелей, лимфа выходит в ткань. Таким образом, в раннем периоде формируется и остается выраженным до конца воспаления лимфатический отек.

    Начиная со стадии артериальной гиперемии и особенно в стадии венозной гиперемии и стаза лейкоциты покидают сосудистое русло. Выход лейкоцитов из сосудов в очаг воспаления называется эмиграцией лейкоцитов.

  • Эмиграция лейкоцитов [показать]

    Пути и механизмы эмиграции лейкоцитов . Еще И. И. Мечников, изучая последовательность выхода лейкоцитов, отметил, что первыми в очаге воспаления появляются полиморфноядерные лейкоциты, затем моно- и лимфоциты. Выходу лейкоцитов предшествуют пристеночное движение и пристеночное стояние лейкоцитов, наблюдаемые особенно отчетливо в стадии венозной гиперемии. Это явление объясняют снижением отрицательного заряда лейкоцитов, а также пристеночным микросвертыванием, в результате чего микрофибриллы тормозят движение лейкоцитов и способствуют их пристеночному стоянию.

    По современным данным, лейкоциты эмигрируют двумя путями: полиморфноядерные лейкоциты выходят через межэндотелиальные щели, а мононуклеары (моно- и лимфоциты) через тело эндотелиальных клеток. Последний процесс более длителен и в какой-то мере объясняет, почему мононуклеары позже появляются в воспаленном участке. Выход ПМЯ-лейкоцита продолжается 2-8 минут. Процесс эмиграции ПМЯ-лейкоцитов достигает наибольшей интенсивности через 6 часов (Г. 3. Мовэт, 1975; Е. Р. Кларк, Е. Л. Кларк, 1935). Мононуклеары начинают эмигрировать через 6 часов с максимумом их выхода через 24 часа после повреждения. Соотношение между полиморфноядерными лейкоцитами и мононуклеарами в динамике воспаления представлено на рисунке 1;

    Определенное влияние на последовательность эмиграции оказывает и pH очага воспаления. По данным Менкина, при pH, равной 7,4-7,2, накапливаются полиморфноядерные лейкоциты, при pH 7,0-6,8 - преимущественно моно- и лимфоциты. При pH 6,7 в очаге воспаления гибнут все лейкоциты с образованием гноя.

    Важное значение в эмиграции лейкоцитов принадлежит хемотаксису, т. е. наличию химической чувствительности, обеспечивающей направленное движение лейкоцита к чужеродному предмету или химическому веществу (положительный хемотаксис) или, наоборот, удаление от них (отрицательный хемотаксис) (И. И. Мечников). Формирование хемотаксических факторов происходит при взаимодействии антиген - антитело с образованием термолябильных компонентов комплемента С 3a и C 5a . Применение ингибиторов комплемента предотвращает повреждение сосудов и выход лейкоцитов. Хемотаксис стимулируется стрептокиназой. При этом в результате расщепления С 3a и C 5a образуются хемотаксические факторы молекулярной массой 6000 и 8500, а при активации С 5 , С 6 , С 7 - хемотаксические вещества с еще большим молекулярным весом.

    Хемотаксины появляются также при инфекционном воспалении за счет действия эндотоксинов, при механическом повреждении ткани. В этих случаях отмечено накопление хемотаксического фактора с молекулярным весом около 14000. Хемотаксины образуются также лимфоцитами и в результате распада белков, особенно γ-глобулинов. По мнению А. М. Чернуха (1979), хемотаксис может стимулироваться продуктами метаболизма тканей, бактерий, вирусов, а также рядом факторов плазмы крови (особенно ферментов калликреина и активатора плазминогена).

    Определенное значение в эмиграции лейкоцитов принадлежит изменению их заряда. По данным А. Д. Адо (1961), в крови лейкоциты имеют заряд 14,6 милливольт, а в очаге воспаления всего лишь 7,2 милливольт. Проникшие через эндотелий лейкоциты некоторое время задерживаются перед базальной мембраной и под действием, вероятно, ферментов, особенно коллагеназы, расщепляют участки базальной мембраны и попадают в очаг воспаления, накапливаясь там (А. И. Струков, 1982).

    Таким образом, в результате выхода воды, белков и форменных элементов образуется воспалительный эксудат. Эксудат является следствием только лишь воспалительного процесса.

  • Фагоцитоз в очаге воспаления [показать]

    Важным проявлением воспаления является фагоцитоз, описанный И. И. Мечниковым в 1882 году. Фагоцитоз (от греч. phagein - поглощать) заключается в поглощении и переваривании бактерий, продуктов повреждения и распада клеток. Фагоцитарную активность проявляют микрофаги (нейтрофильные лейкоциты) и макрофаги.

    Выделяют четыре стадии фагоцитоза:

    • 1-я стадия - приближение фагоцита к инородному предмету. Основу этого движения составляют явления хемотаксиса лейкоцитов. Направленному движению лейкоцитов способствует иммуно-1 адгеренция, т. е. образование комплекса антиген - антитело. В качестве антигенов в очаге воспаления выступают бактерии и вирусы с одновременной активацией компломепта С 3а и С5а и образованием хемотаксинов. Как уже говорилось, хемотаксические факторы возникают при повреждении другими флогогенными факторами.
    • 2-я стадия - прилипание фагоцита к объекту. Ему предшествует опсонизация. т. е. покрытие иммуноглобулинами М и G, и фрагментами комплемента С3, С5, С6, С7 бактерий и поврежденных частиц клеток, благодаря чему они приобретают способность прилипать к фагоциту. Процесс прилипания сопровождается усилением метаболической активности лейкоцитов, его аэробного и анаэробного гликолиза и повышением в 2-3 раза поглощения кислорода.
    • 3-я стадия - поглощение фагоцитируемого объекта путем инвагинации фагоцита и образования вакуоли - фагосомы. Образованию фагосомы предшествует повышение метаболизма с активацией НАДН-зависимой оксидазы, что обеспечивает синтез перекиси водорода. В результате дегрануляции лейкоцитов выделяются лизосомальные ферменты и бактерицидные белки. Перекись водорода распадается под влиянием пероксидаз с образованием активной молекулы кислорода, которая взаимодействует с компонентами мембраны клетки, разрушая ее путем перекисного окисления.
    • 4-я стадия - внутриклеточное расщепление и переваривание фагоцитрированных микробов и остатков поврежденных клеток (табл. 2).
    Таблица 2. Ферменты, содержащиеся в гранулах "профессиональных фагоцитов"
    (по А. М. Чернуху, 1979)
    Название фермента ПМЯ-лейкоцит Мононуклеарный фагоцит
    Протеазы:
    катепсины + +
    гистоназа +
    лейкопротеаза +
    коллагеназа + +
    эластаза + +
    Карбогидразы:
    лизоцим + +
    β-глюкуронидаза + +
    гиалуронидаза +
    Липазы:
    кислая липаза + +
    фосфолипаза + +
    РНК-аза + +
    ДНК-аза + +
    кислая фосфотаза + +
    щелочная фосфотаза + +
    Неферменты:
    катионные белки + -
    лейкоцитарный пироген + -
    мукополисахариды + -

    Перевариванию подвергаются только погибшие микробы и клетки. Фагоцитоз осуществляется с помощью гидролитических ферментов (протеазы, карбогидразы, липазы и др.). Наряду с перевариванием инородных объектов и поврежденных клеток под влиянием гидролитических ферментов, выделившихся в фагосому, гибнут и сами фагоциты, являясь источником образования гноя, а продукты разрушения стимулируют процессы пролиферации в очаге воспаления.

    В зависимости от локализации очага воспаления возможно участие различных макрофагов. В соединительной ткани это гистиоциты, в печени - клетки Купфера, в легких - альвеолярные фагоциты, в лимфатических узлах и селезенке - свободные и частично фиксированные макрофаги, в серозных полостях - перитонеальные и плевральные макрофаги, в костной ткани - остеокласты, нервной системе - микроглиальные клетки. Все перечисленные макрофаги являются производными стволовой кроветворной клетки монобластного ряда и обладают высокой фагоцитарной активностью. Считают, что макрофаги воспалительного эксудата накапливаются за счет эмиграции моноцитов (А. И. Струков, 1982). Макрофаги осуществляют фагоцитоз аналогично нейтрофилам и обладают способностью секретировать в очаг воспаления лизосомальные ферменты, плазмин, коллагеназу, эластазу, лизоцим, белки комплемента, интерферон и др. Показано, что моноциты имеют на своей мембране рецепторы для IgG и комплемента, которые после фагоцитоза исчезают и снова появляются через несколько часов. Мембрана моноцитов способна связываться также и с цитофильными антителами (IgE). Макрофагам принадлежит важнейшая роль в очищении очага воспаления от погибших клеток и разрушении веществ антигенной природы, а также в формировании иммунного ответа.

    Исключительное значение фагоцитоза в патогенезе воспаления выявляется особенно отчетливо при его нарушении, ибо даже cлабовирулентные микроорганизмы могут вызывать сепсис. Фагоцитоз в этом случае носит характер незавершенного, и микробы, поступая с лейкоцитами из очага воспаления в различные органы, обеспечивают явление сепсиса. При наследственной энзимопатии, обусловленной рецессивным геном, сцепленным с Х-хромосомой, отмечено снижение активности НАДН-зависимой оксидазы и, как, следствие, дефицит образования перекиси водорода (Н 2 О 2) и, в конечном итоге, не может образовываться активная молекула кислорода. Мембрана бактериальной клетки не повреждается. Фагоцитоз остается незавершенным. Это и ведет к хроническому воспалению, особенно в легких, к деструкции ткани и гибели организма. Нарушения фагоцитоза обнаружены при циррозе печени, гломерулонефрите, что обусловлено активацией ингибиторов хемотаксиса недостаточной эмиграцией лейкоцитов, они могут явиться причиной хронического воспаления или даже сепсиса. Торможение фагоцитоза обнаруживается при сахарном диабете, гиперкортицизме, патологии щитовидной железы.

  • Пролиферация в очаге воспаления [показать]

    В результате эмиграции лейкоциты накапливаются в очаге воспаления, и это явление получило название воспалительного инфильтрата. Лейкоциты выполняют фагоцитарную функцию в течение нескольких часов, а затем погибают. Вначале гибнут нейтрофилы, а позже и макрофаги, но последние до гибели обеспечивают очищение за счет фагоцитоза очага воспаления от микроорганизмов. При гибели клетки выделяют вещества, способные стимулировать пролиферацию клеток. Они получили название трефонов. Под влиянием трефонов начинают размножаться фибробласты, эндотелиальные клетки, которые и образуют так называемую грануляционную ткань, исходом которой и является формирование соединительно-тканного рубца. Тем более что многие специализированные клетки (печеночные, мышечные, нервные) обычно не регенерируют, и поэтому одним из наиболее частых исходов воспаления может быть замещение поврежденных при воспалении клеток зрелой волокнистой соединительной тканью, а в нервной системе глиальными клетками. Таким образом, одним из исходов воспаления является образование рубца.

    Если альтернативные изменения при действии флогогенного фактора незначительные, то воспалительный процесс может завершиться полным восстановлением морфологии и функции органа. Если воспаление (например, легких, печени, мозга, почек) сопровождается нарушениями в организме, несовместимыми с жизнью, то это завершается его гибелью.

Общий патогенез воспаления представлен на схеме 18.

Происхождение клинических признаков воспаления

  • Покраснение (rubor)- обусловлено развитием артериальной гиперемии, увеличением притока крови с повышенным содержанием кислорода, увеличением количества функционирующих капилляров.
  • Припухлость (tumor) - объясняется артериальной и венозной) гиперемией, эксудацией, эмиграцией лейкоцитов.
  • Жар (calor) - обусловлен усилением обмена веществ на ранних стадиях воспаления, притоком крови с более высокой температурой (особенно при воспалении кожи и слизистых, усилением теплоотдачи за счет гиперемии).
  • Боль (dolor) - вызывается раздражением рецепторов в очаге воспаления медиаторами воспаления (особенно кининами и простагландинами, изменением pH, осмотического давления, дизионией, механическим раздражением рецепторов в результате припухлости в очаге воспаления).
  • Нарушение функции (functio laesa). При воспалении отмечены повреждение клеток, нарушение обмена веществ, кровообращения, накопление медиаторов воспаления, изменения электролитного баланса, pH, осмотического и онкотического давления, процессы пролиферации. В этих условиях осуществление функции компонентами функционального элемента, а следовательно, и органа невозможно.

Экспериментальные модели воспаления

В условиях эксперимента можно воспроизвести воспаление при действии любого флогогенного фактора.

  • Инфекционное воспаление моделируется подкожным, внутримышечным, внутриполостным введением живых или автоклавированных кишечной, брюшнотифозной палочек, стрепто-, стафилококка и других микроорганизмов.
  • Асептическое воспаление вызывается введением подкожно или внутримышечно скипидара, бензина, керосина и других веществ.
  • Аллергическое (иммунное) воспаление моделируется более сложно. Животное (кролик, собака, морская свинка) предварительно сенсибилизируется трехкратным введением (подкожно, внутривенно, подкожно) с интервалом в 24 часа сыворотки (бычьей, лошадиной) или двукратно подкожным введением БЦЖ. Через 2-3 недели за счет иммунологических сдвигов наступает максимальная выраженность сенсибилизации. Введение в это время аллергена подкожно, внутримышечно или в любой орган способствует иммунологическому конфликту, что и является причиной аллергического воспаления.

    Для моделирования аутоаллергических воспалительных процессов экспериментальным животным вводят экстракты органов (сердце, почки, мозг) в чистом виде или с наполнителем Фреунда. Именно таким образом происходит моделирование поражений сердца, мозга, почек и других органов.

Реактивность и воспаление

Возникновение и развитие воспаления, а также его исход определяются реактивностью организма. В частности, важное значение в формировании воспаления имеет функциональное состояние нервной системы. В состоянии сна, зимней спячки животных воспаление, хотя и развивается, но менее выражено, ибо ослабляются сосудистые реакции, эксудация и эмиграция лейкоцитов. Описана возможность воспроизведения воспаления у людей с явлениями покраснения и припухлости путем гипнотического внушения. Роль симпатического и парасимпатического отделов вегетативной нервной системы в патогенезе воспаления показана в работах Д. Е. Альперна. Десимпатизация вызывалась у собак справа в поясничной области. Спустя десять дней моделировали воспаление на внутренней стороне обоих бедер путем прикладывания к коже на три минуты плоскодонных пробирок одинакового диаметра с кипятком. На стороне десимпатизации воспаление было выражено сильнее, но меньше было некротических изменений, а процесс заживления наступал раньше (на 4-5 дней) по сравнению с контрольным участком. Аналогичный эффект наблюдался при введении ацетилхолина. При раздражении симпатических нервов воспаление протекает вяло и более длительно. Установлено также торможение воспаления при введении адреналина и симпатомиметика - тетра-гидро-β-нафтил амина.

Эндокринная система, являясь важным механизмом реактивности, также существенно влияет на воспаление. В клубочковой зоне коры надпочечников образуется минералокортикоид альдостерон, который при избыточной секреции изменяет водно-электролитный баланс организма, усиливает и ускоряет течение воспаления, что проявляется в повышении проницаемости сосудов, эксудации, эмиграции и фагоцитозе, пролиферации клеток. Избыточное образование тироксина и трийодтиронина в щитовидной железе и связанное с этим усиление окислительно-восстановительных реакций ускоряет воспаление. Таким образом, альдостерон и гормоны щитовидной железы при их избыточном образовании обладают провоспалительным действием. Наоборот, избыточное введение извне или гиперсекреция в организме глюкокортикоидов оказывает противовоспалительный эффект, ибо эти вещества уменьшают проницаемость мембран, тормозят эксудацию и эмиграцию лейкоцитов, фагоцитоз, образование медиаторов воспаления, угнетают иммунитет в результате торможения митозов, в том числе лимфоидных клеток, и приводят к инволюции тимико-лимфатической системы. Инсулин сам по себе не оказывает существенного влияния на воспаление, но в условиях его дефицита (например, при сахарном диабете) активируются контринсулярные гормоны, особенно глюкокортикоиды. При этом ослабляется иммунитет и часто возникают грибковые и инфекционные заболевания, особенно фурункулез, который нередко заканчивается летальным исходом. Глюкокортикоиды при этом также тормозят пролиферативные процессы в очаге воспаления.

Недостаточная эффективность иммунологических механизмов у детей и в старческом возрасте, угнетение иммунитета иммунодепрессантами, голодание являются причиной недостаточности воспаления, в результате чего инфекционные процессы протекают атипично или, как в детском возрасте, заканчиваются формированием древней формы инфекционного процесса - сепсисом. Поэтому образование любого гнойного очага на коже ребенка требует немедленного лечения (Н. Т. Шутова, Е. Д. Черникова, 1975).

Общие реакции при воспалении

В зависимости от интенсивности и локализации воспаление может сопровождаться общими реакциями в виде нарушений нервной и эндокринной систем, в том числе симпато-адреналовой и гипоталамо-гипофизарно-надпочечниковой системы, развитием лихорадки, лейкоцитоза, изменением обмена веществ в организме. Обычно при воспалении в результате участия макрофагов в резорбции чужеродных антигенов стимулируется иммунитет. В конечном итоге возможно нарушение функций различных органов и систем организма.

Биологическое значение воспаления

С общебиологической точки зрения воспалительная реакция выработана в ходе эволюции и поэтому является защитно-приспособительной. Уже то, что на смену древней форме инфекционного процесса - сепсису сформировался местный инфекционный процесс в виде воспаления, свидетельствует о защитной роли очага воспаления. Фиксация в очаге воспаления биологических возбудителей происходит вследствие расстройств крово- и лимфообращения в результате фагоцитоза, иммунологических реакций, а также бактерицидного действия эксудата и ферментов на микроорганизмы, которые погибают и резорбируются. Кроме этого, необходимо учесть резко повышенную проницаемость сосудов, в результате чего микроорганизмы и чужеродные вещества могут интенсивно выделяться в очаг воспаления и подвергаться там уничтожению и резорбции. Наконец, защитное значение очага воспаления проявляется и в том, что за счет происходящих в очаге воспаления прилиферации и регенерации осуществляется восстановление функционального элемента, хотя бы даже за счет рубца. В то же время альтерация в очаге воспаления ведет к нарушению специализированных клеточных элементов, которые обычно не регенерируют и замещаются фиброзной тканью с нарушениями функций ткани или органа. Поэтому при воспалении часто используются для лечения противовоспалительные средства.

Общие принципы патогенетической терапии воспаления

Воспаление представляет собой цепь причинно-следственных отношений, где предыдущее звено влияет на последующее и в конечном итоге на пролиферацию, следствием которой является формирование рубцовых (фиброзных) изменений. Поэтому используемые для лечения противовоспалительные средства могут оказывать влияние на одно или несколько звеньев патогенеза воспаления (стабилизацию мембран лизосом, торможение образования медиаторов воспаления, проницаемости сосудов, эмиграции, фагоцитоза и даже пролиферации), ингибируя, таким образом, воспаление в целом.

В зависимости от характера воспаления используется специфическая и неспецифическая терапия. Первая направлена на уничтожение биологического возбудителя (антибиотики, лечебные сыворотки, противотуберкулезные средства и др.), которые обладают как бактерицидным действием, так и, являясь составной частью обмена веществ микроорганизма, нарушают его жизнедеятельность, облегчая разрушение и фагоцитоз. Поэтому уничтожение микроорганизмов или предотвращение действия аллергена являются одной из важных задач в профилактике и лечении инфекционного и аллергического воспаления.

К неспецифическим воздействиям относится влияние измененной температуры, раздражающих веществ на воспаление. Тепло (сухое и влажное, горячий парафин, ультразвук), а также раздражающие средства (горчичники, банки, смазывание скипидаром, йодом) улучшают крово- и лимфообращение, увеличивают гиперемию, эксудацию, эмиграцию лейкоцитов, фагоцитоз, что обеспечивает усиление и ускорение воспаления. Холод, наоборот, тормозит вышеназванные звенья патогенеза воспаления и таким образом угнетает его интенсивность.

Противовоспалительное действие антигистаминных препаратов обусловлено торможением мобилизации или блокадой рецепторов гистамина обменных сосудов, вследствие чего тормозится расширение сосудов и проницаемость, особенно венул.

По мнению А. Поликара (1969), А. М. Чернуха (1979), аспирин, амидопирин, фенилбутазон стабилизируют мембраны лизосом и тормозят образование медиаторов - кининов, простагландинов серотонина, гистамина, фактора проницаемости. Более сильным антивоспалительным действием обладают индометацин и бруфен, которые действуют в 10-30 раз эффективнее фенилбутазона и аспирина. Кроме того, аспирин, фенилбутазон, индометацин предотвращают денатурацию белка и обладают антикомплементарной активностью. Ряд противовоспалительных веществ типа флавоноидов (рутин, венорутон и др.) снижают проницаемость сосудов, улучшают реологию крови и венозное кровообращение.

Для лечения воспаления, особенно аллергического, широко используются глюкокортикоиды, ибо они обеспечивают стабилизацию мембран лизосом, снижение проницаемости, эксудации и эмиграции лейкоцитов, фагоцитоза, угнетают иммунитет и пролиферацию клеток в очаге воспаления, это в целом тормозит воспаление и в то же время является причиной вялого заживления ран. Учитывая указанные выше эффекты, глюкокортикоиды наиболее широко используются при аллергическом воспалении. Иммунодепрессанты (алкилирующие соединения, циклофосфамид, 6-меркаптопурин и др.), тормозя митоз и угнетая иммунитет, подавляют воспаление, особенно аллергическое.

Широкое применение в лечении воспаления нашли протеолитические ферменты - пепсин, трипсин, хемотрипсин. Они наиболее эффективно очищают раневую поверхность и таким образом ускоряют заживление ран и их грануляцию. Наоборот, антипротеазные препараты - ε-аминокапроновая кислота, тразилол, иникрол и другие обладают противовоспалительным действием.

Таким образом, основу патогенетической терапии воспаления составляет подавление или стимуляция одного или нескольких звеньев патогенеза воспаления.

Источник : Овсянников В.Г. Патологическая физиология, типовые патологические процессы. Учебное пособие. Изд. Ростовского университета, 1987. - 192 с.

Общая характеристика воспаления

Воспаление - защитно-приспособительная реакция целостного организма на действие патогенного раздражителя, проявляющаяся развитием на месте повреждения ткани или органа изменений кровообращения и повышением сосудистой проницаемости в сочетании с дистрофией тканей и пролиферацией клеток. Воспаление является типовым патологическим процессом, направленным на устранение патогенного раздражителя и восстановление поврежденных тканей.

Известный русский ученый И.И. Мечников в конце XIXвека впервые показал, что воспаление присуще не только человеку, но и низшим животным, даже одноклеточным, хотя и в примитивной форме. У высших животных и человека защитная роль воспаления проявляется:

а) в локализации и отграничении воспалительного очага от здоровых тканей;

б) фиксации на месте, в очаге воспаления патогенного фактора и его уничтожении; в) удалении продуктов распада и восстановлении целостности тканей; г) выработке в процессе воспаления иммунитета.

Вместе с тем еще И.И. Мечников считал, что эта защитная реакция организма относительна и несовершенна, так как воспаление составляет основу многих болезней, нередко заканчивающихся смертью больного. Поэтому необходимо знать закономерности развития воспаления, чтобы активно вмешиваться в его течение и устранять угрозу смерти от этого процесса.

Для обозначения воспаления какого-либо органа или ткани к корню их латинского названия добавляют окончание "ит": например, воспаление почек - нефрит, печени - гепатит, мочевого пузыря - цистит, плевры - плеврит и. т.д. Наряду с этим в медицине сохранились старые названия воспаления некоторых органов: пневмония - воспаление легких, панариций - воспаление ногтевого ложа пальца, ангина - воспаление зева и некоторые другие.

2 Причины и условия возникновения воспаления

Возникновение, течение и исход воспаления во многом зависят от реактивности организма, которая определяется возрастом, полом, конституциональными особенностями, состоянием физиологических систем, в первую очередь иммунной, эндокринной и нервной, наличием сопутствующих заболеваний. Немаловажное значение в развитии и исходе воспаления имеет его локализация. Например, крайне опасны для жизни абсцесс мозга, воспаление гортани при дифтерии.

По выраженности местных и общих изменений воспаление разделяют на нормергическое, когда ответная реакция организма соответствует силе и характеру раздражителя; гиперергическое, при котором ответ организма на раздражение значительно интенсивнее, чем действие раздражителя, и гипергическое, когда воспалительные изменения выражены слабо или совсем не выражены. Воспаление может иметь ограниченный характер, но может распространяться на целый орган или даже систему, например систеиу соединительной ткани.

3 Стадии и механизмы воспаления

Характерным для воспаления, отличающим его от всех других патологических процессов, является наличие трех последовательных стадий развития:

1) альтерации,

2) экссудации и 3) пролиферации клеток. Эти три стадии обязательно присутствуют в зоне любого воспаления.

Альтерация - повреждение ткани - является пусковым механизмом развития воспалительного процесса. Она приводит к высвобождению особого класса биологически активных веществ, называемых медиаторами воспаления. В целом все изменения, возникающие в очаге воспаления под влиянием этих веществ, направлены на развитие второй стадии воспалительного процесса - экссудации. Медиаторы воспаления изменяют метаболизм, физико-химические свойства и функции тканей, реологические свойства крови и функции форменных элементов. К медиаторам воспаления относятся биогенные амины - гистамин и серотонин. Гистамин выделяется лаброцитами в ответ на повреждение ткани. Он вызывает боль, расширение микрососудов и повышение их проницаемости, активирует фагоцитоз, усиливает высвобождение других медиаторов. Серотонин высвобождается из тромбоцитов в крови и изменяет микроциркуляцию в очаге воспаления. Лимфоциты выделяют медиаторы, называемые лимфокинами, которые активитуют важнейшие клетки иммунной системы - Т-лимфоциты.

Полипептиды плазмы крови - кинины, в том числе калликреины и брадикинин, вызывают боль, расширение микрососудов и повышение проницаемости их стенок, активируют фагоцитоз.

К медиаторам воспаления относятся и некоторые простагландины, вызывающие те же эффекты, что и кинины, регулируя при этом интенсивность воспалительной реакции.

воспаление защитный патогенный

Перестройка обмена веществ в зоне альтерации приводит к изменению физико-химических свойств тканей и развитию в них ацидоза. Ацидоз способствует повышению проницаемости сосудов и мембран лизосом, распаду белков и диссоциации солей, вызывая тем самым повышение онкотического и осмотического давления в поврежденных тканях. Это в свою очередь увеличивает выход жидкости из сосудов, обусловливая развитие экссудации, воспалительного отека и инфильтрации ткани в зоне воспаления.

Экссудация - выход, или пропотевание, из сосудов в ткань жидкой части крови с находящимися в ней веществами, а также клеток крови. Экссудация наступает очень быстро вслед за альтерацией и обеспечивается в первую очередь реакцией микроциркуляторного русла в очаге воспаления. Первой реакцией сосудов микроциркуляции и регионарного кровообращения в ответ на действие медиаторов воспаления, главным образом гистамина, являются спазм артериол и уменьшение притока артериальной крови. В результате возникает ишемия ткани в зоне воспаления, связанная с увеличением симпатических влияний. Эта реакция сосудов кратковременна. Замедление скорости кровотока и уменьшение объема протекающей крови приводит к нарушению обмена веществ в тканях и ацидозу. Спазм артериол сменяется их расширением, увеличением скорости кровотока, объема протекающей крови и повышением гидродинамического давления, т.е. появлением артериальной гиперемии. Механизм ее развития весьма сложен и связан с ослаблением симпатических и увеличением парасимпатических влияний, а также с действием медиаторов воспаления. Артериальная гиперемия способствует повышению обмена веществ в очаге воспаления, увеличивает приток к нему лейкоцитов и антител, способствует активации лимфатической системы, которая уносит продукты распада тканей. Гиперемия сосудов обусловливает повышение температуры и покраснение участка воспаления.

Артериальная гиперемия по мере развития воспаления сменяется венозной гиперемией. Давление крови в венулах и посткапиллярах повышается, скорость кровотока замедляется, объем протекающей крови снижается, венулы становятся извитыми, в них появляются толчкообразные движения крови. В развитии венозной гиперемии имеет значение потеря тонуса стенками венул вследствие нарушения обмена веществ и ацидоза тканей в очаге воспаления, тромбирования венул, сдавления их отечной жидкостью. Замедление скорости кровотока при венозной гиперемии способствует движению лейкоцитов из центра кровотока к его периферии и прилипанию их к стенкам сосудов. Это явление называется краевое стояние лейкоцитов, оно предшествует их выходу из сосудов и переходу в ткани. Венозная гиперемия завершается остановкой крови, т.е. возникновением стаза, который проявляется сначала в венулах, а позднее становится истинным, капиллярным. Лимфатические сосуды переполняются лимфой, лимфоток замедляется, а затем прекращается, так как наступает тромбоз лимфатических сосудов. Таким образом, очаг воспаления изолируется от неповрежденных тканей. При этом кровь к нему продолжает поступать, а отток ее и лимфы резко снижен, что препятствует распространению повреждающих агентов, в том числе токсинов, по организму.

Экссудация начинается в период артериальной гиперемии и достигает максимума при венозной гиперемии. Усиленный выход жидкой части крови и растворенных в ней веществ из сосудов в ткань обусловлен несколькими факторами. Ведущее значение в развитии экссудации имеет повышение проницаемости стенок микрососудов под влиянием медиаторов воспаления, метаболитов (молочная кислота, продукты распада АТФ), лизосомных ферментов, нарушения баланса ионов К и Са, гипоксии и ацидоза. Выход жидкости обусловлен также повышением гидростатического давления в микрососудах, гиперонкией и гиперосмией тканей. Морфологически повышение сосудистой проницаемости проявляется в усилении пиноцитоза в эндотелии сосудов, набухании базальных мембран. По мере увеличения сосудистой проницаемости из капилляров в очаг воспаления начинают выходить и форменные элементы крови.

Накапливающаяся в очаге воспаления жидкость носит название экссудат. По составу экссудат существенно отличается от транссудата - скопления жидкости при отеках. В экссудате значительно выше содержание белка (3-5%), причем экссудат содержит не только альбумины, как транссудат, но и белки с высокой молекулярной массой - глобулины и фибриноген. В экссудате в отличие от транссудата всегда имеются форменные элементы крови - лейкоциты (нейтрофилы, лимфоциты, моноциты), а нередко и эритроциты, которые, скапливаясь в очаге воспаления, образуют воспалительный инфильтрат. Экссудация, т.е. ток жидкости из сосудов в ткань по направлению к центру очага воспаления, предупреждает распространение патогенного раздражителя, продуктов жизнедеятельности микробов и продуктов распада собственных тканей, способствует поступлению в очаг воспаления лейкоцитов и других форменных элементов крови, антител и биологически активных веществ. В экссудате содержатся активные ферменты, которые высвобождаются из погибших лейкоцитов и лизосом клеток. Их действие направлено на уничтожение микробов, расплавление остатков погибших клеток и тканей. В экссудате находятся активные белки и полипептиды, стимулирующие пролиферацию клеток и восстановление тканей на заключительном этапе воспаления. Вместе с тем экссудат может сдавливать нервные стволы и вызывать боль, нарушать функцию органов и вызывать в них патологические изменения.

Воспаление относится к числу наиболее распространённых типовых патологических процессов. Одновременно оно представляет собой защитно-приспособительную реакцию, эволюционно сформировавшуюся как способ сохранения целого организма ценою повреждения его части.

Несмотря на то, что термин воспаление является одним из наиболее старых и распространённых в медицине, имеется мнение об изъятии его из медицинской терминологии по причине трудности однозначной трактовки этого понятия.

Виды воспаления

По течению различают острые или хронические воспаления. Характер течения определяется реактивностью организма, а также природой повреждающего агента (флогогена), его силой и продолжительностью действия.

Острое воспаление отличается интенсивным течением и сравнительно небольшой (до 4-6 недель) продолжительностью. Оно сопровождается умеренно выраженной альтерацией и деструкцией тканей, экссудацией и пролиферацией в очаге повреждения при нормергическом (без предварительной сенсибилизации) характере воспаления. При гиперергическом (аллергическом) воспалении в очаге его доминируют альтерация и разрушение тканей.

Хроническое воспаление характеризуется более длительным течением - на протяжении многих лет и даже всей жизни пациента (лепра , туберулёз , ревматоидный артрит и др.). Хроническое воспаление может сопровождаться формированием гранулём (узелков), образованием фиброзной капсулы, развитием некроза в центре очага поражения.

В зависимости от характера преобладающих местных изменений различают экссудативное и пролиферативное (продуктивное) воспаление. Экссудативное воспаление характеризуется выраженным нарушением кровообращения и преобладанием процессов экссудации. По характеру экссудата выделяют серозное, гнойное, катаральное, фибринозное и геморрагическое воспаление. Пролиферативное воспаление протекает, как правило, хронически: преобладают явления размножения клеток гематогенного и гистиогенного происхождения.

Клиника воспалительного процесса

Всякое воспаление характеризуется местными и общими симптомами. Местные признаки воспаления включают:

  • Покраснение , которое связано с развитием артериальной гиперемии и артериализацией венозной крови в очаге воспаления.
  • Жар , обусловленный увеличенным притоком крови, активацией метаболизма, разобщением процессов биологического окисления.
  • Припухлость , возникающая вследствие развития экссудации и отёка, набухания тканевых элементов, увеличения суммарного диаметра сосудистого русла в очаге воспаления.
  • Боль , развивающаяся в результате раздражения нервных окончаний различными биологически активными веществами (БАВ) - гистамином, серотонином, брадикинином, сдвига реакции среды в кислую сторону, повышения осмотического давления и механического растяжения или сдавления тканей.
  • Нарушение функции воспалённого органа , связанное с расстройством его нейроэндокринной регуляции, развитием боли, структурными повреждениями.

Общие признаки воспаления :

  1. Изменение количества лейкоцитов в периферической крови - лейкоцитоз (развивается при подавляющем большинстве воспалительных процессов) или значительно реже лейкопения (например, при воспалении вирусного происхождения). Лейкоцитоз обусловлен активацией лейкопоэза и перераспределением лейкоцитов в кровеносном русле. К числу основных причин его развития относятся воздействие некоторых бактериальных токсинов, продуктов тканевого распада, а также ряда медиаторов воспаления, так называемых провоспалительных цитокинов, таких как интерлейкин-1, фактор индукции моноцитопоэза и др.
  2. Лихорадка развивается под влиянием поступающих из очага воспаления пирогенных факторов, таких как липополисахариды, катионные белки, интерлейкин-1. Лихорадка представляет собой адаптивную реакцию организма, способствующую повышению иммунного ответа .
  3. Изменение белкового профиля крови выражается в том, что при остром воспалительном процессе в крови накапливаются синтезируемые печенью белки острой фазы воспаления: С-реактивный белок, церулоплазмин, гаптоглобин, компоненты комплемента . Для хронического течения воспаления характерно увеличение в крови содержания α- и γ-глобулинов.
  4. Изменения ферментного состава крови выражаются в увеличении активности трансаминаз (аланинтрансаминазы при гепатите; аспартаттрансаминазы при миокардите и т.д.), гиалуронидазы, тромбокиназы.
  5. Увеличение скорости оседания эритроцитов (СОЭ) из-за снижения отрицательного заряда эритроцитов, повышения вязкости крови, агломерации эритроцитов, изменения белкового спектра крови, подъёма температуры.
  6. Изменения содержания гормонов в крови заключаются, как правило, в увеличении концентрации катехоламинов, кортикостероидов.
  7. Изменения в иммунной системе и аллергизация организма выражаются в нарастании титра антител, появлении сенсибилизированных лимфоцитов в крови, развитии местных и общих аллергических реакций.

Патогенез воспалительного процесса

Воспалительный процесс носит фазный характер. В его течении выделяют три последовательные стадии, выраженность которых может быть различна:

  • фаза альтерации (повреждения);
  • фаза экссудации (отёка);
  • фаза пролиферации.

Фаза альтерации может быть первичная и вторичная. Первичная альтерация вызывается непосредственным действием повреждающего агента. Для нее характерны ацидоз, снижение макроэргов, нарушение работы насосов, накопление недоокисленных продуктов, изменение pH, повышение проницаемости мембранных структур, набухание клетки.

Вторичная альтерация возникает в динамике воспалительного процесса и обусловлена как воздействием флогогенного агента, так и факторов первичной альтерации (в основном нарушениями кровообращения). Для неё характерно непосредственное воздействие лизосомальных ферментов (гидролазы, фосфолипазы, пептидазы, коллагеназы), их повреждающее влияние. Опосредованное действие оказывают медиаторы, система комплемента, кининовая система.

К основным проявлениям фазы альтерации можно отнести:

1. Нарушение биоэнергетических процессов в тканях . На повреждение отвечают все элементы поврежденной ткани: микроциркуляторные единицы (артериолы, капилляры, венулы), соединительная ткань (волокнистые структуры и клетки), тучные, нервные клетки. Нарушение биоэнергетики в этом комплексе проявляется в снижении потребления кислорода тканью, снижении тканевого дыхания. Повреждение митохондрий клеток является важнейшей предпосылкой для этих нарушений. В тканях преобладает гликолиз . В результате возникает дефицит АТФ, энергии (см. Цикл Кребса). Преобладание гликолиза ведёт к накоплению недоокисленных продуктов (молочной кислоты), возникает ацидоз . Развитие ацидоза, в свою очередь, приводит к нарушению активности ферментных систем, к дезорганизации метаболического процесса.

2. Нарушение транспортных систем в поврежденной ткани . Это связано с повреждением мембран, недостатком АТФ, необходимого для функционирования калий-натриевого насоса. Универсальным признаком повреждения любой ткани является выход калия из клеток, и задержка в клетках натрия. С задержкой натрия в клетках связано ещё одно тяжёлое или летальное повреждение - задержка в клетках воды, то есть внутриклеточный отёк. Выход калия способствует углублению процесса дезорганизации метаболизма , стимулирует процессы образования БАВ - медиаторов.

3. Повреждение мембран лизосом . При этом высвобождаются лизосомальные ферменты, спектр которых чрезвычайно широк. Фактически лизосомальные ферменты могут разрушать любые органические субстраты. Поэтому при их высвобождении наблюдаются летальные повреждения клеток. Кроме этого, лизосомальные ферменты, действуя на субстраты, образуют новые БАВ, токсически действующие на клетки, усиливая воспалительную реакцию - лизосомные флогогенные вещества.

Фаза экссудации включает сосудистые реакции, собственно экссудацию, миграцию и эмиграцию лейкоцитов, а также внесосудистые реакции (хемотаксис и фагоцитоз). Основными медиаторами данной фазы являются гистамин, кинины, серотонин и простагландины.

К сосудистым реакциям, характерным для данной стадии воспаления, можно отнести ишемию, артериальную, венозную и смешанную гиперемию, а также локальное прекращение движения крови по капиллярам (стаз).

Собственно экссудация заключается в выходе жидкости из сосудистого русла из-за увеличения проницаемости сосудистой стенки. Другими словами, происходит повреждение стенки сосудов (альтерация), округление эндотелиальных клеток и появление межклеточных щелей, раздвигание эндотелиальных клеток лейкоцитами, увеличение фильтрационного давления и площади фильтрации. Миграция лейкоцитов заключается в движении лимфоцитов и моноцитов через эндотелиальные клетки, не повреждая их; полиморфноядерные лейкоциты движутся через эндотелиальные щели.

Хемотаксис представляет собой движение клеток из сосуда в очаг воспаления по градиенту хемотаксинов. Фагоцитоз представляет собой активный захват и поглощение живых клеток и неживых частиц особыми клетками - фагоцитами.

Фагоцитоз, в свою очередь, включает следующие стадии:

  1. приближение (случайное и хемотаксис);
  2. контакт, распознавание и прилипание;
  3. поглощение;
  4. переваривание.

Фаза пролиферации - репаративная стадия воспаления или размножение клеток. Главные эффекторы репарации - фибробласты. Механизм данной фазы заключается в стимуляции пролиферации через синтез ДНК и митотическую активность.

В очаге воспаления фибробласты образуют и высвобождают коллаген и фермент коллагеназу, ответственный за формирование коллагеновых структур стромы соединительной ткани. Также они выделяют фибронектин - белок, участвующий в прикреплении клеток к коллагеновым субстратам, клеточной адгезии и др.

Для воспаления характерно такое свойство как аутохтонность - раз начавшись, воспаление протекает через все стадии до логического завершения, вне зависимости от того, продолжает ли действовать причинный фактор. То есть запускается каскадный механизм, когда предыдущая стадия порождает последующую.

Источники:
1. Воспаление (патофизиологические аспекты) / Ф.И. Висмонт. – Мн.: БГМУ, 2006.
2. Лекции по фармакологии для высшего медицинского и фармацевтического образования / В.М. Брюханов, Я.Ф. Зверев, В.В. Лампатов, А.Ю. Жариков, О.С. Талалаева - Барнаул: изд. Спектр, 2014.
3. Воспаление (Системные изменения в организме при воспалении. Хроническое воспаление) / Т.Е. Потемина, В.А. Ляляев, С.В. Кузнецова. Н. Новгород: Издательство НижГМА, 2010.