Два периода минерализации временных зубов. Факторы, влияющие на процесс прорезывания зубов Сроки закладки и минерализации временных зубов

Все факторы формирования состава подземных вод можно разделить на физико-географические, геологические, физико-химические, физические, биологические и искусственные.

Физико-географические факторы включают рельеф, гидрологию, климат и выветривание.

Рельеф оказывает влияние на водообмен, от которого зависят минерализация и состав подземных вод. При прочих равных условиях, чем сильнее расчленён рельеф, тем благоприятнее возможности для появления пресных подземных вод. На приподнятых участках бассейнов, где породы хорошо промываются, подземные воды имеют относительно низкую минерализацию и в основном гидрокарбонатный состав: в пониженных частях, куда направлен сток солей с возвышенностей, минерализация повышается, в водах увеличивается концентрация сульфатов и хлоридов. Отмечается довольно устойчивая зависимость концентрации железа в неглубокозалегающих подземных водах Беларуси от рельефа. Этот вопрос изучался в связи с тем, что в Беларуси подземные воды четвертичных отложений очень часто содержат железа, много больше, чем его предельно допустимая концентрация, и стояла задача, наметить расположение скважин для водоснабжения, из которых можно было бы получить воду с минимальным содержанием железа. Оказалось, что на возвышенных участках железа в водах меньше, чем в понижениях рельефа.

Гидрологический фактор (гидрология) воздействует на подземные воды прежде всего через гидрографическую сеть, которая влияет на водообмен. Густая гидрографическая сеть с глубоким эрозионным врезом способствует водообмену в водоносных горизонтах, выносу солей и формированию пресных подземных вод. При редкой гидрографической сети и неглубоком её врезе подземный сток затруднён, что вызывает повышение минерализации подземных вод. Это — косвенное влияние гидрографической сети на состав подземных вод. В тех же случаях, когда питание водоносных горизонтов осуществляется за счёт вод рек и озёр, влияние гидрологического фактора прямое и определяющее. В средней полосе это особенно ярко проявляется во время паводков, а в пустынях реки (например, Амударья, Сырдарья) могут питать подземные воды в течение всего года. Океаны и моря выступают в качестве ведущего фактора при трансгрессиях. При этом, в накапливающихся осадочных отложениях захороняются минерализованные воды, т.е. моря в “готовом” виде передают подземным водам соли.

Климат может считаться одним из главнейших прямых факторов формирования состава подземных вод. Среди множества климатических элементов к первостепенным относятся атмосферные осадки, температура и испарений. Атмосферные осадки формируют ресурсы подземных вод, передают им соли (хотя и весьма небольшое количество, но в “готовом виде”). Общее количество метеорной влаги, ежегодно поступающей на поверхность суши, более 110 км 3 . Эта вода способна покрыть земной шар слоем толщиной 834 мм. Конечно, не все атмосферные осадки участвуют в питании подземных вод, а только их десятая часть. В недра земли проникают, главным образом, осадки, выпадающие в умеренных широтах весной, летом или осенью. В условиях сухого климата атмосферные осадки могут быстро испаряться и не достигать поверхности грунтовых вод. Проникновение атмосферной воды в недра затруднено также в условиях сезонной или вечной мерзлоты.

Испарение, которое зависит от температуры воздуха, наиболее действенно в зоне недостаточного увлажнения. Здесь оно обусловливает концентрированно солей в водах. Испарение имеет место не только на поверхности земли. На изменение состава грунтовых вод сильносказывается так называемое внутрипородное испарение, в процессе которого происходит отрыв молекул водяного пара от зеркала грунтовых вод.

К ведущим физико-географическим факторам формирования состава подземных вод относится выветривание— явление, протекающее на/и вблизи поверхности и напрямую связанное с климатом (по англ. weathering от weather — погода). Совокупность процессов физического, химического и биохимического разрушения минералов и горных пород, называемая выветриванием, приводит к обогащению подземных вод различными соединениями. Выветривание выступает, главным образом, как процесс перевода вещества в раствор. В результате выветривания из пород выносятся и попадают в подземную воду в первую очередь наиболее растворимые соединения. Интересно, что если мы возьмём большое число анализов химического состава пресных подземных вод песчано-глинистой четвертичной толщи Беларуси и рассчитаем среднюю минерализацию этих вод для северной и южной частей республики, то большее значение получим для северных районов. Это связано с тем, что на севере четвертичные отложения более молодые, чем на юге. На севере они сформированы в результате деятельности последнего (валдайского) оледенения, которое не распространялось в южную часть Беларуси. В более молодых, менее выветрелых, породах больше сохранилось неустойчивых компонентом (полевые шпаты, темноцветные минералы), которые в настоящее время разрушаются и, тем самым, обогащают воду различными соединениями. В более древних породах основная масса неустойчивых компонентов уже разрушена и удалена в ходе многократного водообмена. Таким образом, роль выветривания в формировании состава подземных вод обнаруживается даже для совсем молодых и слаборастворимых алюмосиликатных отложений.

Геологические факторы. К этим факторам относятся геологическая структура, тектонические движения, вещественный состав пород, магматизм и газовый фактор.

Геологическая структура определяет динамичность, а вместе с ней минерализацию и состав подземных вод. Значение геолого-структурных форм в распределении подземных вод по минерализации и составу наглядно проявляется при сравнении структурных элементов по раскрытости, проточности, промытости или интенсивности водообмена. Подземные воды закрытых структурных элементов бывают наиболее минерализованными, а по составу преимущественно хлоридными натриевыми или кальциевыми. В раскрытых структурных элементах подземные воды наименее минерализованы и имеют обычно гидрокарбонатный кальциевый состав.

Тектонические движения принято делить на колебательные, складчатые (или пликативные) и разрывные (или дизъюнктивные). Колебательные движения положительного знака могут вызывать опреснение подземных вод на приподнятых участках суши, так как эти участки могут выводиться в сферу действия атмогенных вод. В результате отрицательных движений зона пресных подземных вод погружается и в ней становится возможным засоление благодаря тому, что отрицательные движения сопровождаются морскими трансгрессиями и вовлечением морских вод в недра.

Складчатые и разрывные тектонические движения резко нарушают установившиеся гидрогеохимические условия. Горные страны, претерпевшие активные складчатые и разрывные движения, оказываются глубоко промытыми пресными водами. Разрывные нарушения, т.е. тектонические разломы служат путями разгрузки подземных вод, каналами для гидравлической связи между водоносными горизонтами, способствующими смешению подземных вод различного состава, зонами, где в результате резкого перепада давления возможно отложение минералом из подземных вод и, как следствие, изменение состава последних.

Вещественный состав пород. Если геологическая структура и тектонические движения относятся к косвенным факторам формирования состава подземных вод, то горные породы и минералы непосредственно формируют вещество подземной гидросферы. Вещественный состав пород — прямой фактор первостепенного значения, на что указывали ещё Аристотель и Плиний Старший, которые говорили, что вода такова, каковы породы, по которым она протекает. Надо, конечно, отметить, что эта связь между составом вод и пород не такая простая, как представлялось древним. Влияние состава пород на состав подземных вод особенно ярко заметно, когда пресная вода взаимодействует с легкорастворимыми минералами и породами: галитом, гипсом, доломитом, известняком. Галит даёт хлоридные натриевые воды, гипс — сульфатные кальциевые, доломит — гидрокарбонатные магниево-кальциевые, известняк — гидрокарбонатные кальциевые. Однако, такие же гидрокарбонатные воды, как в известняках, могут залегать и очень часто залегают в кварцево-полевошпатовых песках. В этом случае ионы Са 2+ и НСО 3 - появляются в водах за счёт углекислого выветривания полевых шпатов, в то время как в известняках — за счёт растворения кальцита (СаСО 3).

Вещественный состав всегда влияет на состав подземных вод. Надо только уметь увидеть это влияние. В так называемых межсолевых отложениях девона Припятского прогиба по всей его территории залегают однотипные хлоридные кальциевые и натриевые рассолы. Однако в рассолах южной части прогиба существенно меньше калия, чем в рассолах северной части. Это связано с тем, что межсолевая толща южной части имеет терригенный (песчано-глинистый) состав, а северной — карбонатный. В терригенных породах на глубинах, начиная с 2-3 км, активно протекает процесс новообразования глинистого минерала — гидрослюды, для постройки кристаллической решётки которой необходимый калий извлекается из подземных рассолов.

Существуют и другие формы проявления влияния состава пород на состав и минерализацию подземных вод. Так, наиболее минерализованные рассолы (320-600 г/л) встречаются только в тех толщах, выше которых залегают формации каменной и калийной солей. Когда же на месте этих хлоридных солей присутствуют гипсы и ангидриты, минерализация рассолов под ними обычно не превышает 260 г/л. Это связано с тем, что в осадочных комплексах, залегающих под соляными породами, гипсами и ангидритами (в целом эти породы называются эвапоритами), содержатся подземные рассолы, которые представляют собой преобразованные материнские рассолы (рапу) вышележащих солеродных (или эвапоритовых) бассейнов. Эти материнские рассолы проникают в подстилающие отложения путём гравитационного стекания или отжима из эвапоритовых отложений. Но поскольку эвапоритовые минералы в ходе сгущения морской воды в солеродном бассейне осаждаются при определённой минерализации рассола (например, гипс (CaSO 4 · 2Н 2 О), начиная со 140 г/л, галит (NaCl ) — с 260-280 г/л, сильвин (KCl ) — с 350-360г/л), то в зависимости от того, какими минералами (породами) представлена эвапоритовая толща, будет и минерализация подземных рассолов под этой толщей. Здесь мы мимоходом коснулись одного грандиозного процесса, имеющего место на Земле, — эвапоритового процесса или галогенеза. Он обычно не выделяется в качестве фактора формирования состава подземный вод, потому что может быть представлен более простыми физико-географическими факторами: гидрологией, климатом, рельефом. Однако надо иметь в виду, что площадь распространения только солевых (без учёта гипсо-ангидритовых) отложений достигает 34 % территории континентального блока Земли. Эвапориты есть во всех геологических системах от докембрия до антропогена. Поэтому галогенез играет огромную роль в формировании состава подземных вод: как посредством растворения водой эвапоритовых пород, так и посредством вовлечения в недра огромных количеств рассолов, образующихся на поверхности Земли при испарительном концентрировании.

Говоря о вещественном составе пород как о факторе формирования подземных вод, важно подчеркнуть, что понимается под этим термином “вещественный состав пород”. До сих пор, говоря о вещественном составе пород, мы делали упор на минералогический состав пород, т.е. на набор основных минералов, из которых состоит порода. Однако при взаимодействии породы с водой, например, при растворении, в жидкую фазу будут поступать не только химические элементы из породообразующих и второстепенных (акцессорных) минералов, но также адсорбированные ионы, находящиеся в поглощённом комплексе пород, а также так называемые поровые растворы, содержащиеся в породе. Всё это вместе — твёрдые минералы, адсорбированные ионы и поровые растворы — называют ионно-солевым комплексом пород. С комплексом понятий, связанных с явлением сорбции, мы познакомимся дальше — при рассмотрении процессов формирования подземных вод, а понятие “поровые растворы” разберём, когда будем обсуждать вопрос о палеогидрогеохимических реконструкциях,

Вернёмся к факторам формирования подземных вод. Из геологических факторов нам осталось рассмотреть магматизм и газовый фактор.

Магматизм. Роль этого фактора в формировании состава подземных вод до сих пор является проблематичной. Одни исследователи считают этот фактор в ряде случаев ведущим, другими — он полностью отвергается. Это объясняется слабой изученностью летучих веществ, выделяющихся при дифференциации магмы. Сложность вопроса заключается и в том, что элементы, характерные для магматических эксгаляций, могут попасть в подземные воды и другими путями.

Газовый фактор оказывает большое влияние на иконно-солевой состав подземных вод. Достаточно сказать, что увеличение содержания газов, растворённых в воде, влияет на растворяющую способность воды. Так, повышение концентрации растворённого СО 2 в воде приводит к увеличению растворимости кальцита и кварца, что, естественно, может приводить к изменению состава воды.

Физико-химические факторы. К этим факторам относятся химические свойства элементов, растворимость химических соединений, кислотно-щелочные и окислительно-восстановительные условия.

Химические свойства элементов. Они определяют способность образовывать природные соединения. К числу важнейших физико-химических свойств относятся ионный радиус и валентность иона. Ионный радиус в значительной степени характеризует подвижность химического элемента. В принципе, чем он меньше, тем подвижнее гидратированные ионы.

Миграционную способность определяет также валентность иона. Для металлов с ростом валентности наблюдается образование менее растворимых соединений. Одновалентные металлы дают обычно легкорастворимые соединения (NaCl , Na 2 SO 4 , K 2 CO 3). Слабее растворимы соединения двухвалентных металлов (СаSO 4 , СаСО 3 , МдСО 3) и ещё менее — трёхвалентных (F е 3+ и Аl 3+). Существуют, конечно, исключения из этих закономерностей.

Растворимость химических соединений относится к прямым факторам формирования состава подземных вод. Нет необходимости долго обосновывать этот тезис. Для пресных вод характерно преобладание гидрокарбоната, поскольку именно этот анион образует с кальцием слаборастворимую соль. По мере повышения минерализации появляется сульфатный ион, характерный для солёных вод. Однако из-за сравнительно невысокой растворимости сульфат кальция быстро уступает первенство сульфату натрия или магния, а чаще хлоридам, которые со всеми основными катионами образуют легкорастворимые соли. Самые высококонцентрированные рассолы по составу преобладающих солей относятся к хлоридным магниевым или кальциевым, так как СаСl 2 и Мg Сl 2 чрезвычайно легко растворимы.

Кислотно-щелочные и окислительно-восстановительные условия, которые мы уже рассматривали ранее, регулируют миграцию химических элементов в подземных водах, так как от рН и Eh зависит растворимость минералов и формы нахождения элементов в растворе (в виде ионов, тех или иных комплексных соединений).

Физические факторы. В круг физических факторов формирования состава подземных вод входят температура, давление и время.

Температура — ведущий фактор, от которого зависит равновесие в системе вода - порода - газ. Температура сильно влияет на растворяющую способность подземных вод и скорость химических реакций. Растворимость большинства солей по мере роста температуры увеличивается, реже (например, CaCO 3) снижается.

В пределах изученных глубин земной коры температура подземных вод изменяется от -16 °С (концентрированные рассолы вечномерзлых пород) до +400 °С (парогидротермы очагов современного вулканизма). Температура определяет фазовые переходы воды в твёрдое и парообразное состояние. При температуре более 75 °С замирает деятельность микроорганизмов. Изменение температуры сказывается на вязкости воды. Все эти изменения, происходящие в воде и с водой, влияют на формирование её химического состава.

Давление — фактор формирования состава вод первостепенной важности. Этот фактор имеет ряд проявлений. Гидростатическое давление определяет темп водообмена, скорость движения воды, а значит и состав. Геостатическое давление обусловливает сложный комплекс процессов, связанных с отжимом растворов из пор глинистых пород в коллекторы, и, таким образом, также через динамику растворов влияет на состав. Наконец, давление влияет на растворимость пород и минералов. Этот вопрос изучен недостаточно, однако для ряда минералов (гипс, ангидрит, минералы кремнезёма) давление увеличивает растворимость.

Неотъемлемый фактор формирования состава подземных вод — время. Время — это скорость химических реакций, это продолжительность взаимодействия в системе вода - порода - газ, это возраст отложений, вмещающих подземные воды, это возраст самих подземных вод, наконец, это геологическая история.

Биологические факторы. С точки зрения влияния этих факторов на состав подземных вод важна вся совокупность живых организмов, которую В.И. Вернадский назвал живым веществом. То пространство, где проявляется деятельность живого вещества — это своеобразная оболочка Земли — биосфера. Биосфера охватывает наземную гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы. В земной коре нижняя граница биосферы отвечает температуре 75-100 °С — критической для развития бактерий. Бактерии распространены до глубины 4 км и переносят давления до 3-4 тыс. атм.

Животные и растения воздействуют на состав подземных вод, главным образом, через микроорганизмы. По мере отмирания животные и особенно растения отдают почве минеральные вещества, которые затем поступают в подземные воды. Влияние деятельности растений на состав подземных вод проявляется и в том, что растения аккумулируют огромное количество влаги, избирательно поглощают химические компоненты из подземных вод.

Искусственные факторы. Существо искусственных факторов формирования состава подземных вод заключается в производственной деятельности человека. Приведём далеко не полный перечень искусственных факторов. Это нарушение естественного режима подземных вод, вызванное разработкой полезных ископаемых, гидротехническим строительством, мелиорацией, эксплуатацией водоносных горизонтов для целей водоснабжения, а также сброс в недра загрязнённых стоков, попадание в водоносные горизонты продуктов атомных взрывов и распыляемых ядохимикатов. В качестве примеров рассмотрим действие некоторых искусственных факторов несколько подробнее.

Из недр Земли ежегодно извлекается масса химических соединений (NaCl, СаSO 4 , CaCO 3 , металлы, нефть и т.д.). Помимо нарушения естественного баланса в системе порода - вода это ведёт к проникновению в недра большого количества воздушного кислорода, т.е. к процессам окисления, что вызывает неизбежный переход дополнительных веществ в подземные воды. Глубина окисляющего воздействия порой достигает нескольких километров (например, на нефтегазовых промыслах, где для поддержания давления при добыче углеводородов в глубокие горизонты закачиваются целые реки воды).

Гидротехническое строительство вызывает перераспределения подземного стока и изменение геохимического режима подземных вод. При создании водохранилища Братской ГЭС в прибрежным карбонатных массивах произошло опреснение подземных вод, что резко усилило процессы карстообразования.

На территории Беларуси при проведении мелиоративных работ на ряде участков отмечено нежелательное засоление подземных вод. Существенной экологической проблемой для территории нашей республики является загрязнение неглубокозалегающих подземных вод нитратами, что связано с невысокой культурой использования удобрений и содержания скота. Значительное загрязнение подземных вод происходит под действием солеотвалов Солигорского калийного комбината, отвалов фосфогипса Гомельского химического завода. В последнем случае воды загрязняются серой, фосфором, фтором.

Об искусственных факторах формирования состава подземных вод можно говорить очень много. Но и сказанного, по-видимому, достаточно, чтобы стало ясно, насколько остро стоит в наше время проблема чистой воды.

Процессы превращения органических остатков в почве

Совокупность процессов трансформации органических веществ в почвах составляют процесс гумусообразования, который определяет формирование и эволюцию гумусового профиля почв. К процессам трансформации органических веществ относят: поступление в почву растительных остатков, их разложение, минерализацию и гумификацию, минерализацию гумусовых веществ, взаимодействие органических веществ с минеральной частью почвы, миграцию и аккумуляцию органических и органо-минеральных соединений.

Любые органические остатки, попадающие в почву или находящиеся на ее поверхности, разлагаются под воздействием микроорганизмов и почвенной фауны, для которых они служат строительным и энергетическим материалом. Процесс разложения органических остатков слагается из двух звеньев – минерализации и гумификации.

Минерализация – распад органических остатков до конечных продуктов – воды, диоксида углерода и простых солей. В результате минерализации происходит сравнительно быстрый переход различных элементов (азот, фосфор, сера, кальций, магний, калий, железо и др.), закрепленных в органических остатках, в минеральные формы и потребление их живыми организмами следующих поколений.

Гумификация – совокупность биохимических и физико-химических процессов трансформации продуктов разложения органических остатков в гумусовые кислоты почвы. Итог гумификации – закрепление органического вещества в почве в форме новых продуктов, устойчивых к микробиологическому разложению, служащих аккумуляторами огромных запасов энергии и элементов питания.

Наиболее интенсивно распад органических остатков до конечных продуктов идет при оптимальной влажности почвы (60 - 80% от полной влагоемкости) и температуре (20-25 0 С). При увеличении влажности и температуры или их снижении уменьшается скорость разложения остатков. При постоянном и резком недостатке влаги и высоких температурах в почву поступает мало растительных остатков, разложение их замедлено и осуществляется в виде процессов «тления». Темп разложения растительных остатков в значительной степени зависят от типа биогеоценоза и типа почвы.

Большое влияние на интенсивность разложения опада оказывает и химический состав растительных остатков. При высоком содержании в составе растительных остатков соединений, устойчивых к микробиологическому воздействию, они накапливаются на поверхности почвы в количествах, значительно превышающих масштабы ежегодного опада (почвы тундры и таежно-лесной зоны). По этой причине древесина, хвоя и другие компоненты растительного опада, содержащие много лигнина, смол, дубильных веществ, но мало азотистых белковых соединений, разлагаются медленно. Надземная масса трав, особенно бобовых, разлагается быстрее, а корневые остатки минерализуются с меньшей скоростью вследствие увеличения в них доли лигнино-целлюлозного компонента. Когда же растительные остатки обогащены белковыми соединениями, то их разложение протекает весьма интенсивно (почвы лесостепи).



Важно учитывать особенности климатических условий, которые определяют характер функционирования почвенной фауны и микроорганизмов. Значительное влияние на скорость минерализации оказывают минералогический и гранулометрический составы почвы. При оптимальных условиях разложения в почвах тяжелого гранулометрического состава, богатых высокодисперсными глинистыми минералами, минерализационные процессы тормозятся. Это обусловлено высокими величинами свободной поверхности минералов, благодаря чему на них сорбируются промежуточные продукты разложения и новообразованные гумусовые вещества, что предохраняет их дальнейшей минерализации. В почвах с преобладанием первичных минералов, сорбция практически не выражена, поэтому процесс минерализации протекает очень активно. Это свойственно почвам легкого гранулометрического состава, в связи с чем они всегда содержат мало гумуса. В почвах с кислой реакцией среды процессы разложения остатков тормозятся вследствие угнетения бактериальной микрофлоры. При наличии в почве поливалентных металлов (железо, марганец, алюминий), образуются комплексные органо-минеральные соединения, устойчивые к действию микроорганизмов. Одновалентные катионы и щелочная реакция среды способствуют образованию подвижных водорастворимых органических соединений, что благоприятствует их последующей минерализации.

Таким образом, свойства почвы прямо или косвенно влияют на скорость разложения органических остатков. Прямое влияние выражается в степени развития процессов взаимодействия продуктов распада с компонентами почвы, косвенное – в регулировании интенсивности жизнедеятельности микроорганизмов и их состава.

Лекция №3

1. Анатомо - физиологические особенности детского организма. Периоды детского возраста.

2. Развитие зубов.

3. Первичная минерализация твердых тканей зубов.

4. Механизм прорезывания зубов. Сроки прорезывания временных и

Постоянных зубов.

5. Рост, развитие и формирование корня зуба и тканей пародонта.

6. Вторичная минерализация твердых тканей зубов.

Анатомо-физиологические особенности детского организма

Развитие тканей и совершенствование функций отдельных органов и всего оранизм в целом являются процессами, которые принципиально отличают детский организм от взрослого.

Соответственно характеру и интенсивности изменений, происходящих в организме, принято различать следующие периоды развития ребенка:

1) внутриутробный (антенатальный) развитие-280 дней (10 лунных

месяцев);

2) новорожденности - около 3-3,5 недель;

3) грудной - до 1 года;

4) ясельный - от 1 до 3 лет;

5) дошкольный - от 3 до 6 лет;

6) школьный - от 6 до 17 лет, в этом периоде выделяют:

Младший школьный - от 6 до 12 лет;

Старший школьный - от 12 до 17 лет.

Внутриутробный период развития. Развитие челюстно-лицевой

Период внутриоутробного развития является важнейшим, ответственным и наиболее уязвимой фазе развития плода.

Все аномалии, в целом характеризуются отклонениями от нормального развития лица, челюстей и зубов в процессе эмбриогенеза, начинаются в основном на ранних стадиях и имеют первоначальный характер. Нарушение структуры, формы и размеров, которые возникают при дальнейшем росте и развитии зубочелюстной системы имеют производный, вторичный характер.

Развитие зубов

Развитие зубов длится два основных периода - внутричелюстной (до прорезывания зуба) и винутриротовой (после прорезывания). Выделяют основные этапы развития зубов человека, которые плавно переходят друг в друга и не могут буги четко отграниченными:

1) закладка зубной пластины с последующим образованием зубных зачатков, происходит в период внутриутробного развития. Формирование зубных зачатков может происходить как в антенатальный, так и в постнатальный периоды развития человека. всегда внутричелюстного.

2) дифференциация тканей;

3) гистогенез;

4) первичная (внутричелюстная) минерализация.

5) прорезывания зуба;

6) рост, развитие и формирование корней и тканей пародонта, с которыми одновременно активизируются процессы вторичной минерализации твердых тканей зубов. 7) стабилизация (функционирования). Продолжительность этого периода для каждой группы как временных, так и постоянных зубов является индивидуальной.

8) резорбция (рассасывание) корней.


Закладка и образование зубного зачатка

Наб-7-й неделе внутриутробного развития вдоль верхнего и нижнего краев первичной ротовой полости (в области будущих зубных дуг верхней и нижней челюстей) происходит утолщение многослойного плоского эпителия, который врастает в пидлежащую мезенхиму, создавая зубную пластинку.

Зубная пластина прорастает в глубину, принимает вертикальное положение и разделяется на вестибулярную и язычную. Эпителий присинковой части зубной пластины сначала активно разрастается, утолщается, позднее-часть его клеток дегенерирует, формируя щель - преддверие ротовой полости, который отделяет губы и щеки от десневой дуги. Эпителий языковой части зубной пластины, погружаясь в мезенхиму, дает начало всем временным и постоянным зубам (рис. 2).

Рис.2 Ранняя стадия развития зуба: 1 - эпителий слизистой оболочки полости рта, 2 - шейка эмалевого органа; 3 - внешний эмалевый эпителий; 4-пульпа эмалевого органа; 5 - внутренний эмалевый эпителий; 6 - зубной сосочек; 7 - зубной мешочек; 8 - трабекулы новообразованной кости; 9 - мезенхима.

Сначала эпителий пролиферирует в виде почек, которые трансформируются в колбообразные разрастания, которые позднее приобретают вид колпачков, формируя эмалевый орган. В эмалевом органе зубного зачатка, образованного двумя утолщенными слоями многослойного эпителия, между клетками в центральной части эмалевого органа продуцируется белковая жидкость, постепенно разграничивает эти слои на внешний и внутренний, между которыми формируется пульпа эмалевого органа.

В результате дифференциации клетки эмалевого органа, которые сначала были одинаковые по морфологии, приобретают разную форму, функцию и назначение. Эпителий, прилегающей к мезенхимы зубного сосочка, это высокие клетки цилиндрической или призматической формы, в цитоплазме которых накапливается повышенное содержание гликогена. В дальнейшем из этих клеток образуются енамелобласты (амелобласты, адамантобласты)-клетки, продуцирующие органический матрикс эмали зуба.

Так эмалевый орган дает начало эмали зуба и кутикуле, которая принимает непосредственное участие в формировании зубо-десневого прикрепления. Функцией эмалевого органа является также то, что он придает коронковой части зуба определенной формы и индуцирует процессы дентиногенеза.

Одновременно под вогнутой частью эмалевого органа, под внутренним слоем его эпителия, интенсивно агрегируются мезенхимальные клетки, составляющие зубной сосочек. Он дает начало формированию дентина и пульпы зуба. Мезенхима, окружающая каждый эмалевый орган и зубной сосочек, уплотняется и формирует зубной мешочек, из которого формируются цемент и псриодонт.

Таким образом, в результате трансформации эпителиальной и мезенхимальной ткани, которая наиболее интенсивно происходит в периоды закладки, дифференциации, гистогенеза формируется зубной зачаток (рис. 3).

Рис.3. Ранняя стадия развития зуба (зубной зачаток): 1 - эпителий слизистой оболочки ротовой полости; 2-енамелобласты; 3-эмаль; 4-дентин, 5 - предентин; 6 - дентинобласты; 7 - зубная пластинка и закладка постоянного зуба; 8 - пульпа зуба, 9 - остаток эмалевого органа, 10 - костные трабекулы; 11 - мезенхима.

Формирование зачатков всех временных зубов происходит в антенатальном периоде развития, начиная с 6-7 недель эмбриогенеза. Формирование зачатков постоянних зубов происходит в следующей последовательности: зубные зачатки первых постоянных моляров и центральных резцов начинают формироваться на 5 и соответственно 8 месяца внутриутробного периода развития. В первые полгода жизни ребенка происходит развитие зубных зачатков постоянных латеральных резцов. Во второй половине 1 года жизни и в первой половине 2 года жизни ребенка происходит развитие зубных зачатков первые премоляры. В конце 2 года жизни ребенка формируются зубные зачатки вторые премоляры, на 3 году-вторых постоянных моляров и клыков. Формирование зубных зачатков третьего постоянных моляров (зубов "Мудрости") происходит в возрасте до 5 лет. К этому периоду развития ребенка в костной ткани челюстей еще сохраняются остатки эмбриональных тканей - эпителиальной и мезенхимальной, которые способны к дифференциации и инициируют гистогенез.

Первичная минерализация твердых тканей зубов

Синтез органического матрикса твердых тканей зуба инициирует их первичную минерализацию. Сроки начала первичной минерализации временных зубов отражены в табл. 1.

Первичная минерализация твердых тканей зуба происходит в внутричелюстном периоде его развития очень интенсивно. Она всегда начинается с режущего края резцов и клыков, а также из бугорков жевательных зубов и продолжается на всю длину коронки зуба. Расположенный под эмалью дентин сначала структурируется органическими веществами, позднее приобретает признаки минерализации. Период первичной минерализации твердых тканей зубов длится разное время. Активнее первичная минерализация происходит во временных зубах, а именно, в центральных и латеральных резцах обеих челюстей (6-8 мес).

Рис. 4. Строение енамелобласта (А Хэм, Д. Кормак, 1983): 1 - матрикс эмали, 2 - отросток Томса 3 - секреторные гранулы; 4-апикальные запирающие пластинка; 5-комплекс Гольджи; 6 - гранулярная эндоплазматическая сеть, 7 - ядро, 8 -митохондрии; 9-базальная запирающие пластинка

Рис. 5. Строение дентинобласта (А Хэм, Д. Кормак, 1983): 1-дентин; 2-зонаминерализации; 3-отросток Томса, 4 - предентин; 5-замикашигшастинка; 6-гранулярная эндоплазматическая сеть, 7 - комплекс Гольджи; 8-ядро.

Молодая эмаль зуба, который еще не прорезался, по химическому составу аналогична зрелой эмали. На 65% она состоит из воды, содержание органических веществ составляет 20%, минеральных веществ - менее 15% (так называемая мягкая эмаль). Качество процессов первичной и вторичной минерализации твердых тканей зуба формирует в будущем его кариесрезистетиисть. После внутричелюстной минерализации коронковой части зачатка зуба он прорезывается.

Е. П. Хрущева

Одним из важных экологических факторов, влияющих на процесс микоризообразования, является интенсивность освещения.

В опытах Бьеркмана (Bjorkman, 1942) и в более поздних работах (Шемаханова, 1962; и др.) была доказана прямая зависимость интенсивности развития микоризы у хвойных растений от степени освещенности. Исследования И. А. Селиванова, В. Г. Логиновой (1968) показывают благоприятное влияние непрерывного освещения на процесс микоризообразования, рост и развитие сеянцев сосны.

Такая же закономерность отмечена и при изучении влияния света на развитие эндотрофной микоризы (Штеренберг, 1952; Куклина-Хрущева, 1952; Шрадер, 1958; Boullard, 1960; Koch, 1961; Hayman, 1974; и др.). Наши полевые опыты (1952) показывают прямую связь между интенсивностью освещения ц степенью развития микоризы у яровой пшеницы. Из табл. 1 видно, что при пониженном освещении уменьшилось количество растений, микориза которых оценена в три балла. Ухудшились условия для формирования урожая. Снижение показателей урожая происходило тем сильнее, чем больше развита микориза. Вес зерна в колосе при притенении составлял от контроля при оценке микоризы в один балл 78%, при оценке в два балла - 75,4%, а в три балла - 55%.

При обычных условиях освещения (контроль) микориза развивалась активнее и, чем больше содержалось гриба в корнях, тем выше были показатели урожая.

Таким образом, при пониженном освещении создаются условия, неблагоприятные для роста и развития растений и для процесса микоризообразования. Причиной плохого состояния растений являются критические условия их роста и развития, создавшиеся в связи с понижением интенсивности фотосинтеза. В этих условиях увеличение гриба в корнях приводит к снижению показателей урожая.

В связи с этим приобретают важное значение такие вопросы, как густота стеблестоя, способы посева, направление рядков в посевах.

Способы посева оказывают влияние на процесс микоризообразования и рост растений пшеницы. Широкорядный посев оказался более эффективным, чем перекрестный. При первом способе посева у овса сорт Победа половина анализированных растений оказались микоризными со слабым развитием гриба в корнях. При перекрестном посеве сорта Победа микориза у растений отсутствовала, у сорта Орел микоризу имели лишь 20% растений. У обоих сортов овса рост происходил медленнее, чем при широкорядном посеве. Отмеченная разница в росте растений и в степени развития микоризы вызвана не только сортовыми особенностями овса, но и теми условиями, которые создались при разных способах посева. Слабое развитие растений, низкая интенсивность развития микоризы и даже отсутствие ее при перекрестном посеве объясняются, по-видимому, более высокой густотой стояния растений, вызвавшей изменения в питательном и водном режиме, а также в интенсивности освещения.

При обычном рядовом посеве развитие микоризы у овса сорта Победа происходило так же активно, как и при широкорядном. Микоризные растения составляли 87,5% от общего количества анализированных растений при оценке микоризы 1,6 балла, высота стебля достигала 70 см (фаза выметывания метелки).

На развитие микоризы в естественных фитоценозах существенное влияние оказывает водно-воздушный режим (Крюгер, 1961, Селиванов, Утемова, 1970; Катенин, 1972; Корбонская, 1973; и др.). У сельскохозяйственных растений водновоздушный режим также является весьма важным экологическим фактором, влияющим на процесс микоризообразования, особенно в начальный период формирования микоризы. Влажность почвы, ее воздушно-тепловой режим необходимы для прорастания внешних везикул, роста мицелия и проникновения его в корни растений. От водно-воздушного и теплового режима зависят темпы микоризообразования и роста растений. По нашим наблюдениям, водно-воздушный режим влияет на распределение микориз по профилю почвы.

На светло-серых лесных почвах этот важный экологический фактор, как и ряд других почвенных условий, в значительной мере определяется способами обработки почвы. Способы обработки почвы, изменяя ее свойства и в первую очередь наиболее важное из них - плодородие, оказывают влияние на рост и развитие сельскохозяйственных культур, на способность их вступать во взаимоотношения с грибами-микоризообразователями. В более ранних работах (Хрущева, 1960) показано (опыт научных сотрудников Горьковской сельскохозяйственной опытной станции И. Н. Пантелеева и Д. М. Попова), что развитию микоризы пшеницы наиболее благоприятствовало многократное лущение пласта на 6-8 см. Все растения (100%) оказались микоризными, из них 88% были сильномикоризными, остальные - среднемикоризными. Активно происходило микоризообразование и в варианте «лущение + глубокая безотвальная вспашка на 40 см». Растения с сильно развитой микоризой составляли 80%, со средним содержанием гриба в корнях-12%, с малым содержанием - 8,%.

При вспашке плугом с предплужником сильно развитую микоризу (балл 3) имели 56% растений, микоризы с оценкой в 2 балла - 40% и с оценкой в 1 балл - 4%. Разница в интенсивности развития микоризы между первыми двумя способами обработки невелика, а разница в урожае по лущению значительна - 2,79 ц с гектара. Обратная зависимость между степенью развития микоризы и величиной урожая обусловлена, по-видимому, тем, что многократное поверхностное рыхление пласта, улучшив аэрацию, активизировало деятельность микроорганизмов, в том числе и грибов-микоризообразователей, что способствовало сильному развитию микоризы. Поверхностная обработка почвы, наоборот, не благоприятствовала развитию корневой системы. Корневая система, развиваясь, главным образом, в поверхностном разрыхленном слое почвы, не обеспечивала в должной мере растения водой и элементами минерального питания. В этом случае плохое состояние растений вызвано критическими условиями их роста и развития, а следствием - сильное развитие микоризы, а не наоборот, как это объясняет Winter (1950).

Аналогичную картину наблюдаем и на легких дерново-подзолистых почвах Горьковской области. На супесчаных дерново-подзолистых почвах лущение на 10-12 см снизило урожай озимой ржи (Шапошников, 1971), в этом же опыте у ржи лущение стимулировало развитие микоризы (Талатина, 1971).

В комплексе условий, влияющих на процесс микоризообразования, важное место занимают минеральные удобрения.

Лабораторные опыты (Daft, Nicolson, 1966) и опыты в полевых условиях (Хрущева, 1958) показали, что при низких уровнях фосфорного питания стимулируется микоризообразование, а также рост и развитие кукурузы. Высокие дозы фосфора в лабораторных условиях снижают степень инфекции и незначительно стимулируют рост микоризных растений по сравнению с безмикоризными. В полевых условиях высокие дозы фосфора (Р40), внесенные в лунки совместно с перегноем, снижают не только количество микориз у кукурузы, но и урожай. И. М. Коданев (1974) указывает на повышение урожая ячменя от рядкового внесения гранулированного суперфосфата в дозе 7,5 кг действующего вещества на гектар. Увеличение дозы суперфосфата вдвое не дало эффекта.

По имеющимся данным (Хрущева, 1955; Булаева, 1965; Александрова, 1966; Согина, 1968; Кириллова, 1968; Сюзева, 1970; Миленина, 1971; и др.), минеральные удобрения (особенно высокие дозы NPK), стимулируя рост растений, снижают микоризообразование. В исследованиях Е. И. Александровой (1966) на светло-серых лесных почвах показана обратная зависимость между степенью микотрофности и урожаем ячменя под влиянием азотного (N 60), фосфорного (Р 60), азотно-фосфорного (N 60 Р 60) и полного минерального удобрения (N 60 P 60 K 60). По данным Н. Г. Сюзевой (1970), такая же закономерность наблюдается у пшеницы на легких дерново-подзолистых почвах.

Изучение интенсивности микоризообразования и наблюдения за ростом и развитием сельскохозяйственных растений показали, что при избыточном снабжении их легкодоступными элементами питания или, наоборот, при большом недостатке элементов питания в почве количество гриба в корнях снижается. В первом случае наблюдаем обратную зависимость между ростом растений и развитием гриба в корнях, во втором - создаются условия, неблагоприятные для развития обоих компонентов.

В опытах Н. М. Шемахановой (1962) при одновременном внесении слишком больших или чрезмерно малых доз азота и фосфора микориза у сосны не развивалась.

На светло-серых лесных почвах микориза бывает более обильной без внесения минеральных удобрений, а у ячменя - и при использовании калийных удобрений (Александрова, 1966). Ослабление процесса микоризообразования под влиянием минеральных удобрений (исключая калийные) вызывается усилением физиолого-биохимических процессов в растении. При снабжении растений элементами минерального питания, особенно азотом и фосфором, увеличивается синтез белков и других сложных органических соединений. Это приводит к обеднению тканей корней сахарами, а недостаток сахаров в корнях лимитирует развитие микоризы.

Гранулированные минеральные удобрения, внесенные в рядки, снизили количество растений с оценкой микоризы в 3 балла, но положительно влияли на рост яровой пшеницы по сравнению с контролем (пласт без удобрений). Наиболее эффективными для роста пшеницы оказались гранулированный суперфосфат (вариант 2) и суперфосфат с аммиачной селитрой при совместном внесении (вариант 3). В этих двух вариантах, а особенно в варианте с внесением одного суперфосфата, при увеличении гриба в корнях повышается накопление воздушно-сухого веса надземной части растений. Так, гранулированный суперфосфат в дозе 12 кг/га при оценке микоризы в 1 балл повысил вес надземной части на 15% по сравнению с контролем, а при оценке микоризы в 3 балла - на 35,7,%. При совместном внесении фосфора и азота (P9N9) у растений с оценкой микоризы в 1 балл вес надземной части увеличился на 12%, а в 3 балла - на 24,5% по сравнению с контролем. С повышением интенсивности развития микоризы увеличивались показатели структуры урожая (озерненность колоса, вес зерна с одного колоса, абсолютный вес зерна). Наиболее высокие показатели урожая отмечены при внесении в рядки гранулированного суперфосфата. Прибавка урожая зерна от гранулированного суперфосфата выразилась в 4,2 ц с гектара (Куклина - Хрущева, 1952).

При внесении гранулированных удобрений в рядки выявилась прямая зависимость между количеством микоризных корней или микориз у растений и накоплением растениями сухой надземной массы. Чем больше микориз у растения, тем выше показатели роста. Таким образом, процесс микоризообразования и взаимоотношения компонентов зависит от состояния высшего растения, экологических факторов и приемов агротехники.

Состояние высшего растения и гриба в корнях определяется интенсивностью освещения, количеством сахаров в корнях, обеспеченностью растений элементами минерального питания (Согина, 1966).

В последние годы внимание многих исследователей направлено на выяснение влияния везикулярно-арбускулярной микоризы на рост и развитие сельскохозяйственных растений и взаимоотношения компонентов микоризы (Куклина - Хрущева, 1952; Клечетов, 1957; Михайленко, 1958; Гельцер, Коваль, 1965; Проценко, Шемаханова, Метлицкий, 1971; Миленина, 1974; и др.).

По данным ряда авторов (Daft, Nicolson, 1966; Gerde — mann, 1965; Gray, Gerdemann, 1967; Hayman, Mosse, 1970; Mosse, Hayman, 1972; Meloh, 1963; и др.), растения, имеющие везикулярно-арбускулярную микоризу, лучше поглощают фосфор и лучше растут на бедных почвах, чем безмикоризные. Способность микоризных растений поглощать фосфор не только из минеральных удобрений, а также из труднодоступных его форм приобретает большое значение в отношении мобилизации питательных веществ из мертвого запаса почвы.

Таким образом, интенсивность развития микоризы и взаимоотношения между грибом и высшим растением зависят от целого ряда факторов. Знание экологических условий, приемов агротехники, благоприятствующих взаимоотношениям компонентов микоризы, поможет повысить продуктивность сельскохозяйственных культур. Для яровой пшеницы на светло-серых лесных почвах к таким агроприемам можно отнести глубокую безотвальную вспашку, внесение малыми дозами гранулированного суперфосфата и суперфосфата с аммиачной селитрой. Для овса более эффективными являются широкорядный и рядовой способы посева, чем перекрестный.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Прочитайте:
  1. II. В дневнике для практических работ составить формулы молочных и постоянных зубов.
  2. II. Средства, влияющие преимущественно на рецепторы эфферентной иннервации сердца
  3. V1:АНАТОМИЯ ЗУБОВ И ПОЛОСТИ РТА 2 к (4 с); 3 к (5-6 с); 4 к (7-8 с); 5 к (9-10 с)
  4. V1:ДЕФЕКТЫ КОРОНКОВОЙ ЧАСТИ ЗУБОВ. 2 к (4 с); 3 к (5-6 с); 4 к (8 с); 5 к (9-10 с)
  5. АДРЕНЕРГИЧЕСКИЕ СРЕДСТВА ИЛИ СРЕДСТВА, ВЛИЯЮЩИЕ НА ПЕРЕДАЧУ ВОЗБУЖДЕНИЯ В АДРЕНЕРГИЧЕСКИХ СИНАПСАХ (АДРЕНОМИМЕТИЧЕСКИЕ И АДРЕНОБЛОКИРУЮЩИЕ СРЕДСТВА)
  6. Акселерация. Факторы, влияющие на физическое развитие ребенка.

В эмбриональном:1 Общесоматическое состояние здоровья матери.

2 Характер питания матери.

В постэмбриональном:

Внешние:1.Соц.статус

2.Характер питания

3.Физическое воспитание и развитие

4.Экологтческая ситуация

5.Пол,этнос,регион.

Внутренние:1.Наследственность

2.Состояние здоровья

3.Наличие аномалий и пороков.

9.Роль наследственности и факторов внешней среды в развитии кариеса и некариозных поражений.

Исследовалась роль генетических факторов. Были получены линии крыс, восприимчивых и резистентных к индуцированию Кариес зуба. Наследственные качества восприимчивости или резистентности к Кариес зуба сохраняются у потомства после скрещивания обеих линий. Таким образом подтверждается роль нарушений обмена веществ, генетических и иммунных факторов, а также функциональных расстройств эндокринной системы в развитии Кариес зуба.В некариозных поражениях главную роль,также играет наследственность, а именно минеральный обмен и состояние матери в период беременности!!!Также экология и внешняя среда влияет на здоровья полости рта в качестве тератогенных факторов (например флюороз-от избыточного поступления фтора)

10 Алгоритм осмотра стоматологического больного.

1.Сбор анамнеза.

- Следует вияснить причину возникновения боли, её локализацию, длительность,характер.

- наличие кровоточивости,когда возникает,продолжительность,симптомы.

-общее состояние,температура,пульс, АД.

2.Объективный осмотр.

-внешний осмотр:вес,рост…признаки физиологической нормы,признаки патологи жевания,глотания.сосания,дыхания,речи.

-осмотр лица

-пальпация тканей лица,шеи,лимфатических узлов.

-состояние височно-нижнечелюстного сустава

3.Осмотр полости рта.

-осмотр красной каймы губ и уголков рта.

-осмотр предверия полости рта

-оценка прикуса

-осмотр слизистой оболочки полости рта

-осмотр слизистой десен

-осмотр дна полости рта

-осмотр твердого неба

-осмотр твердых тканей полости рта.

11.Зубная формула,определение,назначение.Запись анатомической и клинической зубной формулы.

Зубная формула – это специальная схема, в которой фиксируется порядок расположения зубов , в ней отдельные зубы или их группы записываются цифрами или буквами с цифрами.

Зубная формула взрослого человека

  1. Система Зигмонда-Палмера. Данная система получила наибольшее распространение. По этой системе горизонтальная линия указывает на принадлежность зуба к верхней или нижней челюсти, а вертикальная – к правой или левой стороне. Зубы постоянного прикуса обозначаются арабскими цифрами.
  1. Двухцифровая система. Применяется в настоящее время, принята FDI (Международная Ассоциация Стоматологов) .По этой системе к порядковому номеру каждого зуба (1-8) впереди добавляется номер квадранта (1-4).