Солнечное сияние.

Раздел метеорологии, изучающий солнечную, земную и атмосферную радиацию, называется актинометрией. Ее основная задача - измерение потоков лучистой энергии. Актинометрические данные нужны для научного ведения сельского хозяйства, в строительстве, при проектировании зданий и сооружений, для работы и исследований в области гелиотехники. Солнечная радиация широко используется в лечебных целях в курортологии.

Солнце - источник энергии почти для всех природных процессов на Земле. Энергия, поступающая из глубинных слоев земли, а также излучение, приходящее от звезд, ничтожно малы по сравнению с энергией, поступающей от Солнца.

Рассмотрим некоторые определения, используемые в метеорологии. Энергия, излучаемая солнцем и поступающая на Землю, называется солнечной радиацией . Радиация, (не путать с радиоактивностью - ионизирующим излучением) поступающая в атмосферу и затем на земную поверхность в виде пучка лучей, называется прямой . Часть солнечной радиации, отражающейся от земной поверхности и от облаков, называется отраженной радиацией . Суммарная радиация - это сумма прямой и рассеянной радиации . Состав суммарной радиации меняется в зависимости от высоты солнца, прозрачности атмосферы и облачности. Суточный и годовой ход суммарной радиации определяется главным образом изменением высоты солнца. Но влияние облачности и прозрачности воздуха сильно усложняет эту простую зависимость и нарушает плавный ход суммарной радиации. Суммарная радиация существенно зависит так же от широты места. С уменьшением широты ее суточные суммы увеличиваются, а амплитуда ее годового хода уменьшается.

На всей территории Приморья наблюдается обычный годовой ход суммарной радиации с минимумом в декабре (3.2-6.0 ккал/см 2 - данные до 1951г.) и максимумом в конце весны - начале лета (9.2-15.4 ккал/см 2). На северных станциях края максимум суммарной радиации приходится на июнь, а при переходе к южным широтам наблюдается смещение его на май.

Если сравнить величины о сезонных значениях суммарной радиации для некоторых пунктов Приморья и Европейской территории России и Украины, расположенных на одной и той же широте, то оказывается, что зимой Владивосток получает больше солнечной радиации, чем города Краснодар и Сочи. Это объясняется тем, что зима в Приморье отличается малой облачностью. Летом же, в Приморье солнце показывается реже, преобладает облачность и частые дожди.

Величины суммарной радиации (ккал/см 2)
для некоторых пунктов Приморского края, России и Украины


Для туристов и отдыхающих на юге Приморья интересна действительная продолжительность солнечного сияния. Она зависит от продолжительности дня, облачности и закрытости горизонта. Наибольшие значения продолжительности солнечного сияния приходятся на март, сентябрь и октябрь. Минимальные значения наблюдаются в июне и июле. Происходит это потому, что весной и осенью продолжительность солнечного сияния достаточно велика по сравнению с зимними месяцами, а повторяемость дней с облачностью и туманами гораздо меньше, чем летом.

Радиационный баланс атмосферы и подстилающей поверхности - это алгебраическая сумма потоков радиации, поглощаемой и излучаемой атмосферой. Эти потоки являются основными климатообразующими факторами, важнейшими компонентами теплового баланса атмосферы. Он может быть положительным и отрицательным.

На территории Приморского края радиационный баланс в течение четырех месяцев (ноябрь, декабрь, январь, февраль)оказывается отрицательным. В остальные месяцы и за год его значения положительные. Радиационный баланс на территории края изменяются в пределах от 22 ккал/см 2 (Агзу) до 46 ккал/см 2 (Владивосток).

Интересно сравнить его значения для некоторых пунктов Приморья и Европейской территории России. Годовые величины радиационного баланса для пунктов Приморья оказываются на 12 - 18 ккал/см 2 меньше, чем годовые величины радиационного баланса для пунктов Европейской части, расположенных соответственно на тех же широтах. Это объясняется главным образом тем, что в Приморье в летнее время облачность значительно снижает приходную часть радиационного баланса.

С развитием строительства зон отдыха и важности солнечной энергетики для автономных систем электроснабжения появляется необходимость в качественных данных о суммарной радиации в пунктах Приморского края. Такую информацию можно получить в Отделе автоматизации и режимной гидрометеорологии Приморскгидромета.

Первая работа по облачности была выполнена акад. Вильдом в начале 70-х годов XIX столетия. Так как до 70-х годов облачность записывалась словами, а не цифрами, то точность таких определений мала. Вторая работа написана Воейковым, который для оценки облачности воспользовался 10-баль-ной системой, но для подробной характеристики облачности наблюдений было ещё мало. В 1895 г. вышла работа Шенрока, содержащая графики годового хода облачности, а также карту распределения облачности по сезонам и за год. Позднее он дал карту распределения облачности (1900 г.), составленную по более полным материалам. В 1925 году в Атласе промышленности, а позднее (1939 г.) в Большом советском атласе мира были напечатаны карты облачности, составленные Е. С. Рубинштейн. В прежних работах данные по облачности к одному периоду не приводились. Это сделано в последней работе Е. С. Рубинштейн, хотя на возможность такого приведения указывал уже ранее Конрад.

Солнечное сияние изучалось Фигуровским (1897) и Ваннари (1907- 1909 гг.). Более поздних работ, характеризующих распределение солнечного сияния и облачности в СССР, не имеется.

ГОДОВОЙ ХОД ОБЛАЧНОСТИ

Можно выделить четыре основных типа годового хода облачности в СССР.

I тип, восточноевропейский, с максимумом облачности зимой, минимумом летом, наблюдается приблизительно между 60-й и 42-й параллелями и от западных границ СССР до 70° меридиана. К востоку от Азовского моря максимум облачности наступает в декабре, на северном побережье Чёрного моря ^Одесса, Таганрог) и в Туркмении - в январе; в Крыму - в феврале. Во всей области отмечается большая амплитуда облачности.

II тип, восточносибирский, характеризуется максимумом облачности в летнее полугодие, минимумом - зимой. Этот тип наблюдается в восточносибирской и дальневосточной областях. Здесь всюду самый ясный месяц - январь или февраль. Время же наступления максимума изменяется в очень больших пределах: от мая до августа. Так, на нижнем течении Амура максимум наблюдается в мае; на среднем течений, в Благовещенске - в июне; на верхнем течении, в Нерчинске, максимумы (мало выдающиеся)- в мае и августе.

III тип, переходный, с минимумом и максимумом облачности в переходные сезоны, характерен для всей остальной территории СССР (исключая горные массивы), т. е. для западносибирской области (между 60 и 90е долготы и от 50 до 67° с. ш.), Крайнего Севера, а также для Бессарабии и Черноморского побережья Кавказа.

IV тип, высокогорный, имеет минимум облачности зимой и максимум - в мае или июне. Малая облачность в горах зимой объясняется тем, что в это время года образуются преимущественно низкие слоистые облака, не достигающие вершин гор (Большой и Малый Кавказ, горы Средней Азии, Алтай).

Амплитуда годового хода облачности, как правило, возрастает в направлении от побережий внутрь континента, тогда как средняя облачность по тому же направлению уменьшается.

Суточный ход облачности в тёплое полугодие в Европейской части СССР имеет два максимума: один ночью (за счёт слоистых облаков при соответствующих типах погоды), другой днём (при образовании облаков вследствие восходящих токов); в холодное полугодие обычно наблюдается лишь один максимум (ночью или утром). В Азиатской части СССР отмечается преимущественно один максимум облачности - летом в дневные, зимой в утренние часы.

В горных районах страны летом ясно выражен дневной максимум облачности, тогда как зимою - ночной.

РАСПРЕДЕЛЕНИЕ ОБЛАЧНОСТИ

Согласно расчётам Брукса, средняя облачность распределяется следующим образом в зависимости от широты (для северного полушария):

В СССР наибольшая облачность наблюдается над Арктикой и Белым морем (широта около 70°), где она составляет в среднем за год 88%, а в ноябре и декабре 94% (маяк Сосновец). По направлению к югу и особенно к юго-востоку облачность уменьшается, составляя в Туране (широта 40° - 50°) 35-25%, в Крыму и в Закавказье 50%, в Забайкалье и Средней Азии 35% и на Дальнем Востоке 35-40%.

Зимой наименьшая облачность наблюдается в Забайкалье и восточносибирской области (20-35%), что находится в тесной связи с высоким атмосферным давлением и низкими температурами.

Зимняя изонефа в 60% пересекает середину Каспия и, касаясь западных окраин Арала, направляется к Уралу. Далее она проходит по восточному склону Урала до устья Оби, а затем поворачивает на юго-восток и, огибая Васюганские болота, достигает Новосибирска. Затем изонефа следует по Енисею до Карского побережья. Таким образом, по восточному склону Урала и в центральной части Западносибирской низменности облачность несколько понижена, что должно быть связано с западными нисходящими воздушными массами, переваливающими через Урал.

На Мурманском побережье и Кольском полуострове облачность снижается до 70%. местами до 65%. что аналогично распределению относительной влажности, которая здесь ниже, чем на материке, потому что прилегающие водоёмы теплее материка и нагревание со стороны моря сказывается на побережье. К западу отсюда облачность увеличивается, достигая в Прибалтике 80%. Над территорией Карело-Финской республики облачность несколько понижена (70%), что находится в тесной связи с антициклоном, господствующим над Финляндией.

Зимние изонефы в основном направлены с севера на юг, так как для зимы характерно убывание облачности с запада на восток.

Весной, в связи с ослаблением циркуляции атмосферы, облачность уменьшается на западе и возрастает вследствие увеличения конвекции тёплого воздуха на востоке.

Летом облачность уменьшается с севера на юг (от 70% в Арктике, до 10% в Туране). Над балтийским побережьем облачность понижена (45-50%), что Шенрок объясняет доходящим сюда феном из Швеции. Каминский отрицал такое объяснение, так как если бы сюда принесенные феном массы воздуха и доходили, они оказались бы уже увлажнёнными вследствие прохождения над морем. Исследованиями Каминского, Михайловской и др. установлено, что над плоскими побережьями морей летняя облачность понижена вследствие слабо развитых конвективных токов; морские ветры почти не испытывают здесь трения и не успевают прогреться для образования конвекции.

Самая незначительная облачность летом (10% в среднем за август) наблюдается в Средней Азии. На Северном Кавказе облачность повышена вследствие поднимающихся здесь по склонам гор масс воздуха, приносимых господствующими ветрами с северной составляющей.

Летом в сравнении с зимою распределение облачности является как бы повёрнутым на 90°: зимой облачность уменьшалась с запада на восток, летом она убывает с севера на юг (несколько увеличиваясь на востоке и убывая на западе), так что изонефы идут теперь главным образом вдоль параллелей.

Осень - переходный период. Распределение облачности близко к годовому её распределению. На севере облачность 70°%, на юге (в Средней Азии) 20-30%. На берегу Балтийского моря нет понижения облачности, которое наблюдалось летом.

В тесной связи с облачностью находится распределение ясных и пасмурных дней. Число ясных дней в среднем за год в СССР колеблется от 20 в районе Белого моря до 200 в турано-казахской области, пасмурных - соответственно от 200 до 20. Безоблачной погодой отличаются закаспийские районы, где в году бывает до 200 совершенно ясных дней (Термез 207), и Забайкалье (Чита 140); Забайкалье выделяется ещё и тем, что здесь в году мало пасмурных дней (Чита имеет в среднем только 38 пасмурных дней). Наиболее пасмурная погода свойственна Белому морю, где среднее годовое число пасмурных дней около 200, а ясных - не более 20. В годовом ходе наибольшее количество ясных дней в Европейской части СССР, Западной Сибири и Средней Азии приходится на лето. На Дальнем Востоке и в Восточной Сибири максимум ясных дней приходится на зиму.

Наибольшая вероятность пасмурных дней для Европейской части СССР приходится на зиму: в январе она достигает здесь 80%, тогда как в Азиатской части - от 30% до 60%, а в Забайкалье даже 20%; в июле наибольшей пасмурностью отличается Дальний Восток и Крайний Север СССР (60-70%); наименее вероятны пасмурные погоды в турано-казахской области (5%).

А. Ф. Дюбюк приводит следующие данные, характеризующие повторяемость (в %) ясных и пасмурных дней при различных воздушных массах в Европейской части СССР.

Наибольшее количество пасмурных дней - зимой, особенно при ТВ и мПВ. Ясные дни имеют значительную повторяемость (27%) при АВ, тогда как при мПВ и ТВ их почти не бывает.

Летом наибольшее количество пасмурных дней бывает при АВ и кПВ, а ясных - при мПВ и ТВ.

СОЛНЕЧНОЕ СИЯНИЕ

Продолжительность солнечного сияния за год увеличивается с севера на юг и с запада на восток в обратном соотношении с облачностью. Так, вдоль 30-го меридиана число часов солнечного сияния за год составляет: в Павловске (ф=59°4Г) - 1550, в Бусанах (ф=58°ЗГ) - 1642, в Новом Королёве (ф = 55°09′)-1860, в Коростышеве (ф = 50°19′) - 2044, в Одессе (ф=46°30′) - 2200.

Увеличение продолжительности солнечного сияния с запада на восток видно по следующим станциям, расположенным приблизительно на 54-й параллели: Сувалки (у,=22°57′) - 1800, Минск (у = 27°33′) -1930, Полибино (у = 52°56’1 - 2200, Троицк (у=61°34′) - 2300, Бодайбо (у=114°13′) - 2088.

Однако есть исключения из правила. На востоке Европейской части СССР, в Уфе, Молотове и на Северном Кавказе, имеются области с малой продолжительностью солнечного сияния. Эти аномалии стоят в связи с интенсивным здесь образованием облаков.

Над крупными промышленными центрами, где наибольшая мутность атмосферы, заметно уменьшение числа часов солнечного сияния. В Ленинграде средняя суточная продолжительность солнечного сияния 3,8 часа, т. е. меньше, чем в Халиле (4,1) и Павловске.

В летнее полугодие по количеству часов солнечного сияния выделяется Туранская низменность: в Байрам-Али всего на 7% солнца меньше, чем в Каире. В Средней Азии продолжительность солнечного сияния летом достигает 92% от возможного, на южном берегу Крыма 80%, в Тбилиси 70%, в Гудуаре 54%. На побережье Балтийского моря продолжительность солнечного сияния больше, чем в глубине материка Ч В зимнее полугодие наибольшим числом часов солнечного сияния отличаются Забайкалье (около 1000 час), Кисловодск (760 час), Сухуми (770 час).

Суточная продолжительность солнечного сияния в теплее полугодие колеблется в Европейской части СССР от 4,5 часа на севере (Териберка) до 11,5 часа на юге (Ялта), в Азиатской части от 6 час. на севере (Игарка) до 14 час. на юге (Термез). В холодное полугодие (октябрь-март) продолжительность солнечного сияния колеблется от 0 до 5 час. в сутки.

Годовой ход солнечного сияния в общем противоположен ходу облачности. Все пункты СССР можно разделить на две основные группы: 1) станций с одним годовым максимумом, 2) станций с двумя максимумами.

На севере СССР максимум продолжительности солнечного сияния приходится на июнь, т. е. на период полярного дни.

При продвижении на юг максимум передвигается к осени, так что в Туране главный максимум уже в августе или сентябре.

В Сибири главный максимум солнечного сияния наступает весной, минимум - осенью; в дальневосточной области резко выражены летний минимум и зимний максимум продолжительности солнечного сияния, обусловленные здесь состоянием облачности муссонных периодов. На юге Европейской части СССР один максимум наступает в мае, другой - в июле или августе.

Местные географические факторы нарушают закономерность годового распределения продолжительности солнечного сияния. Например, в Акатуе летом в дневные часы солнца мало из-за преобладания кучевых и грозовых облаков; аналогично в Кисловодске (с мая по июль особенно) продолжительность солнечного сияния менее, чем в значительной части европейской территории

В Сибири зима - ясное время года, и в полуденное время солнца больше, чем в остальной части СССР. В северо-западной части СССР солнца мало, особенно с ноября по февраль, что связано не только с малой продолжительностью дня, но также и с прохождением множества циклонов и с образованием туманов.

Введение

Продолжительность солнечного сияния регистрируется прибором гелиографом, который автоматически отмечает промежутки времени, в продолжение которых светило солнце. В настоящее время на сети метеорологических станций Союза ССР основным прибором для записи солнечного сияния является гелиограф обыкновенной или универсальной модели. Прожоги на ленте по гелиографу универсальной модели начинаются при достижении напряжения радиации 0,3 - 0,4 кал/см.

Обычно гелиограф устанавливается на высоте 2 м от поверхности земли на открытом месте, в любое время года освещаемом лучами солнца от восхода до захода.

Характеристика солнечного сияния

Большая протяженность территории с севера на юг (от 62 до 52° с. ш.), наличие почти меридионально направленных Уральских гор обусловливают большое разнообразие в распределении солнечного сияния. В общем продолжительность солнечного сияния по мере продвижения с севера на юг возрастает. Зимой продолжительность солнечного сияния с увеличением широты убывает быстрее, чем летом, как из-за уменьшения длительности дня, так и из-за возрастания облачности с широтой.

Наибольшая за год продолжительность солнечного сияния наблюдается в июне, наименьшая - в декабре. В отдельных районах наибольшее число часов солнечного сияния приходится на июль.

Таблица 4.4. Продолжительность солнечного сияния.

I II III IV V VI VII VIII IX X XI XII Год
Курган, город
Курган-Вороновка

4.2. Температура воздуха и почвы

4.2.1. Температура воздуха

Сведения о температуре воздуха приводятся на основе показаний жидких термометров, помещенных в психометрическую будку на высоте 2 м.

Собственная температура различных поверхностей, расположенных открыто, измеренная одновременно в различной степени отличается от температуры, измеренной в будке в тот же момент.

Таблица 4.5. Средняя месячная и годовая температура воздуха.

I II III IV V VI VII VIII IX X XI XII Год
Курган, город
-18,5 -16,7 -10 2,9 11,8 16,8 18,8 16,1 10,4 2,0 -7,8 -15,6 0,8

Таблица 4.6. Средняя минимальная температура воздуха.

I II III IV V VI VII VIII IX X XI XII Год
Курган, город
-23,4 -22,1 -15,7 -2,4 4,9 9,8 12,3 10,2 5,3 -1,8 -11,7 -20,4 -4,6

4.2.2.Температура почвы


Наблюдение за тепловым состоянием почвы производится от поверхности до глубины 3,2 м.

Средняя месячная максимальная и минимальная температура поверхности почвы

Температура поверхности почвы измеряется жидкостными термометрами: ртутными (срочные и максимальные) и спиртовыми (минимальные).

Таблица 4.7. Средняя месячная максимальная и минимальная температура поверхности почвы.

Температура поверхности почвы I II III IV V VI VII VIII IX X XI XII Год
Курган
Средн. -20 -17 -10 -8 -16
Сред. Max -14 -10 -1 -4 -11
Сред. Min -26 -25 -18 -5 -4 -14 -23 -7

Таблица 4.8 . Глубина промерзания почвы (см)


4.3.1. Ветер

Ветровой режим в умеренных широтах СССР формируется под влиянием основных климатических центров действия атмосферы (циклонов и антициклонов), стационирующих над Северной Атлантикой и над континентом Евразии.

Географическое распределение различных направлений ветра и его скоростей определяется сезонным режимом барических образований. Зимой под влиянием западного отрога азиатского антициклона наблюдается увеличение южных и юго-западных ветров.

Летом режим ветра над территорией Уральского УГМС связан преимущественно с воздействием отрога азорского антициклона. Распределение повторяемости направлений ветра в этот период имеет очень сложный характер. Преобладающими направлениями ветра являются северное, северо-западное и западное, но процент их от числа ветров всех направлений невелик (15-25% случаев). Летом нередко отмечается по два преобладающих направления, либо с севера и северо-запада, либо с севера и запада.

В целом за год на большей части территории преобладают ветры юго-западного направления, но из-за сложности рельефа и почти меридионального (вдоль 60° в. д.) расположения Уральского хребта нередко преобладающим направлением в отдельных районах является южное или западное.

Средние многолетние значения скорости ветра являются хорошими сравнительными характеристиками. Несмотря на сложность и разнообразие рельефа на территории прослеживается в определенных физико-географических условиях характерная именно для этих условий повторяемость скоростей ветра. Для большей части территории характерны слабые и умеренные ветры (от 0 до 5 м/сек). Повторяемость скоростей ветра 0-5 м/сек составляет 75-90% случаев, причем слабые ветры (0-1 м/сек) составляют 20-35% случаев, а в долинах, расположенных между холмами, слабые ветры составляют 40% случаев. По характеру кривых повторяемостей выделяются группы станций в зависимости от степени защищенности (открытые, полузащищенные и защищенные), а также станции, ветровой режим которых определяется особенностями рельефа местности.

Наибольшая повторяемость слабых и умеренных ветров (до 5 м/сек) приходится на летние месяцы, а скоростей ветра 6- 10 м/сек - на холодное время года или переходные сезоны. Скорости ветра >10 м/сек наблюдаются сравнительно редко, и повторяемость большей частью составляет менее 8%.

Таблица 4.9. Средняя месячная и годовая скорость ветра (м/сек).

Таблица 4.10. Повторяемость направления ветра и штилей (%).

Месяц С СВ В ЮВ Ю ЮЗ З СЗ Штиль
Курган, город
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
Год

Примечание: 1. Повторяемость ветра вычислена в процентах от числа случаев ветра. 2. Повторяемость штилей приводится в процентах от общего числа случаев наблюдений.


4.4. Влажность воздуха, атмосферные осадки и снежный покров

4.4.1. Влажность воздуха

Влажность воздуха имеет большое значение для многих отраслей народного хозяйства: для сельского хозяйства, различных отраслей промышленности.

Водяной пар является неустойчивой составной частью атмосферы. Содержание его сильно меняется в зависимости от физико-географических условий местности, времени года и циркуляционных особенностей атмосферы, состояния поверхности почвы и т. п. О влажности воздуха можно судить по величине упругости водяного пара, относительной влажности и недостатку насыщения воздуха водяным паром.

Величина упругости водяного пара характеризует влагосодержание воздуха и подвержена значительным изменениям вследствие большой неоднородности рельефа территории, изменения характера и состояния подстилающей поверхности.

Годовой ход упругости водяного пара очень сходен с годовым ходом температуры воздуха. По этой причине упругость водяного пара в общем увеличивается с севера на юг (зональное распределение) почти в течение года, следуя распределению температуры воздуха. Исключение составляют горные районы, где широтные зоны смещаются на юг.

Относительная влажность воздуха, характеризующая степень насыщения воздуха водяным паром, имеет также своеобразное распределение. Влияние циркуляционных особенностей, а также формы рельефа, близости водоемов, лесных массивов, заболоченных почв и т. д. сказывается на величине изменения относительной влажности наиболее отчетливо. В годовом ходе распределение относительной влажности воздуха наибольший интерес представляет в дневное время, когда наблюдается относительная влажность, близкая к минимуму и наиболее интенсивное испарение. В ночные часы относительная влажность обычно высока в течение всего года.

Таблица 4.11. Средняя месячная и годовая относительная влажность воздуха (№).

Станция I II III IV V VI VII VIII IX X XI XII Год
Курган-Вороновка

Величина недостатка насыщения воздуха водяным паром распределяется в годовом ходе от тех же причин, что и относительная влажность. В соответствии с высокой относительной влажностью воздуха и низкими температурами минимальным недостаток насыщения воздуха водяным паром оказывается в ноябре - январе, когда средняя величина его не превышает 0,5 мб. Максимальные значения недостатка насыщения наблюдается в июне. Средняя величина его в горных районах составляет 6-7 мб, а на прилегающих равнинах - 8 - 10 мб, увеличиваясь с севера на юг. Значительный недостаток насыщения отмечается в июле, августе. С сентября с увеличение относительной влажности и понижением температуры воздуха недостаток насыщения уменьшается.

Таблица 4.12. Средний месячный и годовой дефицит насыщения (гПа).

Станция I II III IV V VI VII VIII IX X XI XII Год
Курган-Вороновка 0,4 0,4 0,7 3,3 8,1 8,5 6,9 4,3 2,1 0,7 0,4 3,8

4.4.2. Атмосферные осадки

Количество и распределение осадков в течение всего года определяется циклонической деятельностью атмосферы и особенностями рельефа рассматриваемой территории. Меридиональная направленность Уральских гор обуславливает увеличение осадков на западных наветренных склонах и уменьшает их на восточных подветренных.

По степени увлажнения горная часть территории и склоны гор, особенно западная, относятся к зоне избыточного увлажнения. Районы, примыкающие непосредственно к склонам гор, относятся к зоне достаточного увлажнения.

Таблица 4.13. Среднее количество осадков, приведенных к показателям осадкомера (мм).

Станция I II III IV V VI VII VIII IX X XI XII Год
Курган-Вороновка

Годовые суммы осадков состоят из твердых, смешенных и жидких. В среднем на доля твердых осадков на рассматриваемой территории приходится 20 - 35 %, на доля жидких - 50 - 75 % и на доля смешенных (мокрый снег, снег с дождем и т.д.) -10 -15% от годовой суммы. Длительность периода с тем или иным видом осадков на территории изменяется сравнительно мало, т.к. вид осадков в основном зависит от общеклиматических факторов.

Таблица 4.14. Твердые (т), жидкие (ж) и смешанные (с) осадки в процентах от общего количества.

(-) – пол процента или менее

Годовой ход осадков по всей территории имеет общие черты, свойственные континентальному климату: основное количество осадков выпадает в теплое время года, причем переход от малых зимних осадков к значительным совершается в большинстве районов быстро особенно в Зауралье.


4.4.3. Снежный покров

Зима в пределах рассматриваемой территории - самый продолжительный из всех сезонов года. Из общего количества осадков, выпадающих за год. 20-35% составляют твердые осадки, содержащие основное количество запасов воды. Именно снежный покров создает основной источник для весеннего питания рек. Снежный покров является одним из важнейших факторов, влияющих на формирование климата.

Все физико-географические процессы зимой, в том числе и температурный режим, промерзание почвы, условия перезимовки озимых культур, накопление влаги в почве и т. д., зависят как от высоты, так и от характера залегания снежного покрова.

Характер залегания снежного покрова в сильной степени зависит от скорости ветра и условий открытости или защищенности места.

Таблица 4.15. Средняя декадная высота снежного покрова по постоянной рейку (см).

Продолжение таблицы.

Таблица 4.16 . Плотность снежного покрова по снегосъемкам на последний день декады (г/см 3).

Продолжение таблицы.

4.5. Облачности и атмосферных явлений

Режим облачности и атмосферных явлений (туманы, метели, грозы, град) на рассматриваемой территории в основном обуславливаются особенностями циррсуляции атмосферы в отдельные сезоны и влияние рельефа.

Рассматриваемая территория отчетливо подразделяется на зоны с различной степенью увлажнения. Такое разнообразие природных ландшафтов при значительной неоднородности рельефа приводит к большому разнообразию в распределении по территории облачности и атмосферных явлений.

4.5.1. Облачность

Средний многолетний режим облачности под влиянием циркуля цион н ых процессов, определяющих преобладающее направление воздушных масс и их влагосодержание, а также под влиянием воздействия подстилающих поверхностей.

Под влиянием изменения притока солнечной радиации и характера подстилающих поверхности меняются процессы по сезонам, в соответствии с которыми изменяется количество облачности и форма облаков.

В осенние месяцы и в первую половину зимы, когда наиболее развит циклонический тип погоды, сплошная облачность покрывает весь район. В пониженной части Среднего Урала общая облачность уменьшается до 80%. В предгорьях и горных районах облачность заметно возрастает, причем в теплое время больше сказывается влияние высоты места, чем формы рельефа. В Зауралье в течение года наблюдается небольшое число случаев низкой облачности (около 7%),а в январе и феврале не отмечено ни одного случая с такой облачностью.

Образование низкой облачности в сложных орографических условиях в значительной степени зависит от направления ветра.

Таблица 4.17. Число ясных и пасмурных дней по общей и нижней облачности.

Число дней Облачность I II III IV V VI VII VIII IX X XI XII Год
Курган-Вороновка
Ясная Общая 3,7 4,4 4,6 4,1 2,5 2,7 2,5 3,7 2,3 1,7 2,8 3,4
Нижняя 13,4 16,6 15,8 13,6 11,7 9,9 9,7 11,6 9,1 8,3 9,9 11,5
Пасмурная Общая 10,1 8,1 10,0 9,0 9,5 7,5 9,6 8,2 11,4 15,3 13,7 13,2
Нижняя 1,4 1,4 2,1 2,1 2,4 1,2 2,4 2,4 3,7 4,5 5,0 3,9

Таблица 4.18. Повторяемость ясного (0-2), полуясного (3-7) и пасмурного (8-10) состояния неба по общей и нижней облачности (%).

Облачность, баллы (от-до) I II III IV V VI VII VIII IX X XI XII
Курган-Вороновка
Общая
0-2
3-7
8-10
Нижняя
0-2
3-7
8-10

4.5.2. Атмосферные явления

4.5.2.1. Туманы

Распределение туманов на рассматриваемой территории отличается значительной пестротой. Это объясняется большим разнообразием как физико -географических условий территории, так и особенностями атмосферной циркуляции.

Основной причиной образования туманов является выхолаживание воздуха от подстилающей поверхности, обусловленное эффективным излучением. Таким образом, в результате охлаждения земной поверхности путем излучения, а также в следствии континентального климата, на всей территории в основном преобладает радиационный туман.

В условиях крупного города зимой образуется много радиационных туманов. Максимум числа дней с туманом приходится на январь. Оп связан с тем, что в холодный период при сильных морозах промышленные дымы, копоть играет роль ядер конденсации и при дополнительном поступлении водяного пара существенно способствуют возникновению тумана.

Зимой продолжительность туманов обычно больше, чем летом.

Таблица 4.19. Среднее число дней с туманом.

I II III IV V VI VII VIII IX X XI XII X-III IV-IX Год
Курган-Вороновка

Таблица 4.20. Наибольшее число дней с туманом.

I II III IV V VI VII VIII IX X XI XII Период Год
X-III IV-IX
Курган-Вороновка

4.5.2.2. Метели

На рассматриваемой территории в зимний период, когда происходит усиление циклонической деятельности, метели - обычное явление. В зависимости от физико-географических и циркуляционных условий и общей защищенности местности в одних районах повторяемость и интенсивность больше, в других повторяемость их меньше и они слабее.

Основная роль в синоптических процессах, вызывающих метели, принадлежит циклонам. При прохождении циклонов усиливается ветер, при котором возникают метели. Они могут возникать при циклонах различного происхождения, но чаще всего бывают связаны с прохождением южных и западных циклонов, которые вызывают кратковременное повышение температуры воздуха, усиление ветра и сильные метелиОсобенно сильное развитие метелей происходит при приближении циклона к усиливающемуся антициклону, когда значительно увеличиваются горизонтальные барические градиенты и возрастает скорость ветра. Образование больших барических градиентов впереди циклона обычно приводит к расширению зоны метелей, так как при усилении ветра поземки и низовые метели начинаются еще задолго до прохождения теплого фронта.

Продолжительность метелей, как и число дней с метелью, оказывается наибольшей на открытых склонах, возвышенностях и вершинах гор.

Поземки чаще наблюдаются в области антициклона. Они обычно отмечаются при более низких температурах, когда снег сухой. В этих случаях достаточно небольшого усиления ветра, чтобы возникла поземная метель.

Среднее число дней с поземком меняется в зависимости как от формы рельефа, состояния снежного покрова, так и от общей защищенности местности. Больше всего поземков бывает в степной части территории и на открытых возвышенных местах (более 15 дней в год).

Зимой в условиях преобладания западного отрога азиатского антициклона наблюдается увеличение в Зауралье - юго-западных и западных ветров, при которых чаще всего наблюдаются метели. Очень редко метели отмечаются при северных ветрах.

Скорость ветра при метелях еще в большей степени, чем направление зависит от физико-географических условий и общей защищенности местности. Метели наблюдаются как при малых, так и при больших скоростях ветра.

Таблица 4.21. Среднее число дней с метелью.

4.5.2.3. Грозы

Образование гроз связано с прохождением холодных фронтов, с процессами конвенции и мощными восходящими потоками в атмосфере.

Термические внутримассовые грозы бывают редко. Возникновение гроз тесно связано с условиями орографии.

Наиболее часто грозы возникают при наличии малоподвижного арктического антициклона над районом среднего Урала. Эти грозы образуются как при прохождении фронта, так и внутри воздушной массы.

На рассматриваем территории грозы наблюдаются преимущественно с апреля по сентябрь.

Таблица 4.23. Среднее число дней с грозой.


Град

Град наблюдается преимущественно в теплый период. Обычно он выпадает пятнами. Редко град выпадает полосами, протяженностью в несколько километров и шириной до 1-1.5 км. Выпадение града обычно сопровождается ливневыми осадками, грозами, иногда шквалистым ветром. Град во время грозы чаще всего выпадает при вторжениях холодных масс воздуха и бывает нередко крупных размеров.

Выпадение града связано с прохождением областей пониженного давления, неустойчивостью воздушных масс и местными орографическими факторами. На увеличение или уменьшение числа случаев выпадения града большое влияние оказывают возвышенности и горы, а также крупные водоемы, лесные массивы. В равнинных условиях даже небольшие возвышенности влияют на увеличение числа случаев выпадения града.

Таблица 4.25. Среднее число дней с градом.

IV V VI VII VIII IX X Год
Курган-Вороновка
0,1 0,1 0,3 0,4 0,3 0,1 - 1,3

Полярное сияние или аврора (Aurora Borealis) это естественное свечение (люминесценция) неба, которое хорошо видно, особенно, в высоких широтах, оно вызвано столкновением заряженных частиц с атомами в верхних слоях атмосферы (термосферы).

Как образуется полярное сияние? Заряженные частицы магнитосферы, которые она захватывает из солнечного ветра, направляются магнитным полем Земли в атмосферу. Большинство сияний происходят в регионах, известных как зоны полярных сияний, которые, как правило, располагаются на удалении 10-20 градусов от магнитного полюса, определяемого осью магнитного диполя Земли. Во время геомагнитной бури, эти зоны расширяются до более низких широт, так что появляется возможность увидеть полярное сияние в Москве.

Классификация

Северное сияние над озером

Полярное сияние как природное явление классифицируются на диффузное и точечное (дискретное). Диффузное выглядит как безликое свечение в небе, которое может быть не видно невооруженным глазом, даже в темную ночь. Точечные — различаются по яркости, от едва видимых невооруженным глазом, до достаточно ярких, настолько, чтобы читать газету в ночное время. Точечное северное сияние можно увидеть только на ночном небе, потому что оно не настолько яркое, чтобы стать заметным и днем. Полярное сияние на севере России известно, как северное полярное сияние.

Северное сияние причины возникновения

Северное сияние возникает в стратосфере вблизи магнитного полюса, оно видно в виде зеленоватого свечения, иногда с примесями красного. Точечные полярные сияния часто демонстрируют линии магнитного поля, и могут изменять свою форму от нескольких секунд до нескольких часов. Когда можно увидеть северное сияние? Оно чаще всего происходит вблизи равноденствия.

Магнитное поле Земли и сияния тесно связаны. Магнитное поле Земли захватывает частицы солнечного ветра, многие из которых затем перемещаются по направлению к полюсам, где и сталкиваются с атмосферой Земли. Столкновения между этими ионами, атмосферными атомами и молекулами и приводит к выбросам энергии в виде свечения атмосферы, появляющихся в виде больших кругов вокруг полюсов. Аврора более яркая во время интенсивной фазы солнечного цикла, когда выбросы корональной массы многократно увеличивают интенсивность солнечного ветра. Полярное сияние на Юпитере, Сатурне, Уране и Нептуне можно посмотреть в этой .

Южный полюс

Есть ли северное сияние на южном полюсе? Да, полярное сияние на южном полюсе, имеет те же особенности, которые почти идентичны северному. Есть ли северное сияние в Антарктиде, спросите вы? Да, их видно из высоких южных широт Антарктики, Южной Америки, Новой Зеландии и Австралии.

Как образуется северное сияние

Оно является результатом высвобождения фотонов в верхней части земной атмосферы, на высоте примерно 80 км. Молекулы азота и кислорода под действием заряженных солнечных частиц переходят в возбужденное состояние, а при переходе в основное состояние восстанавливается электрон и излучается квант света. Различные молекулы и атомы дают разный цвет свечения, например: кислород — зеленый или коричневато-красный, в зависимости от количества поглощенной энергии, азот синий или красный. Синий цвет азота возникает, если атом восстанавливает электрон ионизации, красный — при переходе в основное состояние из возбужденного.

Роль кислорода

Кислород является необычным элементом с точки зрения его возвращения в основное состояние: этот переход может занимать ¾ секунды, а излучать зеленый свет до двух минут, после чего он становится красным. Столкновения с другими атомами или молекулами поглощают энергию возбуждения и предотвращают излучение света. В верхних частях атмосферы процент кислорода низкий и такие столкновения достаточно редки, что дает время кислороду излучать красный квант света. Столкновения становятся более частыми по мере продвижения вглубь атмосферы, так что ближе к поверхности красное излучение не успевает образоваться, а у поверхности даже зеленое свечение прекращается.

Галерея изображений










































































Изображения авроры сегодня встречаются значительно чаще, в связи с ростом качества и доступности цифровых камер, которые имеют достаточно высокую чувствительность. Ниже представлена галерея наиболее впечатляющих снимков.

Солнечный ветер и магнитосфера

Земля постоянно погружена в потоки — разреженного потока горячей плазмы (газ из свободных электронов и положительных ионов), испускаемых Солнцем во всех направлениях, который образуется в результате воздействия двух миллионов градусов тепла Солнечной короны.

Солнечный ветер, как правило, достигает Земли со скоростью около 400 км/с, плотностью около 5 ионов/см3 и напряженностью магнитного поля 2-5 нТл (Напряженность магнитного поля Земли измеряется в Теслах и у поверхности Земли, она как правило, составляет 30,000-50,000 нТл). Во время , потоки солнечной плазмы могут быть в несколько раз быстрее и межпланетное магнитное поле (ММП) может быть гораздо сильнее.

Межпланетное магнитное поле формируется на Солнце, в области солнечных пятен, а по его силовым линиям в космос простирается солнечный ветер.

Земная магнитосфера

Земная магнитосфера формируется под воздействием солнечного ветра и магнитного поля Земли. Оно образует собой препятствие на пути солнечного ветра, отвлекая его, на среднем расстояние около 70 000 км (11 радиусов Земли), и формирует головную ударную волну на расстоянии от 12000 км до 15000 км (от 1,9 до 2,4 радиусов). Ширина магнитосферы Земли, как правило составляет 190 000 км (30 радиусов), а на ночной стороне длинный шлейф магнитосферы, из вытянутых силовых линий поля, распространяется на огромные расстояния (> 200 радиусов Земли).

Поток плазмы в магнитосфере растет с увеличением плотности и турбулентности в потоке солнечного ветра.

В дополнение к перпендикулярному столкновению с магнитным полем Земли, некоторые потоки магнитосферной плазмы двигаются вниз и вверх, вдоль силовых линий магнитного поля Земли и теряют энергию в авроральных зонах атмосферы, вот от чего появляется северное сияние. Магнитосферные электроны ускоряются и сталкиваясь с газами атмосферы вызывают свечение атмосферы.

Карты Северной Америки и Евразии с границей полярных сияний при разных уровнях геомагнитной активности; Kp = 3 соответствует низкому уровню геомагнитной активности, в то время как Kp = 9 — самый высокий уровень.

Полярное сияние в России иногда наблюдаются и в умеренных широтах, когда магнитная буря временно увеличивает авроральный овал. При индексе геомагнитной активности Кр=6-9 возможно увидеть на широте Москвы.

Северное сияние: прогноз

Северное сияние в режиме реального времени (онлайн), обновление происходит каждые 30 секунд

Магнитные бури и северное сияние наиболее распространены во время пика одиннадцатилетнего цикла солнечной активности и в течение трех лет после этого пика. В авроральной зоне вероятность образования свечения, зависит в основном от уклона межпланетного магнитного поля.

Ось вращения Солнца наклонена 8 градусов по отношению к плоскости орбиты Земли. Солнечный ветер выдувает потоки плазмы быстрее от солнечных полюсов, чем от экватора, тем самым средняя скорость частиц у магнитосферы Земли убывает каждые шесть месяцев. Скорость солнечного ветра наибольшая (в среднем примерно на 50 км/с) в районе 5 сентября и 5 марта, когда Земля располагается под максимально высоким углом к плоскости вращения Солнца.

Почему возникает северное сияние

«Блуждающий свет»

Из-за столкновений между молекулами и атомами атмосферы Земли и заряженными частицами, захваченными магнитосферой из солнечного излучения. Различия в цвете обусловлены типом газа, который сталкивается. Наиболее распространенным цветом свечения является бледно-желтовато-зеленый, который формируется молекулами кислорода, расположенными на высоте 80 км над землей. Редкие полярные сияния красного цвета формируются атомами кислорода на высоте порядка 300 км. Азот ответственен за синий или пурпурный-красный цвет.

Влияние солнечной активности

Связь между северным сиянием и солнечной активностью была заподозрена примерно в 1880 году. Благодаря исследованиям, проведенным с 1950-х, мы теперь знаем, что электроны и протоны солнечного ветра захватываются магнитосферой Земли и сталкиваются с газами в атмосфере.

Температура над поверхностью Солнца (речь идет о короне, сама поверхность Солнца имеет температуру ок. 6000 градусов) составляет миллионы градусов по Цельсию. При этой температуре, столкновения между ионами весьма интенсивны. Свободные электроны и протоны вырываются из солнечной атмосферы в результате вращения Солнца и улетают через прорехи в магнитном поле. В околоземном пространстве, заряженные частицы в значительной степени отклоняются магнитным полем Земли. Магнитное поле Земли слабее всего на полюсах и поэтому заряженные частицы попадают в атмосферу Земли и сталкиваются с частицами газа именно на полюсах. Эти столкновения излучают свет, который мы воспринимаем как полярное сияние.

Где наиболее подходящее место для наблюдения Северного сияния

Их можно увидеть в северном или южном полушарии, в виде неправильной формы овала с центром над магнитным полюсом. Ученые узнали, что в большинстве случаев, полярное сияние на разных полюсах являются зеркальным отображением друг друга, которое происходит в то же время, с аналогичной формой и цветом.

Поскольку явления происходят вблизи магнитных полюсов, то северное сияние удобно наблюдать за северным полярным кругом. Их можно также увидеть на южной оконечности Гренландии и Исландии, северном побережье Норвегии и к северу от Сибири. Южные полярные сияния сосредоточены в кольце вокруг Антарктиды и южной части Индийского океана.

О солнечном сиянии и его продолжительности

По материалам ж-ла "Наука и жизнь"
Кандидат географических наук
В. АЛЕКСЕЕВ

Продолжительность солнечного сияния - такой же, только, может быть, реже упоминаемый метеорологический показатель, как температура воздуха, влажность, облачность, величина и продолжительность атмосферных осадков. Солнечное сияние - это освещенность земной поверхности прямыми лучами солнца, не закрытого от нас плотными облаками. Это часть потока солнечной энергии так и называется "прямой радиацией".
Прямую солнечную радиацию измеряют с помощью специального прибора, актинометра (буквально "лучемер"). Это небольшая труба, направленная строго на солнечный диск. есть и другой способ: измерив величину общей радиации, исключить из нее ту часть, которая обусловлена рассеянием, а для этого затенить приемник прибора, измеряющего величину всего потока солнечной энергии, который называется пиранометром.
Продолжительность солнечного сияния лучи солнца способны записать сами, если сфокусировать их на специально разграфленной по времени суток ленте, установленной в фокусе стеклянного шара. Прибор этот - гелиограф . Им снабжены все метеостанции мира. Устроен гелиограф просто: чугунная подставка, в которой крепится стеклянный шар и устанавливается лента, ориентируется в соответствии с географической широтой места, взаиморасположением стран света. Гелиограф стоит неподвижно, а солнце перемещается по небосводу, и его лучи, пройдя через стеклянный шар, оставляют на ленте черную прорезь прожога - дымящийся след своего движения по небу с момента восхода до заката.
Если солнце сияет весь день без перерыва, число часов солнечного сияния практически совпадает с продолжительностью светового дня. Так бывает в ясные дни. Но если хоть на десять минут меркло солнце, закрытое набежавшими облаками, прожог на ленте гелиографа прерывается. В конце дня можно подвести итог - сколько часов и минут поступал от солнца поток прямой радиации. Величина продолжительности солнечного сияния - важная характеристика погоды и климата, изменяющаяся в зависимости от географической широты (вслед за изменением длительности светового дня) и от условий циркуляции атмосферы. смена воздушных масс, а вместе с ней облачности и степени прозрачности атмосферы то приближает реально наблюдающуюся продолжительность сияния солнца к возможной при идеальных условиях величине, то удаляет от нее.
В полярных областях суточная продолжительность солнечного сияния может составлять все 24 часа. Эффект круглосуточного дня поразителен - несмотря на частое ненастье летом, в Заполярье число часов солнечного сияния очень велико. Следствие этого - значительный суммарный приход лучистой энергии, не уступающий в летние месяцы экваториальным величинам. Годовая сумма этого тепла в районе Северного полюса втрое меньше, чем на экваторе, но месячные суммы в мае, июне, июле примерно одинаковы за счет большей продолжительности солнечного сияния.
Антарктида представляет в этом отношении один из замечательнейших парадоксов. На ледяной материк, несмотря на полугодовую полярную ночь, поступает в среднем за год около 120 килокалорий лучистой энергии, почти годовое поступление солнечного тепла в экваториальной зоне. В летние месяцы, при круглосуточном сиянии солнца, холодная Антарктида получает значительно больше тепла, чем экваториальные жаркие страны. Это объясняется большой прозрачностью атмосферы и близким соответствием реально наблюдающихся величин солнечной радиации идеально возможным. Иное дело, что белый щит ледяного покрова почти все это тепло отражает обратно в мировое пространство...
Метеорологи широко применяют этот показатель, который дает возможность представить, в какой степени используются солнечные ресурсы. Сравнивая отношение реальной продолжительности солнечного сияния к возможной в данном месте, можно выявить районы, особенно богатые солнцем.
Одно из самых солнечных мест на территории бывшего СССР - западный берег Крыма, где годовая продолжительность солнечного сияния превышает 3000 часов, а в июле в Севастополе не закрытый облаками солнечный диск господствует на небе в течение 356 часов. Это на несколько часов больше, чем восточнее - в Ялте и Алуште, и на 122 часа больше, чем в более южном черноморском городе Батуми. В то же время в заполярном Верхоянске, близ "полюса холода" северного полушария, продолжительность солнечного сияния в мае точно так же велика, как в Севастополе в июле. Лишь немного меньше она в июне и июле. Годовая сумма часов солнечного сияния в Верхоянске больше, чем в Батуми, и на 400-500 часов больше. чем в Москве.
Конечно, каждый год наблюдаются определенные отклонения (иногда значительные) от этих средних показателей. "Год на год не приходится" - эта истина справедлива и для продолжительности солнечного сияния.

I II III IV V VI VII VIII IX X XI XII год
Севастополь 62 75 145 202 267 316 356 326 254 177 98 64 2.342
Алушта 77 79 146 184 253 299 340 323 261 180 106 73 2.321
Батуми 99 105 126 148 199 235 214 223 201 176 125 107 1.958
Москва 30 58 113 161 242 256 258 218 136 73 32 20 1.597

Продолжительность солнечного сияния в некоторых городах бывшего СССР

I II III IV V VI VII VIII IX X XI XII
Севастополь 25 30 44 56 63 74 82 81 75 57 39 27
Алушта 31 31 44 50 60 71 80 80 76 60 42 30
Батуми 37 37 37 40 47 66 61 56 67 55 46 42

Отношение реально наблюдающейся продолжительности солнечного сияния к возможной (в процентах)