Уф видимая спектроскопия. ОФС.2.1.0003.15 Спектрофотометрия в УФ и видимой областях

Два других вида спектроскопии, часто применяемые в органической химии, - ультрафиолетовая (УФ) спектроскопия и масс-спектрометрия (МС). В этой книге мы не будем подробно на них останавливаться и не будем заниматься интерпретацией спектров, а ограничимся лишь знакомством с основными принципами и характером информации, которую дают эти типы спектроскопии.

Ультрафиолетовая (УФ) спектроскопия изучает поглощение органическими веществами света в ультрафиолетовой области спектра (длина волны от 200 до 400 нм). Излучение с такой длиной волны поглощают только соединения, содержащие -связи (например, группы или Поглощение вызвано электронными переходами внутри молекулы. Для молекул, имеющих -связи, энергетическая разница между основным и возбужденным электронными состояниями соответствует энергии фотонов УФ-излучения. УФ-Излучение вызывает переход электронов на более высокую по энергии молекулярную орбиталь. При этом световая энергия переходит в энергию молекулы.

УФ-Спектр обычно состоит из одной широкой полосы поглощения, положение которой указывает на окружение двойной связи в молекуле. Чем большее число двойных связей в молекуле образует цепь сопряжения, тем больше длина волны поглощаемого света. Термин сопряжение означает, что две двойные связи разделены одной простой связью. В табл. 114 показано положение максимумов поглощения некоторых типичных структур. На рис. 11-22 изображен УФ-спектр -циклогексадиена.

Из табл. 11-4 видно, что появление в цепи сопряжения новой двойной связи увеличивает длину волны поглощаемого УФ-излучения примерно

Рис. 11-22. Уф-Спектр 1,3-циклогексадиена

Таблица 11-4. (см. скан) Положение максимумов поглощения УФ-излучения для некоторых соединений

на 30-50 нм. Обратите также внимание, что вещества, не имеющие двойных связей, не поглощают УФ-излучения.

Если в молекуле имеется цепь сопряжения, состоящая из семи или более двойных связей, то такое вещество поглощает видимый свет (длина волны 400-700 нм) и является окрашенным благодаря избирательному поглощению некоторых цветов.

Ультрафиолетовая спектроскопия позволяет определять число сопряженных углерод-углеродных и углерод-кислородных двойных связей в молекуле. Поглощение возникает вследствие электронных переходов.


Благодаря простоте аналитических операций и, в большинстве случаев, высокой чувствительности метод нашел широкое применение в фармацевтическом анализе.

УФ-спектрофотометрия используется при установлении подлинности (идентификации), доброкачественности, количественном определении, как индивидуальных веществ, так и компонентов лекарственных форм; испытании по тестам “Растворение” и “Однородность дозирования”.

Метод применяется на таких стадиях изучения лекарственных веществ и лекарственных форм как фармакокинетика, биодоступность, изучение стабильности и установление сроков годности.

Испытание на подлинность лекарственных веществ. В основе этой стадии фармацевтического анализа лежат следующие приемы:

а) нахождение в спектре λ max и λ min , характеризующих области максимального и минимального поглощения;

б) вычисление отношения значений оптических плотностей исследуемого раствора при разных длинах волн;

в) характеристика интенсивности поглощения по величине удельного показателя (Е);

г) сравнение спектра анализируемого вещества со спектром стандартного образца этого же вещества.

Во всех случаях необходимо получение спектра в условиях, приведенных в НД – растворитель, концентрация, интервал длин волн, размер (толщина) кюветы.

Для случая (а) в полученном спектре находят λ max и λ min , сравнивают с такими же характеристиками, приведенными в НД – при идентичности веществ оба значения должны совпадать (табл.7).

Удобным приемом при испытании на подлинность является определение отношения величин поглощения при двух максимумах. Это уменьшает влияние переменных характеристик прибора на испытание и исключает необходимость использования стандартного образца. Такой способ используют в случае анализа натрия пара-аминосалицилата натрия

Таблица 7

Характеристика уф-спектров, используемая при идентификации некоторых лекарственных веществ в фармакопейном анализе

п/п

Лекарствен-ное вещество

Концентрация и растворитель

Характеристика, используемая для идентификации

Амлодипина бесилат

0,005% в 1% растворе 0,1 М HClв метаноле

λ max = 360 ± 2нм; Е= 113-121

Аминазин

0,0005% в 0,01 М HCl

λ max = 254±2нм, 307±2нм

Анестезин

0,0005% в 0,1 М NaOH

λ max = 281±2нм; λ min = 238±2нм

Верапамила гидрохлорид

0,002% в 0,01 М HCl

D 229 = 0,61 – 0,64

D 278 = 0,23 – 0,24

Дексаметазон

0,001% в 95% спирте

λ max = 240±2нм;

D 240нм /D 263нм = 1,9 – 2,1

0,002% в 95% спирте

λ max =244±2нм, 275±2нм, 281±2нм;

λ min =230±2нм, 259±2нм, 279±2нм;

приведен рисунок спектра

Димедрол

0,05% в 95% спирте

λ max =253±2нм, 258±2нм, 264±2нм;

λ min =244±2нм, 255±2нм, 263±2нм

Дротаверина гидрохлорид

0,0015% в 0,1 М HCl

λ max =241±2нм,302±2нм,353±2нм;

λ min =223±2нм,262±2нм,322±2нм

Зопиклон

0,001% в 0,1 М HCl

λ max =303±2нм;

D 303 =0,340-0,380

0,0006% раствор 2,4-динитрофенилгидразона камфоры в 95% спирте этиловом

λ max = 231±2нм, 265±2нм;

плечо в области от 273 нм до 277 нм

Кислота аскорбиновая

0,001% в буферном растворе с рН 7,0

λ max =265±2нм

Кислота никотиновая

0,002% в 0,1 М NaOH

λ max =258±2нм, 264±2нм, 270±2нм; λ min =240±2нм;

в области от 240нм до 256нм наблюдаются два неидентифицированных плеча

Кислота фолиевая

0,001% в 0,1 М NaOH

Полное совпадение со спектром ГСО в области от 230 до 380 нм

Нитроксолин

0,0005% раствор в смеси 95% спирт – буферный раствор с рН 9,18 (98:2)

λ max =249±2нм, 341±2нм,

два плеча в области от 228нм до 238нм и от 258нм до 268нм

Офлоксацин

0,001% в 0,1 М HCl

λ max = 226±2нм, 295±2нм;

λ min = 265±2нм

Папаверина гидрохлорид

0,0025% в 0,01 М HCl

λ max = 285±3нм, 309±2нм;

λ min = 289±2нм

Пирацетам

1% водный раствор

Не имеет выраженных максимумов поглощения в области от 230нм до 350нм

Прогестерон

0,001% в 95% спирте

λ max = 241±2нм; Е= 518-545

Ранитидина гидрохлорид

0,01% водный раствор

λ max = 229±2нм; 315±2нм;

D 229нм /D 315нм = 1,01 – 1,07

Сульфа-диметоксин

0,000015% в NaOH

0,000015% в HCl

Спектр щелочного раствора препарата, снятый относительно кислого раствора имеет λ max =253±2нм, 268±2нм;

λ min = 260±2нм;

Спектр кислого раствора препарата, снятый относительно щелочного раствора, имеет λ max =288±2нм

Тамоксифена цитрат

0,002% в метаноле

λ max =237нм, 275нм

Фамотидин

0,0025% в фосфатном буфере

Полное совпадение со спектром РСО в области от 230нм до 350нм

Фуразолидон

0,0015% в ДМФА

λ max =260±2нм, 367±2нм;

λ min =302±2нм

Фурацилин

0,0006% в ДМФА

λ max =260±2нм, 375±2нм;

λ min =306±2нм

При испытании на подлинность часто рекомендуется рассчитать Ев максимуме поглощения (например, для левомицетина, адреналина, прогестерона) или сравнить найденное значение оптической плотности в определенном диапазоне длин волн со значениями, приведенными в НД. Так спектр поглощения раствора пиридоксина гидрохлорида в фосфатном буферном растворе (рН = 6,9) с концентрацией 0,5 мг/мл в области от 230 до 250 нм имеет максимумы при 254 и 324 нм, а оптическая плотность при этих максимумах равна соответственно 0,18 и 0,35.

Некоторые испытания на подлинность с использованием УФ-спектрофотометрии требуют применение стандартных образцов (СО) лекарственных веществ. В этом случае проба СО должна быть приготовлена и одновременно определена в тех же условиях, что и испытуемое вещество. Так, УФ-спектр 0,0005% раствора этинитэстрадиола в спирте этиловом должен иметь максимумы и минимумы при тех же длинах волн, что и раствор СО одинаковой концентрации, соответствующие величины поглощения, рассчитанные на сухое вещество при λ max = 281 нм не должны отличаться более, чем на 3%. Такой прием обеспечивает более достоверные результаты, чем при анализе спектра только одного исследуемого соединения.

УФ-спектрофотометрия является также одним из составных комплекса спектральных методов исследования новых биологически активных веществ. Определенные полосы поглощения в спектре могут указать на наличие в структуре этого соединения тех или иных функциональных групп, фрагментов структур (хромофоров). Этим объясняется сходство спектров веществ, содержащих фенильный радикал, например, эфедрина, димедрола, атропина, бензилпенициллина. Они имеют три максимума поглощения: 251, 257 и 263 нм (рис.7).

Лекарственные вещества, содержащие замещенный ароматический радикал – адреналин, морфин, эстрадиол, левомицетин и др. – имеют в спектре один максимум около 260 нм, сопряженную еноновую систему в лекарственных веществах из группы кортикостероидов – около 238 нм (рис.8).

У некоторых лекарственных веществ (производные барбитуровой кислоты, сульфаниламиды, фенолы, некоторые производные пурина и др.) характер спектра может изменяться в зависимости от рН раствора (рис. 9, 10, 11, 12, 14). При этом изменяется λ max (батохромное смещение), усиливается поглощение (увеличивается величина оптической плотности), наблюдается гиперхромный эффект. Кофеин не проявляет кислотных свойств, поэтому максимум поглощения у него в кислой и щелочной среде при одной и той же длине волны – 272 нм (рис. 13). То есть, УФ-спектрофотометрия может дать информацию об определенных свойствах исследуемого вещества.

Одназначного вывода о структуре химического соединения с помощью УФ-спектрофотометрии сделать невозможно, так как интерпретация спектра затруднена из-за присутствия в молекуле более чем одного хромофора. Тем не менее метод позволяет определить некоторые группировки – хромофоры и сделать вывод о характере и степени сопряжения (с удлинением цепи сопряжения наблюдается смещение максимума поглощения в более длинноволновую область, рис.11).

УФ-спектрофотометрия используется для изучения свойств органических соединений: способности к образованию водородной связи, определения рК а кислот и оснований, определения состава и свойств комплексных соединений лекарственных веществ, изомерии.

Цис- и транс- изомеры имеют отличные друг от друга спектры. Транс-форма обычно поглощает сильнее и полоса ее поглощения сдвинута в длинноволновую область; этот факт может служить доказательством изменения структуры в ходе реакции.

Однако, УФ-спектры не дают каких-либо сведений о строении исследуемого вещества, т.к. они позволяют установить лишь наличие хромофоров и гетероатомов.

Кроме того, УФ-спектрофотометрия дает прекрасную возможность для количественного анализа веществ, содержащих такие группировки.

При испытании на доброкачественность (чистоту) используют те же характеристики, что и при идентификации. При наличии примесей может изменяться λ max , появляться дополнительные максимумы, изменяться интенсивность поглощения.

Специфические примеси, присутствующие в лекарственных веществах, как правило, имеют близкое химическое строение с исследуемым веществом. Поэтому особый интерес представляют случаи, когда лекарственное вещество и его специфическая примесь поглощают при разных длинах волн.

Например, λ max адреналина (Ι) располагается при 278 нм, а его специфическая примесь – адренолон (ΙΙ) имеет максимум поглощения при 310 нм.

Согласно требованию фармакопейной статьи, в 0,05% растворе адреналина, приготовленном для испытания на чистоту, оптическая плотность при 310 нм не должна превышать 0,1 (т.е. в адреналине допускается строго нормируемое содержание адренолона).

Количественное определение. Принцип количественного определения методом УФ-спектрофотометрии заключается в следующем: навеску анализируемого образца (субстанция, лекарственная форма и др.) растворяют в подходящем растворителе, если необходимо, дополнительно готовят разведение полученного раствора и измеряют его оптическую плотность при длине волны, указанной в методике. Концентрацию (содержание) анализируемого вещества находят одним из описанных ранее способов (п. 1.2.3.4).

В соответствии с современными требованиями для таблеток, драже, сухих лекарственных средств для инъекций и лекарственных веществ в капсулах с содержанием действующего вещества 0,05 г и менее обязательным является испытание на однородность дозирования, т.е. содержание вещества в каждой отдельной дозе. Для такой оценки, особенно в случае содержания действующего вещества в мг или его долях (таблетки клофелина содержат 0,075 и 0,15 мг действующего вещества) требуется применение высокочувствительного метода. Таким в большинстве случаев и является УФ-спектрофотометрия.

Актуальным является исследование биодоступности лекарственных веществ. Определенной ее характеристикой является тест “Растворение” (ГФ ΧΙ, вып. 2, с.154). УФ-спектрофотометрия, отличающаяся, как правило, высокой чувствительностью является одним из наиболее часто используемых для этой цели методов (табл.8).

Ниже приводятся методики анализа некоторых лекарственных веществ спектрофотометрическим методом в УФ-области, а в табл.8 приведен ряд примеров использования метода УФ-спектрофотометрии в фармакопейном анализе.

Для атомной спектроскопии надо разрушить вещество на отдельные атомы, а для молекулярной нельзя, поэтому обычно исследуют спектры поглощения в УФ, видимом и ИК-диапазонах при обычных температурах. Атомы и молекулы подчиняются законам квантовой механики. Они могут находиться в состояниях с различными энергиями за счёт переходов электронов на более высокие уровни, а для молекул также за счёт колебаний и вращений. Энергетические уровни каждого вида движений дискретны и характеризуются квантовыми числами. Энергия двухатомнеой молекулы состоит из электронной, колебательной и вращательной,

Е = Е эл + Е кол + Е вр.

Е эл >> E колеб >> Е вращ

На рисунке пример энергетических уровней двухатомной молекулы. Показаны два электронных сосояния - основное и первое возбуждённое. Каждое состояние имеет подуровани за счёт колебательных состояний, в те свори подуровни за счёт вращательных.Уровней много по сравнению с атомами, между ними возможно много переходов, близких по частотам, они сливаются друг с другом и вместо линий наблюдаются полосы. Атомные спектры линейные, молекулярные - полосатые.

Молекулярные спектры исследуются с помощью двух типов спектрометров – УФ (объединённого с видимым) и ИК.

Уф и видимая спектроскопия

Исследуются электронные спектры поглощения, связанные с переходом электронов на более высокие энергетические уровни. Наблюдаются спектры органических молекул, содержащие двойные или тройные связи, либо атомы с неподелёнными электронными парами (поглощающие группы называются хромофорами). Пример в таблице, где приведены длины волн, соответствующие максимуму полосы УФ-спектра.

Хромофор

молекула

 max (ммк)

C 2 H 5 CH=C=CH 2

Обнаружение в спектрах таких полос обнаруживает входящие в молекулу группы, что важно для качественного анализа. Количественный анализ основан на измерении коэффициента поглощения света исследуемым раствором на определённых частотах.

УФ-спектрофотометр состоит из источника излучения, призмы, щели и фотоэлемента. Источник -водородная лампа, то-есть дуга постоянного тока в атмосфере водорода при низком давлении, дающая сплошное излучение в широкой области частот. Свет проходит через призму и затем через щель, которая выделяет узкую область длин волн (частот). Далее свет проходит через кювету - сосуд с плоскопараллельными прозрачными стенками, заполненный исследуемым раствором и попадает на фотоэлемент. Коэффициент поглощения света - отношение интенсивностей падающего на образец и прошедшего через него лучей света от источника. Для того, чтобы сделать поправку на поглощение света растворителем, используют эталонный образец с чистым растворителем. Светопоглощение измеряют по двух- или однолучевой схеме. В первом случае световой поток источника делят на 2 потока равной интенсивности и один пропускают через исследуемый раствор, другой - через эталонный, затем сравнивают интенсивности потоков на выходе. При однолучевой схеме оба раствора устанавливаются по очереди.

Этот же прибор используют для записи спектров в видимой области, в качестве источника применяют лампу накаливания.

Для всех методов молекулярной спектроскопии справедлив закон Бугера- Ламберта-Бэра:

I=I 0 exp(-lc)

ln(I 0 /I)=lc

где молярный коэффициент поглощения (л/моль см), с - концентрация, l - толщина кюветы, I 0 - интенсивность падающего потока, I - интенсивность выходящего потока; отношение I 0 /I называется пропусканием, а log(I o /I) называется оптической плотностью, Если в растворе присутствуют несколько поглощающих веществ, то оптическая плотность раствора равна сумме вкладов каждого из компонентов.

Закон Бугера-Ламберта-Бэра строго выполняется для монохроматического излучения,

Иногда для измерений применяют фотоколориметры, в которых используется ограниченный набор сменных широкополосных стеклянных светофильтров; эти приборы не являются спектральными приборами.

Спектрофотометрия в УФ и видимом диапазонах широко применяется в анализе веществ; в частности, для определения окрашенных соединений ряда металлов, а также As, P, для определения некоторых функциональных групп органических соединений, например фенолов и соединений с кратными химическими связями.

Для увеличения селективности определения применяют фотометрические реагенты, селективно взаимодействующие с определяемым веществом с образованием окрашенного продукта. Например, при определении Fe, Mo, W, Nb, Co и др. применяют тиоцианаты, а при определении меди - аммиак. В качестве фотометрических реагентов, образующих окрашенные комплексы с катионами металлов, широко применяют органические красители. Используется также предварительное разделение компонентов.

Преимущества этой спектрофотометрии - относительная простота аппаратуры, большой опыт применения. Недостаток - невысокая селективность.

Минимальная концентрация, определяемая спектрофотометрическим методом, не ниже 10 -7 М, то-есть чувствительность методов средняя.

Методы анализа антибиотиков

Активность устанавливают

Единица действия (ЕД)

Сердечные гликозиды

Витамины



Под сроком годности



Окисление

30. Рефрактометрия

Рефрактометрия

Альдегидная группа

1. + фенилгидразина гидрохлорид в виде солянокислого раствора – образование желтого хлопьевидного остатка фенилгидразона.

2. образование основания Шиффа при взаимодействии с ароматическими аминами.

На третичный атом азота

1. с осадительными (общеалкалоидными) реактивами : Вагнера, Майера, Драгендорфа, раствором пикриновой кислоты, а также с раствором дихромата калия.

На атом фосфора

1. Фосфат-ионы образуют с раствором молибдата аммония желтый осадок фосфор-молибдата.

Количественное определние

Фенольный гидроксил

1. + хлорид железа (III). Растворы (водные, спиртовые или ацетоновые) приобретают зеленое окрашивание.

2. Азосочетание.

3. Обр-ие ауринового красителя

Нитрогруппа

1. После гидрирования нитрогруппы в молекуле нитроксолина до ароматической аминогруппы, выполняют реакцию диазотирования и азосочетания со щелочным раствором β-нафтола. Появляется красно-оранжевое окрашивание.

2. + дифениламин в присутствии концентрированной серной кислоты (синее окрашивание).

3. + гидроксид натрия – образуется ацисоли (красно-оранжевое окрашивание).

Третичный атом азота

1. при нагревании в растворе лимонной кислоты и уксусном ангидриде, то появляется пурпурно-красное окрашивание.

2. с осадительными (общеалкалоидными) реактивами : Вагнера, Майера, Драгендорфа, раствором пикриновой кислоты, а также с раствором дихромата калия (желтый осадок).

Нитроксалин образует окрашенные внутрикомплексные соединения с катионами металлов: магния, кадмия, меди (II), цинка, алюминия.

Количественное определние

Нитроксолин определяют методом неводного титрования, используя в качестве растворителя уксусный ангидрид и титранта - 0,1 М раствор хлорной кислоты. Определение нитроксолина выполняют в присутствии муравьиной кислоты и индикатора малахитового зеленого, а определение хлорхинальдола проводят с индикатором кристаллическим фиолетовым.

Сложноэфирная группа

1. гидроксамовая проба

2. + гидроксид натрия

Фенольный гидроксил

1. + хлорид железа (III) и a,a-дипиридил в смеси этанола и бензола. Появляется красное окрашивание.

2. реакции окисления, сопровождающиеся образованием окрашенных веществ.

1 – при нагревании до 80 C с концентрированной азотной кислотой происходит образование окрашенного в красно-оранжевый цвет.

2 – при добавлении гексацианоферрата (III) калия в щелочной среде образуется окрашенный продукт.

3 – соли церия (IV), железа (III), происходит окисление токоферола до о-, n -токоферилхинона, образование которого обусловливает желтое окрашивание.

Эту химическую реакцию используют для количественного определения токоферола ацетата. Определение основано на кислотном гидролизе (кипячением с обратным холодильником в присутствии серной кислоты). Затем выделившийся токоферол титруют сульфатом церия (IV) (индикатор дифениламин) до появления сине-фиолетового окрашивания.

Производные птеридина

Птеридин - гетероциклическая система, состоящая из двух конденсированных гетероциклов пиримидина и пиразина:

К этой группе относится: Фолиевая кислота.

Кислоту фолиевую хранят в хорошо укупоренной таре, в сухом, темном месте, так как она гигроскопична и разлагается под действием света. Особенно быстро процесс разложения происходит в кислой среде в растворах под воздействием ультрафиолетового излучения.

Требования к условиям хранения различных групп ЛВ находятся в зависимости от их физико-химических свойств и воздействия различных факторов внеш­ней среды. Они регламентируют­ся «Инструкцией по организации хранения в аптечных учреждениях различных групп лекарственных средств и изделий медицинского назначения», утвержденной приказом МЗ РФ №377 от 13 ноября 1996 г.

Метод осаждения

Навеску анализируемого вещества растворяют в воде или другом растворителе и осаждают определяемый элемент реактивом в виде малорастворимого соединения. Полученный осадок отфильтровывают, промывают, высушивают, прокаливают и взвешивают. Зная массу осадка, вычисляют содержание определяемого элемента в массовых долях или процентах от взятой навески.

Осажденной формой называют соединение, в виде которого определяемый компонент осаждается из раствора.

Гравиметрической (весовой) формой называют соединение, которое взве­шивают.

Метод выделения

Основан на выделении определяемого компонента из анализируемого вещества и его точном взвешивании.

Метод отгонки

В этом методе определяемый компонент выделяют в виде летучего соединения действием кислоты или высокой температуры.

· Прямая отгонка (определяемый компонент выделяют из пробы в виде газообразного продукта, улавливают и затем определяют его мас­су).

· Косвенная отгонка (массу газообразного продукта определяют по разности масс анализируемого компонента до и после термической обработ­ки).

В практике фармацевтического анализа этот метод широко применяется при определении влажности лекарственных препаратов, растительного сырья.

Методы анализа антибиотиков

Активность устанавливают диффузионным или турбидиметрическим методами . ГФ XI рекомендует для количественного определения метод диффузии в агар, заключающийся в сравнении действия определенных концентраций испытуемого и стандартного образца антибиотика на тест-микроорганизм.

Поскольку состав агаровой среды и условия выполнения биологиче­ского испытания одинаковы, величина зоны диффузии (в которой развитие тест-микроорганизма подавляется антибиотиком) зависит только от химической природы антибиотика и его концентрации.

Единица действия (ЕД) представляет собой меру, кото­рой выражается биологическая активность антибиотиков. За ЕД при­нимают минимальное количество антибиотика, подавляющего развитие тест-микроорганизма в определенном объеме питательной среды.

К ускоренным микробиологическим методам относят методы, осно­ванные на подавлении изменений рН питательной среды в процессе роста тест-микроорганизмов (уреазный метод).

Сердечные гликозиды - безазотистые соединения растительного происхождения, характеризующиеся кардиотоническим действием. Данные препараты играют исключительно важную роль в терапии больных с острой и хронической сердечной недостаточностью любого генеза. При определении активности лекарственного сырья и многих препаратов сердечных гликозидов используют биологическую стандартизацию. Наиболее часто активность сердечных гликозидов выражают в лягушачьих единицах действия (ЛЕД) и кошачьих единицах действия (КЕД). Одна ЛЕД соответствует минимальной дозе стандартного препарата, в которой он вызывает остановку сердца у большинства подопытных лягушек, кошек, голубей. Так, размельченный порошок листьев наперстянки по активности соответствует такой пропорции: один грамм порошка листьев равен 50-66 ЛЕД или 10-13 КЕД. В процессе хранения активность листьев уменьшается.

Витамины представляют собой группу веществ различной химиче­ской структуры, необходимых в малых количествах для нормальной жизнедеятельности организма. Ряд витаминов входят в состав фер­ментных систем и являются своеобразными биологическими катализа­торами химических или фотохимических процессов, происходящих в живой клетке (тиамин, рибофлавин, пиридоксин, пантотеновая кисло­та и др.).

Для качественной и количественной оценки витаминов в природ­ных источниках используют как биологические, так и физико-химиче­ские методы. Принцип оценки биологической активности заключается в том, что животных (крыс, голубей, морских свинок) переводят на диету, содер­жащую белки, жиры, углеводы, минеральные соли и все витамины, кроме исследуемого. Затем устанавливают, какое количество испытуемого витамина может излечить или предохранить животное от авита­миноза. Параллельно проводят аналогичное испытание со стандартным препаратом.

Биологический метод оценки активности витаминов очень трудо­емок, точность его сравнительно невелика. Поэтому для испытания подлинности и количественного определения витаминов обычно ис­пользуют физические, химические и физико-химические методы.

28. Стабильность и сроки годности ЛС (влияние влаги, CO 2 , света, кислорода воздуха, примесей).

Под сроком годности лекарственных средств понимают период времени, в течение которого они должны полностью сохранять свою терапевтическую активность, безвредность и по уровню качественных и количественных характеристик соответствовать требованиям ГФ или ФС (ФСП), в соответствии с которыми были выпущены и хранились в условиях, предусмотренных указанными статьями.

По истечении срока годности ЛС не может быть использовано без переконтроля качества и соответствующего изменения установлен­ного срока годности. Существует определенная взаимосвязь между понятием «срок годности», имеющим временной смысл, и понятием «стабильность», обусловливающим качество ЛС (его устойчивость).

Температура – с увеличением увеличивается скорость реакции; с понижением (понижается активность MgSO 4 , CaCl 2 , раствора адреналина).

Свет – повышается скорость разложения; кристаллические сухие вещества более устойчивы, чем растворы; изменение цвета при длительном освещении; некоторые вещества сохраняют свою активность (содержащие железо, при этом повышается их стабильность).

Влага – снижает фармакологическую активность; + и – влияет на ЛВ; гигроскопичность.

Окисление - процесс, являющийся одной из причин разложения ЛВ. Некоторые из них (производные фенолов) окисляются, находясь в кристаллическом состоянии. Процесс окисле­ния заметно активизируется при растворении. Особенно легко окисляются ЛВ, проявляющие активные восстановитель­ные свойства (альдегиды, гидразиды, производные фенотиазина и др.).

Система мер, направленных на предохранение ЛВ от окисления, сводится прежде всего к уменьшению влияния атмосферного кислорода или максимальному удалению примесей, катализирующих процесс окисления. Используя окислители, можно смоделировать процесс окисле­ния. Если затем сравнить полученные продукты окисления стандарт­ного образца и продукты разложения ЛВ, то можно сделать заключение о механизме процесса окисления. Это позволяет решать вопрос о путях стабилизации, так как станут известны факторы, вли­яющие на скорость реакции окисления.

Методы повышения стабильности:

1) физические (твердые вещества – в плотно укупоренной таре; суспензии – в сухом состоянии; инъекции – в ампулах запечатанных);

2) химические (окисление, металлы).

29. Фармакокинетика и биодоступность.

Фармакокинетика – раздел фармакологии о всасывании, распределении, депонировании, метаболизме и выделении ЛВ.

Проведение фармакокинетических исследований возможно только на основе применения современных методов биофармацевтического анализа, позволяющих проследить процесс всасывания и распределения ЛВ в орга­нах и тканях. Они включают выяснение влияния различных биофар­мацевтических факторов на терапевтическую эффективность ЛВ; изучение их биологической доступности и разработку методов ее определения; создание способов определения ЛВ и их метаболитов в биологических жидкостях.

На фармакокинетику ЛВ оказывают влияние различные факторы: воз­растные, генетические, половые, масса тела, питание, беременность, а также различные патологические процессы, например заболевания печени, почек, сердечно-сосудистой системы, желудочно-кишечного тракта, эндокринные, инфекционные и другие заболевания.

Биодоступность – количество неизменного вещества, которое достигло плазмы крови, относительно исходной дозы препарата.

Одним из основных этапов любого исследования биологической доступности ЛС является использование биофар­мацевтического анализа для определения концентрации ЛВ (метаболита) в биологических жидкостях.

30. Рефрактометрия

Рефрактометрия основана на наличии зависимости величины показателя преломления света от концентрации раствора испытуемого вещества. Показатель преломления зависит также от температуры, длины волны света, концентрации вещества и природы растворителя. Рефрактометрию используют для установления подлинности лекарственных веществ по молярной рефракции. Для количественного определения выбирают интервал линейной зависимости между концентрацией раствора и коэффициентом преломления. В этом интервале концентрацию (х) вычисляют по формуле: х=(n – n O)/F, где n - показатель преломления раствора вещества; n O - показатель преломления растворителя; F - фактор, равный величине прироста показателя преломления при увеличении концентрации вещества на 1% (устанавливается экспериментально).

Рефрактометрические определения выполняют на рефрактометрах, при стабильной температуре (20±0,3 О C) и длине волны линии D спектра натрия (589,3 нм) в диапозоне показателей преломления от 1,3 до 1,7. Прибор юстируют по эталонным жидкостям или воде очищенной, для которой n D 20 = 1,3330.

Спектрофотометрия в УФ-, видимой, ИК-областях спектра в оценке качества ЛС.

Используют спектрофотометрические методы анализа по поглощению веществами монохроматического электромагнитного излучения.

Фотометрические методы анализа основаны на использовании закона Бугера-Ламберта-Бера:

В случае несоответствия закону вначале с помощью стандартного раствора устанавливают зависимость оптической плотности от концентрации, а затем строят калибровочный график, с помощью которого выполняют расчеты.

Диапазоны света:

Спектрофотометрия в УФ- и видимой областях – 1 из широко используемых физико-химических методов в фармацевтическом анализе.

Анализируемые ЛВ должны иметь в структуре молекулы хромофорные группы (сопряженные связи, ароматическое ядро и др.), обусловливающие различные электронные переходы в молекулах и поглощение электромагнитного излучения.

Кривая зависимости интенсивности светопоглощения от длины волны (нм) называется спектром поглощения вещества и является его специфической характеристикой. Измерение спектров поглощения растворов анализируемых веществ в УФ (190-380 нм) и видимой (380-780 нм) областях производят с помощью спектрофотометров различных марок (СФ-26, СФ-46 и др.). В качестве растворителей используют свободные от примесей воду, растворы кислот и щело­чей, этанол, хлороформ и другие органические растворители.

Удельный показатель поглощения представляет собой величину оптической плотности раствора, содержащего 1,0 г вещества в 100 мл раствора, измеренную в кювете с рабочей длиной 1 см. Установив по стандартному образцу величину E и преобразовав эту формулу, можно рассчитать концентрацию анализируемого вещества с относительной погрешностью до ±2%.

Константа измеряется в различных единицах; в молях – молярный коэффициент поглощения, в % - удельный показатель поглощения

Идентификацию ЛВ можно провести по, Е, характеру спектральных кривых в различных растворителях, положению максимума и минимума светопоглощения или их отношению (при различных длинах волн). Для количественного спектрофотометрического анализа важен выбор аналитической полосы поглощения. Последняя должна быть свободна от наложения полос поглощения других компонентов смеси и иметь достаточно высокий удельный показатель поглощения анализируемого вещества.

Спектрофотометрия в ИК-области. Природа полос поглощения в ИК области связана с колебательными переходами и изменением колебательных состояний ядер, входящих в молекулу поглощающего вещества. Поэтому поглощением в ИК-области обладают молекулы, дипольные моменты которых изменяются при возбуждении колебательных движений ядер. Область применения ИК-спектроскопии аналогична, но более широка, чем у УФ-метода. ИК-спектр однозначно ха­рактеризует всю структуру молекулы, включая незначительные ее изменения. Важные преимущества ИК-спектроскопии - высокая специфичность, объективность полученных результатов, возможность анализа веществ в кристаллическом состо­янии. Для измерения ИК-спектров на однолучевых или двулучевых ИК-спектрофотометрах используют взвеси веществ в вазелиновом масле или помещают анализируемое вещество между пластинами из бромида калия.

Каждый ИК-спектр представляет собой серию полос поглощения, максимумы которых определяются волновым числом, измеряемым в см -1 , и определенной интенсивностью. Для анализа ЛB обычно используют спектральную область от 4000 до 400 см -1 .

ГФ XI рекомендует два способа установления подлинности по ИК-спектрам. Один из них основан на сравнении заре­гистрированных в идентичных условиях ИК-спектров испытуемого ЛB и его стандартного образца. Второй способ заклю­чается в сравнении ИК-спектра испытуемого ЛB с его стандартным спектром, прилагаемым к ФС и зарегистрированным в соответствии с указанными в ней требованиями.

Подробности Опубликовано 27.12.2019

Дорогие читатели! Коллектив библиотеки поздравляет вас с Новым годом и Рождеством! От всей души желаем счастья, любви, здоровья, успехов и радости вам и вашим семьям!
Пусть грядущий год подарит вам благополучие, взаимопонимание, гармонию и хорошее настроение.
Удачи, процветания и исполнения самых заветных желаний в новом году!

Тестовый доступ к ЭБС Ibooks.ru

Подробности Опубликовано 03.12.2019

Уважаемые читатели! До 31.12.2019 нашему университету предоставлен тестовый доступ к ЭБС Ibooks.ru , где вы сможете ознакомиться с любой книгой в режиме полнотекстового чтения. Доступ возможен со всех компьютеров сети университета. Для получения удалённого доступа необходима регистрация.

«Генрих Осипович Графтио - к 150 - летию со дня рождения»

Подробности Опубликовано 02.12.2019

Уважаемые читатели! В разделе "Виртуальные выставки" размещена новая виртуальная выставка «Генрих Осипович Графтио». В 2019 году исполняется 150 лет со дня рождения Генриха Осиповича - одного из основателей гидроэнергетической отрасли нашей страны. Ученый-энциклопедист, талантливый инженер и выдающийся организатор, Генрих Осипович внес огромный вклад в развитие отечественной энергетики.

Выставка подготовлена сотрудниками отдела научной литературы библиотеки. На выставке представлены труды Генриха Осиповича из фонда истории ЛЭТИ и публикации о нём.

Ознакомиться с выставкой Вы можете

Тестовый доступ к Электронно-библиотечной системе IPRbooks

Подробности Опубликовано 11.11.2019

Уважаемые читатели! C 08.11.2019 г. по 31.12.2019 г. нашему университету предоставлен бесплатный тестовый доступ к крупнейшей российской полнотекстовой базе данных - Электронно-библиотечной системе IPR BOOKS . ЭБС IPR BOOKS содержит более 130 000 изданий, из которых более 50 000 - уникальные учебные и научные издания. На платформе Вам доступны актуальные книги, которые невозможно найти в открытом доступе в сети Интернет.

Доступ возможен со всех компьютеров сети университета.

Для получения удаленного доступа необходимо обратиться в отдел электронных ресурсов (ауд. 1247) к администратору ВЧЗ Склеймовой Полине Юрьевне или по электронной почте [email protected] с темой "Регистрация в IPRbooks".