Звездные величины.

(из Википедии)

Звёздная величина - числовая характеристика объекта на небе, чаще всего звезды, показывающая, сколько света приходит от него в точку, где находится наблюдатель.

Видимая (визуальная)

Современное понятие видимой звёздной величины сделано таким, чтобы оно соответствовало величинам, приписанным звёздам древнегреческим астрономом Гиппархом во II веке до н. э. Гиппарх разделил все звёзды на шесть величин. Самые яркие он назвал звёздами первой величины, самые тусклые — звёздами шестой величины. Промежуточные величины он распределил равномерно между оставшимися звёздами.

Видимая звёздная величина зависит не только от того, сколько света излучает объект, но и от того, на каком расстоянии от наблюдателя он находится. Видимая звёздная величина считается единицей измерения блеска звезды, причём чем блеск больше, тем величина меньше, и наоборот.

В 1856 году Н. Погсон предложил формализацию шкалы звёздных величин. Видимая звёздная величина определяется по формуле:

Где I — световой поток от объекта, C — постоянная.

Поскольку данная шкала относительная, то её нуль-пункт (0 m ) определяют как яркость такой звезды, у которой световой поток равен 10³ квантов /(см²·с·Å) в зелёном свете (шкала UBV) или 10 6 квантов /(см²·с·Å) во всём видимом диапазоне света. Звезда 0 m за пределами земной атмосферы создаёт освещённость в 2,54·10 −6 люкс.

Шкала звёздных величин является логарифмической, поскольку изменение яркости в одинаковое число раз воспринимается как одинаковое (закон Вебера — Фехнера). Кроме того, поскольку Гиппарх решил, что величина тем меньше , чем звезда ярче , то в формуле присутствует знак минус.

Следующие два свойства помогают пользоваться видимыми звёздными величинами на практике:

  1. Увеличению светового потока в 100 раз соответствует уменьшение видимой звёздной величины ровно на 5 единиц.
  2. Уменьшение звёздной величины на одну единицу означает увеличение светового потока в 10 1/2,5 =2,512 раза.

В наши дни видимая звёздная величина используется не только для звёзд, но и для других объектов, например, для Луны и Солнца и планет. Поскольку они могут быть ярче самой яркой звезды, то у них может быть отрицательная видимая звёздная величина.

Видимая звёздная величина зависит от спектральной чувствительности приёмника излучения (глаза, фотоэлектрического детектора, фотопластинки и т. п.)

  • Визуальная звёздная величина (V или m v ) определяется спектром чувствительности человеческого глаза (видимый свет), имеющего максимум чувствительности при длине волны 555 нм. или фотографически с оранжевым фильтром.
  • Фотографическая или «синяя» звёздная величина (B или m p ) определяется фотометрированием изображения звезды на фотопластинке, чувствительной к синим и ультрафиолетовым лучам, или при помощи сурьмяно-цезиевого фотоумножителя с синим фильтром.
  • Ультрафиолетовая звёздная величина (U ) имеет максимум в ультрафиолете при длине волны около 350 нм.

Разности звёздных величин одного объекта в разных диапазонах U−B и B−V являются интегральными показателями цвета объекта, чем они больше, тем более красным является объект.

  • Болометрическая звёздная величина соответствует полной мощности излучения звезды, т. е. мощности, просуммированной по всему спектру излучения. Для её измерения применяется специальное устройство — болометр.

абсолютная

Абсолютная звёздная величина (M ) определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Абсолютная болометрическая звёздная величина Солнца +4,7. Если известна видимая звёздная величина и расстояние до объекта, можно вычислить абсолютную звёздную величину по формуле:

где d 0 = 10 пк ≈ 32,616 световых лет.

Соответственно, если известны видимая и абсолютная звёздные величины, можно вычислить расстояние по формуле

Абсолютная звёздная величина связана со светимостью следующим соотношением: где и — светимость и абсолютная звёздная величина Солнца.

Звёздные величины некоторых объектов

Объект m
Солнце −26,7
Луна в полнолуние −12,7
Вспышка Иридиума (максимум) −9,5
Сверхновая 1054 года (максимум) −6,0
Венера (максимум) −4,4
Земля (глядя с Солнца) −3,84
Марс (максимум) −3,0
Юпитер (максимум) −2,8
Международная космическая станция (максимум) −2
Меркурий (максимум) −1,9
Галактика Андромеды +3,4
Проксима Центавра +11,1
Самый яркий квазар +12,6
Самые слабые звёзды, наблюдаемые невооружённым глазом От +6 до +7
Самый слабый объект, заснятый в 8-метровый наземный телескоп +27
Самый слабый объект, заснятый в космический телескоп Хаббла +30
Объект Созвездие m
Сириус Большой пёс −1,47
Канопус Киль −0,72
α Центавра Центавр −0,27
Арктур Волопас −0,04
Вега Лира 0,03
Капелла Возничий +0,08
Ригель Орион +0,12
Процион Малый пёс +0,38
Ахернар Эридан +0,46
Бетельгейзе Орион +0,50
Альтаир Орёл +0,75
Альдебаран Телец +0,85
Антарес Скорпион +1,09
Поллукс Близнецы +1,15
Фомальгаут Южная рыба +1,16
Денеб Лебедь +1,25
Регул Лев +1,35

Солнце с разных расстояний

Неодинаковая яркость (или блеск) различных объектов на небе – наверно первое, что замечает человек при наблюдениях; потому, в связи с этим, ещё давно, возникла необходимость во введении удобной величины, которая позволяла бы классифицировать светила по яркости.

История

Впервые такую величину для своих наблюдений невооружённым глазом применил древнегреческий астроном, автор первого европейского звёздного каталога – Гиппарх. Все звёзды в своём каталоге он классифицировал по яркости, обозначив самые яркие – звёздами 1-ой величины, а самые тусклые – звёздами 6-ой величины.Данная система прижилась, а в середине XIX-го века была усовершенствована до своего современного вида английским астрономом Норманом Погсоном.

Таким образом, получили безразмерную физическую величину, логарифмически связанную с освещённостью, которую создают светила (собственно звёздную величину):

m1-m2 =-2,5*lg(L1/L2)

где m1 и m2 звёздные величины светил, а L1 и L2 – освещённости в люксах (лк – единица измерения освещённости в системе СИ), создаваемые этими объектами. Если подставить в левую часть данного уравнения значение m1-m2 = 5, то произведя несложное вычисление, обнаружится, что освещённости в этом случае соотносятся как 1/100, так что разница в блеске на 5 звёздных величин, соответствует разнице в освещённости от объектов в 100 раз.

Продолжая решать эту задачу, извлечём корень 5-ой степени из 100 и мы получим изменение освещённости при разнице в блеске в одну звёздную величину, изменение освещённости составит 2,512 раза.

Это весь основной математический аппарат, необходимый для ориентации в данной шкале яркости.

Шкала звёздных величин

С введением этой системы также нужно было задать начало отсчёта шкалы звёздных величин. Для этого за нулевую звёздную величину (0m), изначально был принят блеск звезды Вега (альфа Лиры). В настоящее же время наиболее точным началом отсчёта является блеск звезды, которая на 0,03m ярче Веги. Однако глаз такую разницу не заметит, так что для визуальных наблюдений – блеск, соответствующий нулевой звёздной величине по-прежнему можно принимать по Веге.

Что ещё важно помнить касаемо данной шкалы – чем меньше звёздная величина, тем ярче объект. К примеру, та же Вега со своим блеском в +0,03 m будет почти в 100 раз ярче звезды с блеском в +5m. Юпитер же со своим максимумом блеска в -2,94m, будет ярче Веги в:

2,94-0,03 = -2,5*lg(L1/L2)
L1/L2 = 15,42 раз

Можно решить эту задачу и другим способом – просто возведя 2,512 в степень, равную разнице звёздных величин объектов:

2,512^(-2,94-0,03) = 15,42

Классификация звёздной величины

Теперь, окончательно разобравшись с матчастью, рассмотрим классификацию применяемых в астрономии звёздных величин.

Первая классификация – по спектральной чувствительности приёмника излучения. В этом плане звёздная величина бывает: визуальной (яркость учитывается только в видимом глазу диапазоне спектра); болометрической (яркость учитывается во всём диапазоне спектра, не только видимый свет, а также ультрафиолетовый, инфракрасный и остальные спектры вместе взятые); фотографической (яркость с учётом чувствительности к спектру фотоэлементов).

Сюда же можно отнести и звёздные величины в конкретном участке спектра (например, в диапазоне голубого света, жёлтого, красного или ультрафиолетового излучения).

Соответственно, визуальная звёздная величина предназначена для оценки блеска светил при визуальных наблюдениях; болометрическая – для оценки общего потока всего излучения от светила; а фотографическая и узкополосные величины – для оценки показателей цвета светил в какой-либо фотометрической системе.

Видимая и абсолютная звёздные величины

Второй тип классификации звёздных величин – по количеству зависимых физических параметров. В этом плане звёздная величина может быть – видимой и абсолютной. Видимая звёздная величина – это тот блеск объекта, который глаз (или другой приёмник излучения) воспринимает непосредственно со своего текущего положения в пространстве.

Зависит этот блеск сразу от двух параметров – это мощность излучения светила и расстояние до него. Абсолютная звёздная величина зависит только от мощности излучения и не зависит от расстояния до объекта, поскольку последнее принимается общим для конкретного класса объектов.

Абсолютная звёздная величина для звёзд определяется, как их видимая звёздная величина если бы расстояние до звезды составляло бы 10 парсек (32,616 световых лет). Абсолютная звёздная величина для объектов Солнечной системы определяется как их видимая звёздная величина, если бы они находились на расстоянии в 1 а.е. от Солнца и показывали бы для наблюдателя свою полную фазу, а сам бы наблюдатель при этом также бы находился в 1 а.е. (149,6 млн. км) от объекта (т.е. в центре Солнца).

Абсолютная звёздная величина метеоров определяется как их видимая звёздная величина, если бы они находились от наблюдателя на расстоянии 100 км и в точке зенита.

Применение звёздных величин

Данные классификации могут применяться совместно. Например, абсолютная визуальная звёздная величина Солнца составляет M(v) = +4,83. а абсолютная болометрическая M(bol) = +4,75, поскольку Солнце светит не только в видимом диапазоне спектра. В зависимости от значения температуры фотосферы (видимой поверхности) звезды, а также её принадлежности к классу светимости (главная последовательность, гигант, сверхгигант и т.д.).

Различаются визуальные и болометрические абсолютные звёздные величины звезды. Например, горячие звёзды (спектральные классы B и О) светят в основном в невидимом глазу ультрафиолетовом диапазоне. Так что их болометрический блеск куда сильнее, чем визуальный. То же касается и холодных звёзд (спектральные классы K и М), которые светят преимущественно в инфракрасном диапазоне.

Абсолютная визуальная звёздная величина самых мощных звёзд (гипергиганты и звёзды Вольфа-Райе) порядка -8, -9. Абсолютная болометрическая может доходить до -11, -12 (что соответствует видимой звёздной величине полной Луны).

Мощность излучения (светимость) при этом в миллионы раз превышает мощность излучения Солнца. Видимая визуальная звёздная величина Солнца с орбиты Земли составляет -26,74m; в районе орбиты Нептуна будет -19,36m. Видимая визуальная звёздная величина самой яркой звезды – Сириуса, составляет -1,5m, а абсолютная визуальная звёздная величина данной звезды +1,44, т.е. Сириус почти в 23 раза ярче Солнца в видимом спектре.

Планета Венера на небе всегда ярче всех звёзд (её видимых блеск колеблется в пределах от -3,8m до -4,9m); несколько менее ярок Юпитер (от -1,6m до -2,94m); Марс во время противостояний имеет видимую звёздную величину порядка -2m и ярче. В общем и целом, большинство планет в большинстве случаев являются самыми яркими объектами неба после Солнца и Луны. Поскольку в окрестностях Солнца нет звёзд с большой светимостью.

Представьте, что где-то в море в ночной тьме тихо мерцает огонек. Если бывалый моряк не объяснит вам, что это, вы часто и не узнаете: то ли перед вами фонарик на носу проходящей шлюпки, то ли мощный прожектор далекого маяка.

В том же положении в темную ночь находимся и мы, глядя на мерцающие звезды. Их видимый блеск зависит и от их истинной силы света, называемой светимостью , и от их расстояния до нас. Только знание расстояния до звезды позволяет подсчитать ее светимость по сравнению с Солнцем. Так например, светимость звезды, в десять раз менее яркой в действительности, чем Солнце, выразится числом 0,1.

Истинную силу света звезды можно выразить еще иначе, вычислив, какой звездной величины она бы нам казалась, если бы она находилась от нас на стандартном расстоянии в 32,6 светового года, то-есть на таком, что свет, несущийся со скоростью 300 000 км/сек, прошел бы его за это время.

Принять такое стандартное расстояние оказалось удобным для различных расчетов. Яркость звезды, как и всякого источника света, изменяется обратно пропорционально квадрату расстояния от него. Этот закон позволяет вычислять абсолютные звездные величины или светимости звезд, зная расстояние до них.

Когда расстояния до звезд стали известны, то мы смогли вычислить их светимости, то есть смогли как бы выстроить их в одну шеренгу и сравнивать друг с другом в одинаковых условиях. Надо сознаться, что результаты оказались поразительными, поскольку раньше предполагали, что все звезды «похожи на наше Солнце». Светимости звезд оказались поразительно разнообразными, и их в нашей шеренге не сравнить ни с какой шеренгой пионеров.

Приведем только крайние примеры светимости в мире звезд.

Самой слабой из известных долго являлась звезда, которая в 50 тысяч раз слабее Солнца, и ее абсолютная величина светимости: +16,6. Однако, впоследствии были открыты и ещё более слабые звезды, светимость которых, по сравнению с солнцем, меньше в миллионы раз!

Размеры в космосе обманчивы: Денеб с Земли сияет ярче Антареса, а вот Пистолет — не виден совсем. Тем не менее, наблюдателю с нашей планеты и Денеб и Антарес кажутся просто незначительными точками, по сравнению с Солнцем. Насколько это неверно можно судить по простому факту: Пистолет выпускает в секунду столько же света, сколько Солнце — за год!

На другом краю шеренги звезд стоит «S» Золотой Рыбы , видимая только в странах Южного полушария Земли как звездочка (то есть даже не видимая без телескопа!). В действительности она в 400 тысяч раз ярче Солнца, и ее абсолютная величина светимости: -8,9.

Абсолютная величина светимости нашего Солнца равна +5. Не так уж и много! С расстояния в 32,6 светового года мы бы его плохо видели без бинокля.

Если яркость обычной свечи принять за яркость Солнца, то в сравнении с ней «S» Золотой Рыбы будет мощным прожектором, а самая слабая звезда слабее самого жалкого светлячка.

Итак, звезды - это далекие солнца, но их сила света может быть совершенно иной, чем у нашего светила. Образно выражаясь, менять наше Солнце на другое нужно было бы с оглядкой. От света одного мы ослепли бы, при свете другого бродили бы, как в сумерках.

Звездные величины

Поскольку глаза служат первым инструментом при измерениях, мы должны знать простые правила, которым подчиняются наши оценки блеска источников света. Наша оценка различия в блеске является скорее относительной, чем абсолютной. Сравнивая две слабые звезды, мы видим, что они заметно отличаются друг от друга, но для двух ярких звёзд такое же различие в блеске остаётся нами незамеченным, так как оно ничтожно по сравнению с общим количеством излучаемого света. Другими словами, наши глаза оценивают относительное , а не абсолютное различие в блеске.

Гиппарх впервые поделил видимые простым глазом звёзды на шесть классов, соответственно их блеску. Позднее это правило несколько улучшили не меняя самой системы. Классы звёздных величин распределили так, чтобы звезда 1-й величины (средняя из 20 ) давала в сто раз больше света, чем звезда 6-й величины, которая находится на пределе видимости для большинства людей.

Разница в одну звездную величину равна квадрату числа 2,512. Разница в две величины соответствует 6,31 (2,512 в квадрате), в три величины- 15,85 (2,512 в третьей степени), в четыре- 39,82 (2,512 в четвертой степени), а в пять величин- 100 (2,512 в пятой степени).

Звезда 6-й величины даёт нам в сто раз меньше света, чем звезда 1-й величины, а звезда 11-й величины в десять тысяч раз меньше. Если же взять звезду 21-й величины, то её блеск будет меньше 100 000 000 раз.

Как уже понятно — абсолютная и относительная заездная величина,
вещи совершенно не сопоставимые. Для «относительного» наблюдателя с нашей планеты, Денеб в созвездии Лебедя выглядит примерно так. А на самом деле всей орбиты Земли едва хватило бы, чтобы целиком вместить окружность этой звезды.

Чтобы правильно классифицировать звезды (а вед все они отличаются друг от друга), нужно тщательно следить за тем, чтобы вдоль всего интервала между соседними звёздными величинами поддерживалось отношение блеска, равное 2,512. Простым глазом проделать такую работу невозможно, нужны специальные инструменты, по типу фотометров Пикеринга, использующих как эталон Полярную Звезду или даже «среднюю» искусственную звезду.

Также для удобства измерений необходимо ослабить свет очень ярких звёзд; этого можно добиться или поляризационным приспособлением, или с помощью фотометрического клина .

Чисто визуальными методами, даже с помощью больших телескопов, нельзя распространить нашу шкалу звёздных величин на слабые звёзды. Кроме того, визуальные методы измерения должны (и могут) производиться только непосредственно у телескопа. Поэтому, от чисто визуальной классификации, в наше время уже отказались, и используют метод фотоанализа.

Как можно сравнить количества света, получаемые фотопластинкой от двух звёзд различного блеска? Чтобы они казались одинаковыми, необходимо ослабить свет от более яркой звезды на известную величину. Проще всего сделать это, поставив диафрагму перед объективом телескопа. Количество света, попадающее в телескоп, меняется в зависимости от площади объектива, так что можно точно измерить ослабление света любой звезды.

Выберем какую-нибудь звезду в качестве стандартной и сфотографируем её с полным отверстием телескопа. Затем определим, каким отверстием нужно пользоваться при данной экспозиции, чтобы при съёмке более яркой звезды получить такое же изображение, как и в первом случае. Отношение площадей уменьшённого и полного отверстий даёт отношение блеска двух объектов.

Такой метод измерения дает погрешность всего 0,1 звёздной величины для любой из звезд в интервале от 1-й до 18-й звездной величины. Получаемые таким образом звёздные величины называются фотовизуальными .


Звездная величина

Безразмерная физическая величина, характеризующая , создаваемую небесным объектом вблизи наблюдателя. Субъективно ее значение воспринимается как (у ) или (у ). При этом блеск одного источника указывают путем его сравнения с блеском другого, принятого за эталон. Такими эталонами обычно служат специально подобранные непеременные звезды. Звездную величину сначала ввели как указатель видимого блеска оптических звезд, но позже распространили и на другие диапазоны излучения: , . Шкала звездных величин логарифмическая, как и шкала децибеллов. В шкале звездных величин разность на 5 единиц соответствует 100-кратному различию в потоках света от измеряемого и эталонного источников. Таким образом, разность на 1 звездную величину соответствует отношению потоков света в 100 1/5 = 2.512 раза. Обозначают звездную величину латинской буквой "m" (от лат. magnitudo, величина) в виде верхнего курсивного индекса справа от числа. Направление шкалы звездных величин обратное, т.е. чем больше значение, тем слабее блеск объекта. Например, звезда 2-й звездной величины (2 m ) в 2.512 раза ярче звезды 3-й величины (3 m ) и в 2.512 x 2.512 = 6.310 раза ярче звезды 4-й величины (4 m ).

Видимая звездная величина (m ; часто ее называют просто "звездная величина") указывает поток излучения вблизи наблюдателя, т.е. наблюдаемую яркость небесного источника, которая зависит не только от реальной мощности излучения объекта, но и от расстояния до него. Шкала видимых величин ведет начало от звездного каталога Гиппарха (до 161 ок. 126 до н.э.), в котором все видимые глазом звезды впервые были разбиты на 6 классов по яркости. У звезд Ковша Б.Медведицы блеск около 2 m , у Веги около 0 m . У особо ярких светил значение звездной величины отрицательно: у Сириуса около -1.5 m (т.е. поток света от него в 4 раза больше, чем от Веги), а блеск Венеры в некоторые моменты почти достигает -5 m (т.е. поток света почти в 100 раз больше, чем от Веги). Подчеркнем, что видимая звездная величина может быть измерена как невооруженным глазом, так и с помощью телескопа; как в визуальном диапазоне спектра, так и в других (фотографическом, УФ-, ИК-). В данном случае "видимая" (англ. apparent) означает "наблюдаемая", "кажущаяся" и не имеет отношения конкретно к человеческому глазу (см.: ).

Абсолютная звездная величина (М) указывает, какую видимую звездную величину имело бы светило в том случае, если бы расстояние до него составляло 10 и отсутствовало бы . Таким отразом, абсолютная звездная величина, в отличие от видимой, позволяет сравнивать истинные светимости небесных объектов (в заданном диапазоне спектра).

Что касается спектральных диапазонов, то существует множество систем звездных величин, различающихся выбором конкретного диапазона измерения. При наблюдении глазом (невооруженным или через телескоп) измеряется визуальная звездная величина (m v ). По изображению звезды на обычной фотопластинке, полученному без дополнительных светофильтров, измеряется фотографическая звездная величина (m P). Поскольку фотоэмульсия чувствительна к синим лучам и нечувствительна к красным, на фотопластинке более яркими (чем это кажется глазу) получаются голубые звезды. Однако и с помощью фотопластинки, используя ортохроматическую и желтый , получают так называемую фотовизуальную шкалу звездных величин (m Pv ), которая практически совпадает с визуальной. Сопоставляя яркости источника, измеренные в различных диапазонах спектра, можно узнать его цвет, оценить температуру поверхности (если это звезда) или (если планета), определить степень межзвездного поглощения света и другие важные характеристики. Поэтому разработаны стандартные , в основном определяемых подбором светофильтров. Наиболее популярна трехцветная : ультрафиолетовый (Ultraviolet), синий (Blue) и желтый (Visual). При этом желтый диапазон очень близок к фотовизуальному (B m Pv ), а синий - к фотографическому (B m P).

Решение задач по теме: «Блеск звезд и звездные величины».

№ 1.Во сколько раз Сириус ярче, чем Альдебаран? Солнце ярче, чем Сириус?

https://pandia.ru/text/78/246/images/image002_37.gif" width="158" height="2 src=">

I1 / I2 - ? !!! m i звездная величина.

I3 / I1 - ? Ii - яркость звезды, блеск звезды.

№ 2 Во сколько раз звезда 3,4 звездной величины слабее, чем Сириус, имеющий величину -1,6?

https://pandia.ru/text/78/246/images/image004_26.gif">M1=3, 4 I1/I2= 1/ 2,512 5 =1/100.

M2= - 1, 6 Ответ: Сириус ярче данной звезды в 100

Следующую задачу решите самостоятельно.

№ 3 Во сколько раз Сириус(m 1 = -1, 6)Полярной звезды

(m 2 = + 2, 1)?

Выполните тестовые задания.

Желаем успешного выполнения!!!

Тестовые задания по астрономии. Тема: «Предмет и значение астрономии. Звездное небо. »

1. Астрономия изучает:

а) небесные законы;

б) звезды и другие небесные тела;

в) законы строения, движения и эволюции небесных тел.

2.Физики дали астрономии:

а) инструменты для исследования космоса;

б) формы для вычисления и решения задач;

в) методы изучения Вселенной.

3.Астрономию необходимо знать:

а) для того чтобы ориентироваться по звездам;

б) чтобы сформировать научное мировоззрение;

в) так как интересно узнать, как устроен мир.

4.Объектив телескопа нужен для того, чтобы:

а) собрать свет от небесного объекта и получить его изображение;

б) собрать свет от небесного объекта и увеличить угол зрения, под которым виден объект;

в) получить увеличенное изображение небесного тела.

5.Окуляр телескопа нужен для того, чтобы:

а) получить увеличенное изображение небесного тела;

б) увидеть полученное с помощью объектива изображение небесного тела;

в) увидеть под большим углом полученное с помощью объектива изображение небесного тела.

6.Астрограф отличается от телескопа, предназначенного для визуальных наблюдений:

а) меньшим увеличением;

б) большим увеличением;

в) отсутствием окуляра.

7.Можно ли астрограф, предназначенный для фотографирования в фокусе объектива, характеризовать его увеличением?

а) да, так как у астрографа имеется объектив;

б) нет, так как у астрографа отсутствует окуляр;

в) да, так как важной характеристикой любого телескопа является его увеличение.

8.При наблюдениях редко используют увеличение свыше 500 раз, так как:

а) искажаются изображения из-за атмосферы;

б) искажаются изображения из-за линз;

в) совокупность факторов а) и б).

9.Отличие системы рефрактора от системы рефлектора в том, что:

а) у первого - окуляр против объектива, а у второго – сбоку;

б) в рефлекторе объектив-линза, а у рефрактора - зеркало;

в) в рефракторе объектив-линза, а в рефлекторе - зеркало.

10.Чтобы подробнее рассмотреть удаленные объекты необходимо:

а) увеличить диаметр объектива телескопа;

б) повысить увеличение телескопа;

в) шире использовать наблюдения в радиодиапазоне;

г) в совокупности а) - в);

д) поднять инструменты исследования в космос.

11.Астрономия возникла:

а) из любознательности;

б) чтобы ориентироваться по сторонам горизонта;

в) для предсказания судеб людей и народов;

г) для измерения времени и навигации

12.Продолжите сообщения о звездном небе 1)-4), используя фрагменты А-Г.

1)На окружающий нас мир мы смотрим с Земли, и всегда нам кажется, что над нами простирается сферический купол, усеянный звездами.

2)На звездном небе звезды в течение долгого времени сохраняют относительное расположение. За эту кажущуюся особенность в древности звезды были названы неподвижными.

3)Общее число звезд, видимых человеком невооруженным глазом на всем небе, составляет около 6000, а на одной половине его мы видим примерно 3000 звезд. Звезды различаются блеском, а самые яркие и цветом.

4)Названия многих созвездий сохраняются с глубокой древности. Среди названий созвездий имеются названия предметов, напоминающих фигуры, образованные яркими звездами созвездия.

1.Под блеском звезды понимается освещенность, которую создает свет звезды на Земле. Блеск звезд измеряют в звездных величинах.

2.Отдельные звезды созвездия с XVII в. стали обозначать буквами греческого алфавита : «альфа», «бета», «гамма» и т. д., как правило, в порядке убывания блеска.

3.Именно поэтому и возникло в далекие времена представление о хрустальном своде.

4.Вдействительности все звезды движутся, обладают собственными движениями, но так как они находятся от нас очень далеко, то их годичное смещение на небе составляет лишь доли угловой секунды.

1.Наблюдаемые нами звезды находятся от нас на самых различных расстояниях, значительно превышающих полкилометра

2.Если нужно было обозначить еще какие-либо звезды в созвездии, но не хватало букв греческого алфавита, то для следующих звезд использовали буквы латинского алфавита, а затем порядковые номера.

3.Сейчас под созвездием понимается определенная область неба с видимыми звездами, границы созвездий строго определены.

4.Блеск звезд 1-й звездной величины в 2,512 раза больше блеска звезд второй звездной величины в 2,512 раза больше блеска звезд 3-й звездной величины и т. д.

1.Так как звезды сохраняют относительное расположение, то уже в древности люди использовали их в качестве ориентиров, в связи, с чем выделили на небе характерные сочетания звезд и назвали их созвездиями.

2.В древности все звезды по блеску были разделены на шесть групп: самые яркие отнесли к звездам первой величины, самые слабые - к звездам шестой величины.

3.Поэтому звезда «альфа» для большинства созвездий является самой яркой звездой этого созвездия.

4.В действительности никакого свода нет, а впечатление о небе в форме сферы объясняется особенностями нашего глаза не улавливать разницы в расстояниях, эти расстояния превосходят 0,5км.

1.Наиболее ярким или чем-либо примечательным звездам, кроме буквенного обозначения, даны собственные имена (обычно арабские, греческие и римские). Так, звезда «альфа» из созвездия Большого Пса называется Сириус, «альфа» из созвездия Лиры – Вега, «тета» Большой Медведицы – Алькор и т. д.

2.С помощью звездной величины можно выражать блеск любого светила, причем небесные тела более яркие, чем звезды первой величины, имеют нулевую или отрицательную звездную величину. Блеск небесных объектов, не наблюдаемых невооруженным глазом, выражается звездными величинами, большими шести.

3.На всем небе отмечено 88 созвездий, которые полностью занимают звездное небо.

4.Поэтому нам кажется, что все звезды и другие небесные объекты расположены на одинаковых расстояниях, т. е. как бы на поверхности некоторой сферы в центре которой всегда находится наблюдатель.

13.Продолжите утверждения 1.-4, используя фрагменты:

1).Астрономия-наука о небесных телах. Современная астрономия изучает движение, строение, взаимную связь, образование и развитие небесных тел и их систем …

2).Астрономия - древнейшая наука на Земле. Возникла астрономия из практических потребностей человека …

3). И в наше время астрономия решает ряд практических задач

4)Развитие астрономии способствует прогрессу в физике, математике, химии и технике …

5). Исключительное значение имеет астрономия для формирования научного мировоззрения. Наблюдения звездного неба, движение Солнца, Луны и других небесных тел без научных знаний может привести(и в действительности приводило) к неправильным взглядам на устройство окружающего мира и к всевозможным суевериям …

А. К числу таких задач относится точное время, вычисление и составление календаря, определение географических координат на Земле.

Б. . В качестве примера достаточно указать на достижения в области ракетной техники, создание искусственных спутников и космических кораблей. Эти достижения, в свою, вызвали бурное развитие радиоэлектроники. Это практическое значение астрономии.

В . Астрономия, изучая физическую природу небесных тел, выявляя действительные законы строения и движения их и их систем, утверждает единство мира, доказывая, что мир материален, что все процессы во Вселенной протекают как результат естественного развития без вмешательства каких бы то ни было сверхъестественных сил. На огромном фактическом материале об окружающем нас мире астрономия утверждает научное мировоззрение.

Г. В результате мы получаем представление о строении и развитии доступной нашим наблюдениям части Вселенной.

Д. Там, где нет явно выраженной смены времен года(например, в Египте), только по наблюдению за звездным небом можно было установить, когда начинать посев; у скотоводов и мореходов возникла потребность в ориентировке и в пустыне и на море –это тоже заставило наблюдать за движением небесных тел; развитие общества вызвало к жизни календарь.

Запишите домашнее задание:

1) Задача: Какая звезда ярче-звезда 2 m или звезда 5 m?

(2 m –звезда второй звездной величины, …)

2) ??? : а) Как Вы думаете, можно ли долететь до какого - нибудь созвездия?

б) Сколько времени идет до нас свет от Сириуса (расстояние 8,1*1016 м)?

литература:

1. «Астрономия-11», Москва, «Просвещение», 1994, параграфы 1, 2.

2., «Астрономия-11»,Москва, «Просвещение», 1993 ,параграфы 1, 2 (2.1), 13.

Проверьте правильность выполнения заданий:

№3.Ответ: Сириус ярче Полярной звезды в 30 раз.

Коды ответов на тестовые задания:

1-В 6-В 11-Г 13:

2-В 7-Б 12: 1-Г

3-Б 8-В 1)А3-В4-Б1-Г4. 2-Д

4-Б 9-В 2)А4-В1-Б3-Г3. 3-А

5-Б 10-Г 3)А1-В2-Б4-Г2. 4-Б

4)А2-В3-Б2-Г1. 5-В.

Устали? Отдохните! Посмотрите!

Как прекрасен этот мир!

ДО СВИДАНИЯ!!!

Ответы домашнего задания:

1) звезда 2 m ярче звезды 5m в 2,512 3 раз.

2) Созвездие-это условно определенный участок неба, в пределах которого оказались светила, находящиеся от нас на разных расстояниях. Поэтому выражение «долететь до созвездия» лишено смысла.