Возникновение планет солнечной системы. Формирование и эволюция солнечной системы

ПРОИСХОЖДЕНИЕ СОЛНЕЧНОЙ СИСТЕМЫ

(планетная космогония). Происхождение и эволюция Солнца рассматриваются теориями звездообразования и эволюции звёзд, а при изучении П. С. с. осн. внимание уделяется проблеме образования планет, и прежде всего Земли. Звёзды с планетными системами могут составлять промежуточный класс между одиночными и двойными звёздами. Не исключено, что строение планетных систем и способы их формирования могут быть весьма различными. Строение Солнечной системы (СС) обладает рядом закономерностей, указывающих на совм. образование всех планет и Солнца в едином процессе. Такими закономерностями являются: всех планет в одном направлении по эллиптич. орбитам, лежащим почти в одной плоскости; вращение Солнца в том же направлении вокруг оси, близкой к перпендикуляру к центр. плоскости планетной системы; осевое вращение в том же направлении большинства планет (за исключением Венеры, к-рая очень медленно вращается в обратном направлении, и Урана, к-рый вращается как бы лёжа на боку); обращение в том же направлении большинства спутников планет; закономерное возрастание расстояний планет от Солнца; деление планет на родств. группы, отличающиеся по массе, хим. составу и кол-ву спутников ( близких к Солнцу планет земного типа и далёкие от Солнца планеты-гиганты, также подразделяющиеся на 2 группы); наличие пояса малых планет между орбитами Марса и Юпитера.

Краткая история. Начало развитию планетной космогонии положено гипотезой Канта-Лапласа. И. Кант (I. Kant, 1755) выдвинул идею о формировании планет из разреженного пылевого вещества, обращавшегося вокруг Солнца. Согласно П. С. Лапласу (P. S. Laplace, 1796), материалом для образования планет послужила часть газового вещества, отделившаяся от сжимающегося протосолнца. Наряду с гипотезой Канта-Лапласа предлагались гипотезы, основанные на идее "катастрофич. события". В 1920-30-х гг. известностью пользовалась гипотеза Дж. X. Джинса (J. Н. Jeans), считавшего, что планеты образовались из вещества, вырванного из Солнца притяжением пролетевшей поблизости звезды. Однако уже в кон. 30-х гг. выяснилось, что гипотеза Джинса не способна объяснить размеры планетной системы. Ряд важных исследований по проблеме образования околосолнечной и формирования в ней планет был проведён в 30-40-х гг. X. Альфвен (Н. Alfven) и Ф. Хойл (F. Hoyle) привлекли внимание к магнитогидродинамич. эффектам, играющим важную роль на ранних стадиях формирования звезды и её окружения. X. Берлаге (Н. Berlage) и К. Вайцзеккер (С. Weizsacker) построили первые газодинамич. модели первичного околосолнечного диска. Начало планомерной разработке теории П. С. с. положено работами О. Ю. Шмидта. В трудах отечеств. школы планетной космогонии выяснены осн. черты эволюции протопла-нетного диска и процессов, сопровождающих формирование планет. К 80-м гг. получен обширный материал наблюдательных данных по современному звездообразованию. Благодаря полётам космич. аппаратов неизмеримо возрос объём информации о строении, составе и свойствах тел СС. Лаб. изучение внеземного вещества и использование при моделировании астрофиз. событий позволили перейти к построению достаточно детальных количеств моделей П. С. с.

Образование Солнца и допланетного диска. Звёзды солнечного типа образуются в газопылевых комплексах с массой М ( М - масса Солнца). Пример такого комплекса - известная туманность Ориона, в к-рой идёт активное . По-видимому, и Солнце образовалось вместе с группой звёзд в ходе перемежающихся процессов сжатия и фрагментации подобной туманности.


Эволюция допланетного диска: а - опускание пыли к центральной плоскости; б - формирование пылевого субдиска; в - распад пылевого субдиска на пылевые сгущения; г - формирование из пылевых сгущений компактных тел (по Б. Ю. Левину, 1964).

Эволюция допланетного диска: динамические аспекты. При моделировании отд. стадий эволюции диска (рис.) и образования планет большое внимание уделяется нач. стадии - опусканию пылинок к центр. плоскости диска и их слипанию в турбулентном газе. Время опускания пыли и образования пылевого субдиска зависит от интенсивности турбулентных движений в газовой составляющей диска и оценивается в - лет. При достижении в пылевом слое критич. плотности в результате гравитационной неустойчивости пылевой субдиск должен был бы распасться на пылевых сгущений. На разных расстояниях от Солнца времена образования пылевых сгущений и их массы могли несколько отличаться, но, по оценкам, в ср. их массы были близки к массам крупнейших совр. астероидов. Столкновения сгущений вызывали объединение (и ) большинства из них и образование компактных тел - плаветезималей. Этот процесс, с космогонич. точки зрения, был также весьма быстрым (лет).

Следующий этап - аккумуляция планет из роя пла-нетезималей и их обломков - занял гораздо больше времени ( лет). Численное позволяет определять одновременно масс и скоростей допланетных тел. Сначала тела двигались по круговым орбитам в плоскости породившего их пылевого слоя. Они росли, сливаясь друг с другом и вычерпывая окружающее рассеянное (остатки "первичной" пыли и обломки, образовавшиеся в процессе столкновений планетезималей). Гравитац. тел, усиливавшееся по мере их роста, постепенно изменяло их орбиты, увеличивая ср. эксцентриситет и ср. наклон к центр. плоскости диска. Наиб. массивные тела оказались зародышами будущих планет. При объединении в планеты многих тел произошло усреднение их индивидуальных характеристик движения, и поэтому орбиты планет получились почти круговыми и компланарными. Оценённые аналитически и получаемые в численных расчётах относит. расстояния между планетами, их массы и общее число, периоды собств. вращения, наклоны осей, эксцентриситеты и наклоны орбит удовлетворительно согласуются с наблюдениями.

Процесс образования планет-гигантов был более сложным, многие его детали ещё предстоит выяснить. Их образование осложнялось длительным присутствием газовой и эфф. выбросом вещества во внеш. зоны и даже за пределы СС. Согласно моделям, образование Юпитера и Сатурна протекало в два этапа. На первом этапе, длившемся десятки млн. лет в области Юпитера и около ста млн. лет в области Сатурна, происходила аккумуляция твёрдых тел, подобная той, что была в зоне планет земной группы. Когда крупнейшие тела достигали нек-рой критич. массы (5 Мз, Мз - масса Земли), начинался 2-й этап эволюции - газа на эти тела, длившийся лет. Из зоны планет земной группы рассеивался за лет, в зоне Юпитера и Сатурна он оставался неск. дольше. Образование твёрдых ядер Урана и Нептуна, находящихся на больших расстояниях, заняло сотни млн. лет. К этому времени газ из их окрестностей был уже практически потерян. Темп-ры в этой внеш. части СС не превышали 100 К, в результате, помимо силикатной компоненты, в состав этих планет и их спутников вошло много конденсатов воды, метана и аммиака.

Малые тела СС - астероиды и кометы - представляют собой остатки роя промежуточных тел. Крупнейшие из совр. астероидов (поперечником 100 км) образовались ещё в эпоху формирования планетной системы, а средние и мелкие - в большинстве своём обломки крупных астероидов, раздробившихся при столкновениях. Благодаря столкновениям астероидных тел непрерывно пополняется запас пылевого вещества в межпланетном пространстве. Др. источник мелких твёрдых частиц - и распад кометных ядер при пролёте их вблизи Солнца. Ядра комет, по-видимому, представляют собой остатки каменисто-ледяных тел зоны планет-гигантов. Массы планет-гигантов ещё до завершения их роста стали столь большими, что своим притяжением начали сильно изменять орбиты пролетавших мимо них малых тел. В результате нек-рые из этих тел приобрели очень вытянутые орбиты, уходящие далеко за пределы планетной системы. На тела, удалявшиеся дальше 20-30 тыс. а. е. от Солнца, заметное грави-тац. воздействие оказали ближайшие звёзды. В большинстве случаев воздействие звёзд приводило к тому, что малые тела переставали заходить в область планетных орбит. Планетная система оказалась окружённой роем каменисто-ледяных тел, простирающимся до расстояний а. е. и являющимся источником ныне наблюдаемых комет (облако Оорта).

Происхождение системы регулярных спутников планет, движущихся в направлении вращения планеты по почти круговым орбитам, лежащим в плоскости её экватора, обычно объясняется процессами, аналогичными тем, к-рые привели к образованию планет. Согласно моделям, в ходе формирования планеты в результате неупругих столкновений планетезималей часть из них могла быть захвачена на околопланетную орбиту, образовав околопланетный доспутниковый диск. Оценки показывают, что характерные времена аккумуляции и разрушения небольших спутников при дроблении много меньше характерного времени образования самой планеты. Вещество в доспутниковых дисках неоднократно обновлялось, прежде чем смогла образоваться относительно устойчивая спутниковая система. Согласно модельным расчётам, массы доспутниковых дисков - от массы планеты, что достаточно для формирования спутниковых систем планет-гигантов. В системе регулярных спутников Юпитера имеется деление на две группы: силикатную и водно-силикатную. Различия в хим. составе спутников показывают, что молодой Юпитер был горячим. Нагрев мог быть обеспечен выделением гравитац. энергии при аккреции газа. В системе спутников Сатурна, состоящих в осн. из льда, нет деления на две группы, что связывают с более низкой темп-рой в окрестностях Сатурна, при к-рой могла конденсироваться вода. Происхождение иррегулярных спутников Юпитера, Сатурна и Нептуна, т. е. спутников, обладающих обратным движением, а также небольшого внеш. спутника Нептуна, обладающего прямым движением по вытянутой орбите, объясняют захватом. У медленно вращающихся планет (Меркурия и Венеры) спутников нет. Они, по-видимому, испытали приливное торможение со стороны планеты и упали в конце концов на её . Действие приливного торможения проявилось также в системах Земля - Луна и Плутон - Харон, где спутники, образуя с планетой двойную систему, всегда повёрнуты к планете одним и тем же полушарием.

Происхождение Луны чаще всего связывают с образованием её на околоземной орбите, однако продолжают обсуждаться и маловероятные гипотезы захвата Землёй готовой Луны, отделения Луны от Земли. Разрабатывается и компромиссная гипотеза, связывающая появление массивного околоземного доспутникового диска с гигантским выбросом вещества, вызванным столкновением протоземли с крупным телом (с размерами порядка Меркурия или даже Марса). Согласно расчётам, из массивного спутникового роя могла образоваться система из неск. крупных спутников, орбиты к-рых с разной скоростью эволюционировали под действием приливного трения, и, в конечном счёте, спутники объединились в одно тело - Луну.

Космохимические аспекты (эволюция состава). В основе физ.-хим. исследований ранних стадий эволюции СС лежат данные по составу межзвёздной и межпланетной пыли, планет и их атмосфер, астероидов и комет. Особое место принадлежит лаб. исследованиям метеоритов - образцов астероидного вещества. Вещество, вошедшее в тела СС, проходило неоднократную физ.-хим. переработку и во многом утратило память о ранних стадиях эволюции. Однако отд. тела СС содержат вещество, хранящее ту или иную информацию в виде реликтовых минеральных фракций, включений и т. п. Образцы такого вещества используются как "космохроно-метры", "космотермометры", "космобарометры".

Хим. состав первичного допланетного диска обычно полагают близким к солнечному ("среднекосмическо-му"). В первичном диске газ (в осн. водорода и гелия) составлял 98-99% всей массы. Пыль (фер-ромагнезиальные силикаты и алюмосиликаты во внутр. части диска, к к-рым добавлялись льды во внеш. части) вначале играла второстепенную роль. В ходе образования и эволюции допланетного диска происходили изменения элементного и изотопного состава газовой и конденсированной компонент, разнообразные обмена между этими двумя осн. резервуарами. Согласно моделям, в процессе образования диска в ближней к Солнцу окрестности межзвёздная пыль в ходе аккреции испарялась и лишь после частичного охлаждения газа происходила реконденсация тугоплавких и умеренно тугоплавких соединений. Во внеш. зоне СС в состав первичных тел могла войти межзвёздная пылевая компонента. Лаб. анализы образцов наиб. примитивных углистых хондритов указывают на присутствие в них вещества, близкого по особенностям элементного, изотопного и минерального состава к межзвёздной пыли. В целом определения изотопного состава земных и лунных образцов, метеоритов и межпланетной пыли показывают относит. однородность, а следовательно, хорошую перемешанность осн. массы протопланетного вещества. Это сильный довод в пользу образования допланетного диска и Солнца в едином процессе. Т. о., установленный для Земли, Луны и древнейших метеоритов возраст в 4,5-4,6 млрд. лет можно считать возрастом СС. В то же время изотопный состав газовой и конденсированной компонент в ходе формирования диска и в последующем при формировании планет несомненно менялся. Интерпретация вариаций содержания отд. изотопов в образцах внеземного вещества зачастую неоднозначна и зависит от выбора динамич. модели. Важно, однако, что находки дочерних продуктов распада короткоживущих изотопов и др. позволяют получить оценки длительности отдельных ранних стадий. Полученные оценки, основанные на ряде изотопных систем, включающих вымершие коротко-живущие , не противоречат динамич. оценкам длительности стадий формирования планет лет).

Недра крупнейших первичных тел подвергались разогреву до 300-700 К, а иногда и до 1000-1500 К, что достаточно для частичного и полного плавления. Об этом говорят представители особых классов метеоритов, состав и физ. свойства к-рых указывают на то, что их родительские тела прошли стадии нагрева и дифференциации вещества. Причины разогрева до конца неясны. Возможно, он был связан с выделением теплоты при распаде короткоживущих радиоакт. изотопов; существ. нагрев мог быть обеспечен взаимными столкновениями.

Ограничения на характер процессов в ранней СС получены при исследовании образцов внеземного вещества, взаимодействовавшего с галактич. и солнечными космическими лучами. Так, исследование зёрен метеоритного вещества, облучённого солнечными космич. лучами, позволило сделать вывод, что к моменту формирования протопланет в зоне земной группы газ в осн. был уже потерян. Это важный аргумент в пользу представлений о вторичности атмосфер Земли, Венеры и Марса.

Начальное состояние и эволюция планет. В результате столкновений растущих планет с телами размером 100-1000 км протопланеты испытывали значит. нагрев, дегазацию, и дифференциацию недр. Изотопный анализ (по изотопам урана и свинца) свидетельствует о раннем образовании земного ядра. Его осн. масса, вероятно, сформировалась более 4 млрд. лет назад, т. е. в первые сотни млн. лет существования Земли. Древний характер поверхностей Меркурия и Луны и ряд косвенных данных о строении Марса и Венеры не противоречат концепции раннего образования ядер планет земной группы. Данные о возможном составе планет говорят о том, что образование ядер планет земной группы произошло вследствие отделения богатого железом расплава от силикатов. Физикохимия процесса отделения железного расплава и опускания его к центру планеты изучены недостаточно. Разогрев планет в ходе их роста сопровождался выделением летучих компонент, содержавшихся в веществе падавших планетезималей. В случае Земли водяные пары сконденсировались в воды первичных бассейнов, а газы образовали атмосферу. Согласно изотопному анализу (по изотопам йода и ксенона), осн. масса атмосферы Земли была накоплена к моменту завершения роста планеты. Состав древней атмосферы известен пока плохо.

Процесс хим. расслоения земных недр происходит и в наше время. Лёгкие расплавы в виде магмы поднимаются из мантии в кору. Они частично застревают и застывают внутри земной коры, а частично прорывают кору и в виде лавы изливаются наружу при вулка-нич. извержениях. Крупномасштабные перемещения вещества в недрах, вызванные тепловой конвекцией и хим. дифференциацией, проявляются в виде подъёмов и опусканий больших участков поверхности, перемещения литосферных плит, на к-рые расчленена земная кора, в виде процессов вулканизма и горообразования, а также землетрясений (см. Сейсмология). О совр. строении планетных недр см. в ст. Планеты и спутники.

Лит.: Protostars and planets, v, 1-2, Tucson, 1978-85; Сафронов В, С., Витязев А. В., Происхождение Солнечной системы, в кн„: Итоги науки и техники, сер. Астрономия, т., 24, М., 1983. А. В. Витязев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Первую геоцентрическую модель Вселенной предложил математик Александр Птолемей в 150 г. новой эры. Его модель была принята христианскими богословами и по сути канонизирована – возведена в ранг абсолютных истин. Согласно этой модели, центральное положение во Вселенной занимает неподвижная Земля, а вокруг нее в разных сферах вращаются Солнце, Луна, планеты и звёзды. Однако подобные идеи выдвигал много раньше древнегреческий философ Аристотель (384–322 до н. э.). Он утверждал, что Земля – это центр Вселенной. И эти идеи Аристотеля парализовали умы мыслителей на полторы тысячи лет, чему в немалой степени способствовала христианская церковь, канонизировавшая их.

Николай Коперник был первым, кто смог опровергнуть Клавдия Птолемея и научно доказать, что Земля не является центром Мироздания. В центр мироздания он поместил Солнце и создал гелиоцентрическую модель Вселенной. Боясь гонений церкви, Коперник отдал в печать свой труд незадолго до смерти. Его система была опубликована уже после смерти великого ученого. Однако церковь предала анафеме его и книгу и официально запретила ее.

Сторонником учения Коперника был Галилео Галлилей, который впервые использовал для изучения звездного неба телескоп и увидел, что Вселенная значительно больше, чем предполагалось раньше, и что вокруг планет есть спутники, которые, подобно планетам вокруг Солнца, вращаются вокруг своих планет. Галлилей экспериментально изучал законы движения. Но церковь устроила гонения на ученого и учинила над ним суд инквизиции. Галилео испугался пыток и судьбы Джордано Бруно и официально отрекся от своего учения. Но выходя из суда, он якобы пробормотал: "И все таки она (Земля) вертится".

Джордано Бруно пошел дальше Коперника и Галлилея: он создал учение о том, что звёзды подобны Солнцу, что вокруг звезд по орбитам движутся тоже планеты. Мало того, он утверждал, что во Вселенной существует множество обитаемых миров, что кроме человека во Вселенной есть и другие мыслящие существа. За это Джордано был осужден христианской церковью и сожжен на костре, а учение его было предано анафеме.

Джордано Бруно обладал необыкновенной памятью, говорили, что он способен рассказать наизусть 26 тысяч статей канонического и гражданского права, 6 тысяч отрывков из Библии и тысячу стихотворений Овидия. Благодаря этому дару его принимали при дворах герцогов и королей Европы, где он с огромным удовольствием дискутировал о математике, астрономии, философии. Бруно ратовал за религию любви ко всем людям без исключения. Он очаровывал своим ораторским талантом и знаниями. Бруно объездил всю Европу. Король Генрих III сделал его экстраординарным профессором Сорбонны.

Физические исследования Декарта относятся главным образом к механике, оптике и общему строению Вселенной. Он считал, что Вселенная целиком заполнена движущейся материей и в своих проявлениях самодостаточна. Неделимых атомов и пустоты Декарт не признавал и резко критиковал атомистов, как античных, так и современных ему. Кроме обычной материи он выделил обширный класс невидимых тонких материй, с помощью которых пытался объяснить действие теплоты, тяготения, электричества и магнетизма. Декарт ввёл понятие количества движения, сформулировал закон сохранения количества движения. Изучал законы распространения света – отражения и преломления. Ему принадлежит идея эфира как переносчика света, объяснение радуги. Декарт вывел закон преломления света на границе двух различных сред, что позволило усовершенствовать оптические приборы, в том числе и телескопы.

Гипотезы о происхождении Солнечной системы

Проблему происхождения Солнечной системы пытались решить многие исследователи. Первая научная гипотеза образования Солнечной системы была предложена в 1644 г. Рене Декартом. Согласно ей, Солнечная система образовалась из первичной туманности, имевшей форму диска и состоявшей из газа и пыли. В 1745 г. Бюффон предположил, что вещество, из которого образованы планеты, было отторгнуто от Солнца какой-то слишком близко проходившей большой кометой или другой звездой. Философ И. Кант и математик П. Лаплас в конце XIX века предложили свои гипотезы, суть которых в том, что звезды и планеты образовались из космической пыли путем постепенного сжатия первоначальной газо-пылевой туманности.

Гипотезы Канта и Лапласа отличались. Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело – будущее Солнце, а потом планеты. Согласно Лапласу, первоначальная туманность была газовой и горячей и быстро вращалась. Сжимаясь под действием силы всемирного тяготения, она вращалась все быстрее. Из-за центробежных сил в экваториальном поясе от нее последовательно отделялись кольца. В дальнейшем эти кольца конденсировались, и получились планеты. Согласно Лапласу, планеты образовались раньше, чем Солнце. Несмотря на существенное различие этих гипотез, они объединены в одну: Солнечная система возникла в результате закономерного развития газо-пылевой туманности в результате конденсации. Гипотеза Канта и Лапласа не справилась с необычным распределением момента количества движения Солнечной системы между центральным телом – Солнцем и планетами. Момент количества движения – это "запас вращения" системы. Это вращение складывается из орбитального движения планет и вращения вокруг своих осей Солнца и планет. Гипотеза Джинса (начало ХХ века) объясняет образование Солнечной системы случайностью, считая ее редчайшим явлением. Вещество, из которого в дальнейшем образовались планеты, было выброшено из довольно "старого" Солнца при случайном прохождении вблизи него некоторой звезды. Благодаря приливным силам, действовавшим со стороны налетевшей звезды, из поверхностных слоев Солнца была выброшена струя газа. Эта струя осталась в сфере притяжения Солнца. В дальнейшем струя сконденсировалась и получились планеты. Если бы гипотеза Джинса была правильной, то планетных систем в Галактике было бы значительно меньше. Поэтому гипотезу Джинса следует отвергнуть. К тому же она тоже не в состоянии объяснить распределение момента количества движения в Солнечной системе. Расчеты Лаймана Спитцера показали, что вещество струи, выброшенной из звезды, должно рассеяться в окружающем пространстве, а конденсации его не произойдет. Новейший вариант гипотезы Джинса, развиваемый Вулфсоном, предполагает, что газовая струя, из которой образовались планеты, была выброшена не из Солнца, а из пролетевшей мимо рыхлой звезды огромных размеров (в 10 раз превышающий радиус нынешней земной орбиты) и сравнительно небольшой массы. Расчеты показывают, что если бы планетные системы образовывались таким образом, то их в Галактике было бы очень мало (одна планетная система на 100 000 звезд). Открытия планет вокруг многих звезд окончательно похоронили гипотезу Джинса-Вульфсона.

Оказалось, что львиная доля момента количества движения Солнечной системы сосредоточена в орбитальном движении планет-гигантов Юпитера и Сатурна. С точки зрения гипотезы Лапласа, это совершенно непонятно. Когда от быстро вращающейся туманности отделялось кольцо, слои туманности, из которых впоследствии сконденсировалось Солнце, на единицу своей массы имели примерно такой же момент количества движения, как вещество отделившегося кольца. Таким образом, полный суммарный момент количества движения у планет должен быть много меньше, чем у "протосолнца". Поэтому главный вывод из гипотезы Канта и Лапласа противоречит фактическому распределению момента количества движения между Солнцем и планетами.

Х. Альвен, спасая гипотезу Канта и Лапласа, предположил, что некогда Солнце обладало очень сильным электромагнитным полем. Туманность, окружавшая светило, состояла из нейтральных атомов. Под действием излучений и столкновений атомы ионизировались. Ионы попадали в ловушки из магнитных силовых линий и увлекались вслед за вращающимся светилом. Постепенно Солнце теряло свой вращательный момент, передавая его газовому облаку. Слабость предложенной гипотезы заключалась в том, что атомы наиболее легких элементов должны были ионизироваться ближе к Солнцу, атомы тяжелых элементов – дальше. Значит, ближайшие к Солнцу планеты должны были бы состоять из водорода и гелия, а более отдаленные – из железа и никеля. Факты же говорят об обратном. Чтобы преодолеть эту трудность, астроном Ф. Хойл предположил, что Солнце зародилось в недрах туманности. Оно быстро вращалось, и туманность становилась все более плоской, превращаясь в диск. Постепенно диск начинал тоже разгоняться, а Солнце тормозилось. Момент количества движения при этом перешел к диску. Затем в диске образовались планеты. Но представить торможение Солнца без вмешательства какой-то третьей силы невозможно. Трудностями и противоречиями гипотезы Хойла является то, что нелегко представить, как могли "отсортироваться" избыточный водород и гелий в первоначальном газовом диске, из которого образовались планеты, поскольку химический состав планет явно отличен от химического состава Солнца; во-вторых, не совсем ясно, каким образом легкие газы покинули Солнечную систему (процесс испарения, предлагаемый Хойлом, сталкивается со значительными трудностями). Главная трудность гипотезы Хойла – требование слишком сильного магнитного поля у "протосолнца", что резко противоречит современным астрофизическим представлениям.

Отто Юльевич Шмидт (1891–1956) в 1937 г. Портрет Нестерова. Фото с сайта: http://territa.ru/

В 1944 г. О. Ю. Шмидт предложил гипотезу, согласно которой планетная система образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти "современный" вид. В этой гипотезе нет трудностей с вращательным моментом. Начиная с 1961 г., эту гипотезу развивал английский космогонист Литтлтон. Следует заметить: чтобы Солнце захватило достаточно много вещества, его скорость по отношению к туманности должна быть очень маленькой, порядка ста метров в секунду. Попросту, Солнце должно застрять в этом облаке и двигаться вместе с ним. В этой гипотезе образование планет не связывается с процессом звездообразования. Но эта гипотеза не дает ответа на вопрос: а где, когда и как образовалось Солнце?

Современная космофизика предполагает (правда, непонятно, почему?), что газ, когда его масса и плотность достигают некоторой величины, под действием своего собственного притяжения сжимается и уплотняется, образуя холодный газовый шар. Допущение о самопроизвольном сжатии облака газа весьма фривольно. Подобного сжатия нигде в природе не наблюдается, да и быть не может. Но эта гипотеза утверждает, что в результате продолжающегося сжатия температура газового шара должна подниматься, так как потенциальная энергия частиц в поле притяжения газового шара при приближении их к центру якобы снижается.

Однако в облаке газа частицы никакой потенциальной энергией относительно центра облака не обладают, а центр облака ничего не притягивает: этот центр не обладает гравитацией, так как не является гравитационной системой. Облако, помещенное в большой обьем вакуума, рассеется по всему этому объему. Чтобы сжать облако, его надо поместить в ограниченное пространство, и объем этого пространства сокращать – т.е. сжимать облако, прикладывая при этом силу, и немалую. В результате броуновского движения молекул газа они не слипаются друг с другом, а отталкиваются друг от друга. Если снизить кинетическую энергию молекул газа (остановить их), то произойдет их конденсация – газ сначала превратится в жидкость, а потом в холодное твердое тело. Но стоит это тело нагреть, как оно превратится в жидкость и испарится (наглядный пример – кометы). Так что газовое облако в газовый шар, и тем более, в звезду превратиться само по себе не может. Для этого необходим источник гравитации. По-моему, таким источником может быть только сверхплотное протовещество – фрагментарии . Гипотезу об образовании Солнца и планет из холодной газово-пылевой туманности развивали В. Г. Фесенков, А. П. Виноградов и др. В настоящее время эта гипотеза имеет наибольшее число сторонников среди астрофизиков. Ее сторонники считают, что формирование Солнечной системы началось с газо-пылевого облака, располагавшегося в экваториальной плоскости нашей Галактики. Облако состояло в основном из водорода, гелия, азота, кислорода, паров воды, метана и углерода, а также из пылинок в виде окислов кремния, магния и железа. Газы и пылинки конденсировались, образуя звезду и планеты.

Температура облака в то время была –220°С. Вначале облако было однородным, а затем в нем стали появляться сгущения (но почему, – гипотеза не объясняет; А. Г. ), главным образом за счет гравитационного сжатия (но что сжимало газ и пыль? А. Г. ). В итоге вещество в облаке стало разогреваться и дифференцироваться путем разделения химических элементов и их соединений в поле силы тяжести (но что создало это поле силы тяжести? А. Г. ). Так, астрофизик Л. Спитцер показал, что если масса облака в 10 –20 тыс. раз превышает массу Солнца, а плотность вещества в нем свыше 20 атомов в см кубическом, то такое облако под действием собственной массы начинает сжиматься. (Но таких плотных облаков в Галактике не обнаружено ).

Однако как такое облако само собой образуется? Как оно сожмется до такого давления? Газ сжиматься может только при охлаждении. При этом он сначала превращается в жидкость, а потом переходит в твердую фазу. При нагревании такого твердого тела оно испаряется и снова превращается в облако. Так, например, ведут себя кометы по мере приближения к Солнцу. Они испаряются и теряют массу. Астрофизики предполагают, что Протосолнце с протопланетным облаком образовалось около 6 млрд. лет тому назад. Вещество в протопланетном облаке располагалось сначала равномерно, а затем стало скучиваться в отдельных областях, из которых позднее и образовались звезды. Но эта гипотеза никак не объясняет, почему в однородном протопланетном облаке стали образовываться сгущения и скучивания. Но если допустить, что вопреки законам физики газовое облако стало шаром, а шар сжался в звезду, то невозможно объяснить источник энергии этой звезды, который позволяет ей излучать частицы и электромагнитные волны. Ведь прежде чем начнется термоядерная реакция, в недрах облака-звезды температура должна подняться хотя бы до 20 миллионов градусов Кельвина. Если не появится другой не гравитационный источник энергии, то процесс излучения в результате сжатия звезды довольно быстро приведет к исчерпанию энергии, и такая звезда испарится и опять превратится в рыхлое облако, но светить не будет. Однако процесс сжатия вопреки всем законам физики приводит к тому, что центральные области звезды разогреваются до очень высоких температур, давление в них становится настолько высоким, что начинается термоядерная реакция синтеза из ядер водорода ядер гелия. При этом выделяется много энергии, разогревающей газовый шар. Для протекания термоядерного синтеза необходима температура в несколько десятков миллионов градусов. Период, в течение которого звезда, сжимаясь из газового облака, достигнет состояния, когда в ее центральных областях начнут действовать термоядерные реакции, называется периодом сжатия. После того, как в звезде весь водород превратится в гелий, она достигнет стадии красного гиганта – расширится. (Совершенно непонятно, почему при охлаждении звезда вдруг расширится, а не сожмется ). Далее гипотеза утверждает, что теперь будет сжиматься звезда, состоящая уже из гелия. От этого сжатия температура в ее центре увеличится до 100 млн. градусов и более. (Весьма фривольное предположение! ) Тогда начнется другая термоядерная реакция – образование ядер углерода из ядер гелия. Эта реакция также будет сопровождаться потерей массы и выделением энергии излучения. Температура звезды вновь возрастет, отчего сжатие звезды прекратится. Эта гипотеза происхождения звезд из газовой материи встречается с серьезными трудностями: в Галактике слишком мало водорода, всего около 2% общей ее массы. Если бы звезды действительно образовывались из газа, то звездообразование в Галактике должно было бы быстро закончиться. Между тем, в галактиках, в том числе и в нашей, появляются новые молодые звезды – голубые гиганты и сверхгиганты.

Небулярные гипотезы Канта, Лапласа имеют существенный недостаток: они не объясняют, почему Солнце и планеты так неравномерно распределили между собой количество движения (момент количества движения): на долю Солнца приходится около 2% момента количества движения, а на долю планет – около 98%, хотя совокупная масса всех планет в 750 раз меньше массы Солнца.

Шмидт исходит в своей гипотезе из различного происхождения Солнца и планет. Но если быть последовательным до конца, то следовало бы предположить, что раздельно возникло не только Солнце и планеты, но имеют раздельное происхождение и все планеты, поскольку они также имеют различный удельный момент количества движения (количество движения на единицу массы). Если удельный момент количества движения Земли принять за 1, то планеты Солнечной системы будут иметь следующие удельные моменты количества движения (Левин Б.С. Происхождение Земли и планет):

Те части протопланетного газово-пылевого облака, которое когда-то якобы встретилось с Солнцем, были им захвачены на свою орбиту. И эти части облака, если только последнее не вращалось (если облако вращалось, оно, по-видимому, должно было еще до встречи с Солнцем рассеяться под влиянием центробежной силы в межзвездном пространстве), должны были иметь абсолютно одинаковый удельный момент количества движения, поскольку они до захвата двигались в одном направлении и имели одинаковую скорость. И планеты тоже должны были бы иметь одинаковый удельный момент количества движения, если бы они произошли согласно гипотезе Шмидта.

Третья часть спутников планет Солнечной системы имеет обратное по отношению к Солнечной системе направление обращения. Это один из крупнейших в Солнечной системе спутник Нептуна Тритон, затем спутник Сатурна Феба, четыре внешних небольших спутника Юпитера и пять спутников Урана. Согласно гипотезе Шмидта, все тела Солнечной системы должны вращаться в одну сторону и в одной плоскости.

Половина планет Солнечной системы имеют большие наклоны плоскости экватора к плоскости своей орбиты (более 23° у Земли, Марса, Сатурна и Нептуна, а у Урана наклон равен 98°). Если бы планеты образовались из одного облака, они бы имели одинаковое наклонение своих орбит к плоскости экватора Солнца и не имели бы наклона плоскостей своих экваторов к плоскости своих орбит.

Если бы звезды действительно образовывались из газа, то в Галактике можно было обнаружить уже заметно уплотнившиеся газовые облака, постепенно превращающиеся в звезды. Но в звездных ассоциациях таких скоплений нет. Нет и переходных стадий от газовых облаков к звездам. Но существуют области в Галактике, из которых выбрасываются "готовые" звезды, а в Метагалактике – даже целые "готовые" галактики.

Обладающее значительным вращательным моментом газо-пылевое облако по законам механики просто не может существовать и не может превратиться в одиночную медленно вращающуюся звезду вроде Солнца. Расслоение такого вращающегося само по себе облака на кольца тоже невозможно. Неслучайно вращение звезд в Галактике вокруг центра происходит на порядок с большей скоростью, чем вращение газового диска Галактики, состоящего, кстати, не из колец, а из рукавов. Таким образом, существующие гипотезы образования звезд и планет, кроме гипотезы В. Амбарцумяна, очень далеки от истины.

Виктор Амазаспович Амбарцумян (1908–1996). Фото с сайта: http://oko-planet.su

Виктор Амазаспович Амбарцумян и Ян Хендрик Оорт в Бюракане (Армения) в 1966 г. Фото с сайта: http://www.ambartsumian.ru/

Принятие во второй половине ХХ века астрофизиками модели происхождения Вселенной в результате Большого Взрыва и гипотеза расширяющейся Вселенной позволили Виктору Амбарцумяну создать гипотезу о возникновении галактик, звезд и планетных систем из сверхплотного (состоящего из самых тяжёлых элементарных частиц – гиперонов) дозвездного вещества, находящегося в ядрах галактик, путем фрагментации этого вещества. В. Амбарцумян открыл звездные ассоциации, состоящие из очень молодых звезд, стремящихся "убежать" друг от друга. Это он объяснял тем, что звезды образовались из первоначального сверхплотного вещества, выброшенного из центра Галактики.

Гипотеза В.А. Амбарцумяна утверждает, что звезды образуются из некоторого сверхплотного вещества. Если это так, то наиболее важный космогонический процесс – образование звезд – должен быть переходом вещества из более плотного состояния в менее плотное, а не наоборот, как предполагает гипотеза образования звезд из газо-пылевых облаков. Новая гипотеза постулирует, что во Вселенной существовал и существует материал – сверхплотное вещество, которого, однако, еще никто не наблюдал, и многие свойства которого остаются неизвестными. Однако, по мнению ученых, это обстоятельство нельзя считать недостатком гипотезы по той простой причине, что, изучая проблему происхождения звезд и звездных систем, мы выходим за круг познанных явлений. Сверхплотная материя, если она существует, должна быть недоступна современным средствам наблюдения, так как она занимает очень малые объемы пространства и почти не излучает. Основные ее свойства – это необычайно высокая плотность и огромный запас энергии, которая бурно выделяется при разуплотнении такого вещества. Возможность существований сверхплотных масс материи признавалась Г.Р. Оппенгеймером и Г.М. Волковым. В свое время В.А. Амбарцумян и Г.С. Саакян показали, что могут существовать массы со сверхплотными ядрами, состоящими из тяжелых элементарных частиц – гиперонов. Радиусы таких объектов составляют всего несколько километров, а массы мало уступают массе Солнца, так что средняя плотность такого вещества равна миллионам тонн на кубический сантиметр.

Несмотря на то, что ученые строят достаточно точные модели черных дыр и нейтронных звезд, не существует теории, которая сумела бы объяснить происхождение Солнечной системы и все известные сейчас ее особенности. Теория происхождения Солнечной системы должна объяснить все известные факты и не должна противоречить законам динамики и современной физики. Кроме того, из этой теории должны выводиться следствия, которые подтверждались бы будущими открытиями: теория должна не только объяснять, но и предсказывать. Все гипотезы, выдвинутые до сих пор, были опровергнуты или остались недоказанными при строгом применении физической теории.

Древнейшие породы земной коры затвердели 4 млрд. лет назад. Считается, что сама Земля образовалась 4,6 млрд. лет назад. Измерение времени, прошедшего с тех пор, как Земля остыла, основывается на незначительных следах свинца, гелия и других элементов, оставшихся в породах после распада радиоактивных элементов. Изучение метеоритов и образцов лунного грунта показывает, что их возраст в твердом состоянии не превышает возраста Земли. Предполагают, что и вся Солнечная система имеет такой же возраст.

Удовлетворительная теория происхождения Солнечной системы прежде всего должна учитывать существование планет, спутников, астероидов и комет. Она должна объяснить расположение планет, форму их орбит, наклон осей и скорость вращения и движения по орбите, должна объяснить распределение момента количества движения по планетам. Пока что такой теории нет, и можно говорить только о создании гипотез.

План:

Введение . 3

1. Гипотезы о происхождении солнечной системы .. 3

2. Современная теория происхождения солнечной системы .. 5

3. Солнце – центральное тело нашей планетной системы .. 7

4. Планеты земной группы .. 8

5. Планеты-гиганты .. 9

Заключение . 11

Список использованной литературы .. 12

Введение

Солнечная система состоит из центрального небесного тела - звезды Солнца, 9 больших планет, обращающихся вокруг него, их спутников, множества малых планет - астероидов, многочисленных комет и межпланетной среды. Большие планеты располагаются в порядке удаления от Солнца следующим образом: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Три последние планеты можно наблюдать с Земли только в телескопы. Остальные видны как более или менее яркие кружки и известны людям со времен глубокой древности.

Один из важных вопросов, связанных с изучением нашей планетной системы - проблема ее происхождения. Решение данной проблемы имеет естественно-научное, мировоззренческое и философское значение. На протяжении веков и даже тысячелетий ученые пытались выяснить прошлое, настоящее и будущее Вселенной, в том числе и Солнечной системы. Однако возможности планетной космологии и по сей день остаются весьма ограниченными - для эксперимента в лабораторных условиях доступны пока лишь метеориты и образцы лунных пород. Ограничены и возможности сравнительного метода исследований: строение и закономерности других планетных систем пока еще недостаточно изучены.

1. Гипотезы о происхождении солнечной системы

К настоящему времени известны многие гипотезы о происхождении Солнечной системы, в том числе предложенные независимо немецким философом И.Кантом (1724-1804) и французским математиком и физиком П.Лапласом (1749-1827). Точка зрения И. Канта заключалась в эволюционном развитии холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело - Солнце, а потом родились и планеты. П. Лаплас считал первоначальную туманность газовой и очень горячей, находящейся в состоянии быстрого вращения. Сжимаясь под действием силы всемирного тяготения, туманность вследствие закона сохранения момента импульса вращалась все быстрее и быстрее. Под действием больших центробежных сил, возникающих при быстром вращении в экваториальном поясе, от него последовательно отделялись кольца, превращаясь в результате охлаждения и конденсации в планеты. Таким образом, согласно теории П. Лапласа, планеты образовались раньше Солнца. Несмотря на такое различие между двумя рассматриваемыми гипотезами, обе они исходят от одной идеи - Солнечная система возникла в результате закономерного развития туманности. И поэтому такую идею иногда называют гипотезой Канта-Лапласа. Однако от этой идеи пришлось отказаться из-за множества математических противоречий, и на смену ей пришло несколько «приливных теорий».

Наиболее знаменитая теория была выдвинута сэром Джеймсом Джинсом, известным популяризатором астрономии в годы между Первой и Второй мировыми войнами. (Он также был ведущим астрофизиком, и лишь в конце своей карьеры обратился к созданию книг для начинающих.)

Рис. 1. Приливная теория Джинса. Звезда проходит рядом с Солнцем,

вытягивая из него вещество (рис. А и В); планеты формируются

из этого материала (рис. С)

Согласно Джинсу, планетное вещество было «вырвано» из Солнца под воздействием близко проходившей звезды, а затем распалось на отдельные части, образуя планеты. При этом наиболее крупные планеты (Сатурн и Юпитер) находятся в центре планетной системы, где некогда находилась утолщенная часть сигарообразной туманности.

Если бы дела действительно обстояли таким образом, то планетные системы были бы чрезвычайно редким явлением, так как звезды отделены друг от друга колоссальными расстояниями, и вполне возможно, что наша планетная система могла бы претендовать на роль единственной в Галактике. Но математики снова бросились в атаку, и в конце концов приливная теория присоединилась к газообразным кольцам Лапласа в мусорной корзине науки.

2. Современная теория происхождения солнечной системы

Согласно современным представлениям, планеты солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад. Такая точка зрения наиболее последовательно отражена в гипотезе российского ученого, академика О.Ю. Шмидта (1891-1956), который показал, что проблемы космологии можно решить согласованными усилиями астрономии и наук о Земле, прежде всего географии, геологии, геохимии. В основе гипотезы О.Ю. Шмидта лежит мысль об образовании планет путем объединения твердых тел и пылевых частиц. Возникшее около Солнца газопылевое облако сначала состояло на 98% из водорода и гелия. Остальные элементы конденсировались в пылевые частицы. Беспорядочное движение газа в облаке быстро прекратилось: оно сменилось спокойным движением облака вокруг Солнца.

Пылевые частицы сконцентрировались в центральной плоскости, образовав слой повышенной плотности. Когда плотность слоя достигла некоторого критического значения, его собственное тяготение стало «соперничать» с тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные пылевые сгустки. Сталкиваясь друг с другом, они образовали множество сплошных плотных тел. Наиболее крупные из них приобретали почти круговые орбиты и в своем росте начали обгонять другие тела, став потенциальными зародышами будущих планет. Как более массивные тела, новообразования присоединяли к себе оставшееся вещество газопылевого облака. В конце концов сформировалось девять больших планет, движение которых по орбитам остается устойчивым на протяжение миллиардов лет.

С учетом физических характеристик все планеты делятся на две группы. Одна из них состоит из сравнительно небольших планет земной группы - Меркурия, Венеры, Земли и Марса. Их вещество отличается относительно высокой плотностью: в среднем около 5,5 г/см 3 , что в 5,5 раза превосходит плотность воды. Другую группу составляют планеты -гиганты: Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают огромными массами. Так, масса Урана равна 15 земным массам, а Юпитера- 318. Состоят планеты-гиганты главным образом из водорода и гелия, а средняя плотность их вещества близка к плотности воды. Судя по всему, у этих планет нет твердой поверхности, подобной поверхности планет земной группы. Особое место занимает девятая планета - Плутон, открытая в марте 1930 г. По своим размерам она ближе к планетам земной группы. Не так давно обнаружено, что Плутон - двойная планета: она состоит из центрального тела и очень большого спутника. Оба небесных тела обращаются вокруг общего центра масс.

В процессе образования планет их деление на две группы обусловливается тем, что в далеких от Солнца частях облака температура была низкой и все вещества, кроме водорода и гелия, образовали твердые частицы. Среди них преобладал метан, аммиак и вода, определившие состав Урана и Нептуна. В составе самых массивных планет - Юпитера и Сатурна, кроме того, оказалось значительное количество газов. В области планет земной группы температура была значительно выше, и все летучие вещества (в том числе метан и аммиак) остались в газообразном состоянии, и, следовательно, в состав планет не вошли. Планеты этой группы сформировались в основном из силикатов и металлов.

3. Солнце – центральное тело нашей планетной системы

Солнце - ближайшая к Земле звезда, представляющая собой раскаленный плазменный шар. Это гигантский источник энергии: мощность излучения его очень велика - около 3,86×10 23 кВт. Ежесекундно Солнце излучает такое количество тепла, которого вполне хватило бы, чтобы растопить слой льда, окружающий земной шар, толщиной в тысячу км. Солнце играет исключительную роль в возникновении и развитии жизни на Земле. На Землю попадает ничтожная часть солнечной энергии, благодаря которой поддерживается газообразное состояние земной атмосферы, постоянно нагреваются поверхности суши и водоемов, обеспечивается жизнедеятельность животных и растений. Часть солнечной энергии запасена в недрах Земли в виде каменного угля, нефти, природного газа.

В настоящее время принято считать, что в недрах Солнца при огромнейших температурах -около 15 млн. градусов - и чудовищных давлениях протекают термоядерные реакции, которые сопровождаются выделением огромного количества энергии. Одной из таких реакций может быть синтез ядер водорода, при котором образуются ядра атома гелия. Подсчитано, что в каждую секунду в недрах Солнца 564 млн т водорода преобразуются в 560 млн т гелия, а остальные 4 млн т водорода превращаются в излучение. Термоядерная реакция будет происходить до тех пор, пока не иссякнут запасы водорода. В настоящее время они составляют около 60 % массы Солнца. Такого резерва должно хватить по меньшей мере на несколько миллиардов лет.

Почти вся энергия Солнца генерируется в его центральной области, откуда переносится излучением, а затем во внешнем слое - передается конвекцией. Эффективная температура поверхности Солнца - фотосферы - около 6000 К.

Наше Солнце - источник не только света и тепла: его поверхность излучает потоки невидимых ультрафиолетовых и рентгеновских лучей, а также элементарных частиц. Хотя количество тепла и света, посылаемого на Землю Солнцем, на протяжение многих сотен миллиардов лет остается постоянным, интенсивность его невидимых излучений значительно меняется: она зависит от уровня солнечной активности.

Наблюдаются циклы, в течение которых солнечная активность достигает максимального значения. Их периодичность составляет 11 лет. В годы наибольшей активности увеличивается число пятен и вспышек на солнечной поверхности, на Земле возникают магнитные бури, усиливается ионизация верхних слоев атмосферы и т. д.

Солнце оказывает заметное влияние не только на такие природные процессы, как погода, земной магнетизм, но и на биосферу - животный и растительный мир Земли, в том числе и на человека.

Предполагается, что возраст Солнца не менее 5 млрд лет. Такое предположение основано на том, что в соответствии с геологическими данными наша планета существует не менее 5 млрд лет, а Солнце образовалось еще раньше.

4. Планеты земной группы

Объединенные в одну группу планеты: Меркурий, Венера, Земля, Марс, - хотя и близки по некоторым характеристикам, но все же каждая из них имеет свои неповторимые особенности. Некоторые характерные параметры планет земной группы представлены в табл. 1.

Таблица 1

Среднее расстояние в табл. 1 дано в астрономических единицах (а.е.); 1 а.е. равна среднему расстоянию Земли от Солнца (1 а.е = 1,5 10 8 км.). Самая массивная из данных планет - Земля: ее масса 5,89 10 24 кг.

Существенно отличается планеты и составом атмосферы, что видно из табл. 2, где приведен химический состав атмосферы Земли, Венеры и Марса.

Таблица 2

Меркурий - самая малая планета в земной группе. Эта планета не смогла сохранить атмосферу в том составе, который характерен для Земли, Венеры, Марса. Ее атмосфера крайне разрежена и содержит Ar, Ne, Не. Из табл. 5.2 видно, что атмосфера Земли отличается относительно большим содержанием кислорода и паров воды, благодаря которым обеспечивается существование биосферы. На Венере и Марсе в атмосфере содержится большое количество углекислого газа при очень малом содержании кислорода и паров воды - все это характерные признаки отсутствия жизни на данных планетах. Нет жизни и на Меркурии: отсутствие кислорода, воды и высокая дневная температура (620 К) препятствуют развитию живых систем. Остается открытым вопрос о существовании каких-то форм жизни на Марсе в отдаленном прошлом.

Планеты Меркурий и Венера спутников не имеют. Природные спутники Марса - Фобос и Деймос.

5. Планеты-гиганты

Юпитер, Сатурн, Уран и Нептун относятся к планетам-гигантам. Юпитер - пятая по расстоянию от Солнца и самая большая планета Солнечной системы - находится на среднем расстоянии от Солнца 5,2 а.е. Юпитер - мощный источник теплового радиоизлучения, обладает радиационным поясом и обширной магнитосферой. Эта планета имеет 16 спутников и окружена кольцом шириной около 6 тыс. км.

Сатурн - вторая по величине планета в Солнечной системе. Сатурн окружен кольцами, которые хорошо видны в телескоп. Их впервые наблюдал в 1610 г. Галилей с помощью созданного им телескопа. Кольца представляют собой плоскую систему множества мелких спутников планеты. Сатурн имеет 17 спутников и обладает радиационным поясом.

Уран - седьмая по порядку удаления от Солнца планета Солнечной системы. Вокруг Урана вращается 15 спутников: 5 из них открыты с Земли, а 10 - наблюдались с помощью космического аппарата «Вояджер-2». Уран имеет и систему колец.

Нептун - одна из самых удаленных от Солнца планет - находится на расстоянии от него около 30 а.е. Период обращения ее на орбите - 164,8 года. Нептун имеет шесть спутников. Удаленность от Земли ограничивает возможности его исследования.

Планета Плутон не относится ни к земной группе, ни к планетам-гигантам. Это сравнительно небольшая планета: ее диаметр около 3000 км. Плутон принято считать двойной планетой. Его спутник, примерно в 3 раза меньший по диаметру движется на расстоянии всего около 20000 км от центра планеты, совершая один оборот за 4,6 суток.

Особое место в Солнечной системе занимает Земля - единственная живая планета.

Заключение

Таким образом, современная теория гораздо более правдоподобна, которая, как ни странно, ближе к идеям Лапласа, чем к теории Джинса. Считается, что планеты сконденсировались из облака космического материала, связанного с молодым Солнцем, поэтому все они близки по возрасту. Это объясняет, почему Солнечная система четко разделена на две части. Ближе к Солнцу температура была очень высокой, поэтому такие легкие газы, как водород и гелий, вытеснялись на периферию, а на внутренних планетах происходило накопление более тяжелых элементов. В дальнейшем температура понизилась и появилась возможность удерживать легкие элементы: поэтому планеты-гиганты, в отличие от внутренних членов системы, не являются плотными и каменистыми. Действительно, у планеты-гиганта может быть твердое ядро, но большей частью они состоят из жидкости, с очень мощной атмосферой, богатой водородом и гелием.

Процесс образования Солнечной системы нельзя считать досконально изученным, а предложенные гипотезы - совершенными. Например, в современной гипотезе не учитывалось влияние электромагнитного взаимодействия при формировании планет. Выяснение этого и других вопросов - дело будущего.

Список использованной литературы

1. Карпенков С.Х. Концепция современного естествознания: Учебник для вузов/М.: Академический проспект, 2001.

2. Мур П. Астрономия с Патриком Муром. Пер. с англ. К. Савельева/М.: ФАИР-ПРЕСС, 2001.

3. Самыгина С.И. «Концепции современного естествознания»/Ростов н/Д: «Феникс», 1997.

4. Эйнштейн А. Эволюция физики/М.: Устойчивый мир, 2001.

К настоящему времени известны многие гипотезы о происхождении Солнечной системы, в том числе предложенные независимо немецким философом И.Кантом (1724-1804) и французским математиком и физиком П.Лапласом (1749-1827). Точка зрения И. Канта заключалась в эволюционном развитии холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело - Солнце, а потом родились и планеты. П. Лаплас считал первоначальную туманность газовой и очень горячей, находящейся в состоянии быстрого вращения. Сжимаясь под действием силы всемирного тяготения, туманность вследствие закона сохранения момента импульса вращалась все быстрее и быстрее. Под действием больших центробежных сил, возникающих при быстром вращении в экваториальном поясе, от него последовательно отделялись кольца, превращаясь в результате охлаждения и конденсации в планеты. Таким образом, согласно теории П. Лапласа, планеты образовались раньше Солнца. Несмотря на такое различие между двумя рассматриваемыми гипотезами, обе они исходят от одной идеи - Солнечная система возникла в результате закономерного развития туманности. И поэтому такую идею иногда называют гипотезой Канта-Лапласа. Однако от этой идеи пришлось отказаться из-за множества математических противоречий, и на смену ей пришло несколько «приливных теорий».

Наиболее знаменитая теория была выдвинута сэром Джеймсом Джинсом, известным популяризатором астрономии в годы между Первой и Второй мировыми войнами. (Он также был ведущим астрофизиком, и лишь в конце своей карьеры обратился к созданию книг для начинающих.)

Рис. 1. Приливная теория Джинса. Звезда проходит рядом с Солнцем, вытягивая

из него вещество (рис. А и В); планеты формируются из этого материала (рис. С)

Согласно Джинсу, планетное вещество было «вырвано» из Солнца под воздействием близко проходившей звезды, а затем распалось на отдельные части, образуя планеты. При этом наиболее крупные планеты (Сатурн и Юпитер) находятся в центре планетной системы, где некогда находилась утолщенная часть сигарообразной туманности.

Если бы дела действительно обстояли таким образом, то планетные системы были бы чрезвычайно редким явлением, так как звезды отделены друг от друга колоссальными расстояниями, и вполне возможно, что наша планетная система могла бы претендовать на роль единственной в Галактике. Но математики снова бросились в атаку, и в конце концов приливная теория присоединилась к газообразным кольцам Лапласа в мусорной корзине науки. 1

2. Современная теория происхождения солнечной системы

Согласно современным представлениям, планеты солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад. Такая точка зрения наиболее последовательно отражена в гипотезе российского ученого, академика О.Ю. Шмидта (1891-1956), который показал, что проблемы космологии можно решить согласованными усилиями астрономии и наук о Земле, прежде всего географии, геологии, геохимии. В основе гипотезы О.Ю. Шмидта лежит мысль об образовании планет путем объединения твердых тел и пылевых частиц. Возникшее около Солнца газопылевое облако сначала состояло на 98% из водорода и гелия. Остальные элементы конденсировались в пылевые частицы. Беспорядочное движение газа в облаке быстро прекратилось: оно сменилось спокойным движением облака вокруг Солнца.

Пылевые частицы сконцентрировались в центральной плоскости, образовав слой повышенной плотности. Когда плотность слоя достигла некоторого критического значения, его собственное тяготение стало «соперничать» с тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные пылевые сгустки. Сталкиваясь друг с другом, они образовали множество сплошных плотных тел. Наиболее крупные из них приобретали почти круговые орбиты и в своем росте начали обгонять другие тела, став потенциальными зародышами будущих планет. Как более массивные тела, новообразования присоединяли к себе оставшееся вещество газопылевого облака. В конце концов сформировалось девять больших планет, движение которых по орбитам остается устойчивым на протяжение миллиардов лет.

С учетом физических характеристик все планеты делятся на две группы. Одна из них состоит из сравнительно небольших планет земной группы - Меркурия, Венеры, Земли и Марса. Их вещество отличается относительно высокой плотностью: в среднем около 5,5 г/см 3 , что в 5,5 раза превосходит плотность воды. Другую группу составляют планеты -гиганты: Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают огромными массами. Так, масса Урана равна 15 земным массам, а Юпитера- 318. Состоят планеты-гиганты главным образом из водорода и гелия, а средняя плотность их вещества близка к плотности воды. Судя по всему, у этих планет нет твердой поверхности, подобной поверхности планет земной группы. Особое место занимает девятая планета - Плутон, открытая в марте 1930 г. По своим размерам она ближе к планетам земной группы. Не так давно обнаружено, что Плутон - двойная планета: она состоит из центрального тела и очень большого спутника. Оба небесных тела обращаются вокруг общего центра масс.

В процессе образования планет их деление на две группы обусловливается тем, что в далеких от Солнца частях облака температура была низкой и все вещества, кроме водорода и гелия, образовали твердые частицы. Среди них преобладал метан, аммиак и вода, определившие состав Урана и Нептуна. В составе самых массивных планет - Юпитера и Сатурна, кроме того, оказалось значительное количество газов. В области планет земной группы температура была значительно выше, и все летучие вещества (в том числе метан и аммиак) остались в газообразном состоянии, и, следовательно, в состав планет не вошли. Планеты этой группы сформировались в основном из силикатов и металлов. 2

И бесчисленных мелких метеорных частиц и пылинок. Девять планет явл. главными спутниками Солнца, но и у них суммарная масса в 743 раза меньше . Суммарная же масса всех остальных малых тел Солнечной системы, включая облако комет, составляет .

Поскольку Солнце явл. одной из , вопросы его происхождения и развития рассматриваются теорией , а в изучении происхождения Солнечной системы наиболее интересен вопрос об образовании планет, в частности Земли. Выяснение происхождения и развития Земли имеет большое принципиальное и практическое значение.

Предпринимаются попытки поиска планетных систем у ближайших к нам звезд (см. ). В согласии с совр. представлениями о звезды с планетными системами могли бы составлять промежуточный класс между одиночными и двойными звездами. Не исключено, что строение планетных систем и способы их формирования могут быть весьма различными. Строение Солнечной системы обладает рядом закономерностей, указывающих на совместное образование всех планет и Солнца в едином процессе.

Такими закономерностями являются: движение всех планет в одном направлении по эллиптич. орбитам, лежащим почти в одной плоскости; вращение Солнца в том же направлении вокруг оси, близкой к перпендикуляру относительно центральной плоскости планетной системы; вращение в том же направлении большинства планет (за исключением Венеры, к-рая очень медленно вращается в обратном направлении, и Урана, к-рый вращается как бы лежа на боку); обращение в том же направлении большинства спутников планет; закономерное возрастание расстояний планет от Солнца; деление планет на родственные группы, отличающиеся по массе, хим. составу и количеству спутников (группа близких к Солнцу планет земного типа и далекие от Солнца планеты-гиганты, также подразделяющиеся на две группы); наличие пояса малых планет между орбитами Марса и Юпитера.

2. Развитие планетной космогонии

В 1775 г. нем. ученый И. Кант пытался объяснить единообразный характер движения планет формированием их из рассеянного вещества (пылевого облака), простирающегося до границ совр. планетной системы и вращающегося вокруг Солнца.

В 1796 г. франц. ученый П. Лаплас выдвинул гипотезу об образовании Солнца и всей Солнечной системы из сжимающейся газовой туманности. Согласно Лапласу, часть газового вещества отделилась от центрального сгустка под действием возросшей при сжатии центробежной силы, что следует из закона сохранения момента количества движения. Это вещество послужило материалом для образования планет. И Кант, и Лаплас рассматривали образование планет из рассеянного вещества, и поэтому часто говорят о единой гипотезе Канта-Лапласа. Гипотеза Лапласа долгое время владела умами ученых, но трудности, с к-рыми она встретилась, в частности при объяснении медленности совр. вращения Солнца, заставили астрономов обратиться к др. гипотезам. В конце 19 в. появилась гипотеза амер. ученых Ф. Мультона и Т. Чемберлена об образовании планет из мелких твердых частиц, названных ими планетезималями. Они ошибочно считали, что обращающиеся вокруг Солнца планетезимали могли возникнуть путем застывания вещества, выброшенного Солнцем в виде огромных протуберанцев. (Такое образование планетезималей противоречит закону сохранения момента количества движения.) В то же время в планетезимальной гипотезе были правильно обрисованы многие черты процесса образования планет. В 20-30-х гг. 20 в. широкой известностью пользовалась гипотеза англ. астронома Дж. Джинса, считавшего, что планеты образовались из вещества, вырванного из Солнца притяжением пролетевшей поблизости звезды. Однако в конце 30-х гг. выяснилось, что гипотеза Джинса не способна объяснить огромные размеры планетной системы. Чтобы вырвать вещество из Солнца, звезда должна была пролететь очень близко от него, а в таком случае это вещество и возникшие из него планеты должны были бы кружиться в непосредственном соседстве с Солнцем. Кроме того, вырванное вещество было бы весьма горячим, поэтому оно скорее рассеялось бы в пространстве, чем собралось в планеты. После крушения гипотезы Джинса планетная космогония вернулась к классич. идеям Канта и Лапласа об образовании планет из рассеянного вещества.

В 1943 г. О.Ю. Шмидт выдвинул идею об аккумуляции планет из роя холодных тел и частиц, к-рый, по его представлениям, был захвачен Солнцем. В отличие от предшествующих космогонич. гипотез, рассматривавших образование планет из раскаленных газовых сгустков, согласно гипотезе Шмидта, Земля образовалась из холодных твердых тел и сначала была относительно холодной.

Шмидт считал, что вопросы происхождения допланетного облака, образования планет и их эволюции могут рассматриваться в нек-рой степени независимо. Работами Шмидта и ряда др. советских ученых (Л.Э. Гуревича, А.И. Лебединского, Б.Ю. Левина, В.С. Сафронова) выяснены осн. черты эволюции протопланетного облака и процесса формирования планет.

Весь процесс можно условно разделить на два этапа. На первом этапе из пылевого компонента облака образовалось множество "промежуточных" тел размером в сотни км. Этот процесс мог идти следующим путем. Во вращающемся газово-пылевом облаке пыль под действием гравитации опускалась к центральной плоскости, что вело к образованию пылевого субдиска; при достижении в пылевом слое критич. плотности в результате субдиск распался на множество пылевых сгущений; столкновения сгущений вызывали объединение и сжатие большинства из них и образование компактных тел астероидных размеров. На втором этапе из роя "промежуточных" тел и из обломков аккумулировались планеты. Сперва тела двигались по круговым орбитами в плоскости породившего их пылевого слоя. Они росли, сливаясь друг с другом и вычерпывая окружающее рассеянное вещество - остатки "первичной" пыли и обломки, образовавшиеся в процессе столкновений "промежуточных" тел с большой относительной скоростью. Гравитационное взаимодействие "промежуточных" тел, усиливавшееся по мере их роста, постепенно изменяло их орбиты, увеличивая ср. эксцентриситет и ср. наклон к центральной плоскости диска. Те из тел, к-рые вырывались вперед в процессе роста, оказались зародышами будущих планет. При объединении многих тел в планеты произошло усреднение индивидуальных св-в движения отдельных тел, и поэтому орбиты планет получились почти круговыми и компланарными. Самые крупные планеты - Юпитер и Сатурн - на осн. стадии аккумуляции вбирали в себя не только твердые тела, но и газы. Анализ процесса аккумуляции планет из роя твердых тел позволил Шмидту и его последователям указать путь к объяснению прямого вращения планет и закона планетных расстояний.

Одним из главных экспериментальных доводов в пользу образования планет земной группы не из газовых или газово-пылевых сгустков, а путем аккумуляции твердого вещества явл. большой дефицит на Земле, а также на Венере и Марсе тяжелых инертных газов Ne, Ar (за исключением радиогенного изотопа 40 Ar), Kr и Xe по сравнению с их солнечным и космич. .

Изучение процесса аккумуляции планет земной группы показало, что практически все твердое вещество из зоны формирования этих планет вошло в их состав и только ничтожно малая доля была выброшена из этой зоны гравитац. возмущениями растущих планет. Количество твердого вещества, выброшенного из зоны планет-гигантов, было больше, но не превышало массу самих планет. Это явл. веским доводом в пользу того, что общая масса протопланетного облака составляла всего неск. % от .

Особой проблемой, служившей пробным камнем для многих космогонич. гипотез, оставалась проблема распределения момента количества движения в Солнечной системе: хотя масса планет составляет менее 1% массы Солнца, в их орбитальном движении заключено более 98% общего момента количества движения всей Солнечной системы.

В 60-х гг. 20 в. появились первые приближенные количеств. теории совместного образования Солнца и протопланетного облака (Ф. Хойл, Великобритания, 1960 г.; А. Камерон, США, 1962 г.; Э. Шацман, Франция, 1967 г.). В этих теориях в той или иной форме рассматривалось отделение вещества от сжимающегося протосолнца вследствие наступления у него ротац. неустойчивости (при уравнивании на экваторе центробежной силы и силы притяжения).

Хойл и Шацман стремились показать расчетами, что протопланетное облако имело минимально допустимую массу. Для объяснения распределения момента количества движения между Солнцем и планетами Хойл использовал интересную идею шведского астрофизика Х. Альвена о возможности магн. сцепления вращающегося Солнца и ионизованного вещества протопланетного облака, благодаря к-рому Солнце может передать момент близлежащим частям протопланетного облака. На б"ольших расстояниях, где магн. поле ослаблено, перенос вещества и момента осуществлялся, по его мнению, с помощью . Эти идеи используются и в современных моделях образования Солнечной системы.

Медленность вращения совр. Солнца Шацман объяснял потерей нек-рой части вещества с поверхности Солнца, происшедшей уже после превращения протосолнца в Солнце. Улетающее ионизованное вещество вплоть до больших расстояний продолжает взаимодействовать с магн. полем вращающегося Солнца и приобретает значит. момент количества движения, к-рый и уносит с собой. Это объяснение медленности вращения Солнца считается наиболее вероятным.

Камерон в своих работах 60-х гг. предполагал, что Солнечная система возникла в результате сжатия (коллапса) межзвездного облака с массой , и развивал теорию эволюции такого облака, обходя молчанием встречающиеся трудности. Массивное протопланетное облако, отделившееся от протосолнца, должно было дополнительно разогреться в результате выделения при его сжатии к центральной плоскости. При этом все вещество облака должно было перейти в газовую фазу. По мере последующего остывания протопланетного облака в нем должна была происходить конденсация сначала наименее летучих, т.е. наиболее тугоплавких, веществ, а затем все более летучих. В более поздних работах Камерон рассматривал протопланетное облако умеренной массы, для к-рого начальная темп-ра в зоне формирования планет земной группы и метеоритов должна была составлять всего неск. сотен o С. В наиболее общем случае "облака малой массы темп-ра должна быть еще ниже. Следствия, вытекающие из этих представлений, были подвергнуты проверке при анализе вещества метеоритов.

Начиная с 70-х гг. 20 в. лабораторные анализы метеоритов, к-рые на протяжении всей своей истории не подвергались сильному нагреву, указывали на присутствие в них вещества, напоминающего, по-видимому, . Его присутствие в количестве хотя бы неск. % теперь уже не вызывает сомнений. Согласно Д. Клейтону (США, 1978 г.), почти вся пыль в первичном протопланетном облаке имела межзвездное происхождение.

Определения изотопного состава земных образцов и метеоритов, а также лунных образцов показали его высокую однородность (за исключением следов фракционирования изотопов при образовании отдельных образцов). Это указывает на хорошую перемешанность осн. массы протопланетного вещества. Однако ряд обнаруженных изотопных аномалий в нек-рых метеоритах свидетельствует о том, что в протопланетном облаке присутствовали порции вещества, не перемешанные с осн. массой вещества. По-видимому, в протопланетном облаке не было полного испарения межзвездной пыли, при к-ром различия изотопного состава были бы сглажены. Еще в 1960 г. исследования изотопного состава Xe из метеоритов выявили присутствие в нем дочернего продукта распада - короткоживущего радиоактивного изотопа 129 I, а в 1965 г. - продуктов распада 244 Pu (периоды полураспада и лет соответственно). Присутствие газообразных химических инертных продуктов распада показывает, что нек-рое время после нуклеосинтеза этих изотопов образовалась твердая фаза, где и произошел распад сохранившейся части этих изотопов. Одним из важнейших процессов нуклеосинтеза и единственным процессом синтеза Pu явл. взрывы . Возникло естеств. предположение, что незадолго до сжатия межзвездного газово-пылевого облака, приведшего к образованию протосолнца с протопланетным диском, неподалеку произошел взрыв сверхновой, инжектирующей в облако свежие продукты нуклеосинтеза. Присутсвие в метеоритах продуктов распада изотопов 129 I и 244 Pu интерпретировалось как указание на то, что между взрывом сверхновой и образованием твердого метеоритного вещества прошло всего неск. периодов полураспада, т.е. время ~ 10 7 -10 8 лет. Этот промежуток времени, названный интервалом формирования, был сокращен до 10 6 -10 7 лет, когда удалось выявить в ряде метеоритов присутсвие продуктов распада еще более короткоживущих изотопов - 26 Al и 107 Pd (периоды полураспада и лет).

Если исходить из идеи о сохранении межзвездных пылинок, понятие "интервал формирования" теряет свой смысл. Конденсация твердого веществав и образование пылинок начинаются еще на стадии разлета продуктов взрыва сверхновой, и количество продуктов распада короткоживущих изотопов, присутствующих в метеоритном веществе, зависит от доли свежей пыли, инжектированной в межзвездное облако либо перед его сжатием (коллапсом), либо в уже сформировавшееся допланетное облако. Камерон и С. Труран (США, 1970 г.) предложили, что взрыв близко расположенной сверхновой не только инжектировал свежее вещество в протосолнечную туманность, но и содействовал ее сжатию.

Достижения астрофизики и планетологии в 70-х гг. 20 в.: первые расчеты коллапса, учитывающие вращение сжимающихся протозвезд; исследование областей совр. звездообразования в Галактике; снимки поверхностей планет Солнечной системы и их спутников, изобилующих ударными кратерами, - наглядно свидетельствуют о правильности общих основ совр. теории формирования планет.

Наряду с исследованиями, определяющими генеральную линию развития планетной космогонии, существуют представления, не пользующиеся широким признанием. Так, Альвен разрабатывает с 40-х гг. 20 в. гипотезу о том, что образование планетной системы на всех этапах определялось в основном эл.-магн. силами. Для этого молодое Солнце должно было обладать очень сильным магн. полем, в тысячи раз более сильным, чем современное. Газы межзвездного облака, падавшего к Солнцу под действием его притяжения, постепенно ионизовались и по мере ускорения своего падения под влиянием магн. поля Солнца переходили от падения к обращению вокруг Солнца. Первыми на больших расстояниях от Солнца должны были ионизоваться металлы и др. вещества, обладающими низкими потенциалами , а последним ближе всего к Солнцу должен был ионизоваться водород. Хим. состав планет дает обратную картину распределения водорода и более тяжелых элементов. Вследствие этого и искусственности ряда др. предположений гипотеза Альвена почти не имеет сторонников.

Англ. ученый М. Вульфсон в 60-70-х гг. 20 в. пытался развивать гипотезу, согласно к-рой приобретение Солнцем протопланетного вещества объяснялось сочетанием приливного воздействия и захвата: Солнце захватило сгустки вещества, вырванного его притяжением из пролетавшей мимо разреженной протозвезды. Как и гипотеза Джинса, эта схема имеет много слабых мест и не пользуется популярностью.

3. Современное состояние планетной космогонии:
Образование Солнца и протопланетного облака

Данные, накопленные астрофизикой, говорят о том, что звезды, в т.ч. и звезды солнечного типа, образуются в газово-пылевых комплексах с массой . Примером такого комплекса явл. известная туманность Ориона, где звезды продолжают образовываться. По-видимому, и Солнце образовалось с группой звезд в ходе сложного процесса сжатия и фрагментации подобной массивной туманности.

Начавшее сжиматься массивное облако, участвующее в общем вращении Галактики, не может сжаться до высокой плотности из-за большого момента вращения. Поэтому оно стремится распасться на отдельные фрагменты. Часть момента вращения при этом переходит в момент относительного движения фрагментов. Процесс последовательной фрагментации, сопровождаемый беспорядочными (турбулентными) движениями, ударными волнами, запутыванием магн. полей, приливным взаимодействием фрагментов, сложен и понят далеко не достаточно. Однако эволюция изолированного фрагмента, имеющего массу и обладающего не слишком большим начальным моментом вращения K (), уже может быть прослежена путем расчетов на ЭВМ. Расчеты показывают, что при большом моменте вращения вместо протозвезды может возникнуть неустойчивое кольцо, разбивающееся на фрагменты. Таким путем, возможно, формируются кратные звезды. При много меньшем значении K более вероятно образование одиночной звезды. В 80-е гг. 20 в. появились детальные расчеты по образованию около сжимающейся протозвезды (Солнца) уплощенного газово-пылевого диска. В экваториальной области сжимающейся протозвезды должна существовать область с интенсивным перераспределением момента вращения. В случае эффективной турбулентности, вызванной продолжающейся аккрецией газа, все новые порции вещества с избыточным моментом выносятся наружу, образуя вращающийся газово-пылевой диск. Часть вещества из сжимающейся оболочки аккрецирует непосредственно на диск. Не исключено, что в зависимости от начальных условий в туманности, влияния соседних фрагментов, а также вспыхивающих поблизости новых и сверхновых звезд массы и размеры образующихся дисков могут варьировать в широких пределах. Важную роль в ранней эволюции таких дисков играет активность молодой звезды - ее излучение в рентг. и УФ-диапазонах, общая светимость и интенсивность . Имеются данные, что рентг. и УФ-излучение молодых звезд солнечной массы может на порядки превышать интенсивность коротковолнового излучения совр. Солнца. С использованием ур-ний гидродинамики были построены модели околосолнечного газово-пылевого диска, вращающегося вокруг такого активного Солнца. Согласно этим моделям, темп-ра в центральной плоскости диска падает с расстоянием от Солнца как r -1 -r -1/2 , составляя 300-400 К на расстоянии r =1 а.е. и лишь десятки кельвинов на а.е. Внеш. разреженные слои диска могли нагреваться коротковолновым излучением Солнца до очень высоких темп-р, что вело к потере газа (его рассеянию в межзвездное пространство). Этому процессу способствовал также интенсивный солнечный ветер. Однако структуру внутренних, более холодных областей диска хорошо отражает модель, положенная в основу исследований Шмидта и его сотрудников.

Процесс образования планет и их спутников

При моделировании отдельных стадий эволюции протопланетного облака и образования планет (рис.) большое внимание уделяется начальной стадии - опусканию пылинок в центральной плоскости диска и их слипанию в условиях допланетного облака. От быстроты роста пылинок зависит время их опускания и образование уплощенного пылевого диска. Последующий распад пылевого диска, образование пылевых сгущений и их превращение в рой компактных тел астероидных размеров с космогонич. точки зрения был весьма быстрым (0,15 аккумулирующиеся тела сливаются в единый звездообразный спутник Солнца. Это явл. еще одним подтверждением правильности модели маломассивного допланетного облака. Численное моделирование в принципе позволяет определять одновременно распределение масс и распределение скоростей допланетных тел. Однако сложность учета гравитац. взаимодействия многих тел долгое время не позволяла получать надежные результаты. Недавно Дж. Везерил (США) проделал весьма трудоемкие расчеты динамики роя тел в "зоне питания" планет земной группы, к-рые подтвердили как характер распределения скоростей на заключительном этапе роста планет, так и время аккумуляции Земли (~ 10 8 лет), оценивавшиеся ранее аналитич. методами. Процесс образования планет земной группы прослежен уже достаточно детально. Получаемым методом численного моделирования расстояния между планетами, их массы, периоды собств. вращения, наклоны осей удовлетворительно согласуются с наблюдениями. Процесс образования планет-гигантов был более сложным, и многие его детали еще предстоит выяснить. Существуют две гипотезы о пути формирования Юпитера и Сатурна, содержащих много водорода и гелия (по своему составу они ближе к Солнцу, чем др. планеты). Первая гипотеза ("контракции") объясняет "солнечный" состав планет-гигантов тем, что в протопланетном диске большой массы образовались массивные газово-пылевые сгущения - протопланеты, к-рые затем в процессе гравитац. сжатия превратились в планеты-гиганты. Эта гипотеза не объясняет удаления из Солнечной системы больших излишков вещества, не вошедшего в планеты, а также причин отличия состава Юпитера и Сатурна от солнечного (Сатурн содержит больше тяжелых хим. элементов, чем Юпитер, к-рый, в свою очередь, содержит их относительно больше, чем Солнце). Согласно второй гипотезе ("аккреции"), образование Юпитера и Сатурна протекало в два этапа. На первом, длившемся ок. лет с области Юпитера и лет в области Сатурна, происходила аккумуляция твердых тел таким же образом, как в области планет земной группы. Когда самые крупные тела достигли критич. массы (ок. двух масс Земли), начался второй этап - газа на эти тела, длившийся не менее 10 5 -10 6 лет. На первом этапе из области Юпитера диссипировала часть газа, и его состав оказался отличным от солнечного; еще больше это проявилось у Сатурна. На стадии аккреции наибольшая темп-ра наружных слоев Юпитера достигала 5000 К, а у Сатурна - ок. 2000 К. Значит. прогревание Юпитером своей окрестности определило силикатный состав его близких спутников. Согласно гипотезе контракции на ранней стадии планеты-гиганты также имели высокие темп-ры, однако динамика процессов в рамках гипотезы аккреции более обоснована. Образование Урана и Нептуна, содержащих всего 10-20% H и He, также лучше объясняется второй гипотезой. К моменту достижения ими критич. массы (за время ~ 10 8 лет) б"ольшая часть газа уже покинула Солнечную систему.

Малые тела Солнечной системы - и - представляют собой остатки роя "промежуточных" тел. Астероиды - это каменистые тела внутр. околосолнечной зоны, кометы - каменисто-ледяные тела зоны планет-гигантов. Массы планет-гигантов еще до завершения их роста стали столь большими, что своим притяжением начали очень сильно изменять орбиты пролетавших мимо них малых тел. В результате нек-рые из них приобрели очень вытянутые орбиты, в т.ч. и орбиты, уходящие далеко за пределы планетной системы. На тела, удалявшиеся дальше 20-30 тыс. а.е. от Солнца, заметное гравитац. воздействие оказывали ближайшие звезды. В большинстве случаев воздействие звезд приводило к тому, что малые тела переставали заходить в область планетных орбит. Планетная система оказалась окруженной роем каменисто-ледяных тел, простирающимся до расстояний 10 5 а.е. (~ 1 пк) и являющимся источником ныне наблюдаемых комет. Существование кометного облака установил нидерландский астроном Я. Оорт (1950 г.). Влияние ближайших звезд может иногда столь сильно возмутить орбиту каменисто-ледяного тела, что оно уйдет совсем из Солнечной системы, а иногда может перевести его на орбиту, проходящую в окрестности Солнца. Вблизи Солнца ледяные тела начинают испарятсья под действием его лучей и становятся видимыми - возникает явление кометы.

Астероиды сохранились до нашего времени благодаря тому, что подавляющее большинство их движется в широком промежутке между орбитами Марса и Юпитера. Аналогичные каменистые тела, некогда существовавшие во всей зоне планет земной группы, давно присоединились к этим планетам либо разрушились при взаимных столкновениях, либо были выброшены за пределы этой зоны благодаря гравитац. воздействию планет.

Крупнейшие из совр. астероидов - поперечником в 100 км и более - образовались еще в эпоху формирования планетной системы, а средние и мелкие в большинстве своем явл. обломками крупных астероидов, раздробившихся при столкновениях. Благодаря столкновениям астероидных тел непрерыво пополняется запас пылевого вещества в межпланетном пространстве. Др. источником мелких твердых частиц явл. распад комет при пролете их вблизи Солнца.

Недра "первичных" крупных астероидов подвергались, по-видимому, разогреву примерно до 1000 o С, что отразилось на составе и структуре их вещества. Мы знаем об этом благодаря тому, что на поверхность Земли выпадают мел-кие обломки астероидов - , состав и физ. св-ва к-рых указывают, что они прошли стадии нагрева и дифференциации вещества. Причины разогрева астероидов до конца не ясны. Возможно, нагрев был связан с выделением теплоты при распаде короткоживущих радиоактивных изотопов; астероиды могли быть также нагреты взаимными столкновениями.

Нек-рые метеориты представляют собой наилучшие из доступных нам образчиков "первичного" планетного вещества. По сравнению с земными горными породами они несравненно меньше изменены последующими физ.-хим. процессами. Возрасты метеоритов, определяемые по содержанию радиоактивных элементов и продуктов их распада, характеризуют в то же время возраст всей Солнечной системы. Он оказывается равным ок. 4,6 млрд. лет. Следовательно, длительность процесса формирования планет незначительна по сравнению с временем их дальнейшего существования.

Происхождение систем регулярных спутников планет, движущихся в направлении вращения планеты по почти круговым орбитам, лежащим в плоскости ее экватора, авторы космогонич. гипотез обычно объясняют повторением в малом масштабе того же процесса, к-рый они предлагают для объяснения образования планет Солнечной системы. Системы регулярных спутников имеются у Юпитера, Сатурна и Урана, к-рые обладают также кольцами из мелких твердых частиц. У Нептуна нет регулярной системы спутников и, по-видимому, нет колец. Совр. планетная космогония объясняет образование регулярных спутников эволюцией протоспутниковых дискообразных poев частиц, возникших в результате неупругих столкновений вблизи данной планеты планетезималей, двигавшихся по околосолнечным орбитам.

В системе регулярных спутников Юпитера имеется деление на две группы: силикатную и водно-силикатную. Различия в хим. составе спутников показывают, что молодой Юпитер был горячим (нагрев мог быть обусловлен выделением гравитац. энергии при аккреции газа). В системе спутников Сатурна, состоящих в основном из льда, нет деления на две группы, что связано с более низкой темп-рой в окрестностях Сатурна, при к-рой могла конденсироваться вода.

Происхождение иррегулярных спутников Юпитера, Сатурна и Нептуна, т. е. спутников, обладающих обратным движением, а также небольшого внеш. спутника Нептуна, обладающего прямым движением по вытянутой орбите, объясняют захватом.

У медленно вращающихся планет Меркурия и Венеры спутников нет. Они, по-видимому, испытали приливное торможение со стороны планеты и упали в конце концов на её поверхность. Действие приливного трения проявилось также в системах Земля-Луна и Плутон-Харон, где спутники, образуя с планетой двойную систему, всегда повёрнуты к планете одним и тем же полушарием.

Объяснение происхождения Луны потребовало детального исследования св-в околоземного роя частиц, существование к-рого поддерживалось в течение всего времени аккумуляции Земли неупругими столкновениями частиц в ее окрестностях.

Образование роя достаточной массы возможно лишь за счёт многочисл. столкновений наиболее мелкой фракции межпланетных частиц. Динамика роя позволяет подойти к объяснению различий в хим. составе Луны и Земли, черпавших вещество из одной и той же зоны. Преимуществ. попадание в рой мелких частиц могло одновременно привести к обогащению роя силикатным веществом, т. к. именно каменистые тела при столкновениях образуют мелкую пыль (в отличие от металлич. тел). На стадии мелкодисперсного вещества могли быть частично потеряны и летучие вещества, дефицит к-рых был обнаружен в лунных породах. Из спутникового роя могла образоваться система из неск. крупных спутников, орбиты к-рых с разной скоростью эволюционировали под действием приливного трения и к-рые в конечном счете объединились в одно тело - Луну. Анализ состава и определения возраста доставленных в 70-х гг. 20 в. на Землю лунных пород показал, что Луна еще в ходе своего образования или вскоре после этого была разогрета и прошла магматич. дифференциацию, в результате к-рой сформировалась лунная кора. Изобилие крупных ударных кратеров на материковой части лунной поверхности показывает, что кора успела затвердеть ещё до того, как затухла интенсивная бомбардировка Луны формировавшими ее телами. Слияние Луны из неск. крупных тел (протолун) дает быстрое нагревание до 1000 К ее поверхностного слоя толщиной в сотни км, что лучше согласуется с ранней дифференциацией вещества Луны. При медленной аккумуляции Луны из мелких частиц выделившейся гравитац. энергии недостаточно для требуемого нагрева Луны. Альтернативные гипотезы нагрева Луны в результате распада короткоживущих радиоактивных изотопов и нагрева электрич. токами, индуцированными интенсивным солнечным ветром, требуют неприемлемо быстрого образования Луны на самом раннем этапе формирования Солнечной системы. Итак, наиболее вероятным представляется образование Луны на околоземной орбите, однако в литературе продолжают обсуждаться и маловероятные гипотезы захвата Землей готовой Луны и отделения Луны от Земли.

Заметное различие ср. плотности планет земного типа связано, по-видимому, со значит. различием общего содержания Fe и содержания металлич. Fe. Высокая плотность Меркурия (5,4 г/см 3) указывает на то, что он содержит до 60-70% металлич. никелистого железа, тогда как низкая плотность Луны (3,34 г/см 3) указывает на отсутствие в ней значит. количеств металлич. железа (менее 10-15%). Содержание богатого железом сплава в Земле составляет ок. 32%, в Венере - ок. 28%.

В 70-е гг. 20 в., одновременно с развитием представлений о последовательной конденсации различных веществ в остывающем протопланетном облаке, появилась гипотеза неоднородной (гетерогенной) аккумуляции планет, согласно к-рой полная аккумуляция нелетучих веществ в несколько крупных тел - ядер будущих планет - успевала произойти до заметного дальнейшего остывания облака и конденсации других, более летучих веществ. По этой гипотезе, формирующиеся планеты с самого начала оказываются слоистыми. В сочетании с предположением о конденсации сначала металлич. железа, а затем силикатов гипотеза гетерогенной аккумуляции объясняла возникновение железных ядер у Земли и Венеры. Однако она игнорировала надежные астрофизич. оценки скорости остывания облака: остывание должно происходить несравненно быстрее, чем аккумуляция продуктов конденсации. Выдвигалась также гипотеза, что ядра Земли и Венеры состоят в основном из силикатов и окислов, перешедших под действием давления вышележащих слоев в плотное металлич. состояние. В этом случае ядра Земли и Венеры содержали бы всего неск. % металлич. железа, т.е. приблизительно столько же, сколько ядро Луны, но меньше, чем ядро Марса (давление в недрах Марса и Луны заведомо слишком мало для перехода силикатов в металлич. состояние). Эксперименты по статич. сжатию вещества до давлений, близких к давлениям в ядрах Земли и Венеры, пока не позволяют сделать определенного вывода о возможности таких фазовых переходов с достаточно большим скачком плотности.

По-видимому, образование ядер у планет земной группы произошло вследствие отделения богатого железом расплава от ферромагнезиальных силикатов. Физикохимия процесса отделения железного расплава и динамика опускания его к центру планеты изучены пока недостаточно. В работах, посвященных анализу процесса расслоения первично однородных планет, наибольшее число расчетов проводится для Земли.

Начальное состояние и эволюция Земли

Земля росла из роя "промежуточных" тел, двигавшихся в широкой области между орбитами Венеры и Марса. Отличия в составе и плотности планетезималей были достаточно велики, на что указывает разность ср. плотностей этих планет. При падении тел на протоземлю они от удара разрушались, происходил нагрев вещества, сопровождавшийся дегазацией и дегидратацией. В результате перемешивания вещества при ударах хим. неоднородности частично сглаживались. Удары тел с размерами в десятки и более км приводили к накоплению существенной доли энергии на большой глубине, что являлось осн. источником нагрева планеты. Дополнит. разогрев происходил вследствие распада радиоактивных элементов и сжатия вещества под увеличивающимся давлением вышележащих (нарастающих) слоев. Согласно расчетам, центральная область Земли к концу ее образования была нагрета до 1000-1500 К, что меньше темп-ры плавления пород на этих глубинах. (В недрах планеты темп-ра плавления увеличивается с глубиной вследствие роста давления.) На глубинах 50-2000 км темп-ра превосходила темп-ру плавления железа, однако в целом ещё дифференцированное вещество вряд ли находилось в жидком состоянии. Поверхность же Земли вследствие быстрой теплоотдачи имела достаточно низкую темп-ру, уже тогда допускавшую существование первичных водных бассейнов. По-видимому, уже на заключит. этапах аккумуляции Земли началась крупномасштабная дифференциация вещества - отделение и уход в нижние горизонты тяжелых компонентов. Гравитац. энергия, выделявшаяся при расслоении Земли, в результате конвективных движений масс переносилась к поверхности Земли и содействовала ее обновлению, о чем говорит отсутствие на земной поверхности древнейших пород, с возрастами 3,8-4,5 млрд. лет. Не исключено, что разрушение первичной коры связано, как и у Луны, с поздней бомбардировкой падавшими телами. Наиболее легкие вещества всплывали ("выдавливались") на поверхность, постепенно слагая наружный слой земного шара - земную кору. Это был длит. процесс (неск. млрд. лет), к-рый в разных местах земного шара протекал по-разному, что привело к образованию участков с толстой корой (материков) и участков с тонкой корой (океанич. впадин). Земная кора отличается и по составу, и по плотности от подстилающего ее вещества мантии Земли. Плотность коры составляет 2,7-2,8 г/см 3 , а плотность верхней мантии (приведённая к нулевому давлению) ок. 3,3-3,5 г/см 3 . Скачок плотности на границе ядра превышает 4 г/см 3 . Плотность вещества ядра несколько меньше плотности Fe при этих давлениях, что указывает на присутствие в нем какой-то более легкой примеси.

Разогревание Земли сопровождалось выделением газов и водяных паров, содержащихся в небольшом количестве в земных каменистых веществах. Прорвавшись на поверхность, водяные пары сконденсировались в воды морей и океанов, а газы образовали атмосферу, состав к-рой первоначально существенно отличался от современного. Состав совр. земной атмосферы в значит. мере обусловлен существованием на Земле жизни (биосферы). Нек-рую роль в образовании гидросферы и атмосферы, возможно, сыграли падавшие на Землю ледяные ядра комет.

Процесс хим. расслоения земных недр происходит и сейчас. Легкие расплавы в виде магмы поднимаются из мантии в кору. Они частично застревают и застывают внутри земной коры, а частично прорывают кору и в виде лавы изливаются наружу при вулканич. извержениях. Перемещения вещества в недрах Земли проявляются в виде подъемов и опусканий больших участков поверхности, горизонтальных перемещений отдельных плит, на к-рые расчленена земная кора, в виде процессов вулканизма и горообразования, а также землетрясений.

Лит.:
Шмидт О.Ю., Четыре лекции о теории происхождения Земли, 3 изд., М., 1957; Левин Б.Ю., Происхождение Земли и планет, 4 изд., М., 1964; Сафронов В.С., Эволюция допланетного облака и образование Земли и планет, М., 1969; Вуд Дж., Метеориты и происхождение солнечной системы, пер. с англ., М., 1971; Рускол Е.Л., Происхождение Луны М., 1975; Альвен X., Аррениус Г. Эволюция солнечной системы, пер. с англ. М., 1979; Спутники планет, пер. с англ., М. 1980; Протозвезды и планеты, пер. с англ, ч. 1-2, М., 1982.

(Б.Ю. Левин, А.В. Витязев )