Неполные уравнения плоскости. Уравнение плоскости по одной точке и двум векторам, коллинеарным плоскости

Общее уравнение прямой называется полным , если все его коэффициенты не равны 0. в противном случае уравнение называется неполным .

    D=0 Ax+Ву+Сz=0 – плоскость, проходящая через начало координат.

Остальные случаи определяются положением нормального вектора n={ А;В;С}.

    А=0 Ву+Сz+D=0 – уравнениеплоскости, параллельной оси Ох. (Т.к. нормальный вектор n={ 0;В;С} перпендикулярен оси Ох).

    В=0 Ах+ Сz+D=0 - уравнениеплоскости, параллельной оси Оу. (Т.к. нормальный вектор n={ А;0;С} перпендикулярен оси Оy).

    С=0 Ах+Ву +D=0 - уравнениеплоскости, параллельной оси О z . (Т.к. нормальный вектор n={ А;B;0} перпендикулярен оси Оz).

    А=В=0 Сz+D=0 – z=-D/C уравнение плоскости, параллельной плоскости Оху (т.к. эта плоскость параллельна осям Ох и Оу).

    А=С=0 Ву+D=0 - у=-D/В- уравнение плоскости, параллельной плоскости Охz (т.к. эта плоскость параллельна осям Ох и Оz).

    В=С=0 Ах+D=0 – x=-D/A- уравнение плоскости, параллельной плоскости Оуz (т.к. эта плоскость параллельна осям Оу и Оz).

    A=D=0 By+Cz=0 - уравнение плоскости, проходящей через ось Ох.

    B=D=0 Ax+Cz=0 - уравнение плоскости, проходящей через ось Оy.

    A=B=D=0 Cz=0 (z=0) – координатная плоскость Оху. (т.к. эта плоскость параллельна Оху и проходит через начало координат).

    А=С=D=0 By=0 (y=0) – координатная плоскость Охz. (т.к. эта плоскость параллельна Охz и проходит через начало координат).

    B=C=D=0 Ax=0 (x=0) – координатная плоскость Оуz. (т.к. эта плоскость параллельна Оуz и проходит через начало координат).

Уравнение плоскости, проходящей через три заданные точки.

Выведем уравнение плоскости, проходящей через 3 различные точки М 1 (х 1 ;у 1 ;z 1), М 2 (х 2 ;у 2 ;z 2), М 3 (х 3 ;у 3 ;z 3), не лежащие на одной прямой. Тогда векторы М 1 М 2 =(х 2 -х 1 ;у 2 -у 1 ;z 2 -z 1) и М 1 М 3 =(х 3 -х 1 ;у 3 -у 1 ;z 3 -z 1) не коллинеарны. Поэтому точка М(х,у,z) лежит в одной плоскости с точками М 1 , М 2 и М 3 тогда и только тогда, когда векторы М 1 М 2 , М 1 М 3 и М 1 М =(х-х 1 ;у-у 1 ;z-z 1) - компланарны, т.е. , когда их смешанное произведение равно 0

(М 1 М· М 1 М 2 · М 1 М 3 =0) , т.е.

(4) Уравнение плоскости, проходящей через 3 заданные точки.

(Разложив определитель по 1-й строке и упростив получим общее уравнение плоскости: Ах+Ву+Сz+D=0).

Т.о. три точки однозначно определяют плоскость.

Уравнение плоскости в отрезках на осях.

Плоскость Π пересекает оси координат в точках М 1 (а;0;0), М 2 (0;b;0), M 3 (0;0;c).

М(х;у;z)- переменная точка плоскости.

М 1 М =(х-а;у;z)

М 1 М 2 =(0-а;b;0) определяют данную плоскость

М 1 М 3 =(-a;0;c)

Т.е. М 1 М· М 1 М 2 · М 1 М 3 =0

Разложим по 1-й строке: (х-а)bc-y(-ac)+zab=xbc-abc+yac+zab=0

Разделим равенство на abc≠0. Получим:

(5) уравнение плоскости в отрезках на осях.

Уравнение (5) можно получить из общего уравнения плоскости, предполагая, что D≠0, разделим на D

Обозначив –D/A=a, -D/B=b, -C/D=c – получим уравнение 4.

Угол между двумя плоскостями. Условия параллельности и перпендикулярности плоскостей.

Угол φ между двумя плоскостями α 1 и α 2 измеряется плоским углом между 2 лучами, перпендикулярными прямой, по которой эти плоскости пересекаются. Любые две пересекающиеся плоскости образуют два угла, в сумме равных . Достаточно определить один из этих углов.

Пусть плоскости заданы общими уравнениями:

1 : A 1 x+B 1 y+C 1 z+D 1 =0

2 : A 2 x + B 2 y + C 2 z + D 2 =0


Все уравнения плоскости, которые разобраны в следующих пунктах могут быть получены из общего уравнения плоскости, а также приведены к общему уравнению плоскости. Таким образом, когда говорят об уравнении плоскости, то имеют в виду общее уравнение плоскости, если не оговорено иное.

Уравнение плоскости в отрезках.

Уравнение плоскости вида , где a , b и c – отличные от нуля действительные числа, называется уравнением плоскости в отрезках .

Такое название не случайно. Абсолютные величины чисел a , b и c равны длинам отрезков, которые отсекает плоскость на координатных осях Ox , Oy и Oz соответственно, считая от начала координат. Знак чисел a , b и c показывает, в каком направлении (положительном или отрицательном) следует откладывать отрезки на координатных осях.

Для примера построим в прямоугольной системе координат Oxyz плоскость, определенную уравнением плоскости в отрезках . Для этого отмечаем точку, удаленную на 5 единиц от начала координат в отрицательном направлении оси абсцисс, на 4 единицы в отрицательном направлении оси ординат и на 4 единицы в положительном направлении оси аппликат. Осталось соединить эти точки прямыми линиями. Плоскость полученного треугольника и есть плоскость, соответствующая уравнению плоскости в отрезках вида .

Для получения более полной информации обращайтесь к статье уравнение плоскости в отрезках , там показано приведение уравнения плоскости в отрезках к общему уравнению плоскости, там же Вы также найдете подробные решения характерных примеров и задач.

Нормальное уравнение плоскости.

Общее уравнение плоскости вида называют нормальным уравнением плоскости , если равна единице, то есть, , и .

Часто можно видеть, что нормальное уравнение плоскости записывают в виде . Здесь - направляющие косинусы нормального вектора данной плоскости единичной длины, то есть , а p – неотрицательное число, равное расстоянию от начала координат до плоскости.

Нормальное уравнение плоскости в прямоугольной системе координат Oxyz определяет плоскость, которая удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости . Если p=0 , то плоскость проходит через начало координат.

Приведем пример нормального уравнения плоскости.

Пусть плоскость задана в прямоугольной системе координат Oxyz общим уравнение плоскости вида . Это общее уравнение плоскости является нормальным уравнением плоскости. Действительно, и нормальный вектор этой плоскости имеет длину равную единице, так как .

Уравнение плоскости в нормальном виде позволяет находить расстояние от точки до плоскости .

Рекомендуем более детально разобраться с данным видом уравнения плоскости, посмотреть подробные решения характерных примеров и задач, а также научиться приводить общее уравнение плоскости к нормальному виду. Это Вы можете сделать, обратившись к статье .

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

В декартовых координатах каждая плоскость определяется уравнением первой степени относительно неизвестных х, у и z и каждое уравнение первой степени с тремя неизвестными определяет плоскость.

Возьмем произвольный вектор с началом в точке . Выведем уравнение геометрического места точек М(x,y,z), для каждой из которых вектор перпендикулярен вектору . Запишем условие перпендикулярности векторов:

Полученное уравнение линейное относительно x, y, z, следовательно, оно определяет плоскость, проходящую через точку перпендикулярно вектору . Вектор называют нормальным вектором плоскости. Раскрывая скобки в полученном уравнении плоскости и обозначая число
буквой D, представим его в виде:

Ax + By + Cz + D = 0. (13.2)

Это уравнение называют общим уравнением плоскости . А, В, С и D – коэффициенты уравнения, А 2 + В 2 + С 2 0.

1. Неполные уравнения плоскости.

Если в общем уравнении плоскости один, два или три коэффициента равны нулю, то уравнение плоскости называют неполным. Могут представиться следующие случаи:

1) D = 0 – плоскость проходит через начало координат;

2) А = 0 – плоскость параллельна оси Ох;

3) В = 0 – плоскость параллельна оси Оу;

4) С = 0 – плоскость параллельна оси Оz;

5) А = В = 0 – плоскость параллельна плоскости ХОY;

6) А = С = 0 – плоскость параллельна плоскости ХОZ;

7) В = С = 0 – плоскость параллельна плоскости YOZ;

8) А = D = 0 – плоскость проходит через ось Ох;

9) В = D = 0 – плоскость проходит через ось Оу;

10) С = D = 0 – плоскость проходит через ось Оz;

11) А = В = D = 0 – плоскость совпадает с плоскостью XOY;

12) А = С = D = 0 – плоскость совпадает с плоскостью XOZ;

13) С = В = D = 0 – плоскость совпадает с плоскостью YOZ.

2. Уравнение плоскости в отрезках.

Если в общем уравнении плоскости D 0, то его можно преобразовать к виду

, (13.3)

которое называют уравнением плоскости в отрезках. - определяют длины отрезков, отсекаемых плоскостью на координатных осях.

3. Нормальное уравнение плоскости.

Уравнение

где - направляющие косинусы нормального вектора плоскости , называют нормальным уравнением плоскости. Для приведения общего уравнение плоскости к нормальному виду его надо умножить на нормирующий множитель :
,

при этом знак перед корнем выбирают из условия .

Расстояние d от точки до плоскости определяют по формуле: .

4. Уравнение плоскости, проходящей через три точки

Возьмем произвольную точку плоскости М(x,y,z) и соединим точку М 1 с каждой из трех оставшихся. Получим три вектора . Для того, чтобы три вектора принадлежали одной плоскости, необходимо и достаточно, чтобы они были компланарны. Условием компланарности трех векторов служит равенство нулю их смешанного произведения, то есть .


Записывая это равенство через координаты точек, получим искомое уравнение:

. (13.5)

5. Угол между плоскостями.

Плоскости могут быть параллельны, совпадать или пересекаться, образуя двугранный угол . Пусть две плоскости заданы общими уравнениями и . Чтобы плоскости совпадали, нужно, чтобы координаты любой точки, удовлетворяющей первому уравнению, удовлетворяли бы и второму уравнению.

Это будет иметь место, если
.

Если , то плоскости параллельны.

Угол , образованный двумя пересекающимися плоскостями, равен углу, образованному их нормальными векторами. Косинус угла между векторами определяется по формуле:

Если , то плоскости перпендикулярны.

Пример 21 . Составить уравнение плоскости, которая проходит через две точки и перпендикулярно к плоскости .

Запишем искомое уравнение в общем виде: . Так как плоскость должна проходить через точки и , то координаты точек должны удовлетворять уравнению плоскости. Подставляя координаты точек и , получаем: и .

Из условия перпендикулярности плоскостей имеем: . Вектор расположен в искомой плоскости и, следовательно, перпендикулярен нормальному вектору: .

Уравнение поверхности в пространстве

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

Общее уравнение плоскости

Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:

Ax + By + Cz + D = 0,

где А, В, С - координаты вектора

вектор нормали к плоскости. Возможны следующие частные случаи:

А = 0 - плоскость параллельна оси Ох

В = 0 - плоскость параллельна оси Оу

С = 0 - плоскость параллельна оси Оz

D = 0 - плоскость проходит через начало координат

А = В = 0 - плоскость параллельна плоскости хОу

А = С = 0 - плоскость параллельна плоскости хОz

В = С = 0 - плоскость параллельна плоскости yOz

А = D = 0 - плоскость проходит через ось Ох

В = D = 0 - плоскость проходит через ось Оу

С = D = 0 - плоскость проходит через ось Oz

А = В = D = 0 - плоскость совпадает с плоскостью хОу

А = С = D = 0 - плоскость совпадает с плоскостью xOz

В = С = D = 0 - плоскость совпадает с плоскостью yOz

Уравнение плоскости, проходящей через три точки

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой. Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат. Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы были компланарны.

Таким образом,

Уравнение плоскости, проходящей через три точки:

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости

Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор.

Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную точку М(х, у, z) параллельно вектору.

Векторы и вектор должны быть компланарны, т.е.

Уравнение плоскости:

Уравнение плоскости по одной точке и двум векторам, коллинеарным плоскости

Пусть заданы два вектора и, коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы должны быть компланарны. Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали

Теорема. Если в пространстве задана точка М0(х0, у0, z0), то уравнение плоскости, проходящей через точку М0 перпендикулярно вектору нормали (A, B, C) имеет вид:

A(x - x0) + B(y - y0) + C(z - z0) = 0.

Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор. Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору. Тогда скалярное произведение

Таким образом, получаем уравнение плоскости

Теорема доказана.