Преобразования одночленов и многочленов. Преобразование в многочлен онлайн

ОТДЕЛЕНИЕ IV.

РАЗЛОЖЕНИЕ ВЫРАЖЕНИЙ НА ПРОСТЫЕ МНОЖИТЕЛИ.

§ 1.Преобразование многочленов в произведение без посредства формул сокращенного умножения и деления.

Если все члены многочлена содержат общий множитель, то можно разделить весь многочлен на этот множитель и обозначить умножение того же множителя на полученное многочленное частное. От этого данное выражение не изменит своего количественного значения, но примет форму произведения. Например, двучлен аb+ас можно представить в виде а (b+с ).

Такое преобразование формы называется вынесением общего множителя за скобки. Производя это действие, следует заботиться выносить.за скобку все, что можно, так чтобы в членах частного, заключаемого в скобки, не оставалось больше никакого общего множителя.

Иногда при вынесении за скобку придают общему миожителю знак минус. В таком случае члены частного в скобках пишутся со знаками, противоположными тем, какие имели перед собой члены данного многочлена. Отрицательный знак общего множителя относится при этом ко всему произведению. Напр., двучлен -аb+ас может быть представлен в виде (-а )(b-с ), а вместо этого пишут -а (b-с ), причем минус относится уже не к одному множителю а , но ко всему произведению.

Когда члены многочлона не имeют общего множителя, то иногда удачной группировкой членов в нeсколько групп, содержащих по нeсколько члeнов в каждой грусшe, находят в этих образовавшихся группах общий и притом многочленный множитель. Нерeдко для такой группировки оказывается достаточным заключить нeсколько членов в скобки со знаком +, или со знаком -.

Напр., имeя трeхчленное выражение а (b +с )+b+с мы заключаем два послeдние члена в скобки с плюсом и находим выражение а (b +с )+(b+с ), которое можно рассматривать как двучлен и котороe преобразовывается в произведоние (а +1 )(b+с ).

Подобно этому в выражении а (b-с )-b+с заключаем два послeдние члена в скобки с минусом, отчего выражение примет вид а (b-с )-(b-с ), а затeм преобразуется в произведение (а - 1 )(b-с ).

В большинствe случаев, встрeчающихся на практикe, требуется для открытия общего многочленного множителя не только соединить члены данного многочлена в группы, но еще вынести в этих группах общий одночленный множитель, различный для каждой. группы. При удачном выборe групп и при обязатeльном условии выносить за скобку все, что можно, общий множитель всего данного многочлена легко обнаруживаeтся.

Напр., имeя многочлен а 3 2 b +2аb 2 +2b 3 , соединяем первыe два члена в одну группу и послeдниe два в другую и выносим в первой группe за скобки а 2 и во второй 2b 2 ; получим а 2 (а+b )+ 2b 2 (а+b ) или (а+b )(а 2 +2b 2 ). Того жe результата можно достигнуть, вынося в пeрвом и трeтьем членах множитeль а , а во втором и четвeртом множитель b .

Подобно этому, соeдиняя в многочленe 3а 3 - 3а 2 b -аb 2 +b 3 пeрвый член с третьим и второй с четвeртым и вынося в пeрвой груапe множитeль а , а во второй множитeль- b , получии а (3а 2 -b 2 )-b (3а 2 -b 2 ) или (а-b )(3а 2 -b 2 ). Тот жо результат оказался бы при вынесении из пeрвых двух члонов за скобки 3а 2 , а из послeдних двух -b 2 .

Нужно замeтить, что подобного рода преобразования отличаются большим разнообразием, в особенности при соединeнии их с другими алгебраическими дeйствиями. Поэтому нельзя дать для этих преобразований общих и вполнe опродeленных правил; навык в них приобрeтается лишь обстоятельным и мeтодическим упражнeнием.

Иногда, преждe чeм группировать члeны мкогочлена для вынeсения в нeм многочлeнного множителя, требуeтся разложить нeкоторыe из членов в алгебраическую сумму новых членов, подобных разлагаемым. В таком случаe части разложенных членов относятся при группировкe к различным группам. Примeним способ разложения к преобразованию трехчленных выражeний.

Чтобы преобразовать трехчлен х 2 +5х +6 , разлагаем член 5 х в сумму членов 2 х и 3 х . Таким образом получим:

х 2 +5х +6 = х 2 +2х+ 3 х +6 = х (х +2 )+3 (х +2 )==(х +2 )(х +3 ).

Для преобразования трехчлена х 2 +2х -15 , разлагаем член +2х в сумму членов +5х и -3х Найдем:

х 2 +2х -15 = х 2 +5х - 3х -15 = х (х +5 )-3 (х +5 )==(х -3 )(х +5 ).

Существует общее правило, указывающее, когда возможно преобразованиe трехчленов ппдобного вида в произведение, и как производить такое преобразование. Для вывода и уяснeния этого правила нужно только разложить четыре вида трехчлена х 2 ± (а+b )х +аb и х 2 ± (а-b )х -аb , взяв каждый из них отдeльно и начав прeобразованиe с раскрытия скобок. Тогда окажется, что в произведение преобразовываются тe трехчлены, у которых пeрвый коэффициент при х 2 есть единица, второй коэффициент при х какой угодно, а третий коэффидиeнт или член, нe содержащий х есть алгебраическое произведение тeх самых количеств, на алгeбраическую сумму которых разлагается второй коэффицинт. Так, в трехчленe х 2 +5х +6 коэффициент 5 есть сумма чисел 3 и 2 , а 6 eсть произвeдениe тeх жe чисел, в трехчленe х 2 +2х -15 коэффициeнт -2 есть сумма количеств -5 и +3 , а -15 есть произведение тех жe количеств. Чтобы произвести прeобразованиe трехчлена, когда оно возиожно, нужно по знакам и числовым величинам третьего и второго коэффициента подыскать способ разложeния трeтьего коэффициeнта в произвeдeниe двух количеств, а второго в сумму тeх жe количеств. Рассмотрим примeры:

Пусть, напр., дан трехчлеч х 2 -11х +24 . Так как коэффициент 24 положитeлен, то искомые производитeли eго должны имeть одинаковыe знаки. Судя по тому, что второй коэффициент -11 отрицатeльный, видим, что эти производитeли коэффициента 24 или слагаeмыe коэффициента -11 оба отрицатeльны. Наконец, разлагая 24 на два отрицательных множителя и сравнивая сумму их с - 11 , убeдимся в том, что для преобразования трeхчлeна в произвeдение нужно разложить средний член - 11 х на члены -3 х и - 8 х.

Положим еще, что дан трехчлен х 2 - 7х -30 . Здeсь коэффициент -30 отрицательный; поэтому производители его имeют разные знаки. Коэффициснт -7 отрицательный; слeдовательно, при составлении его сложением берет перевeс отрицательное слагаемое, имeющее таким образом большую числовую величину. Поэтому член - 7х нужно разложить на члены -10х и +3х .

В произведение прeобразовываются такжe нерeдко трехчлены, у которых первый коэффициeнт нe есть единица. Для таких преобразований не будeм указывать тепeрь общего правила, вывод которого требует болee сложных рассуждений.

Развивая выше рассмотрeнный способ преобразования трехчленов в произведение, можно разлагать многочлены высших степеней в тeх случаях, когда они представляют произведения простeйпшх двучленов первой степени. Для упрощения подобных преобразований полезно выяснить слeдующее замeчание: положим, что какой-либо многочлен содержит множителем нeкоторый двучлен х + а . Так как двучлен этот, при замeнe х через -а , обращается в нуль, то многочлен, содержащий х+а множителем, должен также обращаться в нуль при этой замeнe. Подобно этому если многочлен содержит множителем двучлен х-а , обращающийся в нуль при замeнe х через а , то и сам многочлен обращается в нуль при той же замeнe. Справедливо и обратное заключение: если многочлен, содержащий разные степени х , обращается в нуль при замeнe х через -а или через а , то он навeрноe дeлится в первом случаe на х+а , а во втором на х-а , потому что обращение многочлена в нуль при одной из указанных подстановок может быть объяснено только тeм, что в состав многочлена входит соотвeтствующий двучленный множитель. Вышеуказанные замeчания дают простое средство для открытия в многочленe двучленного множителя, а затeм этот множитель может быть вынесен за скобки посредством разложения средних членов многочлена в алгебраические суммы.

Возьмем, напр., многочлен х 3 +6х 2 +11х +6 . Он обращается в нуль при замeнe х через -1 и потому дeлится на х +1. Зная этот множитель наперед, мы облегчаем себe разложение членов в суммы тeм, что опредeленно подбираем к каждому члену, начиная с высшего, часть слeдующего члена так, чтобы пара группируемых членов содержала множителем х +1 . Поэтому преобразование ведется слeдующим образом:

х 3 +6х 2 +11х +6 = х 3 +х 2 +5х 2 +5х +6х +6 = х 2 (х +1 )+ 5х (х +1 )+ 6 (х +1 )= (х +1 )(х 2 +5х +6 ) =
= (х +1 )(х +2 )(х +3 )

ІІодобно этому замeчаем, что многочлен х 3 -4х 2 -11х +30 обращаeтся в нуль при замeнe х через 2 и слeдовательно дeлится на х- 2 . Поэтому выполняем преобразование так:

х 3 -4х 2 -11х +30 = х 3 -2х 2 -2х 2 +4х -15х +30 = х 2 (х -2 ) -2х (х -2)-15 (х -2 )=
=(х -2 )(х 2 -2х -15 )=(х -2 )(х +3 )(х -5 ).

Первоначальный подбор множителя облегчается тeм, что в многочлен требуется подставлять талько тe количества, числовая величина которых входит множителeм в послeдний член многочлена. Это обнаруживается при рассмотрeнии многочлена, выражающего общий вид произведения (х +а )(х +b )(х +c ) . Последний член этого многочлена есть abc.

Многочленом называют сумму одночленов. Если все члены многочлена записать в стандартном виде (см. п. 51) и выполнить приведение подобных членов, то получится многочлен стандартного вида.

Всякое целое выражение можно преобразовать в многочлен стандартного вида - в этом состоит цель преобразований (упрощений) целых выражений.

Рассмотрим примеры, в которых целое выражение нужно привести к стандартному виду многочлена.

Решение. Сначала приведем к стандартному виду члены многочлена. Получим После приведения подобных членов получим многочлен стандартного вида

Решение. Если перед скобками стоит знак «плюс, то скобки можно опустить, сохранив знаки всех слагаемых, заключенных в скобки. Воспользовавшись этим правилом раскрытия скобок, получим:

Решение. Если перед скобками стоит зиак «минус», то скобки можно опустить, изменив знаки всех слагаемых» заключенных в скобки. Воспользовавшись этим правилом паскрытия скобок, получим:

Решение. Произведение одночлена и многочлена согласно распределительному закону равно сумме произведений этого одночлена и каждого члена многочлена. Получаем

Решение. Имеем

Решение. Имеем

Осталось привести подобные члены (они подчеркнуты). Получим:

53. Формулы сокращенного умножения.

В некоторых случаях приведение целого выражения к стандартному виду многочлена осуществляется с использованием тождеств:

Эти тождества называют формулами сокращенного умножения,

Рассмотрим примеры, в которых нужно преобразовать заданное выражение в миогочлеи стандартного вида.

Пример 1. .

Решение. Воспользовавшись формулой (1), получим:

Пример 2. .

Решение.

Пример 3. .

Решение. Воспользовавшись формулой (3), получим:

Пример 4.

Решение. Воспользовавшись формулой (4), получим:

54. Разложение многочленов на множители.

Иногда можно преобразовать многочлен в произведение нескольких сомножителей - многочленов или одпочленов. Такое тождественное преобразование называется разложением многочлена на множители. В этом случае говорят, что многочлен делится на каждый из этих множителей.

Рассмотрим некоторые способы разложения многочленов на множители,

1) Вынесение общего множителя за скобку. Это преобразование является непосредственным следствием распределительного закона (для наглядности нужно лишь переписать этот закон «справа налево»):

Пример 1. Разложить на множители многочлен

Решение. .

Обычно при вынесении общего множителя за скобки каждую переменную, входящую во все члены многочлена, выносят с наименьшим показателем, который она имеет в данном многочлене. Если все коэффициенты многочлена - целые числа, то в качестве коэффициента общего множителя берут наибольший по модулю общий делитель всех коэффициентов многочлена.

2) Использование формул сокращенного умножения. Формулы (1) - (7) из п. 53, будучи прочитанными «справа налево, во многих случаях оказываются полезными для разложения многочленов на множители.

Пример 2. Разложить на множители .

Решение. Имеем . Применив формулу (1) (разность квадратов), получим . Применив

теперь формулы (4) и (5) (сумма кубов, разность кубов), получим:

Пример 3. .

Решение. Сначала вынесем за скобку общий множитель. Для этого найдем наибольший общий делитель коэффициентов 4, 16, 16 и наименьшие показатели степеней, с которыми переменные а и b входят в составляющие данный многочлен одночлены. Получим:

3) Способ группировки. Он основан на том, что переместительный и сочетательный законы сложения позволяют группировать члены многочлена различными способами. Иногда удается такая группировка, что после вынесения за скобки общих множителей в каждой группе в скобках остается однн и тот же многочлен, который в свою очередь как общий множитель может быть вынесен за скобки. Рассмотрим примеры разложения многочлена на множители.

Пример 4. .

Решение. Произведем группировку следующим образом:

В первой группе вынесем за скобку общий множитель во второй - общий множитель 5. Получим Теперь многочлен как общий множитель вынесем за скобку: Таким образом, получаем:

Пример 5.

Решение. .

Пример 6.

Решение. Здесь никакая группировка не приведет к появлению во всех группах одного и того же многочлена. В таких случаях иногда оказывается полезным представить какой-либо член многочлена в виде некоторой суммы, после чего снова попробовать применить способ группировки. В нашем примере целесообразно представить в виде суммы Получим

Пример 7.

Решение. Прибавим и отнимем одночлен Получим

55. Многочлены от одной переменной.

Многочлен , где a, b - числа переменная, называется многочленом первой степени; многочлен где а, b, с - числа переменная, называется многочленом второй степени или квадратным трехчленом; многочлен где а, b, с, d - числа переменная называется многочленом третьей степени.

Вообще если о, переменная, то многочлен

называется лсмогочленол степени (относительно х); , m-члены многочлена, коэффициенты, старший член многочлена, а - коэффициент при старшем члене, свободный член многочлена. Обычно многочлен записывают по убывающим степеням переменной, т. е. степени переменной постепенно уменьшаются, в частности, на первом месте стоит старший член, на последнем - свободный член. Степень многочлена - это степень старшего члена.

Например, многочлен пятой степени, в котором старший член, 1 - свободный член многочлена.

Корнем многочлена называют такое значение при котором многочлен обращается в нуль. Например, число 2 является корнем многочлена так как

Цель урока: систематизировать знания и умения учащихся применять формулы квадрата разности, суммы и разности квадратов для преобразования многочленов.

Задачи урока:

  • общеобразовательная: отработка навыков и умений по преобразованию многочленов с помощью формул сокращенного умножения посредством решения письменных и устных упражнений;
  • развивающая: развивать познавательный интерес, продолжать формирование математической речи, вырабатывать умение анализировать и сравнивать;
  • воспитательная: воспитывать умение выслушивать других и умение общаться.

Мотивационная задача: создать ситуацию успеха на уроке через похвалу, стимулирование слабых и сильных ответов.

Организационные формы общения: коллективная, групповая, индивидуальная.

Ход урока

1-й этап. Организационный момент.

2-й этап. Мотивационная беседа с учащимися с последующей постановкой цели и темы.

Учитель: Ребята, последние несколько уроков мы с вами посвятили изучению трех формул сокращенного умножения. Какие это формулы?

Впереди у нас еще четыре формулы.

Но сегодня я предлагаю вам поработать с этими формулами и еще раз выяснить, насколько хорошо вы разобрались в данной теме.

А начать работу я хотела бы со строк мудрого Конфуция:

Три пути ведут к знанию:
Путь размышления – это путь самый благородный,
Путь подражания – это путь самый легкий и
Путь опыта – это путь самый горький.

Подумайте и решите для себя, ребята, по какому пути вы пойдете сегодня на уроке – это будет ваш личный выбор.

3-й этап. Актуализация опорных знаний.

Учитель: чтобы работа велась успешнее, давайте вспомним и повторим формулы квадрата суммы, разности двух чисел, разности квадратов.

Попрошу выйти к доске двоих учащихся.

Попрошу выйти к доске двух учащихся.

Задание первому ученику: доказать равенство Диофанта

(а + b)(с + d) = (ac + ab)+(bc – ad).

Задание второму ученику: оформить опорную таблицу (магнитная доска).

Собрать из отдельных фрагментов три формулы:

(a + b) 2 = a + 2ab + b
(a – b) 2 = a – 2ab + b
a 2 – b 2 = (a – b)(a + b)

Фронтальная работа с учащимися.

Учитель: А мы, ребята, в это время давайте повторим правила сложения и вычитания рациональных чисел, т. к. это нам понадобится в дальнейшем на уроке.

Карточка:

-/10+5/ -5;
-/(-a +b)/ + b;
-/20*3/: (-12).

Учитель: Ребята, давайте проверим формулы на магнитной доске.

А теперь, применяя данные формулы, выполните устно следующие задания.

Замените * одночленами так, чтобы полученное равенство было тождеством:

  1. (* + b) 2 = 4c 2 + * + b 2 ;
  2. (k – *) 2 = * – * + c 2 ;
  3. (* + 7c) (7c – *) = 49c 2 – 81a 2
  4. Вычислить:
    106 2 – 6 2
    71 2 – 61 2
  5. А в следующем задании нужно проверить, правильно ли выделен полный квадрат:
    а 2 + 2а + 2 = (а + 1) 2 + 2

Учитель : Ребята давайте вернемся к доказательству равенства Диофанта и проверим его.

Предлагаю вам записать себе в тетрадь это равенство и проверить его для первых четырех последовательных чисел _(1.2.3.4).

4-й этап. Работа по теме урока.

Учитель: Ребята, чем воспользовался ученик, доказывающий равенство Диофанта?

А где еще находят применение формулы сокращенного умножения?

Давайте решим следующую задачу у доски.

Сторона квадрата равна а см. Длина прямоугольника на 2 см больше стороны квадрата, а ширина на 2 см меньше стороны квадрата. Найдите площадь прямоугольника и сравните ее с площадью квадрата.

5-й этап. Физкультминутка.

6-й этап. Работа в группах “Звездная карта”.

Учитель: Итак, ребята, раз сегодня мы упомянули ли о Диофанте (доказали его равенство), вспомните, чем он занимался в основном? (Уравнениями).

Хорошо! Я предлагаю сейчас вам тоже решить в группах по 5 уравнений, в которых можно будет применить формулы сокращенного умножения, а также просветить себя в области астрономии, то есть узнать, как выглядят созвездия Цефея и Кассиопеи.

Послушайте задание.

Перед вами, ребята, фрагмент карты звездного неба. Решите уравнения и соедините последовательно звезды, которым соответствуют найденные ответы.

Работа ведется в группах, поэтому возможна взаимопомощь и взаимоконтроль.

Карточки на столе. Против каждого уравнения указан уровень сложности (1, 2, 3, 4). Каждый из нас выбирает свой уровень, решает уравнение и заносит в карточку ответ.

Затем рисуется созвездие.

  1. 50х = 5 (1 уровень)
  2. 8(х – 20) = -8х (2уровень)
  3. (х – 4) 2 – х 2 =16 (3 уровень)
  4. (х + 2) 2 -80 = х 2 (3 уровень)
  5. (х – 3)(х + 3) + 2х = х 2 – 1 (4 уровень)
  1. 5с = 10 (1 уровень)
  2. с – (9 + 6с) = 36 (2уровень)
  3. (с – 1) 2 – 7 = с 2 (3 уровень)
  4. (с + 5) 2 – с 2 = 5 (3 уровень)
  5. (с – 1)(с – 1) – с 2 = 5с – 6 (4 уровень)

Проверка по образцу.

7-й этап. Резерв (тест)

Провести классификацию данных многочленов по способу разложения их на множители.

Вариант 1.

ЗАДАНИЕ. Соединить линиями многочлены с соответствующими им способами разложения на множители.

Взаимопроверка.

8-й этап. Итоги урока.

Учитель: Ребята, вы сегодня достаточно плодотворно поработали. Благодарю вас.

Но мне хотелось, чтобы вы еще раз, вспомнив этапы нашего урока, ответили на мой вопрос: где вы применяли формулы сокращенного умножения, в каком случае работа ваша намного упрощалась?

Впереди у вас еще 4 формулы. Но это будет позже, а сейчас получите домашнее задание (номера из учебника).

И в заключении, вернитесь к нашему эпиграфу. Скажите, какой для вас путь был более успешным?

Конечно, путь опыта, проб и ошибок – это самый трудный путь, но и самый верный и достойный.

Поэтому я желаю вам идти достойно и получать лишь хорошие и отличные оценки.

Оценки за урок.

Благодаря курсу алгебры, известно, что все выражения требуют преобразования для более удобного решения. Определение целых выражений способствует тому, что для начала выполняются тождественные преобразования. Будем преобразовывать выражение в многочлен. В заключении разберем несколько примеров.

Определение и примеры целых выражений

Определение 1

Целые выражения – это числа, переменные или выражения со сложением или вычитанием, которые записываются в виде степени с натуральным показателем, которые также имеют скобки или деление, отличное от нуля.

Исходя из определения, имеем, что примеры целых выражений: 7 , 0 , − 12 , 7 11 , 2 , 73 , - 3 5 6 и так далее, причем переменные вида a , b , p , q , x , z считают за целые выражения. После их преобразования сумм, разностей, произведений выражения примут вид

x + 1 , 5 · y 3 · 2 · 3 · 7 − 2 · y − 3 , 3 − x · y · z 4 , - 6 7 , 5 · (2 · x + 3 · y 2) 2 − - (1 − x) · (1 + x) · (1 + x 2)

Если в выражении имеется деление на число, отличное от нуля вида x: 5 + 8: 2: 4 или (x + y) : 6 , тогда деление может обозначаться при помощи дробной черты, как x + 3 5 - 3 , 2 · x + 2 . При рассмотрении выражений вида x: 5 + 5: x или 4 + a 2 + 2 · a - 6 a + b + 2 · c видно, что такие выражения не могут быть целыми, так как в первом имеется деление на переменную x , а во втором на выражение с переменной.

Многочлен и одночлен являются целыми выражениями, с которыми встречаемся в школе при работе с рациональными числами. Иначе говоря, целые выражения не включают в себя записи иррациональных дробей. Другое название – это целые иррациональные выражения.

Какие преобразования целых выражений возможны?

Целые выражения рассматриваются при решении как основные тождественные преобразования, раскрытие скобок, группирование, приведение подобных.

Пример 1

Раскрыть скобки и привести подобные слагаемые в 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) .

Решение

Для начала необходимо применить правило раскрытия скобок. Получим выражение вида 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) = = 2 · a 3 + 2 · 3 · a · b + 2 · (− 2 · a) − 2 · a 3 − 5 · a · b + 6 · a − b = = 2 · a 3 + 6 · a · b − 4 · a − 2 · a 3 − 5 · a · b + 6 · a − b

После чего можем привести подобные слагаемые:

2 · a 3 + 6 · a · b − 4 · a − 2 · a 3 − 5 · a · b + 6 · a − b = = (2 · a 3 − 2 · a 3) + (6 · a · b − 5 · a · b) + (− 4 · a + 6 · a) − b = = 0 + a · b + 2 · a − b = a · b + 2 · a − b .

После их приведения получаем многочлен вида a · b + 2 · a − b .

Ответ : 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) = a · b + 2 · a − b .

Пример 2

Произвести преобразования (x - 1) : 2 3 + 2 · (x 2 + 1) : 3: 7 .

Решение

Имеющееся деление можно заменять умножением, но на обратное число. Тогда необходимо выполнить преобразования, после которых выражение примет вид (x - 1) · 3 2 + 2 · (x 2 + 1) · 1 3 · 1 7 . Теперь следует заняться приведением подобных слагаемых. Получим, что

(x - 1) · 3 2 + 2 · (x 2 + 1) · 1 3 · 1 7 = 3 2 · (x - 1) + 2 21 · x 2 + 1 = = 3 2 · x - 3 2 + 2 21 · x 2 + 2 21 = 2 21 · x 2 + 3 2 · x - 59 42 = 2 21 · x 2 + 1 1 2 · x - 1 17 42

Ответ : (x - 1) : 2 3 + 2 · (x 2 + 1) : 3: 7 = 2 21 · x 2 + 1 1 2 · x - 1 17 42 .

Пример 3

Представить выражение 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) в виде произведения.

Решение

Рассмотрев выражение, видно, что первые три слагаемые имеют общий множитель вида 6 · y , который следует вынести за скобки во время преобразования. Тогда получим, что 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = 6 · y · (x 2 + 3 · x − 1) − (x 2 + 3 · x − 1) · (x 3 + 4 · x)

Видно, что получили разность двух выражений вида 6 · y · (x 2 + 3 · x − 1) и (x 2 + 3 · x − 1) · (x 3 + 4 · x) с общим множителем x 2 + 3 · x − 1 , который необходимо вынести за скобки. Получим, что

6 · y · (x 2 + 3 · x − 1) − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = (x 2 + 3 · x − 1) · (6 · y − (x 3 + 4 · x))

Раскрыв скобки, имеем выражение вида (x 2 + 3 · x − 1) · (6 · y − x 3 − 4 · x) , которое необходимо было найти по условию.

Ответ: 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = (x 2 + 3 · x − 1) · (6 · y − x 3 − 4 · x)

Тождественные преобразования требуют строгое выполнение порядка действий.

Пример 4

Преобразовать выражение (3 · 2 − 6 2: 9) 3 · (x 2) 4 + 4 · x: 8 .

Решение

Вы первую очередь выполняются действия в скобках. Тогда имеем, что 3 · 2 − 6 2: 9 = 3 · 2 − 3 6: 9 = 6 − 4 = 2 . После преобразований выражение принимает вид 2 3 · (x 2) 4 + 4 · x: 8 . Известно, что 2 3 = 8 и (x 2) 4 = x 2 · 4 = x 8 , тогда можно прийти к выражению вида 8 · x 8 + 4 · x: 8 . Второе слагаемое требует замены деления на умножение из 4 · x: 8 . Сгруппировав множители, получаем, что

8 · x 8 + 4 · x: 8 = 8 · x 8 + 4 · x · 1 8 = 8 · x 8 + 4 · 1 8 · x = 8 · x 8 + 1 2 · x

Ответ: (3 · 2 − 6 2: 9) 3 · (x 2) 4 + 4 · x: 8 = 8 · x 8 + 1 2 · x .

Преобразование в многочлен

Большинство случаев преобразования целых выражений – это представление в виде многочлена. Любое выражение можно представить в виде многочлена.Любое выражение может быть рассмотрено как многочлены, соединенные арифметическими знаками. Любое действие над многочленами в итоге дает многочлен.

Для того, чтобы выражение было представлено в виде многочлена, необходимо выполнять все действия с многочленами, согласно алгоритму.

Пример 5

Представить в виде многочлена 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (4 · x − x · (15 · x + 1)) .

Решение

В данном выражение начать преобразования с выражения вида 4 · x − x · (15 · x + 1) , причем по правилу в начале выполнив умножение или деление, после чего сложение или вычитание. Умножим – x на 15 · x + 1 , тогда получим 4 · x − x · (15 · x + 1) = 4 · x − 15 · x 2 − x = (4 · x − x) − 15 · x 2 = 3 · x − 15 · x 2 . Заданное выражение примет вид 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (3 · x − 15 · x 2) .

Далее необходимо произвести возведение во 2 степень многочлена 2 · x − 1 , получим выражение вида (2 · x − 1) 2 = (2 · x − 1) · (2 · x − 1) = 4 · x 2 + 2 · x · (− 1) − 1 · 2 · x − 1 · (− 1) = = 4 · x 2 − 4 · x + 1

Теперь можно перейти к виду 2 · (2 · x 3 − 1) + (4 · x 2 − 4 · x + 1) · (3 − x) + (3 · x − 15 · x 2) .

Разберем умножение. Видно, что 2 · (2 · x 3 − 1) = 4 · x 3 − 2 и (4 · x 2 − 4 · x + 1) · (3 − x) = 12 · x 2 − 4 · x 3 − 12 · x + 4 · x 2 + 3 − x = = 16 · x 2 − 4 · x 3 − 13 · x + 3

тогда можно сделать переход к выражению вида (4 · x 3 − 2) + (16 · x 2 − 4 · x 3 − 13 · x + 3) + (3 · x − 15 · x 2) .

Выполняем сложение, после чего придем к выражению:

(4 · x 3 − 2) + (16 · x 2 − 4 · x 3 − 13 · x + 3) + (3 · x − 15 · x 2) = = 4 · x 3 − 2 + 16 · x 2 − 4 · x 3 − 13 · x + 3 + 3 · x − 15 · x 2 = = (4 · x 3 − 4 · x 3) + (16 · x 2 − 15 · x 2) + (− 13 · x + 3 · x) + (− 2 + 3) = = 0 + x 2 − 10 · x + 1 = x 2 − 10 · x + 1 .

Отсюда следует, что исходное выражение имеет вид x 2 − 10 · x + 1 .

Ответ: 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (4 · x − x · (15 · x + 1)) = x 2 − 10 · x + 1 .

Умножение и возведение в степень многочлена говорит о том, что необходимо использовать формулы сокращенного умножения для ускорения процесса преобразования. Это способствует тому, что действия будут выполнены рационально и правильно.

Пример 6

Преобразовать 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) .

Решение

Из формулы квадрата получим, что (2 · m + n) 2 = (2 · m) 2 + 2 · (2 · m) · n + n 2 = 4 · m 2 + 4 · m · n + n 2 , тогда произведение (m − 2 · n) · (m + 2 · n) равняется разности квадратов m и 2 · n , таким образом, равняется m 2 − 4 · n 2 . Получим, что исходное выражение примет вид 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) = 4 · (4 · m 2 + 4 · m · n + n 2) + (m 2 − 4 · n 2) = = 16 · m 2 + 16 · m · n + 4 · n 2 + m 2 − 4 · n 2 = 17 · m 2 + 16 · m · n

Ответ: 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) = 17 · m 2 + 16 · m · n .

Чтобы преобразование не было слишком длинным, необходимо заданное выражение приводить к стандартному виду.

Пример 7

Упростить выражение вида (2 · a · (− 3) · a 2 · b) · (2 · a + 5 · b 2) + a · b · (a 2 + 1 + a 2) · (6 · a + 15 · b 2) + (5 · a · b · (− 3) · b 2)

Решение

Чаще всего многочлены и одночлены даются не стандартного вида, поэтому приходится выполнять преобразования. Следует преобразовать, чтобы получить выражение вида − 6 · a 3 · b · (2 · a + 5 · b 2) + a · b · (2 · a 2 + 1) · (6 · a + 15 · b 2) − 15 · a · b 3 . Для того чтобы привести подобные, необходимо предварительно произвести умножение по правилам преобразования сложного выражения. Получаем выражение вида

− 6 · a 3 · b · (2 · a + 5 · b 2) + a · b · (2 · a 2 + 1) · (6 · a + 15 · b 2) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + (2 · a 3 · b + a · b) · (6 · a + 15 · b 2) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + 12 · a 4 · b + 30 · a 3 · b 3 + 6 · a 2 · b + 15 · a · b 3 − 15 · a · b 3 = = (− 12 · a 4 · b + 12 · a 4 · b) + (− 30 · a 3 · b 3 + 30 · a 3 · b 3) + 6 · a 2 · b + (15 · a · b 3 − 15 · a · b 3) = 6 · a 2 · b

Ответ: (2 · a · (− 3) · a 2 · b) · (2 · a + 5 · b 2) + a · b · (a 2 + 1 + a 2) · (6 · a + 15 · b 2) + + (5 · a · b · (− 3) · b 2) = 6 · a 2 · b

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Инструкция

Раскройте все скобки выражения. Для этого воспользуйтесь формулами, например, (а+b)^2=a^2+2ab+b^2. Если вы не знаете формул, или их трудно применить к данному выражению, раскрывайте скобки последовательно. Для этого умножайте первый член первого выражения на каждый член второго выражения, затем второй член первого выражения на каждый член второго и т.д. В результате все элементы обоих скобок будут перемножены между собой.

Если перед вами три выражения в скобках, сначала перемножьте первые две, оставляя третье выражение не тронутым. Упростив результат, получившийся в результате преобразования первых скобок, перемножьте его с третьим выражением.

Внимательно следите за соблюдением знаков перед множителями-одночленами. Если вы перемножаете два члена с одним знаком (например, оба положительны или оба отрицательны), одночлен будет со знаком «+». Если же один член имеет перед собой «-», не забудьте перенести его на произведение.

Приведите все одночлены к стандартному виду. То есть переставьте местами множители внутри и упростите. Например, выражение 2х*(3,5х) будет равно (2*3,5)*х*х=7х^2.

Когда все одночлены будут стандартизированы, попробуйте упростить многочлен. Для этого сгруппируйте члены, у которых одинакова часть с переменными, например, (2х+5х-6х)+(1-2). Упростив выражение, вы получите х-1.

Чтобы преобразовать в многочлен выражение, содержащее корень, выведите под ним выражение, которое будет возведено в квадрат. Например, воспользуйтесь формулой a^2+2ab+b^2 =(а+b)^2, затем уберите знак корня вместе с четной степенью. Если избавиться от знака корня невозможно, преобразовать выражение в многочлен стандартного вида не удастся.

Источники:

  • преобразование многочлена калькулятор

Краткость, как говорится, - сестра таланта. Каждому хочется блеснуть талантом, но вот его сестра - штука сложная. Гениальные мысли почему-то сами собой облекаются в сложноподчинённые предложения со множеством деепричастных оборотов. Однако в ваших силах упростить свои предложения и сделать их понятными и доступными всем.

Инструкция

Чтобы облегчить адресату (будь то слушатель или читатель) , постарайтесь заменять причастные и деепричастные обороты короткими придаточными предложениями, особенно если вышеуказанных оборотов слишком много в одном предложении. "Пришедший домой кот, только что съевший мышь, громко мурлыча, ласкался к хозяину, пытаясь заглянуть ему в глаза, надеясь выпросить рыбу, принесённую из магазина" - не пойдёт. Разбейте подобную конструкцию на несколько частей, не торопитесь и не пытайтесь сказать всё одним предложением, вам счастье.

Если вы задумали гениальное высказывание, но в нём оказалось слишком много придаточных предложений (тем более с одним ), то лучше разбить высказывание на несколько отдельных предложений или опустить какой-то элемент. "Мы решили, что он расскажет Марине Васильевне, что Катя скажет Вите, что..." - можно продолжать бесконечно. Вовремя остановитесь и вспомните о том , кто будет это читать или выслушивать.

Обозначайте разные подобные члены по-разному. Для этого лучше подчеркивайте одинарными, двойными и тройными линиями, используйте цвет и другие формы линий.

Найдя все подобные члены, приступайте к их комбинированию. Для этого в найденных вынесите подобные члены за скобки. Не забывайте, что в стандартной форме у многочлена нет подобных членов.

Проверьте, не осталось ли у вас одинаковых элементов в записи. В ряде случаев у вас могут вновь подобные члены. Повторите операцию с их комбинированием.

Проследите за выполнением второго условия, требующегося для записи многочлена в стандартной форме: каждый его участник должен быть изображен в виде одночлена в стандартном виде: на первом месте – числовой множитель, на втором – переменная или переменны, следующие в уже обозначенном порядке. При этом имеет буквенная последовательность, задаваемая алфавитом. Убывание степеней учитывается во вторую очередь. Так, стандартным видом одночлена является запись 7xy2, в то время как y27x, x7y2, y2x7, 7y2x, xy27 не требованиям.

Видео по теме

Математическая наука изучает различные структуры, последовательности чисел, отношений между ними, составление уравнений и их решение. Это формальный язык, которым можно четко описать приближенные к идеальным свойства реальных объектов, изучаемых в других областях науки. Одной из таких структур является многочлен.

Инструкция

Многочлен или (от греч. «поли» - много и лат. «номен» - имя) – элементарных функций классической алгебры и алгебраической геометрии. Это функция одной переменной, которая имеет вид F(x) = c_0 + c_1*x + … + c_n*x^n, где c_i – фиксированные коэффициенты, x – переменная.

Многочлены применяются во многих разделах, в том числе рассмотрении нуля, отрицательных и комплексных чисел, теории групп, колец, узлов, множеств и т.д. Использование полиномиальных вычислений значительно упрощает выражение свойств разных объектов.

Основные определения :
Каждое слагаемое полинома называется или мономом.
Многочлен, состоящий из двух одночленов, называют двучленом или биномом.
Коэффициенты полинома – вещественные или комплексные числа.
Если коэффициент равен 1, то называют унитарным (приведенным).
Степени переменной в каждом одночлене – целые неотрицательные числа, максимальная степень определяет степень многочлена, а его полной степенью называется целое число, равное сумме всех степеней.
Одночлен, соответствующий нулевой степени, называется свободным членом.
Многочлен, все которого имеют одинаковую полную степень, называется однородным.

Некоторые часто используемые многочлены названы по фамилии ученого, который их определил, а также функции, которые они задают. Например, Бином Ньютона – это для разложения полинома на отдельные слагаемые для вычисления степеней. Это известные из школьной программы записи квадратов суммы и разности (a + b)^2 – a^2 + 2*a*b + b^2, (a – b)^2 = a^2 – 2*a*b + b^2 и разность квадратов (a^2 – b^2) = (a - b)*(a + b).

Если допустить в записи многочлена отрицательные степени, то получится многочлен или ряд Лорана; многочлен Чебышева используется в теории приближений; многочлен Эрмита – в теории вероятностей; Лагранжа – для численного интегрирования и интерполяции; Тейлора – при аппроксимации функции и т.д.

Обратите внимание

Бином Ньютона часто упоминают в книгах («Мастер и Маргарита») и фильмах («Сталкер»), когда герои решают математические задачи. Этот термин на слуху, поэтому считается самым известным многочленом.

Преобразование выражений чаще всего производится с целью их упрощения. Для этого используются специальные соотношения, а также правила сокращения и приведения подобных.

Вам понадобится

  • - действия с дробями;
  • - формулы сокращенного умножения;
  • - калькулятор.

Инструкция

Простейшим преобразованием является приведение подобных. Если есть слагаемых, которые представляют собой одночлены с одинаковыми сомножителями, коэффициент при них можно сложить, с учетом знаков, которые стоят перед этими коэффициентами. Например, выражение 2 n-4n+6n-n=3 n.

Если же одинаковые сомножители имеют степени, подобным образом свести подобные не возможно. Группируйте только те коэффициенты, которые имеют при себе сомножители с . Например, упростите выражение 4 k?-6 k+5 k?-5 k?+k-2 k?=3 k?-k?-5 k.

Если есть возможность, используйте формулы сокращенного умножения. К наиболее популярным куб и квадрат суммы или разности двух чисел. Они представляют собой частный случай Ньютона. К формулам сокращенного умножения также квадратов двух чисел. Например, чтобы найти 625-1150+529=(25-23)?=4. Или 1296-576=(36+24) (36-24)=720.