Ренин-ангиотензин-альдостероновая система (раас.). Ренин-ангиотензин-альдостероновая система Раас система механизм действия

Оглавление темы "Гормоны почек. Гормоны сердца. Гормоны сосудов. Гормоны при стрессе. Выделение гормонов при повреждении тканей.":
1. Гормоны почек. Регуляторные функции гормонов почек.
2. Кальцитриол. Синтез, секреция кальцитриола. Физиологические эффекты кальцитриола. Кальбайндины. Рахит.
3. Ренин. Ренин - ангиотензин - альдостероновая система. Образование ренина и основные функции ренин-ангиотензин-альдостероновой системы.
4. Гормоны сердца. Предсердный натрийуретический гормон. Атриопептид. Релаксин.
5. Гормоны сосудов. Гормоны эндотелия. Эндотелин. Регуляторная функция гормонов сосудистого эндотелия. Эндотелиалъный гиперполяризующий фактор.
6. Стресс. Гормоны при стрессе. Общий адаптационный синдром. Гормональное обеспечение общего адаптационного синдрома, или стресса.
7. Выделение гормонов при повреждении тканей. Регенерация. Репарации. Гормональная регуляция местных компенсаторных реакций.

Ренин. Ренин - ангиотензин - альдостероновая система. Образование ренина и основные функции ренин-ангиотензин-альдостероновой системы.

Ренин образуется в виде г роренина и секретируется в юкстагломерулярном аппарате (ЮГА) (от латинских слов juxta - около, glomerulus - клубочек) почек миоэпителиоидными клетками приносящей артериолы клубочка, получившими название юкстагломерулярных (ЮГК) . Структура ЮГА приведена на рис. 6.27. В ЮГА кроме ЮГК также входит прилегающая к приносящим артериолам часть дистального канальца нефрона, многослойный эпителий которого образует здесь плотное пятно - macula densa. Секреция ренина в ЮГК регулируется четырьмя основными влияниями. Во-первых, величиной давления крови в приносящей артериоле, т. е. степенью ее растяжения. Снижение растяжения активирует, а увеличение - подавляет секрецию ренина. Во-вторых, регуляция секреции ренина зависит от концентрации натрия в мочедистального канальца, которая воспринимается macula densa - своеобразным Na-рецептором. Чем больше натрия оказывается в моче дистального канальца, тем выше уровень секреции ренина. В-третьих, секреция ренина регулируется симпатическими нервами, ветви которых заканчиваются на ЮГК, медиатор норадреналин через бета-адре-норецепторы стимулирует секрецию ренина. В-четвертых, регуляция секреции ренина осуществляется по механизму отрицательной обратной связи, включаемой уровнем в крови других компонентов системы - ангиотен-зина и альдостерона, а также их эффектами - содержанием в крови натрия, калия, артериальным давлением, концентрацией простагландинов в почке, образующихся под влиянием ангиотензина.

Рис. 6.27. Схема юкстагломерулярного аппарата почек , включающего юкстагломерулярные клетки стенки приносящей артериолы, клетки плотного пятна (macula densa) стенки дистального канальца и мезангиальные клетки. Основное место выработки ренина - юкстагломерулярные клетки приноящей артериолы клубочка.

Кроме почек образование ренина происходит в эндотелии кровеносных сосудов многих тканей, миокарде, головном мозге, слюнных железах, клубочковой зоне коры надпочечников .

Секретированный в кровь ренин вызывает расщепление альфа-глобулина плазмы крови - ангиотензиногена, образующегося в печени. При этом в крови образуется (рис. 6.1-8) малоактивный декапептид ангиотензин-I, который в сосудах почек, легких и других тканей подвергается действию превращающего фермента (карбоксикатепсин, кининаза-2), отщепляющего от ангиотензина-1 две аминокислоты. Образующийся октапептид ангиотензин-II обладает большим числом различных физиологических эффектов, в том числе стимуляцией клубочковой зоны коры надпочечников, секретирующей альдостерон , что и дало основание называть эту систему ренин-ангиотензин-альдостероновой .


Рис. 6.28. Активация секреции ренина и образование в крови ангиотензина-II. Показаны три вида стимулов для секреции ренина юкстагломерулярными клетками почек: снижение АД в приносящей артериоле клубочка, повышение симпатической активности, влияния macula densa, вызванные сдвигами уровня натрия. Под влиянием фермента ренина от молекулы белка ангиотензиногена отщепляется декапептид - ангиотензин-I. Этот пептид подвергается воздействию превращающегося фермента (ПФ) дипептидкарбоксилазы клеток эндотелия сосудов легких, почек и др., отщепляющей две аминокислоты. Образующийся октапептид является ангиотензином-II.

Ангиотензин-II , кроме стимуляции продукции альдостерона, обладает следующими эффектами:

Вызывает сужение артериальных сосудов,
активирует симпатическую нервную систему как на уровне центров, так и способствуя синтезу и освобождению норадреналина в синапсах,
повышает сократимость миокарда,
увеличивает реабсорбцию натрия и ослабляет клубочковую фильтрацию в почках,
способствует формированию чувства жажды и питьевого поведения.

Таким образом, ренин-ангиотензин-альдостероновая система участвует в регуляции системного и почечного кровообращения, объема циркулирующей крови, водно-солевого обмена и поведения.

Catad_tema Артериальная гипертензия - статьи

Catad_tema Ожирение - статьи

Ожирение и артериальная гипертония

Опубликовано в журнале:
ПРОБЛЕМЫ ЖЕНСКОГО ЗДОРОВЬЯ № 4, том 3, 2008

Е.И.Асташкин, М.Г.Глезер
Московская медицинская академия им. И.М.Сеченова

РЕЗЮМЕ
В обзоре анализируются роль ожирения в развитии артериальной гипертонии и сердечно-сосудистых заболеваний, патофизиологические механизмы этой связи, доминирующее значение ренин-ангиотензин-альдостероновой системы (РААС). Обсуждаются вопросы фармакологической коррекции высокого артериального давления у больных с ожирением с применением фиксированной комбинации препаратов, блокирующих РААС, и верапамила. Представлен анализ эффективности и безопасности применения сибутрамина для снижения веса у больных с высоким артериальным давлением.
Ключевые слова: ожирение, артериальная гипертония, лечение.

ABSTRACT
Authors analyzed the role of obesity in development of arterial hypertension and cardiovascular diseases, pathophysiological mechanisms of this relationship, and dominating role of rennin-angiotensin-aldosterone system (RAAS). It was shown that pharmacological correction of high blood pressure in patients with obesity with fixed combination of RAAS blockers and verapamil is effective. The analysis of effectiveness and safety of sibutramine for weight loss in patients with high blood pressure is presented.
Key words: obesity, arterial hypertension, treatment.

Актуальность рассматриваемой темы обусловлена тем, что во всем мире в последние годы наблюдается значительное увеличение числа людей, имеющих ожирение . Ожирение в настоящее время рассматривают как один из основных факторов, способствующих развитию заболеваний, которые являются главными причинами в структуре смертности среди взрослого населения. В первую очередь речь идет о развитии сахарного диабета 2 типа, а также сердечно-сосудистых и онкологических заболеваниях . Увеличение веса на 1 кг увеличивает риск сердечно-сосудистых заболеваний на 3,1% и диабета - на 4,5-9% .

Известно, что при ожирении риск развития артериальной гипертонии - фактора, также значительно влияющего на появление таких сердечно-сосудистых заболеваний, как инфаркты и инсульты, увеличен втрое по сравнению с людьми, имеющими нормальную массу тела. Как показано в исследовании INTERSALT, на каждые 4,5 кг прибавки веса систолическое артериальное давление (АД) увеличивается на 4,5 мм рт. ст. .

Ожирение, как фактор риска у женщин с артериальной гипертонией, особенно старшего возраста, встречается чаще, чем у мужчин. Одной из причин этого является гипоэстрогения, возникающая в период постменопаузы. Отмечают некоторые особенности распространенности ожирения при разных типах артериальной гипертонии. Так, среди пожилых женщин с изолированной систолической гипертонией ожирение встречается не столь часто, и нет данных о влиянии снижения веса на эту категорию пациентов . У женщин же с абдоминальным типом ожирения, имеющих систоло-диастолические формы артериальной гипертонии, снижение веса является важным моментом в контроле заболевания .

При ожирении возникает ряд гемодинамических изменений, в частности, увеличение объема циркулирующей крови, ударного объема и сердечного выброса при относительно нормальном сосудистом сопротивлении . Считается, что высокое АД у пациентов с ожирением обусловлено, главным образом, увеличенным сердечным выбросом при "неадекватно нормальном" периферическом сопротивлении .

Такое гемодинамическое состояние оказывает стимулирующее воздействие на две антагонистические регуляторные системы, контролирующие объем крови и периферическое сопротивление - ренин-ангиотензин-альдостероновую систему (РААС) и систему натриуретических пептидов сердца. Их нарушенная регуляция может в значительной степени объяснять высокий сердечный выброс у полных пациентов с артериальной гипертонией. Более того, эти сердечно-сосудистые регуляторные системы участвуют в метаболических изменениях, связанных с избыточной массой тела при сердечнососудистых заболеваниях .

Итак, при ожирении в патогенезе артериальной гипертонии играют существенную роль три основных механизма:

  • активация ренин-ангиотензин-альдостероновой системы;
  • активация симпатической нервной системы;
  • чрезмерная задержка натрия и жидкости в организме.

    Патогенез развития артериальной гипертонии и сердечно-сосудистых заболеваний при ожирении схематично приведен на рисунке 1.

    Рисунок 1. Схема патогенеза артериальной гипертонии и сердечно-сосудистых заболеваний при ожирении

    Системная и тканевая ренин-ангиотензин-альдостероновая система и ее изменения при ожирении

    В состав РААС входят ангиотензиноген, ренин, ангиотензин I, ангиотензин-превращающий фермент (АПФ) и ангиотензин II (АТ II). АТ II оказывает многообразное действие на разные клетки, имеющие специфические рецепторы.

    Согласно классическим представлениям ангиотензиноген образуется в печени и под влиянием ренина, синтезируемого в околоклубочковых клетках почек (юкстагломерулярных клетках), ангиотензиноген превращается в крови в ангиотензин I. АПФ ответственен за расщепление АТ I, в результате которого образуется АТ II.

    Важно отметить, что при ожирении происходит нарушение механизмов регуляции работы РААС . В физиологических условиях повышение активности РААС приводит к повышению сопротивления периферических сосудов и, соответственно, к повышению АД. По принципу обратной связи повышение АД должно вызывать снижение секреции ренина, падение уровня АТ II и уменьшать содержание альдостерона. Это, в свою очередь, снижает задержку жидкости и натрия и поддерживает АД на нормальном уровне.

    Однако у пациентов с висцеральным ожирением нарушается регуляция уровня системных циркулирующих компонентов РААС . Несмотря на повышенное АД, задержку натрия и жидкости, а также увеличение объема циркулирующей крови, активность ренина плазмы и альдостерона остается нормальной или даже несколько повышенной . Подобное нарушение регуляции РААС при ожирении может быть следствием увеличения образования компонентов РААС и/или вторичного роста их концентрации, обусловленного дефектами в системе натрийуретических пептидов.

    Было установлено, что помимо РААС крови существует тканевая, или так называемая локальная РААС, которая была выявлена в ряде тканей и органов, в том числе мозге, сердце, сосудах, почках, яичках, жировой ткани и др.

    Как известно, ключевую роль в образовании АТ II играют два фактора: активность ренина и концентрация ангиотензиногена. Синтез и секреция ангиотензиногена в клетках разного типа не только определяет повышение локальной концентрации АТ II, но и увеличивает системную активность РААС. Хроническая инфузия АТ II мышам сопровождалась существенным увеличением содержания мРНК ангиотензиногена в адипоцитах . Эти результаты свидетельствуют о наличии положительной обратной связи между АТ II и ангиотензиногеном, когда увеличение уровня одного агента стимулирует образование второго. При ожирении, особенно висцерального типа, активность ренина в плазме сохраняется, как это уже указывалось, на нормальном или несколько повышенном уровне, а уровни ангиотензиногена и АТ II увеличены .

    Структура и физиологические свойства жировой ткани

    В состав жировой ткани входят клетки разного типа, в том числе адипоциты, макрофаги, фибробласты, эндотелиальные клетки сосудов и преадипоциты (адипобласты) . Последний вид клеток происходит из полипотентных стволовых клеток мезодермы. Из преадипоцитов во взрослом организме человека образуются новые дифференцированные ("малые") адипоциты . Эти адипоциты увеличиваются в размере ("большие" адипоциты) вследствие повышенного поступления с пищей жирных кислот. Длинноцепочечные жирные кислоты попадают в адипоциты из крови и депонируются в виде нейтральных триацилглицеринов. Жировая ткань ответственна за хранение и секрецию длинноцепочечных жирных кислот, выступающих в качестве одного из основных энергетических субстратов для многих органов и тканей, например, для сердечной и скелетной мускулатуры. "Большие" адипоциты секретируют существенно больше насыщенных жирных кислот. Гидролиз триглицеридов и высвобождение жирных кислот происходят под влиянием внутриклеточной гормон-чувствительной липазы, активность которой контролируется катехоламинами (положительная регуляция) и инсулином (отрицательная регуляция).

    Эндокринная активность жировой ткани

    В отличие от подкожного жира, который составляет обычно 75% от всей жировой ткани организма и является основным хранилищем липидов, висцеральный жир в настоящее время рассматривают как активную гормонпродуцирующую ткань.

    Адипоциты продуцируют широкий спектр гормонов и цитокинов, участвующих в метаболизме глюкозы (адипонектин, резистин и др.), липидов (белок, переносящий эфиры холестерина), воспалении (ФНО-α, интерлейкин-6), коагуляции (ингибитор активатора плазминогена-1), регуляции давления крови (ангиотензиноген, АТ II), пищевом поведении (лептин), а также влияющих на метаболизм и функциональную активность различных органов и тканей, в том числе мышц, печени, мозга и сосудов (см. таблицу) .

    Таблица. Эндокринная функция адипоцитов: адипоцитокины

    Адипоцитокины Эффекты адипоцитокинов
    Лептин Поглощение пищи, масса жира
    Адипонектин
    Резистин Резистентность к инсулину, воспаление
    Висфатин Резистентность к инсулину
    Оментин Резистентность к инсулину
    Серпин, высвобождающийся из жировой висцеральной ткани (Vaspin) Резистентность к инсулину
    Апелин Вазодилатация
    Белок, переносящий эфиры холестерина (CETP) Метаболизм липидов
    Липопротеиновая липаза (LPL) Метаболизм липидов
    Гормончувствительная липаза (HSL) Метаболизм липидов
    Белоксвязывающий жирные кислоты в адипоцитах-4 (A-FABP-4 (aP2)) Метаболизм липидов
    Перлипин Метаболизм липидов
    Ренитол связывающий белок (RBP) Метаболизм липидов
    Белокстимулирующий ацилирование (ASP) Метаболизм липидов
    Ангиотензин II (AT II) Артериальное давление
    Ангиотензин-превращающий фермент (ACE) Артериальное давление
    Ангиотензиноген (AGT) Артериальное давление
    Фактор некроза опухоли альфа (ФНО-а) Воспаление
    Интерлейкин, 6 (ИЛ-6) Воспаление
    С-реактивный белок (CRP) Воспаление
    Адипоцит-трипсин/комплемент фактор D (Адипсин) Воспаление
    Хемоаттрактантный белок макрофагов-1 (МСР-1) Аттрактант для макрофагов
    Межклеточная адгезионная молекула-1 (ICAM-1) Активация макрофагов
    Ингибитор активатора плазминогена-1 (PAI-1) Фибринолиз

    Важно подчеркнуть, что даже небольшое увеличение объема висцерального жира играет значительную роль в нарушениях метаболизма, регуляции водноэлектролитного баланса и сердечно-сосудистых заболеваниях.

    При увеличении массы жировой ткани содержание практически всех адипокинов в крови возрастает. Исключение составляет адипонектин, уровень которого в этих условиях падает . Лептин и адипонектин являются наиболее изученными адипокинами в настоящее время.

    Лептин. Продукция лептина происходит, главным образом, в "больших" адипоцитах . Лептин часто рассматривается в качестве сигнальной молекулы, осуществляющей взаимосвязь между содержанием питательных веществ, поступающих в организм, состоянием жировой ткани и центральной нервной системой (гипоталамусом) . Лептин увеличивает окисление липидов в печени, а также липолиз в адипоцитах и скелетных мышцах . Инсулин стимулирует образование лептина. На уровень лептина также влияют свободные жирные кислоты, ФНО-α, эстрогены и гормон роста .

    Адипонектин. Образование адипонектина происходит исключительно в адипоцитах . Адипонектин оказывает разнообразные биологические эффекты - оказывает антиатерогенное действие, увеличивает чувствительность клеток к инсулину, подавляет синтез глюкозы в печени, усиливает ее транспорт в мышцы, увеличивает окисление жирных кислот. Уровень адипонектина снижается при ожирении, резистентности к инсулину и сахарном диабете второго типа .

    Жировая ткань и активность РААС

    Оказалось, что жировая ткань занимает второе место после печени по образованию ангиотензиногена. Например, количество мРНК ангиотензиногена в адипоцитах составляет около 70% от уровня этого показателя в печени . Наличие взаимосвязи между уровнем ангиотензиногена, ожирением и артериальной гипертонией четко продемонстрировано в экспериментах на модели трансгенных мышей, экспрессирующих избыточные количества ангиотензиногена в жировой ткани. Эти мыши имеют висцеральное ожирение и гипертонию . Преадипоциты и дифференцированные жировые клетки имеют полный набор компонентов, необходимый для локального синтеза АТ II, а также АТ 1 рецептор для АТ II, что обеспечивает внутриклеточную передачу сигналов активации, запускаемых АТ II . При ожирении объем висцеральных дифференцированных адипоцитов увеличивается в 20-30 раз. Ожирение характеризуется дисфункцией адипоцитов, под которой понимают усиление образования и секреции различных адипокинов, цитокинов, а также увеличение содержания компонентов РААС, прежде всего, в висцеральном жире.

    Суммируя данные различных исследований, можно констатировать, что при ожирении происходит повышение активности РААС, что находит свое отражение в следующих фактах:

  • адипоциты продуцируют значительные количества ангиотензиногена;
  • непосредственно в адипоцитах повышено содержание ренина, о чем свидетельствует увеличение уровня мРНК ренина ;
  • увеличивается содержание белка, связывающего ренин ;
  • повышена активность ангиотензин-превращающего фермента (АПФ) ;
  • значительно увеличено содержание АТ II в жировой ткани человека и культуре адипоцитов человека in vitro ;
  • в жировой ткани человека имеются рецепторы для ренина , которые опосредованно участвуют в локальном синтезе АТ I из ангиотензиногена;
  • в адипоцитах повышена экспрессия рецепторов к АТ II типа 1 (АТ 1 рецепторов) .

    Высокая активность РААС, в свою очередь, приводит к увеличению массы жировой ткани. В частности, трансгенные мыши, чрезмерно экспрессирующие ангиотензиноген только в жировых клетках, демонстрировали повышение уровня ангиотензиногена в крови, развитие гипертонии и увеличение массы жировой ткани . Тканевой АТ II по сути выполняет функцию фактора роста для адипоцитов . АТ II в результате воздействия на АТ 1 рецепторы вызывает увеличение белка циклина D 1 , который участвует в регуляции роста и деления жировых клеток . Показано, что АТ II индуцирует прохождение G 1 фазы клеточного цикла в преадипоцитах человека . Этот эффект был связан с влиянием на АТ 1 рецепторы и последующей активацией циклин D 1 -зависимой киназы .

    Установлено, что АТ II вызывает дифференцировку преадипоцитов , активирует ключевые ферменты образования липидов (липогенеза) и увеличивает накопление триглицеридов в адипоцитах .

    Висцеральное ожирение сопровождается увеличением активности 11-бета-гидроксистероид дегидрогеназы типа 1, что приводит к образованию кортизола, ключевого гормона дифференцировки преадипоцитов в адипоциты .

    Активность тканевой РАС тесно связана с продукцией адипокинов жировой тканью. Показано, например, что АТ II вызывает экспрессию лептина в адипоцитах . Было высказано предположение, что такая активность свойственна только локально синтезируемому АТ II в отличие от системного АТ II .

    Ожирение и активность симпатической нервной системы

    При ожирении, особенно при абдоминальном его варианте, очень часто наблюдается активация симпатической нервной системы . В исследовании NAS (Normotesive Aging Study) было обнаружено увеличение норадреналина в моче, пропорциональное индексу массы тела . При снижении веса активность симпатической нервной системы уменьшается .

    Повышению активности симпатической нервной системы при ожирении способствует наличие гиперинсулинемии и инсулинорезистентности. Инсулин может повышать активность симпатоадреналовой системы сам по себе, но отчасти это может быть связано с действием лептина. Известно, что по мере увеличения степени ожирения тощаковый уровень лептина, который секретируется адипоцитами, растет. Лептин увеличивает активность симпатической нервной системы, особенно в почках. Это приводит, с одной стороны, к высокому выбросу и увеличению частоты сердечных сокращений, а с другой - к повышению реабсорбции натрия и увеличению внутрисосудистого объема крови.

    Установлено наличие взаимосвязи между РААС и симпатической нервной системой. С активацией симпатической нервной системы связывают усиление секреции ренина в почках, и происходит это независимо от внутрипочечной сенсорной системы, регулирующей секрецию ренина почками. Более того, увеличение циклического аденозинмонофосфата под влиянием катехоламинов, стимулирует экспрессию ангиотензиногена в адипоцитах человека . Увеличение уровня АТ II усиливает у людей активность симпатической нервной системы. Установлено, что АТ II активирует локальную симпатическую нервную систему, участвующую в повышении температуры тела (термогенезе). Холодовая обработка приводит к увеличению содержания АТ II в адипоцитах без сопутствующего изменения уровня АТ II в плазме .

    Таким образом, нарушение регуляции РААС при ожирении также способно стимулировать активность симпатической нервной системы.

    Методы фармакологической коррекции повышенного АД при ожирении

    Вклад разных патогенетических механизмов в поддержание высокого АД при ожирении может быть различным. Следовательно, в этой ситуации благоприятное действие могут оказывать антигипертензивные препараты с самыми разными механизмами действия.

    В соответствии с современными рекомендациями по лечению артериальной гипертонии залогом успеха значимого снижения АД является использование комбинированной терапии. Для пациентов с ожирением в первую очередь основные компоненты такой терапии должны содержать комбинацию препаратов, снижающих активность РААС (ИАПФ и сартаны), с препаратами, снижающими активность симпатической нервной системы (β-адреноблокаторы и недигидропиридиновые антагонисты кальция), и диуретиками. Высокая эффективность использования препаратов, блокирующих РААС, при ожирении показана во многих исследованиях . По поводу использования β-адреноблокаторов данные весьма противоречивы, прежде всего, вообще в связи с сомнениями в их полезности для лечения пациентов с неосложненной артериальной гипертонией, во-вторых, в связи с тем, что β-адреноблокаторы, во всяком случае классические, могут увеличивать вес пациентов и усиливать инсулинорезистентность . Следовательно, если и выбирать β-адреноблокаторы для лечения пациентов с ожирением или метаболическим синдромом, то это должны быть препараты, обладающие особыми свойствами, в частности, карведилол и небиволол.

    В то же время установлено, что недигидропиридиновый антагонист кальция верапамил может не только значимо снижать АД , но и уменьшать активность симпатической нервной системы .

    Таким образом, при ожирении для лечения артериальной гипертонии можно воспользоваться комбинацией препаратов, блокирующих РААС, и верапамила.

    Следует подчеркнуть, что такого типа сочетание лекарственных препаратов существует в виде готовой комбинированной лекарственной формы - препарата Тарка, содержащего в своем составе жирорастворимый ИАПФ - трандолаприл и верапамил медленного высвобождении (верапамил СР). Такой подход очень важен для проведения эффективной терапии, так как использование готовых лекарственных форм улучшает приверженность пациентов к лечению .

    Имеются данные, свидетельствующие о том, что препарат Тарка в большей степени, чем каждый из входящих в него компонентов, снижает АД, обладает выраженной способностью снижать гипертрофию левого желудочка, способствует нормализации эндотелиальной функции, является метаболически нейтральным, даже у пациентов с сахарным диабетом .

    Двойное действие - снижение активности РААС под влиянием трандолаприла и симпатической нервной системы за счет верапамила пролонгированного действия - обеспечивают важное влияние на патогенетические механизмы развития артериальной гипертонии при ожирении и механизмы, провоцирующие поражение органов-мишеней при данном виде АГ.

    Особое внимание, обсуждая лечение АГ при ожирении, следует обратить на то, что терапия, основанная на комбинации трандалаприла с верапамилом длительного действия, позволяет уменьшить риск развития сахарного диабета по сравнению с использованием другой тактики лечения - комбинации сартана с малой дозой тиазидного диуретика. Результаты исследования STAR отчетливо свидетельствует о том, что при применении препарата Тарка в течение одного года у меньшего числа людей с метаболическим синдромом, при котором абдоминальному ожирению придают главенствующее значение, развивается сахарный диабет (рис. 2) .

    Рисунок 2. Развитие новых случаев сахарного диабета (глюкоза натощак > 126 мг/дл или 2-часовой уровень при проведении глюкозотолерантного теста > 200 мг/дл) в зависимости от типа антигипертензивной терапии у лиц с метаболическим синдромом в исследовании STAR

    Кроме того по данным исследования SТAR-LET, даже при возникновении сахарного диабета на фоне лекарственной терапии перевод этих пациентов на прием препарата Тарка позволил у половины пациентов нормализовать углеводный обмен .

    Результаты этих исследований заставляют пересмотреть рекомендации по медикаментозной терапии артериальной гипертонии у лиц с метаболическим синдромом и начинать терапию с комбинации, содержащей ИАПФ (или сартан) и антагонист кальция, или перевести пациентов на подобную терапию.

    Как уже неоднократно упоминалось, для лечения артериальной гипертонии уменьшение веса пациентов и степени абдоминального ожирения играет важную роль. Конечно, снижение тем или иным способом массы тела может оказывать значимое влияние на снижение частоты сердечно-сосудистых заболеваний. В настоящее время существуют разные подходы для медикаментозной терапии ожирения . Первый - это симптоматическое лечение, а именно уменьшение количества потребляемых калорий за счет снижения всасывания жира, поступающего с пищей. Подобный подход можно назвать компенсаторным. Действительно, при такой терапии заболевание не устраняется (так как пациент продолжает переедать), а лишь временно компенсируется препаратом. Другой подход к лечению излишней массы тела и ожирения - это устранение сути проблемы, а именно хронического переедания. Так действует сибутрамин (препарат Меридиа). Он приводит к наступлению быстрого насыщения, снижает количество потребляемой пищи за счет подавления обратного захвата норадреналина и серотонина в синапсах нейрональных цепей . Сегодня Меридиа - это единственный оригинальный препарат, устраняющий причину ожирения.

    Принципиальным отличием сибутрамина является то, что, не вызывая снижения аппетита, он способствует более раннему наступлению чувства сытости. Человек избавляется от патологической привычки переедать, результатом чего является постепенное и устойчивое снижение массы тела. Под влиянием сибутрамина потребление пищи снижается примерно на 20%. Наряду с этим сибутрамин опосредованно влияет на уровень биогенных аминов в крови, которые активируют адренорецепторы жировой ткани и инициируют липолиз в адипоцитах, что сопровождается изменением содержания энергетических субстратов в крови. Сибутрамин за счет активации β 2 - и β 3 -адренорецепторов усиливает процессы термогенеза и увеличивает расход энергии в организме.

    Клиническая эффективность и безопасность сибутрамина (Меридиа) были продемонстрированы в большом количестве многоцентровых исследований. В частности, в исследовании STORM (Sibutramine Trial on Obesity Reduction and Maintenance), в которое включили 605 пациентов с ожирением, было показано, что двухлетний прием сибутрамина снижал вес пациентов в 3 раза, а окружность талии - в 2 раза более выраженно, чем плацебо . Важно, что в течение двух лет достигнутое снижение веса поддерживали 80% пациентов по сравнению с 16% пациентов, получавшими плацебо (p < 0,001). Показательно, что при этом улучшался липидный спектр: уровень липопротеидов высокой плотности повысился на 21% при снижении уровней липопротеидов низкой плотности и триглицеридов.

    Положительное действие уменьшения веса в лечении пациентов с артериальной гипертонией и другими сердечно-сосудистыми заболеваниями может заключаться также в том, что уменьшение внутрибрюшного жира может снизить механическое сдавление почек, что может привести к улучшению их кровоснабжения и снижению активности РААС. Уменьшение жировой ткани внутри и вокруг почек может привести к снижению интерстициального давления, компрессии тонкой части петли Генли, увеличению кровотока в vasa recta, снижению канальцевой реабсорбции Na + и воды . Тем самым снижение веса, обусловленное методами немедикаментозной или медикаментозной коррекции, может уменьшать высоту артериального давления.

    Однако до последнего времени в реальной клинической практике сибутрамин применяли с осторжностью, опасаясь его возможного негативного влияния на показатели АД и ЧСС, что, в свою очередь, могло приводить, хоть и у небольшого числа пациентов, но к неприятным субъективным ощущениям. Для изучения влияния сибутрамина на сердечно-сосудистую систему и доказательства безопасности препарата у группы пациентов с повышенным риском сердечно-сосудистых заболеваний было инициировано крупномасштабное многоцентровое двойное слепое плацебо контролируемое международное исследование SCOUT (Sibutramine Cardiovascular OUTcomes), где наблюдались 10 742 пациентов, из которых 97% имели заболевания сердечно-сосудистой системы, 88 - артериальную гипертонию и 84% - сахарный диабет 2 типа. По результатам первого завершившегося этапа исследования было установлено, что назначение сибутрамина привело к достоверному (р < 0,001) уменьшению веса (медиана изменения составила 2,2 кг), окружности талии (на 2 см в равной степени выраженному у мужчин и женщин) и снижению АД систолического на 3,0 мм рт. ст. и диастолического - на 1,0 мм рт. ст. Частота сердечных сокращений увеличивалась в среднем на 1,5 удара в минуту. Увеличение АД и увеличение частоты пульса наблюдалось соответственно у 4,7 и 3,5% пациентов. Таким образом, в данном исследовании было показано, что даже у пациентов, относящихся к группам высокого риска, применение сибутрамина (препарата Меридиа) было высокоэффективным и безопасным . Дальнейший анализ данных исследования SCOUT позволил установить, что у пациентов с артериальной гипертонией снижение АД при приеме сибутрамина было более выраженным и составило в среднем для систолического АД -6,5 (-27,0; 8,0) мм рт. ст., а для диастолического -2,0 (-15,0; 8,0) мм рт. ст. (p < 0,001). Среди пациентов, у которых снижение веса не было выраженным, снижение АД было достоверным, но менее выраженным, чем у лиц с успешным снижением веса, и составило в среднем для систолического -3,5 (-26,0; 10,0) мм рт. ст. и -1,5 (-16,0; 9,0) мм рт. ст. для диастолического АД (p < 0,001). У лиц с нормальным АД было достоверное, но не выраженное увеличение АД - 1,5 (-15,0; 19,5) мм рт. ст. систолического и на 1,0 (-10,5; 13,0) мм рт. ст. диастолического АД (p < 0,001). Степень повышения АД при приеме сибутрамина уменьшалась в соответствии со степенью потери веса .

    Возникает закономерный вопрос, как будет соотноситься тот или иной вид антигипертензивной терапии с лечением сибутрамином. Несколько исследований было проведено для того, чтобы получить ответ на этот вопрос. Так, например, было показано, что использование комбинированной лекарственной формы, содержащей верапамил 180 мг/трандолаприл 2 мг в сочетании с сибутрамином 10 мг, приводило в течение 6 месяцев к более выраженному снижению АД, чем проведение только антигипертензивной терапии - систолическое АД снизилось, соответственно, на 21,9 ± 8,1 против 15,9 ± 12,3 мм рт. ст. и диастолическое - на 15,7 ± 8,1 против 9,1 ± 9,9 мм рт. ст. (p = 0,03). Комбинированная терапия приводила также к более выраженному улучшению антропометрических показателей; достоверное (p <5) по сравнению с исходным уровнем снижение малых липопротеидов низкой плотности, С-реактивного белка и висфатина наблюдалось только в группе пациентов, получавших комбинированную терапию сибутрамином с антигипертензиным препаратом Тарка .

    В проспективном, многоцентровом, плацебо-контролируемом, двойном слепом исследовании HOS (Hypertension-Obesity-Sibutramine) в течение 16 недель было проведено сопоставление проведения различных режимов антигипертензивной терапии (фелодипин 5 мг/рамиприл 5 мг (n = 57), верапамил 180 мг/трандолаприл 2 мг (n = 55), метопролол сукцинат 95 мг/гидрохлортиазид 12,5 мг n = 59) при назначении сибутрамина и плацебо . В этом исследовании было подтверждено, что сибутрамин может повышать АД. Поэтому, конечно, необходимо адекватное проведение антигипертензивной терапии в период применения сибутрамина у пациентов с артериальной гипертонией. Показано также, что при лечении комбинацией β-адреноблокатора и гидрохлортиазида положительные эффекты сибутрамина по снижению веса, окружности талии и влиянию на метаболический профиль были выражены существенно меньше, чем при сочетании комбинированной терапии ИАПФ и антагонистами кальция с сибутрамином. Это еще раз подтверждает необходимость тщательного выбора антигипертензивной терапии у пациентов с ожирением, особенно при проведении программ, направленных на снижение веса. И в заключение следует отметить, что с нашей точки зрения одной из значимых проблем, снижающих эффективность борьбы с ожирением, является то, что ни врачи, ни население не рассматривают ожирение как значимый фактор риска. Более того, пациенты часто не оценивают себя как людей, имеющих ожирение. Например, в исследовании ПОЛОНЕЗ по оценке врачей, основанной на вычислении ИМТ, ожирение и у мужчин, и у женщин регистрировалось в три раза чаще, чем по самооценке пациентов . Таким образом, должна быть усилена и проводиться разъяснительная работа среди населения о необходимости предупреждения увеличения массы тела, коррекция имеющегося ожирения и важности постоянной терапии артериальной гипертонии.

    ЛИТЕРАТУРА
    1. Flegal K.M., Carroll M.D., Ogden C.K., Johnson C.L. Prevalence and trends in obesity among US adults, 1999-2000. JAMA 2002; 288: 1723-7.
    2. Pi-Sunyer F.X. The epidemiology of central fat distribution in relation to disease. Nutr Rev 2004; 62(7): 120-6.
    3. Arbeeny C.M. Addressing the unmet medical need for safe and effective weight loss therapies. Obes Res 2004; 12(8): 1191-6.
    4. Stamler J., Rose G., Stamler R., et al. INTERSALT study findings. Public health and medical care implications. Hypertension 1989; 14(5): 570-7.
    5. Jedrychowski W., Mroz E., Bojanczyk M., Jedrychowska I. Excessive weight and hypertension in the elderly - the results of the community study. Arch Gerontol Geriatr 1991; 13(1): 61-9.
    6. Kanai H., Tokunaga K., Fujioka S., et al. Decrease in intra-abdominal visceral fat may reduce blood pressure in obese hypertensive women. Hypertension 1996; 27(1): 125-9.
    7. Poirier P., Giles T.D., Bray G.A., et al. American Heart Association; Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006; 113: 898-918.
    8. Alpert M.A. Obesity cardiomyopathy; pathophysiology and evolution of the clinical syndrome. Am J Med Sci 2001; 321: 225-36.
    9. Aneja A., El-Atat F., McFarlane S.I., Sowers J.R. Hypertension and obesity. Recent Progr Horm Res 2004; 59: 169-205.
    10. Engeli S., Sharma A.M. The renin-angiotensin system and natriuretic peptides in obesity-associated hypertension. J Mol Med 2001; 79: 21-9.
    11. Lafontan M., Moro C., Sengenes C., et al. An unsuspected metabolic role for atrial natriuretic peptides: the control of lipolysis, lipid mobilization, and systemic nonesterified fatty acids levels in humans. Arterioscler Thromb Vasc Biol 2005; 25: 2032-42.
    12. Hall J.E. The kidney, hypertension and obesity. Hypertension 2003; 41(3): 625-33.
    13. Cooper R., McFarlane Anderson N., Bennet F.I., et al. ACE, angiotensinogen and obesity: a potential pathway leading to hypertension. J Hum Hypertens 1997; 11: 107-11.
    14. Lu Н., Boustany-Kari C.M., Daugherty A., Cassis L.A. Angiotensin II increases adipose angiotensinogen expression. Am J Physiol Endocrinol Metab 2007; 292: 1280-7.
    15. Engeli S., Negrel R., Sharma A.M. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 2000; 35(6): 1270-7.
    16. Otto T.C., Lane M.D. Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol 2005; 40: 229-42.
    17. Hajer G.R., van Haeften T.W., Visseren F.L.J. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008; 29: 2959-71.
    18. Wannamethee S.G., Lowe G.D., Rumley A., et al. Adipokines and risk of type 2 diabetes in older men. Diabetes Core 2007; 30: 1200-5.
    19. Chu N.F., Spiegelman D., Hotamisligil G.S., et al. Plasma insulin, leptin, and soluble TNF receptoirs levels in relation to obesity-related atherogenic and thrombogenic cardiovascular disease risk factors among men. Atheroslerosis 2001; 157: 495-503.
    20. Skurk T., Alberti-Huber C., Herder C., Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 2007; 6(92): 1023-33.
    21. Ran J., Hirano T, Fukui T., et al. Angiotensin II infusion decreases plasma adiponectin level via its type 1 receptor in rats: an implication for hypertension related insulin resistance. Metabolism 2006; 55: 478-88.
    22. Considine R.V., Sinha M.K., Heiman M.L., et al. Serum immunoreactive-leptin concentration in normal-weight and obese human. N Engl J Med 1996; 334: 292-5.
    23. Schwartz M.W., Woods S.C., Porte D. Jr., et al. Central nervous system control of food intake. Nature 2000; 404(6778): 661-71.
    24. Cheung C.C., Clifton D.K., Steiner R.A. Proopiomelanocortin neurons are direct targets for leptrin in the hypothalamus. Endocrinology 1997; 138; 4489-92.
    25. Long Y.C., Zierath J.R. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116: 1776-83.
    26. Saladin R., De Vos P., Guerre-Millo M., et al. Transient increase in obese gene expression after food intake or insulin administration. Nature 1995; 377: 527-9.
    27. Zhang H.H., Kumar S., Barnet A.H., Eggo M.C. Tumor necrosis factor-alpha exerts dual effects on huuman adipose leptin synthesis and release. Mol Cell Endocrinol 2000; 159: 79-88.
    28. Lindsay R.S., Funahashi T., Hanson R.L., et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002; 360: 57-8.
    29. Hajer G.R., van der Graaf Y., Olijhoek J.K., et al. Low plasma levels of adiponectin are associated with low risk for future cardiovascular events in patients with clinical evident vascular disease. Am Heart J 2007; 154(750): 1-7.
    30. Massiera F., Bloch-Faure M., Ceiler D., et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J 2001; 15: 2727-9.
    31. Paul M., Mehr A.P., Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006; 86: 747-803.
    32. Karlsson C., Lindell K., Ottosson M., et al. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J Clin Endocrinol Metab 1998; 83: 3925-9.
    33. Gorzelniak K., Engeli S., Janke J., et al. Hormonal regulation of the human adipose-tissue renin-angiotensin system: relationship to obesity and hypertension. J Hypertens 2002; 20: 965- 73.
    34. Engeli S., Gorzelniak K., Kreutz R., et al. Co-expression of renin-angiotensin system genes in human adipose tissue. J Hypertens 1999; 17: 555-60.
    35. Achard V., Boullu-Ciocca S., Desbriere R., et al. Renin receptor expression in human adipose tissue. Am J Physiol Regul Integr Comp Physiol 2007; 292: 274-82.
    36. Sarzani R., Savi F., Dessi-Fulgheri P., Rappelli A. Renin-angiotensin system, natrriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in human. J Hypertens 2008; 26: 831-43.
    37. Crandall D.L., Armellino D.C., Busler D.E., et al. Angiotensin II receptors in human preadipocytes: role in cell cycle regulation. Endocrinology 1999; 140: 154-8.
    38. Saint-Marc P., Kozak L.P., Ailhaud G., et al. Angiotensin II as a trophic factor of white adipose tissue: stimulation of adipose cell formation. Endocrinology 2001; 142: 487-92.
    39. Watanabe G., Lee R.J., Albanese C., et al. Angiotensin II activation of cyclin D1-dependent kinase activity. J Biol Chem 1996; 271: 22570-7.
    40. Darimont C., Vassaux G., Ailhaud G., Negrel R. Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-II. Endocrinology 1994; 135: 2030-6.
    41. Jones B.H., Standridge M.K., Moustaid N. Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 1997; 138: 1512-9.
    42. Wake D.J., Walker B.R. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 in obesity. Endocrine 2006; 29: 101-8.
    43. Engeli S., Bohnke J., Feldpausch M., et al. Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obes Res 2004; 12: 9-17.
    44. Kim S., Whelan J., Claycombe K., et al. Angiotensin II increases leptin secretion by 3T3-L1 and human adipocytes via a prostaglandin-independent mechanism. J Nutr 2002; 132: 1135-40.
    45. Cassis L.A., English V.L., Bharadwaj K., Boustany C.M. Differential effects of local versus systemic angiotensin II in the regulation of leptin release from adipocytes. Endocrinology 2004; 145: 169-74.
    46. Mancia G., Bousquet P., Elghozi J.L., et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens 2007; 25: 909-20.
    47. Tentolouris N., Liatis S., Katsilambros N. Sympathetic system activity in obesity and metabolic syndrome. Ann N Y Acad Sci 2006; 1083: 129-52.
    48. Landsberg L., Troisi R., Parker D., et al. Obesity, blood pressure, and the sympathetic nervous system. Ann Epidemiol 1991; 1: 295-303.
    49. Serazin V., Dos Santos E., Morot M., Giudicelli Y. Human adipose angiotensinogen gene expression and secretion are stimulated by cyclic AMP via increased DNA cyclic AMP responsive element binding activity. Endocrine 2004; 25: 97-104.
    50. Cassis L.A. Role of angiotensin II in brown adipose thermogenesis during cold acclimation. Am J Physiol Endocrinol Metab 1993; 265: 860-5.
    51. Cassis L.A., Dwoskin L.P. Presynaptic modulation of neurotransmitter release by endogenous angiotensin II in brown adipose tissue. J Neural Transm 1991; 34: 129-37.
    52. Reisin E., Weir M., Falkner B., et al. Lisinopril versus hydrochlorothiazide in obese hypertensive patients: a multi-center placebo-controlled trial. Treatment in Obese Patients With Hypertension (TROPHY) Study Group. Hypertension 1997; 30(1): 2140-5.
    53. Neutel J.M., Saunders E., Bakris G.L., et al. The efficacy and safety of low- and high-dose fixed combinations of irbesartan/hydrochlorothiazide in patients with uncontrolled systolic blood pressure on monotherapy: the INCLUSIVE trial. J Clin Hypertens (Greenwich) 2005; 7(10): 578-86.
    54. Беленков Ю.Н., Чазова И.Е., Мычка В.Б. от имени исследовательской группы "ЭКО". Многоцентровое рандомизированное открытое исследование по изучению эффективности изменения образа жизни и терапии ингибиторами АПФ (квинаприлом) у больных ожирением и артериальной гипертонией (ЭКО). Артериальная гипертензия 2003; 9(6): 3-6.
    55. Jacob S., Rett K., Henriksen E.J. Antihypertensive therapy and insulin sensitivity: do we have to redefine the role of beta-blocking agents? Am J Hypertens 1998; 11(10): 1258-65.
    56. Kaaja R., Kujala S., Manhem K., et al. Effects of sympatholytic therapy on insulin sensitivity indices in hypertensive postmenopausal women. Int J Clin Pharmacol Ther 2007; 45(7): 394-401.
    57. Kuperstein R., Sasson Z. Effects of antihypertensive therapy on glucose and insulin metabolism and on left ventricular mass: a randomized, double-blind, controlled study of 21 obese hypertensives. Circulation 2000; 102(15): 1802-6.
    58. Halperin A.K., Cubeddu L.X. The role of calcium channel blockers in the treatment of hypertension. Am Heart J 1986; 111(2): 363-82.
    59. McAllister R.G. Jr. Clinical pharmacology of slow channel blocking agents. Prog Cardiovasc Dis 1982; 25(2): 83-102.
    60. Binggeli C., Corti R., Sudano I., et al. Effects of chronic calcium channel blockade on sympathetic nerve activity in hypertension. Hypertension 2002; 39(4): 892-6.
    61. Lefrandt J.D., Heitmann J., Sevre K., et al. The effects of dihydropyridine and phenylalkylamine calcium antagonist classes on autonomic function in hypertension: the VAMPHYRE study. Am J Hypertens 2001; 14(11): 1083-9.
    62. Wanovich R., Kerrish P., Gerbino P.P., Shoheiber O. Compliance patterns of patients treated with 2 separate antihypertensive agents versus fixed-dose combination therapy Am J Hypertens 2004; 175: 223.
    63. Dezii C.M. A retrospective study of persistence with single-pill combination therapy vs. concurrent two-pill therapy in patients with hypertension. Manag Care. 2000; 9(9): 2-6.
    64. Gerbino P.P., Shoheiber O. Adherence patterns among patients treated with fixed-dose combination versus separate antihypertensive agents. Am J Health Syst Pharm 2007; 64(12): 1279-83.
    65. Jackson K. Persistence of fixed versus free combination with valsartan and HCTZ for patients with hypertension. Value Health Suppl 2006; 9: 363.
    66. Aepfelbacher F.C., Messerli F.H., Nunez E., Michalewicz L. Cardiovascular effects of a trandolapril/verapamil combination in patients with mild to moderate essential hypertension. Am J Cardiol 1997; 79(6): 826-8.
    67. Reynolds N.A., Wagstaff A.J., Keam S.J. Trandolapril/verapamil sustained release: a review of its use in the treatment of essential hypertension. Drugs 2005; 65(13): 1893-914.
    68. Sharma S.K., Ruggenenti P., Remuzzi G. Managing hypertension in diabetic patients - focus on trandolapril/verapamil combination. Vasc Health Risk Manag 2007; 3(4): 453-65.
    69. Bakris G., Molitch M., Hewkin A., et al. Differences in glucose tolerance between fixed-dose antihypertensive drug combinations in people with metabolic syndrome. Diabetes Care 2006; 29(12): 2592-7.
    70. Bakris G., Molitch M., Zhou Q., et al. Reversal of diuretic-associated impaired glucose tolerance and new-onset diabetes: results of the STAR-LET study. J Cardiometab Syndr 2008; 3(1): 18-25.
    71. Bailey C.J., Day C. New pharmacological approaches to obesity. Obesity Practice 2005; 1: 2-5.
    72. Yanovski S.Z., Yanovski J.A.Y. Obesity. N Engl J Med 2002; 346(8): 591-602.
    73. Day C., Bailey C.J. Sibutramine update. Br J Diabet Vasc Dis 2002; 2: 392-7.
    74. James W.P., Astrup A., Finer N., et al. Effect of sibutramine on weight maintenance after weight loss: a randomised trial. STORM Study Group. Sibutramine Trial of Obesity Reduction and Maintenance. Lancet 2000; 356: 2119-25.
    75. Torp-Pedersen C., Caterson I., Coutinho W., et al. Cardiovascular responses to weight management and sibutramine in high-risk subjects: an analysis from the SCOUT trial. Eur Heart J 2007; 28(23): 2915-23.
    76. Sharma A.M., Caterson I.D., Coutinho W., et al. Blood pressure changes associated with sibutramine and weight management - an analysis from the 6-week lead-in period of the sibutramine cardiovascular outcomes trial (SCOUT). Diabetes Obes Metab 2008. doi 10.1111/J.1463-1326.2008.00930.
    77. Nakou E., Filippatos T.D., Liberopoulos E.N., et al. Effects of sibutramine plus verapamil sustained release/trandolapril combination on blood pressure and metabolic variables in obese hypertensive patients. Expert Opin Pharmacother 2008; 9(10): 1629-39.
    78. Scholze J., Grimm E., Herrmann D., et al. Optimal treatment of obesity-related hypertension: the Hypertension-Obesity-Sibutramine (HOS) study. Circulation 2007; 115(15): 1991-8.
    79. Глезер М.Г. Результаты российского исследования ПОЛОНЕЗ (Эффективность и безоПаснОсть энаренаЛа у пациентОв с артериальНой гипЕртенЗией). Терапевтический архив 2006; 4: 44-50.

  • Ренин

    Ренин - протеолитический фермент, продуцируемый юкстагломерулярными клетками, расположенными вдоль афферентных (приносящих) артериол почечного тельца. Секрецию ренина стимулирует падение давления в приносящих артериолах клубочка, вызванное уменьшением АД и снижением концентрации Na + . Секрецию ренина также способствует снижение импульсации от барорецепторов предсердий и артерий в результате уменьшения АД. Секрецию ренина ингибирует Ангиотензин II, высокое АД.

    В крови ренин действует на ангиотензиноген.

    Ангиотензиноген - α 2 -глобулин, из 400 АК. Образование ангиотензиногена происходит в печени и стимулируется глюкокортикоидами и эстрогенами. Ренин гидролизует пептидную связь в молекуле ангиотензиногена, отщепляя от него N-концевой декапептид -ангиотензин I , не имеющий биологической активности.

    Под действием антиотензин-превращающего фермента (АПФ) (карбоксидипептидилпептидазы) эдотелиальных клеток, лёгких и плазмы крови, с С-конца ангиотензина I удаляются 2 АК и образуется ангиотензин II (октапептид).

    Ангиотензин II

    Ангиотензин II функционирует через инозитолтрифосфатную систему клеток клубочковой зоны коры надпочечников и ГМК. Ангиотензин II стимулирует синтез и секрецию альдостерона клетками клубочковой зоны коры надпочечников. Высокие концентрации ангиотензина II вызывают сильное сужение сосудов периферических артерий и повышают АД. Кроме этого, ангиотензин II стимулирует центр жажды в гипоталамусе и ингибирует секрецию ренина в почках.

    Ангиотензин II под действием аминопептидаз гидролизуется в ангиотензин III (гептапептид, с активностью ангиотензина II, но имеющий в 4 раза более низкую концентрацию), который затем гидролизуется ангиотензиназами (протеазы) до АК.

    Альдостерон

    Альдостерон - активный минералокортикостероид, синтезирующийся клетками клу-бочковой зоны коры надпочечников.

    Синтез и секрецию альдостерона стимулируют ангиотензин II , низкая концентрация Na + и высокая концентрацией К + в плазме крови, АКТГ, простагландины. Секрецию альдостерона тормозит низкая концентрация К + .

    Рецепторы альдостерона локализованы как в ядре, так и в цитозоле клетки. Альдостерон индуцирует синтез: а) белков-транспортёров Na + , переносящих Na + из просвета канальца в эпителиальную клетку почечного канальца; б) Na + ,К + -АТФ-азы в) белков-транспортёров К + , переносящих К + из клеток почечного канальца в первичную мочу; г) митохондриальных ферментов ЦТК, в частности цитратсинтазы, стимулирующих образование молекул АТФ, необходимых для активного транспорта ионов.

    В результате альдостерон стимулирует реабсорбцию Na + в почках, что вызывает задержку NaCl в организме и повышает осмотическое давление.

    Альдостерон стимулирует секрецию К + , NH 4 + в почках, потовых железах, слизистой оболочке кишечника и слюнных железах.

    3. Схема регуляции водно-солевого обмена Роль системы раас в развитии гипертонической болезни

    Гиперпродукция гормонов РААС вызывает повышение объема циркулирующей жидкости, осмотического и артериального давления, и ведет к развитию гипертонической болезни.

    Повышение ренина возникает, например, при атеросклерозе почечных артерий, который возникает у пожилых.

    Гиперсекреция альдостерона – гиперальдостеронизм , возникает в результате нескольких причин.

    Причиной первичного гиперальдостеронизма (синдром Конна ) примерно у 80% больных является аденома надпочечников, в остальных случаях - диффузная гипертрофия клеток клубочковой зоны, вырабатывающих альдостерон.

    При первичном гиперальдостеронизме избыток альдостерона усиливает реабсорбцию Na + в почечных канальцах, что служит стимулом к секреции АДГ и задержке воды почками. Кроме того, усиливается выведение ионов К + ,Mg 2+ и Н + .

    В результате развиваются: 1). гипернатриемия, вызывающая гипертонию, гиперволемию и отёки; 2). гипокалиемия, ведущая к мышечной слабости; 3). дефицит магния и 4). лёгкий метаболический алкалоз.

    Вторичный гиперальдостеронизм встречается гораздо чаще, чем первичный. Он может быть связан с сердечной недостаточностью, хроническими заболеваниями почек, а также с опухолями, секретирующие ренин. У больных наблюдают повышенный уровень ренина, ангиотензина II и альдостерона. Клинические симптомы менее выражены, чем при первичном альдостеронизе.

    КАЛЬЦИЙ, МАГНИЙ, ФОСФОРНЫЙ ОБМЕН

    Функции кальция в организме:

      Внутриклеточный посредник ряда гормонов (инозитолтрифосфатная система);

      Участвует в генерации потенциалов действия в нервах и мышцах;

      Участвует в свертывании крови;

      Запускает мышечное сокращение, фагоцитоз, секрецию гормонов, нейромедиаторов и т.д.;

      Участвует в митозе, апоптозе и некробиозе;

      Увеличивает проницаемость мембраны клеток для ионов калия, влияет на натриевую проводимость клеток, на работу ионных насосов;

      Кофермент некоторых ферментов;

    Функции магния в организме:

      Является коферментом многих ферментов (транскетолаз (ПФШ), глюкозо-6ф дегидрогеназы, 6-фосфоглюконат дегидрогеназы, глюконолактон гидролазы, аденилатциклазы и т.д.);

      Неорганический компонент костей и зубов.

    Функции фосфата в организме:

      Неорганический компонент костей и зубов (гидроксиаппатит);

      Входит в состав липидов (фосфолипиды, сфинголипиды);

      Входит в состав нуклеотидов (ДНК, РНК, АТФ, ГТФ, ФМН, НАД, НАДФ и т.д.);

      Обеспечивает энергетический обмен т.к. образует макроэргические связи (АТФ, креатинфосфат);

      Входит в состав белков (фосфопротеины);

      Входит в состав углеводов (глюкозо-6ф, фруктозо-6ф и т.д.);

      Регулирует активность ферментов (реакции фосфорилирования / дефосфорилирования ферментов, входит в состав инозитолтрифосфата – компонента инозитолтрифосфатной системы);

      Участвует в катаболизме веществ (реакция фосфоролиза);

      Регулирует КОС т.к. образует фосфатный буфер. Нейтрализует и выводит протоны с мочой.

    Распределение кальция, магния и фосфатов в организме

    У взрослого человека содержится в среднем 1000г кальция:

      Кости и зубы содержат 99% кальция. В костях 99% кальция находится в виде малорастворимого гидроксиапатита [Са 10 (РО 4) 6 (ОН) 2 Н 2 О], а 1% - в виде растворимых фосфатов;

      Внеклеточная жидкость 1%. Кальций плазмы крови представлен в виде: а). свободных ионов Са 2+ (около 50%); б). ионов Са 2+ соединённых с белками, главным образом, с альбумином (45%); в) недиссоциирующих комплексов кальция с цитратом, сульфатом, фосфатом и карбонатом (5%). В плазме крови концентрация общего кальция составляет 2, 2-2,75 ммоль/л, а ионизированного - 1,0-1,15 ммоль/л;

      Внутриклеточная жидкость содержит кальция в 10000-100000 раз меньше чем внеклеточной жидкости.

    Во взрослом организме содержится в около 1кг фосфора:

      Кости и зубы содержат 85% фосфора;

      Внеклеточная жидкость – 1% фосфора. В сыворотке крови концентрация неорганического фосфора – 0,81-1,55 ммоль/л, фосфора фосфолипидов 1,5-2г/л;

      Внутриклеточная жидкость – 14% фосфора.

    Концентрация магния в плазме крови 0,7-1,2 ммоль/л.

    Обмен кальция, магния и фосфатов в организме

    С пищей в сутки должно поступать кальция - 0,7-0,8г, магния - 0,22-0,26г, фосфора – 0,7-0,8г. Кальций всасывается плохо на 30-50%, фосфор хорошо – на 90%.

    Помимо ЖКТ, кальций, магний и фосфор поступают в плазму крови из костной ткани, в процессе ее резорбции. Обмен между плазмой крови и костной тканью по кальцию составляет 0,25-0,5г/сут, по фосфору – 0,15-0,3г/сут.

    Выводится кальций, магний и фосфор из организма через почки с мочой, через ЖКТ с калом и через кожу с потом.

    Регуляция обмена

    Основными регуляторами обмена кальция, магния и фосфора являются паратгормон, кальцитриол и кальцитонин.

    Паратгормон

    Паратгормон (ПТГ) - полипептид, из 84 АК (около 9,5 кД), синтезируется в паращитовидных железах.

    Секрецию паратгормона стимулирует низкая концентрация Са 2+ ,Mg 2+ и высокая концентрация фосфатов, ингибирует витамин Д 3 .

    Скорость распада гормона уменьшается при низкой концентрации Са 2+ и увеличивается, если концентрация Са 2+ высока.

    Паратгормон действует на кости и почки . Он стимулирует секрецию остеобластамиинсулиноподобного фактора роста 1 и цитокинов , которые повышают метаболическую активностьостеокластов . В остеокластах ускоряется образованиещелочной фосфатазы и коллагеназы , которые вызывают распад костного матрикса, в результате чего происходит мобилизация Са 2+ и фосфатов из кости во внеклеточную жидкость.

    В почках паратгормон стимулирует реабсорбцию Са 2+ ,Mg 2+ в дистальных извитых канальцах и уменьшает реабсорбцию фосфатов.

    Паратгормон индуцирует синтез кальцитриола (1,25(OH) 2 D 3).

    В результате паратгормон в плазме крови повышает концентрацию Са 2+ иMg 2+ , и снижает концентрацию фосфатов.

    Гиперпаратиреоз

    При первичном гиперпаратиреозе (1:1000) нарушается механизм подавления секреции паратгормона в ответ на гиперкальциемию. Причинами могут быть опухоль (80%), диффузная гиперплазия или рак (менее 2%) паращитовидной железы.

    Гиперпаратиреоз вызывает:

      разрушение костей , при мобилизации из них кальция и фосфатов. Увеличивается риск переломов позвоночника, бедренных костей и костей предплечья;

      гиперкальциемию , при усилении реабсорбции кальция в почках. Гиперкальциемия приводить к снижению нервно-мышечной возбудимости и мышечной гипотонии. У больных появляются общая и мышечная слабость, быстрая утомляемость и боли в отдельных группах мышц;

      образования в почках камней при увеличение концентрации фосфата и Са 2+ в почечных канальцах;

      гиперфосфатурию и гипофосфатемию , при снижении реабсорбции фосфатов в почках;

    Вторичный гиперпаратиреоз возникает при хронической почечной недостаточности и дефиците витамина D 3 .

    При почечной недостаточности угнетается образование кальцитриола, что нарушает всасывание кальция в кишечнике и приводит к гипокальциемии . Гиперпаратиреоз возникает в ответ на гипокальциемию, но паратгормон не способен нормализовать уровень кальция в плазме крови. Иногда возникает гиперфостатемия. В следствие повышения мобилизации кальция из костной ткани развивается остеопороз.

    Гипопаратиреоз

    Гипопаратиреоз обусловлен недостаточностью паращитовидных желёз и сопровождается гипокальциемией. Гипокальциемия вызывает повышение нервно-мышечной проводимости, приступы тонических судорог, судороги дыхательных мышц и диафрагмы, ларингоспазм.

    Кальцитриол

    Кальцитриол синтезируется из холестерола.

      В коже под влиянием УФ-излучения из 7-дегидрохолестерола образуется большая часть холекальциферола (витамина Д 3). Небольшое количество витамина Д 3 поступает с пищей. Холекальциферол связывается со специфическим витамин Д-связывающим белком (транскальциферином), поступает в кровь и переносится в печень.

      В печени 25-гидроксилаза гидроксилирует холекальциферол в кальцидиол (25-гидроксихолекальциферол, 25(OH)Д 3). D-связывающий белок транспортирует кальцидиол в почки.

      В почках митохондриальная 1α-гидроксилаза гидроксилирует кальцидиол в кальцитриол (1,25(OH) 2 Д 3), активную форму витамина Д 3 . Индуцирует 1α-гидроксилазу паратгормон.

    Синтез кальцитриола стимулирует паратгормон, низкая концентрация фосфатов и Са 2+ (через паратгормон) в крови.

    Синтез кальцитриола ингибирует гиперкальциемия, она активирует 24α-гидроксилазу , которая превращает кальцидиол в неактивный метаболит 24,25(OH) 2 Д 3 , при этом соответственно активный кальцитриол не образуется.

    Кальцитриол воздействует на тонкий кишечник, почки и кости.

    Кальцитриол:

      в клетках кишечника индуцирует синтез Са 2+ -переносящих белков, которые обеспечивают всасывание Са 2+ , Mg 2+ и фосфатов;

      в дистальных канальцах почек стимулирует реабсорбцию Са 2+ , Mg 2+ и фосфатов;

      при низком уровне Са 2+ увеличивает количество и активность остеокластов, что стимулирует остеолиз;

      при низком уровне паратгормона, стимулирует остеогенез.

    В результате кальцитриол повышает в плазме крови концентрацию Са 2+ , Mg 2+ и фосфатов.

    При дефиците кальцитриола нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатитов в костной ткани, что приводит к развитию рахита и остеомаляции.

    Рахит - заболевание детского возраста, связанное недостаточной минерализацией костной ткани.

    Причины рахита : недостаток витамина Д 3 , кальция и фосфора в пищевом рационе, нарушение всасывания витамина Д 3 в тонком кишечнике, снижением синтеза холекальциферола из-за дефицита солнечного света, дефект 1а-гидроксилазы, дефект рецепторов кальцитриола в клетках-мишенях. Снижение концентрации в плазме крови Са 2+ стимулирует секрецию паратгормона, который через остеолиз вызывает разрушение костной ткани.

    При рахите поражаются кости черепа; грудная клетка вместе с грудиной выступает вперёд; деформируются трубчатые кости и суставы рук и ног; увеличивается и выпячивается живот; задерживается моторное развитие. Основные способы предупреждения рахита - правильное питание и достаточная инсоляция.

    Кальцитонин

    Кальцитонин - полипептид, состоит из 32 АК с одной дисульфидной связью, секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желёз.

    Секрецию кальцитонина стимулирует высокая концентрация Са 2+ и глюкагона, подавляет низкая концентрация Са 2+ .

    Кальцитонин:

      подавляет остеолиз (снижая активность остеокластов) и ингибирует высвобождение Са 2+ из кости;

      в канальцах почек тормозит реабсорбцию Са 2+ , Mg 2+ и фосфатов;

      тормозит пищеварение в ЖКТ,

    Изменения уровня кальция, магния и фосфатов при различных патологиях

    Снижение концентрации Са 2+

      беременности;

      алиментарной дистрофии;

      рахите у детей;

      остром панкреатите;

      закупорке желчевыводящих путей, стеаторее;

      почечной недостаточности;

      вливание цитратной крови;

    Повышение концентрации Са 2+ в плазме крови наблюдается при:

      переломы костей;

      полиартриты;

      множественные миеломы;

      метастазы злокачественных опухолей в кости;

      передозировка витамина Д и Са 2+ ;

      механическая желтуха;

    Снижение концентрации фосфатов в плазме крови наблюдается при:

    1. гиперфункции паращитовидных желез;

      остеомаляции;

      почечный ацидоз

    Повышение концентрации фосфатов в плазме крови наблюдается при:

      гипофункции паращитовидных желез;

      передозировка витамина Д;

      почечной недостаточности;

      диабетическом кетоацидозе;

      миеломной болезни;

      остеолизе.

    Концентрация магния часто пропорциональна концентрации калия и зависит от общих причин.

    Повышение концентрации Mg 2+ в плазме крови наблюдается при:

      распаде тканей;

      инфекциях;

    1. диабетическом ацидозе;

      тиреотоксикозе;

      хроническом алкоголизме.

    Роль микроэлементов: Mg 2+ , Mn 2+ , Co , Cu , Fe 2+ , Fe 3+ , Ni , Mo , Se , J . Значение церулоплазмина, болезнь Коновалова-Вильсона.

    Марганец – кофактор аминоацил-тРНК синтетаз.

    Биологическая роль Na + , Cl - , K + , HCO 3 - - основных электролитов, значение в регуляции КОС. Обмен и биологическая роль. Анионная разность и ее коррекция.

    Тяжелые металлы (свинец, ртуть, медь, хром и др.), их токсическое действие.

    Повышение содержание хлоридов в сыворотке крови : обезвоживание, острая почечная недостаточность, метаболический ацидоз после диареи и потери бикарбонатов, респираторный алкалоз, травма головы, гипофункция надпочечников, при длительном приеме кортикостероидов, тиазидный диуретиков, гиперальдостеронизм, болезнь Кушенга.

    Снижение содержания хлоридов в сыворотке крови : алкалоз гипохлоремический (после рвоты), ацидоз респираторный, избыточное потоотделение, нефрит с потерей солей (нарушение реабсорбции), травма головы, состояние с увеличением объема внеклеточной жибкости, калит язвенный, болезнь Аддисона (гипоальдостеронизм).

    Повышенное выделение хлоридов с мочой : гипоальдостеронизм (болезнь Аддисона), нефрит с потерей солей, повышенный прием соли, лечение диуретиками.

    Снижение выведения хлоридов с мочой : Потеря хлоридов при рвоте, диареи, болезнь Кушинга, терминальная фаза почечной недостаточности, ретенция соли при образовании отеков.

    Выделение кальция с мочой в норме 2,5-7,5 ммоль/сут.

    Повышение содержание кальция в сыворотке крови : гиперпаратиреоз, метастазы опухолей в костную ткань, миеломная болезнь, сниженное выделение кальцитонина, передозировка витамина Д, тиреотоксикоз.

    Снижение содержания кальция в сыворотке крови : гипопаратиреоз, увеличение выделения кальцитонина, гиповитаминоз Д, нарушение реабсорбции в почках, массивная гемотрансфузия, гипоальбунемия.

    Повышенное выделение кальция с мочой : длительное воздействие солнечных лучей (гипервитаминоз Д), гиперпаратиреоз, метастазы опухолей в костную ткань, нарушение реабсорбции в почках, тиреотоксикоз, остеопороз, лечение глюкокортикоидами.

    Снижение выведения кальция с мочой : гипопаратиреоз, рахит, острый нефрит (нарушение фильтрации в почках), гипотериоз.

    Повышение содержание железа в сыворотке крови : апластическая и гемолитическая анемии, гемохроматоз, острый гепатит и стеатоз, цирроз печени, талассемия, повторные трансфузии.

    Снижение содержания железа в сыворотке крови : железодефицитная анемия, острые и хронические инфекции, опухоли, заболевания почек, кровопотеря, беременность, нарушение всасывания железа в кишечнике.

    Ренин-ангиотензин-альдостероновая система (РААС) выполняет важное гуморальное влияние на сердечно-сосудистую систему и участвует в регуляции артериального давления. Центральным звеном РААС является ангиотензин II (АТ II) (схема 1), который обладает мощным прямым вазоконстрикторным действием преимущественно на артерии и опосредованным действием на ЦНС, высвобождением катехоламинов из надпочечников и вызывает увеличение ОПСС, стимулирует секрецию альдостерона и приводит к задержке жидкости и повышению (ОЦК), стимулирует выброс катехоламинов (норадренолина) и других нейрогормонов из симпатических окончаний. Влияние АТ II на уровень АД осуществляется за счет действия на тонус сосудов, а также посредством структурной перестройки и ремоделирования сердца и сосудов. В частности, ATII является также фактором роста (или модулятором роста) для кардиомиоцитов и гладкомышечных клеток сосудов.

    Схема 1. Строение ренин-ангиотензин-альдостероновой системы

    Функции других форм ангиотензина. Ангиотензин I малозначим в системе РААС, так как быстро превращается в АТП, кроме того, его активность в 100 раз меньше активности АТП. Ангиотензин III действует подобно АТП, но его прессорная активность в 4 раза слабее АТП. Ангиотензин 1-7 образуется вследствие превращения ангиотензина I. По функциям он значительно отличается от АТП: он не вызывает прессорного действия, а наоборот, приводит к снижению АД благодаря секреции АДГ, стимуляции синтеза простагландинов, натрийуреза.

    РААС оказывает регулирующее влияние на почечную функцию. АТП вызывает мощный спазм приносящей артериолы и снижение давления в капиллярах клубочка, уменьшение фильтрации в нефроне. В результате снижения фильтрации уменьшается реабсорбция натрия в проксимальном отделе нефрона, что приводит к увеличению концентрации натрия в дистальных канальцах и активации Na-чувствительных рецепторов плотного пятна в нефроне. По меха-низму обратной связи это сопровождается торможением выделения ренина и увеличением скорости клубочковой фильтрации.

    Функционирование РААС связано с альдостероном и посредством механизма обратной связи. Альдостерон - важнейший регулятор объема внеклеточной жидкости и гомеостаза калия. Прямого действия на секрецию ренина и АТП альдостерон не оказывает, но возможно косвенное влияние через задержку натрия в организме. В регуляции секреции альдостерона участвуют АТП и электролиты, причем АТП - стимулирует, а натрий и калий - уменьшают его образование.

    Гомеостаз электролитов тесно связан с активностью РААС. Натрий и калий не только влияют на активность ренина, но и изменяют чувствительность тканей к АТП. При этом в регуляции активности ренина большая роль принадлежит натрию, а в регуляции секреции альдостерона - калий и натрий имеют одинаковые влияния.

    Физиологическая активация РААС наблюдается при потере натрия и жидкости, значительном снижении АД, сопровождающемся падением фильтрационного давления в почках, повышении активности симпатической нервной системы, а также под воздействием многих гуморальных агентов (вазопрессина, предсердного натрийуретического гормона, антидиуретического гормона).

    Целый ряд сердечно-сосудистых заболеваний может способствовать патологической стимуляции РААС, в частности, при АГ, застойной сердечной недостаточности, остром инфаркте миокарда.

    В настоящее время известно, что РАС функционирует не только в плазме (эндокринная функция), но и во многих тканях (головном мозге, сосудистой стенке, сердце, почках, надпочечниках, легких). Эти тканевые системы могут работать независимо от плазменной, на клеточном уровне (паракринная регуляция). Поэтому различают краткосрочные эффекты ATII, обусловленные свободно циркулирующей его фракцией в системном кровотоке, и отсроченные эффекты, регулируемые через тканевые РАС и влияющие на структурно-адаптационные механизмы поражения органов.

    Ключевым ферментом РААС является ангиотензин-превращающий фермент (АПФ), он обеспечивает превращение ΑTI в ATII. Основное количество АПФ присутствует в системном кровотоке, обеспечивая образование циркулирующего АТII и краткосрочные геодинамические эффекты. Превращение АТ в ATII в тканях может осуществляться не только с помощью АПФ, но и другими ферментами (химазы, эндопероксиды, катепсин G и др.); считают, что им принадлежит ведущая роль в функционировании тканевых РАС и развитии длительных эффектов моделирования функции и структуры органов-мишеней.

    АПФ идентичен ферменту кининазе II, участвующему в деградации брадикинина. Брадикинин - мощный вазодилататор, участвующий в регуляции микроциркуляции и ионном транспорте. Брадикинин имеет очень короткий период жизни и присутствует в кровотоке (тканях) в низких концентрациях; поэтому он проявлят свои эффекты как местный гормон (паракринно). Брадикинин способствует увеличению внутриклеточного Са 2 +, являющегося кофактором для NO-синтетазы, участвующей в образовании эндотелийрелаксирующего фактора (оксида азота или NO). Эндотелийрелаксирующий фактор, блокирующий сокращение мускулатуры сосудов и агрегацию тромбоцитов, является также ингибитором митоза и пролиферации гладкой мускулатуры сосудов, что обеспечивает антиатерогенное действие. Брадикинин также стимулирует синтез в эндотелии сосудов ПГЕ2 и ПГI2 (простациклина) - мощных вазодилататоров и тромбоцитарных антиагрегантов.

    Таким образом, брадикинин и вся кининовая система являются противодействующей для РААС. Блокирование АПФ потенциально повышает уровень кининов в тканях сердца и сосудистой стенки, что обеспечивает антипролиферативный, антиишемический, антиатерогенный и антиагрегантный эффекты. Кинины способствуют увеличению кровотока, диуреза и натрийуреза без существенного изменения скорости клубочковой фильтрации. ПГ Е2 и ПГI2 также обладают диуретическим и натрийуретическим действием и увеличивают почечный кровоток.

    Ренин-ангиотензин-альдостероновая система (РААС.)

    В регуляции объема и давления крови участвует юкстагломерулярный аппарат (ЮГА). Образующийся в гранулах клеток ЮГА протеолитический фермент ренин катализирует превращение ангиотензиногена (одного из белков плазмы) в декапептид ангиотензин I, который не обладает прессорной активностью. Под действием ангиотензин-превращающего фермента (АПФ) он расщепляется (главным образом в легких, почках, головном мозге) до октапептида ангиотензина II, который действует как мощный вазоконстриктор, а также стимулирует выработку альдостерона корой надпочечников. Альдостерон усиливает реабсорбцию Nа+ в канальцах почек и стимулирует выработку антидиуретического гормона. В результате чего происходит задержка Nа+ и воды, что приводит к повышению АД. Кроме того, в плазме крови имеется ангиотензин III (гептапептид, не содержащий аспарагиновой кислоты), который также активно стимулирует высвобождение альдостерона, но обладает менее выраженным прессорным действием, чем ангиотензин II. Следует отметить, что чем больше образуется ангиотензина II, тем сильнее выражена вазоконстрикция и, следовательно, тем более выражено повышение АД.

    Секреция ренина регулируется следующими механизмами, не являющимися взаимоисключающими:

    • 1) барорецепторами почечных сосудов, которые, очевидно, реагируют на изменение напряжения стенки приносящих артериол,
    • 2) рецепторами macula densa, которые, по-видимому, чувствительны к изменению скорости поступления или концентрации NaCl в дистальных канальцах,
    • 3) отрицательной обратной связью между концентрацией в крови ангиотензина и секрецией ренина
    • 4) симпатической нервной системой, стимулирующей секрецию ренина в результате активации в-адренорецепторов почечного нерва.

    Система поддержания гомеостаза натрия. Она включает в себя скорость клубочковой фильтрации (СКФ) и факторы натрийуреза (выведения ионов натрия с мочой). При снижении ОЦК, снижается и СКФ, что приводит, в свою очередь, к повышению реабсорбции натрия в проксмальном отделе нефрона. К факторам натрийуреза относится группа пептидов со схожими свойствами и общим названием - натрийуретический пептид (или атриопептид), вырабатываемых миокардом предсердий в ответ на их расширение. Эффект атриопептида заключается в уменьшении реабсорбции натрия в дистальных канальцах и вазодилятации.

    Система почечных вазодепрессорных субстанций включает: простагландины, калликреин-кининовая система, NO, фактор активации тромбоцитов, которые своим действием уравновешивают вазопрессорный эффект ангиотензина.

    Кроме того, определенную роль в манифестации АГ играют такие факторы внешней среды (рис.1 пункт 6), как гиподинамия, курение, хронические стрессы, избыточное потребление с пищей поваренной соли.

    Этиология артериальной гипертензии:

    Этиология первичной, или эссенциальной, гипертензии не известна. И вряд ли одна причина смогла бы объяснить такое разнообразие гемодинамических и патофизиологических расстройств, которые наблюдаются при данном заболевании. В настоящее время многие авторы придерживаются мозаичной теории развития АГ, согласно которой поддержание высокого АД обусловлено участием многих факторов, даже если первоначально доминировал какой-либо один из них (например, взаимодействие симпатической нервной системы и ренин-ангиотензин-альдостероновой системы).

    Не вызывает сомнения, что существует генетическая предрасположенность к гипертензии, однако точный механизм ее до сих пор не ясен. Возможно, что факторы внешней среды (такие как количество натрия в пище, характер питания и образ жизни, способствующие ожирению, хронический стресс) оказывают свое действие только на генетически предрасположенных лиц.

    Основные причины развития эссенциальной гипертензии (или гипертонической болезни) на долю которой приходится 85-90% случаев всех АГ следующие:

    • - активация ренин-ангиотензин-альдостероновой системы при изменениях в генах, кодирующих ангиотензиноген или другие белки РААС,
    • - активация симпатической нервной системы, что приводит к повышению АД преимущественно путем вазоконстрикции,
    • - нарушение транспорта Na+ через клеточные мембраны гладкомышечных клеток кровеносных сосудов (в результате торможения Na+-K+-насоса или повышения проницаемости мембран для Na+ с повышением содержания внутриклеточного Са2+),
    • - дефицит вазодилятаторов (таких, как NO, компоненты калликреин-кининовой системы, простагландины, предсердный натрийуретический фактор и др.).

    Среди основных причин симптоматических гипертензий можно выделить:

    • - первичное двустороннее поражение почек (которое может сопровождаться АГ вследствие как повышения секреции ренина и активации РААС с задержкой натрия и жидкости, так и снижения секреции вазодилятаторов) при таких заболеваниях, как острый и хронический гломерулонефрит, хронический пиелонефрит, поликистоз почек, амилоидоз, опухоли почек, обструктивная уропатия, коллагенозы и др.
    • - эндокринные (потенциально излечимые) заболевания, такие как первичный и вторичный гиперальдостеронизм, болезнь и синдром Иценко-Кушинга, диффузный тиреотоксический зоб (Базедова болезнь или болезнь Грейвса), феохромоцитома, ренин-продуцирующие опухоли почек.
    • - нейрогенные заболевания, в том числе сопровождающимися повышением внутричерепного давления (травма, опухоль, абсцесс, кровоизлияния), поражением гипоталамуса и ствола мозга, связанные с психогенными факторами.
    • - сосудистые заболевания (васкулиты, коарктация аорты и другие аномалии сосудов), полицитемия, увеличение ОЦК ятрогенного характера (при избыточном переливании препаратов крови и растворов).

    Морфология артериальной гипертензии:

    Доброкачественная форма АГ:

    На ранних стадиях АГ не удается обнаружить никаких структурных изменений. В конечном же итоге развивается генерализованный артериолярный склероз.

    Учитывая длительное течение болезни, выделяют три стадии, имеющие определенные морфологические различия и согласующиеся со стадиями, предложенными экспертами ВОЗ (указанными в скобках):

    • 1) доклиническая (легкое течение),
    • 2) распространенных изменений артерий (средней тяжести),
    • 3) изменений органов в связи изменением артерий и нарушением органного кровотока (тяжелое течение) доклиническая стадия.

    Клинически проявляется транзиторной гипертензией (эпизодами повышения АД). На ранней, лабильной, стадии болезни СВ увеличен, ОПСС некоторое время остается в пределах нормы, но неадекватно для данного уровня СВ. Затем, вероятно в результате процессов ауторегуляции, ОПСС начинает увеличиваться, а СВ возвращается к нормальному уровню.

    В артериолах и мелких артериях выявляется гипертрофия мышечного слоя и эластических структур > постепенное ^ толщины стенки сосуда с уменьшением его просвета, что клинически проявляется в ^ ОПСС. Спустя некоторое время на фоне катехолемии, ^ гематокрита, гипоксии (элементов стенки артерий и артериол) повышается сосудистая проницаемость, что приводит к плазматическому пропитыванию стенки сосудов > уменьшению ее эластичности и еще большему ^ ОПСС. Морфологические изменения на данной стадии полностью обратимы и при своевременном начале антигипертензивной терапии возможно предотвратить развитие поражений органов-мишеней.

    В сердце, вследствие транзиторного ^ постнагрузки, возникает умеренная компенсаторная гипертрофия левого желудочка при которой размеры сердца и толщина стенки левого желудочка ^, а размер полости левого желудочка не изменяется либо может несколько уменьшаться - концентрическая гипертрофия (характеризует стадию компенсации сердечной деятельности).

    Стадия распространенных изменений артерий. Клинически проявляется стойким повышением АД.

    В артериолах и мелких артериях мышечного типа выявляется распространенный гиалиноз, развившийся в исходе плазматического пропитывания (простой тип сосудистого гиалина), или артериолосклероз средней оболочки и интимы артериол в ответ на выход плазмы и белков. Артериологиалиноз отмечается в почках, головном мозге, сетчатке глаза, поджелудочной железе, кишечнике, капсуле надпочечников. Макроскопически гиалинизированные сосуды выглядят в виде стекловидных трубочек с толстыми стенками и точечным просветом, плотной консистенции. Микроскопически в стенке артериол выявляются гомогенные эозинофильные массы, слои стенки могут быть практически не различимы.

    В артериях эластического, мышечно-эластического и мышечного типов развиваются: - эластофиброз - гиперплазия и расщепление внутренней эластической мембраны, склероз - атеросклероз, имеющий ряд особенностей:

    • а) носит более распространенный характер, захватывает артерии мышечного типа,
    • б) фиброзные бляшки имеют циркулярный характер (а не сегментарный), что приводит к более значительному сужению просвета сосуда.

    В сердце нарастает степень гипертрофии миокарда, масса сердца может достигать 900-1000 г, а толщина стенки левого желудочка - 2-3 см (cor bovinum). Однако, в связи с относительной недостаточностью кровоснабжения (увеличение размеров кардиомиоцитов, гиалиноз артериол и артерий) и нарастающей гипоксией развивается жировая дистрофия миокарда и миогенное расширение полостей - эксцентрическая гипертрофия миокарда, диффузный мелкоочаговый кардиосклероз, появляются признаки сердечной декомпенсации.

    3) Стадия изменений органов в связи изменением артерий и нарушением органного кровотока.

    Вторичные изменения органов при неосложенном артериологиалинозе и атеросклерозе могут развиваться медленно, что приводит к атрофии паренхимы и склерозу стромы.

    При присоединении тромбоза, спазма, фибриноидного некроза во время криза возникают острые нарушения кровообращения - кровоизлияния, инфаркты.

    Изменения в головном мозге:

    Множественные мелкоочаговые кровоизлияния (hemorragia per diapedesin).

    Гематомы - кровоизлияния с разрушением ткани мозга (hemorragia per rhexin микроанавризм, которые возникают чаще на фоне гиалиноза с фибриноидным некрозом стенки мелких перфорирующих артерий головного мозга преимущественно подкорковых ядер и субкортикального слоя). В исходе кровоизлияний в ткани головного мозга формируются ржавые кисты (окраска обусловлена гемосидерином).

    В почках развивается артериолосклеротический нефросклероз или первичное сморщивание почек, в основе которого лежит артериологиалиноз >запустевание со склерозом и гиалинозом капилляров клубочков > склероз стромы вследствие длительной гипоксии > атрофия эпителия канальцев почек.

    Макроскопическая картина: почки значительно уменьшены в размерах (вид местной атрофии от недостатка кровоснабжения), поверхность мелкозернистая, плотные, на разрезе отмечается истончение коркового и мозгового слоев, разрастание жировой клетчатки вокруг лоханки. Участки западения на поверхности почек соответствуют атрофированным нефронам, а очаги выбухания - функционирующим нефронам в состоянии компенсаторной гипертрофии.

    Микроскопическая картина: стенки артериол значительно утолщены за счет накопления в интиме и средней оболочке гомогенных слабооксифильных бесструктурных масс гиалина (в некоторых случаях структурные компоненты стенки артериол, за исключением эндотелия, не дифференцируются), просвет сужен (вплоть до полной облитерации). Клубочки коллабированы (спавшиеся), многие замещены соединительной тканью или массами гиалина (в виде слабооксифильных гомогенных «медальончиков»). Канальцы атрофированы. Количество интерстициальной ткани увеличено. Сохранившиеся нефроны компенсаторно гипертрофированы.

    Артериолосклеротический нефросклероз может закончиться развитием хронической почечной недостаточности.

    Злокачественная форма АГ:

    В настоящее время встречается редко.

    Возникает первично или осложняет доброкачественную гипертензию (гипертонический криз).

    Клинически: уровень Рдиаст.? 110-120 мм рт. ст., зрительные расстройства (из-за двустороннего отека диска зрительного нерва), резкие головные боли и гематурия (реже - анурия).

    Уровень ренина и ангиотензина II в сыворотке крови высокий, значительный вторичный гиперальдстеронизм (сопровождающийся гипокалиемией).

    Возникает чаще у мужчин среднего возраста (35-50 лет, редко до 30-ти лет).

    Быстро прогрессирует, без лечения приводит к развитию хронической почечной недостаточности (ХПН) и летальному исходу в течение 1-2 лет.

    Морфологическая картина:

    Вслед за короткой стадией плазматического пропитывания следует фибриноидный некроз стенки артериол >повреждение эндотелия > присоединение тромбоза > органные изменения: ишемическая дистрофия и инфаркты, кровоизлияния.

    Со стороны сетчатки: двусторонний отек диска зрительного нерва, сопровождающийся белковым выпотом и кровоизлияниями в сетчатку

    В почках: злокачественный нефросклероз (Фара), для которого характерны фибриноидный некроз стенок артериол и капиллярных петель клубочков, отек интерстиция, геморрагии > клеточная реакция и склероз в артериолах, клубочках и строме, белковая дистрофия эпителия канальцев почек.

    Макроскопическая картина: вид почек зависит от длительности предсуществующей фазы доброкачественной АГ. В связи с этим, поверхность может быть гладкой или гранулированной. Весьма характерны петехиальные кровоизлияния, которые придают почке пестрый вид. Прогрессирование дистрофических и некротических процессов быстро приводит к развитию ХПН и смерти.

    В головном мозге: фибриноидный некроз стенок артериол с присоединением тромбоза и развитием ишемических и геморрагических инфарктов, кровоизлияний, отек.

    Гипертонический криз - резкое повышение АД, связанное со спазмом артериол - может возникать в любой стадии гипертензии.

    Морфологические изменения при гипертоническом кризе:

    Спазм артериол: гофрированность и деструкция базальной мембраны эндотелия с расположением его в виде частокола.

    Плазматическое пропитывание.

    Фибриноидный некроз стенок артериол.

    Диапедезные кровоизлияния.

    Клинико-морфологические формы АГ:

    В зависимости от преобладания сосудистых, дистрофических, некротических, геморрагических и склеротических процессов в том или ином органе, выделяют следующие формы:

    Сердечная форма - составляет сущность ишемической болезни сердца (как и сердечная форма атеросклероза)

    Мозговая форма - лежит в основе большинства цереброваскулярных заболеваний (как и атеросклероз сосудов головного мозга)

    Почечная форма характеризуется как острыми (артериолонекроз - морфологическое проявление злокачественной гипертензии), так и хроническими изменениями (артериолосклеротический нефросклероз).

    Рис. 1

    Список сокращений к лекции «Гипертоническая болезнь»

    АГ - артериальная гипертензия.

    АД - артериальное давление.

    ОЦК - объем циркулирующей крови.

    СВ - сердечный выброс.

    ОПСС - общее периферическое сопротивление сосудов.

    УО - ударный объем.

    ЧСС - частота сердечных сокращений.

    СНС - симпатическая нервная система.

    ПСНС - парасимпатическая нервная система.

    РААС - ренин-ангиотензин-альдостероновая система.

    ЮГА - юкстагломерулярный аппарат.

    АПФ - ангиотензин-превращающий фермент.

    СКФ - скорость клубочковой фильтрации.

    ВОЗ - всемирная организация здравоохранения.

    ХПН - хроническая почечная недостаточность.