Очистка воздуха от вредных примесей. Промышленная и бытовая очистка воздуха

Все известные методы и средства защиты атмосферы от химических примесей можно объединить в три группы.
В первую группу входят мероприятия, направленные на снижение мощности выбросов, то есть уменьшение количества выбрасываемого вещества в единицу времени. Во вторую группу входят мероприятия, направленные на защиту атмосферы путём обработки и нейтрализации вредных выбросов специальными системами очистки. В третью группу входят мероприятия по нормированию выбросов как отдельных предприятий и устройствах, так и в регионе в целом.
Для снижения мощности выбросов химических примесей в наиболее широко используют:

  • замену менее экологичных видов топлива экологичными;
  • сжигание топлива по специальной технологии;
  • создание замкнутых производственных циклов.

В первом случае применяют топливо с более низким баллом загрязнения атмосферы. При сжигании различных видов топлива такие показатели как зольность, количество диоксида серы и оксидов азота в выбросах, могут сильно различаться между собой, поэтому введён суммарный показатель загрязнения атмосферы в баллах, который отражает степень вредного воздействия на человека. Так, для сланцев он равен 3,16, подмосковного угля-2,02, экибастузского угля-1,85, березовского угля-0,50, природногогаза-0,04.

Сжигание топлива по особой технологии осуществляется либо в кипящем (псевдосжиженном) слое, либо предварительной их газификацией.

Для уменьшения выброса серы твёрдое, порошкообразное или жидкое топливо сжигают в кипящем слое, который формируется из твёрдых частиц золы, песка или других веществ (инертных или реакционно-способных). Твёрдые частицы вдуваются в проходящие газы, где они завихряются, интенсивно перемешиваются и образуют принудительно равновесный поток, который в целом обладает свойствами жидкости.

Предварительной газификации подвергаются уголь и нефтяные топлива, однако на практике чаще всего применяют газификацию угля. Поскольку в энергетических установках получаемый и отходящий газы могут быть эффективно очищены, то концентрации диоксида серы и твёрдых частиц в их выбросах будут минимальными.

Одним из перспективных способов защиты атмосферы от химических примесей является внедрение замкнутых производственных процессов, которые сводят к минимуму выбрасываемые в атмосферу отходы, вторично используя их и потребляя, то есть превращая их в новые продукты.

По агрегатному состоянию загрязнители воздуха подразделяются на пыли, туманы и газообразные примеси.
Системы очистки от пыли делятся на четыре основные группы: сухие и мокрые пылеуловители, а также электрофильтры и фильтры. К сухим пылеулавливателям относятся инерционные системы: циклоны, ротационные пылеулавливатели вихревые и радиальные. Мокрые пылеулавливатели: форсуточные скрубберы и скрубберы Вентури, а также аппараты ударно-инерционного и барботажного и других типов.

Для очистки воздуха от (например, кислот, щелочей, масел и др. жидкостей) используют системы фильтров, называемых туманоуловителями.

Средства защиты от газообразных примесей зависят от выбранного метода очистки. По характеру протекания физико-химических процессов выделяют метод абсорбции (промывка выбросов растворителями примеси), хемосорбции (промывка выбросов растворами реагентов, связывающих примеси химически), адсорбции (поглощение газообразных примесей за счёт катализаторов) и термической нейтрализации.

Изучение причин и видов загрязнения воздушного бассейна, последствия загрязнения. Ознакомление с методиками очищения воздуха и прогнозирования его состояния на будущее.

2 Ключевые положения

Воздушная оболочка нашей планеты - атмосфера - защищает живые организмы от пагубного влияния ультрафиолетового излучения Солнца и жестких космических излучений. Она также защищает Землю от метеоритов и космической пыли.

Атмосфера поддерживает тепловой баланс. Атмосферный воздух - это источник дыхания человека, животных, синтеза химических веществ. Она является материалом для охлаждения разнообразных промышленных и транспортных установок, а также средой, в которую выбрасываются отходы жизнедеятельности человека, животных и растений.

Известно, что без еды человек может прожить около пяти недель, без воды около пяти суток, а без воздуха - не проживет и пяти минут. Потребность человека в чистом воздухе составляет от 5 до 10 л/мин, или 12... 15 кг/сутки.

Человечество находится на дне большого воздушного океана. Наиболее выученный участок атмосферы простирается от уровня моря к высоте 100 м. В целом атмосфера разделяется на несколько сфер: тропосфера, литосфера, стратосфера, мезосфера, ионосфера (термосфера), экзосфера. Границы между сферами называют паузами. По химическому составу атмосфера Земли разделяется на нижнюю (высотой до 100 км) и верхнюю - гетеросферу, которая имеет неоднородный химический состав. Кроме газов в атмосфере присутствующие разные аэрозоли - пылевидные или водяные частицы, которые находятся в газообразной среде в зависшем состоянии. Они могут быть как природного, так и техногенного происхождения.

Тропосфера (гр. troops - оборот + сфера) - это приземная нижняя часть атмосферы, в которой существует большинство живых организмов, в том числе и человек. В этой сфере сосредоточенно свыше 80 % массы всей атмосферы, ее мощность (высота над земной поверхностью) определяется интенсивностью вертикальных потоков воздуха, которые зависят от температуры земной поверхности. В связи с этим на экваторе она достигает высоты 16... 18 км, в средних широтах - до 10... 11 км, а на полюсах - до 8 км. Выявлено закономерное снижение температуры воздуха в зависимости от высоты в среднем на 0,6°С на каждые 100 м.

В тропосфере находится большая часть космической и антропогенной пыли, водяного пара, кислорода, инертных газов и азота. Она практически прозрачная для коротковолновой солнечной радиации. Вместе с тем водяные пары, озон, углекислый газ, которые находятся в атмосфере, достаточно сильно вбирают тепловое (длинноволновое) излучение планеты, в результате чего происходит определенное нагревание тропосферы. Это приводит к вертикальному перемещению воздушных потоков, конденсации водяных паров, образования туч и осадков.

На уровне моря состав атмосферного воздуха такой: 78 % азота, 21 % кислорода, незначительная часть инертных газов, углекислого газа, метана, водорода.

Стратосфера (лат. stratum - шар + сфера) - размещенная выше тропосферы на высоте 50...55 км. Температура круг ее верхней границы растет в связи с присутствием озона.

Мезосфера (гр. mesos - средний + сфера) - верхняя граница этого слоя фиксируется на высоте 80 км. Главная ее особенность - это резкое снижение температуры (до -75...-90°С) возле верхней границы. Здесь наблюдаются так называемые серебристые тучи, которые состоят из ледяных кристаллов.

Ионосфера (термосфера) (гр. thermo - тепло + сфера) - достигает высоты 800 км. Для нее присущее существенное повышение температуры (больше +1000°С). Под воздействием ультрафиолетового излучения Солнца газы атмосферы находятся в ионизированном состоянии. С этим связано возникновение полярного сияния и свечение газов. Ионосфера имеет свойства многократного отражения радиоволн, что обеспечивает дальнюю радиосвязь на Земле.

Экзосфера (гр. exo - вне, внешне + сфера) - распространяется от высоты 800 км к высоте 2000...3000 км. Температуры здесь достигают +2000 °С и больше. Важным является тот факт, что скорость движения газов приближается к критическому значению 11,2 км/с. В составе преобладают атомы водорода и гелия, которые формируют вокруг нашей планеты, так называемую корону, которая достигает высоты 20 тыс. км.

План

Введение

1. Методы очистки атмосферы

2. Биоремедиация атмосферы

Заключение

Список литературы

Введение

Проблема очистки воздуха в зоне жизни человека от разнообразных загрязнений, вносимых промышленностью, от аэрозолей и бактерий является одной из наиболее актуальных проблем. Трактаты по вопросу все чаще и чаще появляются как вопль о надвигающейся катастрофе. Этот вопрос приобрел особое значение после изобретения атомных и водородных бомб, ибо атмосферный воздух стал все более и более насыщаться осколками ядерного распада. Эти осколки в форме высокодисперсных взвешенных веществ при взрыве поднимаются в атмосферу на большую высоту, затем в течение короткого времени растекаются по всему атмосферному океану и постепенно падают на поверхность земли в виде тонкой радиоактивной пыли, или уносятся осадками - дождем и снегом. И являются угрозой человеку в любой точке поверхности нашей планеты.

1. Методы очистки атмосферы

Все методы очистки делятся на регенеративные и деструктивные . Первые позволяют возвращать в производство компоненты выбросов, вторые трансформируют эти компоненты в менее вредные.

Методы очистки газовых выбросов можно разделить по типу обрабатываемого компонента (очистка от аэрозолей - от пыли и тумана, очистка от кислых и нейтральных газов и так далее).

  • Электрические методы очистки.

При этом способе очистки газовый поток направляется в электрофильтр, где проходит в пространстве между двумя электродами - коронирующим и осадительным. Частицы пыли заряжаются, движутся к осадительному электроду, разряжаются на нем. Таким методом можно очищать пыли с удельным сопротивлением от 100 до 100 млн. Ом*м. Пыли с меньшим удельным сопротивлением сразу же разряжаются и улетают, а с большим - образуют плотный изолирующий слой на осадительным электроде, резко уменьшая степень очистки. Методом электрической очистки можно удалять не только пыли, но и туманы. Очистка электрофильтров производится путем смыва пыли водой, вибрацией или с помощью ударно-молоткового механизма.

  • Различные мокрые методы.

Использование пенных аппаратов, скрубберов.

Для очистки от газов применяют следующие методы:

  • Адсорбция.

То есть поглощение твёрдым веществом газового (в нашем случае) компонента. В качестве адсорбентов (поглотителей) применяют активные угли различных марок, цеолиты, силикагель и другие вещества. Адсорбция - надёжный способ, позволяющий достигать высоких степеней очистки; кроме того, это регенеративный метод, то есть уловленный ценный компонент можно вернуть обратно в производство. Применяется периодическая и непрерывная адсорбция. В первом случае по достижении полной адсорбционной емкости адсорбента газовый поток направляют в другой адсорбер, а адсорбент регенерируют - для этого используется отдувка острым паром или горячим газом. Затем ценный компонент можно получить из конденсата (если для регенерации использовался острый пар); для этой цели используется ректификация, экстракция или отстаивание (последнее возможно в случае взаимной нерастворимости воды и ценного компонента). При непрерывной адсорбции слой адсорбента постоянно перемещается: часть его работает на поглощение, часть - регенерируется. Это, конечно, способствует истиранию адсорбента. В случае достаточной стоимости регенерируемого компонента использование адсорбции может быть выгодным. Например, недавно (весной 2001 года) проведенный для одного из кабельных заводов расчёт участка рекуперации ксилола показал, что срок окупаемости составит менее года. При этом 600 т ксилола, которые ежегодно попадали в атмосферу, будут возвращены в производство.

  • Абсорбция.

То есть поглощение газов жидкостью. Этот метод основан либо на процессе растворения газовых компонентов в жидкости (физическая адсорбция), либо на растворении вместе с химической реакцией - химическая адсорбция (например, поглощение кислого газа раствором с щелочной реакцией). Этот метод также является регенеративным, из полученного раствора можно выделить ценный компонент (при использовании химической адсорбции это не всегда возможно). В любом случае вода очищается и хотя бы частично возвращается в систему оборотного водоснабжения.

  • Термические методы.

Являются деструктивными. При достаточной теплотворной способности выбросного газа его можно сжечь напрямую (все видели факелы, на которых горит попутный газ), можно применить каталитическое окисление, или (при малой теплотворной способности газа) использовать его в качестве дутьевого газа в печах. Получающиеся в результате термического разложения компоненты должны быть менее опасными для окружающей среды, чем исходный компонент (например, органические соединения можно окислить до углекислого газа и воды - если нет других элементов, кроме кислорода, углерода и водорода). Этот метод позволяет добиться высокой степени очистки, но может стоить дорого, особенно если используется дополнительное топливо.

  • Различные химические методы очистки.

Как правило связанные с использованием катализаторов. Таковым, например, является каталитическое восстановление оксидов азота из выхлопных газов автотранспорта (в общем виде механизм этой реакции описывается схемой:

C n H m + NO x + CO----->CO 2 + H 2 O +N 2 ,

где в качестве катализатора kt используется платина, палладий, рутений или другие вещества). Методы могут требовать применения реагентов и дорогих катализаторов.

  • Биологическая очистка.

Для разложения загрязняющих веществ используются специально подобранные культуры микроорганизмов. Метод отличается низкими затратами (реагентов используется мало и они дешевые, главное - микроорганизмы живые и размножаются сами, используя загрязнения как пищу), достаточно высокой степенью очистки, но в нашей стране, в отличие от Запада, широко распространения, к сожалению, пока не получил.

  • Аэроионы - мельчайшие жидкие или твердые частицы, заряженные положительно или отрицательно. Особенно благоприятно действие отрицательных (легких аэроионов). Их справедливо называют витаминами воздуха.

Механизм действия отрицательных аэроионов на взвешенные в воздухе частицы состоит в следующем. Отрицательные аэроионы воздуха заряжают (или перезаряжают) пыль и микрофлору, находящиеся в воздухе, до определенного потенциала, пропорционально их радиусу. Заряженные пылевые частицы или микроорганизмы начинают двигаться вдоль силовых линий электрического поля по направлению к противоположно (положительно) заряженному полюсу, т.е. к земле, к стенам и потолку. Если выразить в длинах силы гравитации и силы электрические, действующие на тонкодисперсную пыль, то легко можно увидеть, что электрические силы превосходят силы гравитации в тысячи раз. Это дает возможность по желанию строго направлять движение облака тонкодисперсной пыли и очищать, таким образом воздух в данном месте. При отсутствии электрического поля и диффузном движении отрицательных аэроионов между каждым движущимся аэроионом и положительно заряженной землей (полом) возникают силовые линии, вдоль которых движется данный аэроион вместе с частичкой пыли или бактерией. Осевшие на поверхности пола, потолка и стен микроорганизмы могут периодически удаляться.

2. Биоремедиация атмосферы

Биоремедиация атмосферы - комплекс методов очистки атмосферы с помощью микроорганизмов.

  • Цианобактерии:

Исследователи из Школы инженерии и прикладных наук им. Генри Самуэли при Калифорнийском университете в Лос-Анджелесе генетически модифицировали цианобактерии (сине-зелёные водоросли), которые теперь способны поглощать CO2 и вырабатывать жидкое топливо изобутан, имеющий большой потенциал в качестве альтернативы бензину. Реакция происходит под действием солнечной энергии через фотосинтез. Новый метод имеет два преимущества. Во-первых, снижается объём парниковых газов из-за утилизации CO2. Во-вторых, получаемое жидкое горючее может быть использовано в нынешней энергетической инфраструктуре, в том числе в большинстве автомобилей. Используя цианобактерии Synechoccus elongatus , исследователи генетическим путём увеличили количество захватывающего углекислый газ фермента. Затем были внедрены гены от других микроорганизмов, позволившие поглощать CO2 и солнечный свет. В результате бактерии производят газ изобутеральдегид.

  • Биофильтрация:

Биофильтрация является наиболее выгодной с экономической точки зрения и наиболее отработанной технологией очистки отходящих газов. Она может быть успешно использована для защиты атмосферы на предприятиях пищевой, табачной, нефтеперерабатывающей промышленности, станциях очистки сточных вод, а также в сельском хозяйстве.

Институт Биохимии им. А.Н. Баха РАН (ИНБИ) - лидер российского рынка в области биологических методов очистки промышленных вентвыбросов от паров летучих органических соединений (ЛОС). Оно разработало уникальную микробиологическую технологию БИОРЕАКТОР, которая выгодно отличается от существующих методов по своим техническим параметрам, капитальным и эксплуатационным затратам. Основой технологии БИОРЕАКТОР является консорциум природных иммобилизованных микроорганизмов, специально подобранных и адаптированных для высокоэффективной (80-99 %) деградации разнообразных ЛОС, например, ароматических углеводородов, карбонильных, С1-, хлорорганических и многих других соединений. БИОРЕАКТОР также эффективен для удаления неприятных запахов. Способ основан на микробиологической утилизации вредных органических веществ с образованием углекислого газа и воды специально подобранными нетоксичными штаммами микроорганизмами (деструкторами загрязнений), проверенными и зарегистрированными в установленном порядке. Способ реализуется в новой высокоэффективной биофильтрационной установке, обеспечивающей эффективную непрерывную очистку отработанных газовоздушных выбросов от различных органических загрязнений: фенол, ксилол, толуол, формальдегид, циклогексан, уайт-спирит, этилацетат, бензин, бутанол и др .

В состав установки входят:

Биоабсорбер,- вспомогательное оборудование-циркуляционный насос, клапан,

Емкость (100л) для солевого раствора, КИП, теплообменник, хвостовой вентилятор.

Установка в рабочем состоянии (с жидкостью) весит ок. 6,0 т, имеет габариты 4*3,5*3 м (в помещении) и установочную мощность 4 квт.

Преимущества разработки . Биофильтрационная установка имеет следующие основные преимущества:

Высокую эффективность очистки газо-воздушных выбросов (от 92 до 99%),

Низкие эксплуатационные энергозатраты до 0,3КВт*ч/м3,

Высокую производительность по очищаемому газовому потоку (10- 20тыс./м3*ч),

Низкое аэродинамическое сопротивление газовому потоку (100-200 Ра),

Простое обслуживание, длительную, надежную и безопасную эксплуатацию.

Научно-техническая разработка отработана в промышленном варианте.

  • Биопрепараты МИКРОЗИМ(TM) ОДОР ТРИТ:

Биологический препарат - нейтрализатор запахов, действующий по принципу нейтрализации летучих соединений. Биопрепарат представляет собой комплекс биологических экстрактов растительного происхождения, вступающих в биохимические реакции с летучими соединениями широкого спектра от химических: ацетона, фенолов, до органических: меркаптанов, сероводорода, аммиака, и в результате реакции уничтожающих летучие соединения и нейтрализующих запахи вызванные этими летучими соединениями. Биопрепарат не маскирует запах с помощью ароматизаторов или отдушек, но уничтожает запах путем естественной очистки воздуха от летучих соединений. Результатом действия препарата Одор Трит является приемлемый уровень запаха (интенсивностью 1-2 балла) без посторонних ароматов (ароматизаторов, отдушек).

Заключение

В настоящее время проблема очистки атмосферы остро встала перед человечеством, в связи с разнообразными загрязнениями человеком, промышленностью, сельским хозяйством. В течение нескольких десятков лет, ученные придумывают все новые и новые изобретения и очистительные сооружения, пытаются придумать более экономичные способы очищения атмосферы. Одним из таких способов является биоремедиация.

Список использованной литературы

1. Нейтрализация запахов, очистка воздуха от летучих соединений, деодоризация отходов. [электронный ресурс], режим доступа: http://www.microzym.ru/odorcontrol

2. Промышленная ионизация воздуха. [электронный ресурс], режим доступа: http://www.tehnoinfa.ru/ionizacija/21.html

3. Бактерии очистят атмосферу от СО2. [электронный ресурс], режим доступа: http://gizmod.ru/2009/12/16/bakterii_ochistjat_atmosferu_ot_co2/

4. ТЕХНОЛОГИЯ ЗАЩИТЫ ВОЗДУШНОГО БАССЕЙНА (АТМОСФЕРЫ) ОТ ЗАГРЯЗНЕНИЙ. [электронный ресурс], режим доступа: http://zelenyshluz.narod.ru/articles/atmosfer.htm

Под загрязнением атмосферного воздуха следует понимать любое изменение его состава и свойств, которое оказывает негативное воздействие на здоровье человека и животных, состояние растений и экосистем.

Загрязнение атмосферы может быть естественным (природным) и антропогенным).

Естественное загрязнение воздуха вызвано природными процессами. К ним относятся вулканическая деятельность, выветривание горных пород, ветровая эрозия, массовое цветение растений, дым от лесных пожаров и др.

Антропогенное загрязнение связано с выбросом различных загрязняющих веществ в процессе деятельности человека. По своим масштабам оно значительно превосходит природное загрязнение атмосферного воздуха.

По агрегатному состоянию выбросы вредных веществ в атмосферу классифицируются на:

1) газообразные (лиоксид серы, оксид азота, оксид углерода, углеводороды и др.);

2) жидкие кислоты, щелочи, растворы солей и др.;

3) твердые (канцерогенные вещества, свинец и его соединения, органическая и неорганическая пыль, сажа, смолистые вещества и прочие).

Главные загрязнители (поллютанты) атмосферного воздуха , образующиеся в процессе производственной и иной деятельности человека – диоксид серы (SO 2), оксид азота (NO х), оксид углерода (СО) и твердые частицы. На их долю приходится около 98% в общем объеме выбросов вредных веществ. Помимо главных загрязнителей, в атмосфере городов и поселков наблюдается еще более70 наименований вредных веществ, среди которых – формальдегид, фтористый водород, соединения свинца, аммиак, фенол, бензол, сероуглерод и др. Однако именно концентрации главных загрязнителей (диоксид серы и др.) наиболее часто превышают допустимые уровни во многих городах России.

Суммарный мировой выброс в атмосферу четырех главных загрязнителей (поллютантов) атмосферы составил в 1990 г. – 401 млн. т, а в России в 1991 г. – 26,2 млн.т. Кроме указанных главных загрязнителей в атмосферу попадает много других очень опасных токсических веществ: свинец, ртуть, кадмий и другие тяжелые металлы (источники выброса: автомобили, плавильные заводы и др); углеводороды (С х Н х), среди них наиболее опасен бенз(а)пирен, обладающий канцерогенным действием (выхлопные газы, топка котлов и др.), альдегиды, и в первую очередь формальдегид, сероводород, токсичные летучие растворители (бензины, спирты, эфиры) и др.

Наиболее опасное загрязнение атмосферы – радиоактивное. В настоящее время оно обусловлено в основном глобально распределенными долгоживущими радиоактивными изотопами – продуктами испытания ядерного оружия, проводившихся в атмосфере и под землей. Приземный слой атмосферы загрязняют также выбросы в атмосферу радиоактивных веществ с действующих АЭС в процессе их нормальной эксплуатации и другие источники.

Защита атмосферы.

1. Пылеуловитель (сухой).

Нужно, чтобы бункер герметичный, иначе пыль выдувается. Эффективность 80-95% , частиц размером d ч > 10 мкм. А также циклоны, пылеосадительные камеры.

Схема работы циклона:

  1. корпус
  2. патрубок
  3. труба
  4. бункер

Сухие пылеуловители (циклоны, пылеосадительные камеры) предназначены для грубой механической очистки выбросов от крупной и тяжелой пыли. Принцип работы – оседание частиц под действием центробежных сил и сил тяжести. Пылегазовый поток вводится в циклон через патрубок, далее он совершает вращательно-поступательное движение вдоль корпуса; частицы пыли отбрасываются к стенкам циклона и затем падают вниз в сборник пыли (бункер), откуда периодически удаляются. Для повышения эффективности работы применяют групповые (батарейные) циклоны.

Скруббер Вентури.

η = 99% d > 2 мкм.

Работает по принципу осаждения частиц пыли на поверхность капель под действием сил инерции и броуновского движения. Незаменим при очистке от пыли взрывоопасных и горючих газов.

Рис. Скруббер Вентури

1. Орошающая форсунка

2. Труба Вентури

3. Каплеуловитель

Фильтры.

Фильтроэлемент может быть зернистым слоем (неподвижный), с гибкими перегородками (ткани, войлок, губчатая резина, пенополиуритан), с полужесткими перегородками (вязаные сетки, стружка), с жесткими перегородками (пористая керамика, пористые металлы). Руковичные фильтры очищают воздух от пыли размером d ч > 10 мкм, степень очистки 97-99%. d до < 0,05 мкм.

Схема фильтра

2. фильтроэлемент

3. слой частиц примесей

4. Мокрые пылеуловители (барботажно-пенные).

Высокая эффективность очистки частиц d ч ≥ 0,3 мкм. Газ движется через решетку, проходит слой воды и пены – они чувствительны к неравномерности подачи газа, решетка склонна к засорению. Эффективность очистки 0,95-0,96%, а также скубберы, турбулентные, газопромыватели.

Рис. Барботажно-пенный пылеуловитель

2. Слой пены

3. Переливная решетка

Туманоуловители.

Осаждение капель на поверхности пор с последующим стеканием жидкости по волокнам в нижнюю часть туманоуловителя. Эффективность очистки 0,999 частиц 3 мкм.

Рис. Схема фильтрующего элемента низкоскоростного туманоуловителя

2. Крепежный фланец

3. Цилиндры из сетки

4. Волокнистый фильтроэлемент

5. Нижний фланец

6. Трубка гидрозатвора

Метод абсорбации.

Очистка газов от газов и паров основан на поглощении последних жидкостью. Решающим условием для применения метода – растворимость паров и газов в абсорбенте (жидкости). Так для удаления аммиака, хлора и фтороводорода применяют воду, используют щелочи, воду, аммиак, железный купорос. h = 85%.

Хемосорберы – поглощают газы и пары жидкими и твердыми поглотителями с образованием малорастворимых или малолетучих соединений. Очистка эффективна от оксида азота и паров кислот. Эффективность от оксида азота от0,17-0,86, от кислот – 0,95.

Метод адсорбации.

Адсорбенты – поглотители, твердые тела, поглощающие компоненты из газовой смеси. Активированный уголь, активированный глинозем, активированный оксид алюминия, синтетические цеолиты. Эффективен против растворителей (паров), ацетона, углеводлородов. Применяется в респираторах и противогазах. (97-99%).

Термическая нейтрализация.

Сгорание газов с образованием менее токсичных веществ. Для этого используют нейтрализаторы: прямое сжигание, термическое окисление, каталитическое дожигание. Окисление или сжигание доходит до двуокиси углерода и воды (при температуре окисления 950-1300 °С, каталитическое сжигание 250-450 °С). Эффективность 99,9%.

Рис. Схема установки для термического окисления

2. Входной патрубок

3. Теплообменник

4. Горелка

6. Выходной патрубок

Электрофильтры.

Наиболее совершенный способ очистки газов от взвешенных частиц пыли размером до 0,01 мкм (d < 0,01), η = 99-99,5%. Принцип действия: ионизация пыле-газового потока у поверхности коронирующих электродов. Приобрела отрицательный заряд, пылинки движутся к осадительному электроду, имеющим положительный заряд. При встряхивании электродов осажденные частички пыли под действием силы тяжести падают вниз в сборник пыли. Электроды требуют большого расхода электроэнергии – это их основной недостаток.

Один из самых совершенных методов очистки от частиц пыли и тумана. Он основан на ударной ионизации газа, передача заряда ионов частицам примесей и осаждение последних на электродах.

Эффективность очистки колеблется от 0,95 до 0,99. Зависит от Wэ – скорости движения частиц в электрическом поле и F уд – удельная поверхность осадительных электродов.

Лучшая очистка - комбинированные методы. Например, очистка газов в циклонах – струбберы Вентури – электрофильтры.

На предприятиях повсеместно используют различные методы очистки отходящих газов от аэрозолей (пыли, золы, сажи) и токсичных газо- и парообразных примесей (NO, NO 2 , SO 2 , SO 3 и др.), однако, сточки зрения будущего, аппараты пылегазоочистки по вышеуказанным причинам не имеют перспектив.

Для очистки выбросов от аэрозолей в настоящее время применяют различные типы устройств в зависимости от степени запыленности воздуха, размеров твердых частиц и требуемого уровня очистки.

Загрязнение гидросферы.

Установлено, 400 видов веществ могут вызвать загрязнение вод. Различают химические, биологические и физические загрязнители (Бертокс, 1980)

Химические загрязнители – нефть, СПАВ, пестициды, тяжелые металлы, диоксины.

Биологические – вирусы, микробы.

Физические – радиоактивные вещества, тепло.

К основным источникам загрязнений относят:

1. сброс в водоемы неочищенных сточных вод;

2. смыв ядохимикатов ливневыми осадками;

3. газодымовые выбросы;

4. утечки нефти и нефтепродуктов.

Нефтяная, НПЗ - сбрасывают нефтепродукты, СПАВ, фенолы, аммонийные соли, сульфиды.

ЦБК, лесная промышленность – сульфаты, лигнины, азот, органические вещества.

Машиностроение, металлургия – тяжелые металлы, фториды, аммонийный азот, фенолы, смолы, цианиды.

Легкая, текстильная, пищевая промышленности – СПАВ, органические красители, нефтепродукты.

Экологическими последствиями загрязнения пресноводных экосистем приводят к эвтрофикации водоемов . «Цветение» воды – размножение сине-зеленых водорослей, утрата генофонда, ухудшение саморегуляции. Загрязнение водоемов – это снижение биосферных функций и экологического значения в результате поступления в них вредных веществ.

Защита гидросферы.

1. Механическая очистка – процеживание, отстаивание, фильтрирование (до 90%) – песок, глина, окалина. Применяются решетки, песколовки, песчаные фильтры, отстойники, жироуловители. Вещества, плавающие на поверхности сточных вод (нефть, смолы, масла, жиры, полимеры и др.), задерживают нефте- маслоловушками и другого вида уловителями либо выжигают.

Отстойники могут быть горизонтальными, радиальными, комбинированными.

Гидроциклон (комбинированный).

Рис. Схема комбинированного гидроциклона

1. Входной трубопровод

2. Камера для очищенной сточной воды

3. Приемная камера

4. Трубопровод с регулируемым проходным сечением

5. Трубопровод отвода маслопродуктов

6. Трубопровод отвода воды для дальнейшей очистки

7. Шламосборник

Сточная вода с маслопродуктами движется вверх. Плотность примесей менее и они концентрируются в ядре закрученного потока и поступают в камеру (3), через трубопровод (5) маслопродукты выводятся из гидроциклона. Сточная вода очищенная от твердых частиц и масла, скапливается в камере (2) откуда через трубопровод (6) выводится для дальнейшей очистки. Воздух из ядра закрученного потока уходит в трубу (4).

Применяют от мелкодисперсных твердых примесей – зернистые фильтры, сепараторы. Эффективность очистки 0,97-0,99 (пенополиуритан).

Зернистый фильтр.

Сточная вода по трубе (4) поступает в корпус (1) через фильтров слой (3) из мраморной крошки. Очищенная сточная вода выводится из фильтра через трубу (8). Твердые частицы в фильтрованном материале. Перепад давления в фильтре увеличивается и достижение предельного значения перекрывается входной трубопровод (4). По трубе (9) подается статистический воздух. Он вытесняет из фильтрованного слоя воду и частицы в желоб (6) и выводятся через трубу (7). Лучше если фильтр – пенополиуритан. η = 97-99%.

Рис. Схема зернистого фильтра

1. Корпус фильтра

2. Пористая перегородка 3. Фильтровальная загрузка

3. Входной трубопровод сточной воды

4. Пористая перегородка 6. Желоб

5. Трубопровод вывода твердых частиц

6. Трубопровод отвода очищенной воды

7. Трубопровод подачи сжатого воздуха.

Сепараторный фильтр

.

Рис. Схема фильтра-сепаратора

2. Ротор с фильтровальной загрузкой

3. Карманы для отвода маслопродуктов

4. Нижняя и верхняя опорные решетки

5. Трубопровод подачи сточной воды

6. Приемный кольцевой карман для вывода очищенной воды

7. Электродвигатель

Сточную воду в трубе (5) подают на опорную решетку (4). Вода проходит через фильтров загрузку в роторе (2), верхнюю решетку (4) и очищенная от примесей вода переливается в приемный кольцевой карман (6) и выводится из корпуса (1). η = 92-90%

t фильтр -16-24 ч.

При включении электродвигателя (7) вращается ротор (2) с фильтр. загрузкой. В результате частицы пенополиуритана под действием центробежной силы отбрасываются к внутренним стенкам ротора, выжимая из него маслопродукты, которые поступают в карманы (3) и идут на регенерацию.

Физико-химические методы.

Коагуляция – введение коагулянтов (солей аммония, Fе, меди, шлама) для образования хлопьевидных осадков.

Флотация – для вымывания маслопродуктов при обволакивания их пузырьками газа, подаваемого в сточную воду. Слипание частиц масла и пузырьков флотация: папорная, пневматическая, пенная, химическая, вибрационная, биологическая, электрофлотация. В качестве подаваемого газа используют водород, коагулянт. Слипание частиц и пузырьков газа.

Экстракция – перераспределение примесей в стоке в смеси взаимонерастворимых жидкостей (сточной воды и экстрагента). Для очистки от фенола, экстрагентом используют бензол и бутилацетат.

Нейтрализация – для выделения из стоков кислот, щелочей, солей металлов. Это объединение ионов водорода и гидроксильной группы в малекулы воды. В результате сточная вода имеет значение рН – 6,7 (нейтральная среда). Нейтрализаторы щелочи: едким натром, едким кали, известью, доломитом. Мрамором, мелом, содой, магнезитом. Для щелочей: соль, азот.

Сорбция – очистка от растворимых примесей (зола, торор, опилки, шлаки, глина, активированный уголь).

Ионообменная очистка – с помощью смол (гранулы 0,2-2 мм) иониты делают из нерастворимых в воде веществ и на их поверхности помещают катионы и анионы. Они реагируют с ионами того же знака. Катионы Н + , Nа + , анионы ОН -

Гиперфильтрация – обработка осмос, через мембраны. Мало энергии.

Биологическая очистка.

Очистка на полях орошения, биологических прудах, полях фильтрации. И в искусственных методах (аэротенки, биофильтры). После осветления сточных вод образуется осадок, который сбрасывают в железобетонных резервуарах (метатенках), а затем удаляют на иловые площадки для подсушивания и потом используют как удобрение. Сейчас в осадке обнаруживают тяжелые металлы, поэтому нельзя на поля.

Осветлена часть сточных вод очищается в аэротенках – закрытых, там вода обогащается кислородом и смешивается с активным илом (плесень, дрожжи, водные грибы, коловратки) (углеродоокисляющие бактерии, углеродоокисляющие нитгатые бактерии, бактерии – нитрификаторы). Кислород 5 мг/м 2 . БПК. После вторичного отстаивания сточные воды дезинфицируют (хлор_ против бактерий и вирусов.

Схема биологической очистки воды.


Введение

3.2 Расчёт туманоуловителя

Заключение

Введение


Стремительный рост численности человечества и его научно-технической вооруженности в корне изменили ситуацию на Земле. Если в недавнем прошлом вся человеческая деятельность проявлялась отрицательно лишь на ограниченных, хоть и многочисленных территориях, а сила воздействия была несравненно меньше мощного круговорота веществ в природе, то теперь масштабы естественных и антропогенных процессов стали сопоставимыми, а соотношение между ними продолжает изменяться с ускорением в сторону возрастания мощности антропогенного влияния на биосферу.

Актуальность данной темы состоит в следующем: атмосферный воздух - это жизненно важный компонент окружающей среды. Опасные загрязняющие вещества, попадая в атмосферный воздух, переносятся на большие расстояния. Осаждаясь, они попадают в почву, воду, тем самым загрязняя их.

Это оказывает большое неблагоприятное воздействие на растительный мир и животный мир. Немалый вред загрязнения приносят здоровью человека.

Человечеству угрожает смертельная опасность. И опасность эта кроется в катастрофически быстром изменении климата, загрязнение воздуха, вод и почвы, появление новых болезней, вымирание сотен тысяч видов животных и растений - первые угрозы надвигающейся угрозы.

Опасность непредсказуемых изменений в стабильном состоянии биосферы, к которому исторически приспособлены природные сообщества и виды, включая самого человека, столь велика при сохранении привычных способов хозяйствования, что перед нынешними поколениями людей, населяющими Землю, возникла задача экстренного усовершенствования всех сторон своей жизни в соответствии с необходимостью сохранения сложившегося круговорота веществ и энергии в биосфере. Кроме того, повсеместное загрязнение окружающей нас среды разнообразными веществами, подчас совершенно чуждыми для нормального существования организма людей, представляет серьезную опасность для нашего здоровья и благополучия будущих поколений.

Цель данной курсовой - рассмотреть методы очистки атмосферного воздуха.

Для достижения поставленной цели необходимо решить следующие задачи:

классифицировать систему очистки атмосферного воздуха;

рассмотреть способы очистки;

показать эффективность очистки в разнообразных условиях.

Объектом данного исследования является методы и средства защиты атмосферы.

Предметомданного исследования является очистки воздуха с использованием туманоуловителя.

Структура работы. Курсовой проект состоит из введения, трёх глав, разбитых на параграфы, заключения и списка использованной литературы. Работа размещена на сорока страницах.


1. Общая характеристика загрязнения атмосферы (на примере Астраханской области)


1.1 Состояние и качество атмосферного воздуха в астраханской области


Главная геофизическая обсерватория им. Войкова ежегодно проводит исследования замеров воздуха с помощью Федеральной государственной метеорологической службы "Росгидромет" в 260 городах России. По результатам исследований составляется так называемый приоритетный список городов с самым высоким уровнем загрязнения воздуха. По сравнению с прошлым годом "черный список" существенно изменился. В него попали Волгоград, Ставрополь, Ростов-на-Дону, причем столица Южного федерального округа оказалась в первой десятке этого списка.

По сообщениям областного центра по гидрометеорологии, Астрахани пока не грозит занесение в "черный список". Конечно, Астраханскую область нельзя отнести к числу самых чистых городов, но положение там достаточно стабильное. За последние пять лет уровень загрязнения воздуха существенно не изменился и даже имеет тенденцию снижения по некоторым загрязнителям. Контроль за качеством воздуха носит систематический характер.

В Астраханской области действует восемь стационарных постов наблюдения за состоянием окружающей среды, которые расположены как в городе, так и по области, прежде всего в районе влияния Астраханского газового комплекса, в г. Нариманове, п. Досанг и п. Аксарайский. Ежедневно лабораторией исследуется 10 вредных веществ, а также отбираются пробы на тяжелые металлы и бензапирен, которые отправляются в НПО "Тайфун", г. Обнинск. Приоритетными веществами, загрязняющими воздух на территории Астраханской области, являются: диоксид азота, диоксид серы, формальдегид, окись углерода, пыль, сажа, ароматические углеводороды. Ни по одному из этих компонентов высокого загрязнения, т.е. более 5 ПДК, по Астрахани и области не наблюдается уже много лет.

В атмосферу выбрасывается множество различных вредных веществ, поэтому необходим обобщающий показатель загрязнения воздуха несколькими веществами. Это индекс загрязнения атмосферы воздуха (ИЗА). В течение пяти лет ИЗА в Астрахани колеблется от 1 до 7 (причем показатель менее 5 считается низким, а с 5 до 7 - повышенным). Но он все еще остается низким.

Сокращению объемов выбросов способствовали благоприятные метеорологические условия и проведение активных природоохранных мероприятий. Наряду с ООО "Астраханьгазпром" наибольший вклад в загрязнение атмосферы вносят предприятия теплоэнергетики (в частности, ТЭЦ-2), топливной промышленности, производства строительных материалов, а также автомобильный, железнодорожный и водный транспорт. Так, выбросы в атмосферу загрязняющих веществ в прошлом году составили 119 тыс. тонн, причем на долю автотранспорта приходится более 23 тыс. тонн, что говорит о многом. В Астрахани в настоящее время зарегистрировано более 85 тыс. единиц автотранспорта, и ежегодно его количество возрастает в среднем на 15 процентов. Учитывая состояние наших дорог и общую загруженность городских трасс различными видами автомашин, негативное воздействие автотранспорта превратилось в одну из острейших социальных проблем.

Немалую лепту в загрязнение атмосферного воздуха вносят городские свалки и несанкционированные скопления мусорных отходов, которые зачастую просто сжигаются. Каждая свалка представляет собой химическую мину, выделяющую в атмосферу опасные яды. Высокому загрязнению воздуха способствуют неблагоприятные метеорологические условия. Ситуация обостряется летом при высокой температуре воздуха и штилевой погоде. Штилевая погода в условиях города способствует застою воздуха и накоплению в нем вредных примесей. Но и ветер не всегда благо. При горизонтальном переносе воздушных масс возможен трансрегиональный перенос выбросов вредных веществ на Астраханскую область из соседних областей и Казахстана. Несмотря на дефицит денежных средств, администрации города и области постоянно уделяют внимание осуществлению контроля за выполнением природоохранных мероприятий. Два года назад был открыт территориальный центр экологического мониторинга, расположенный в здании Главного управления природных ресурсов и охраны окружающей среды МПР РФ по Астраханской области, построены два поста контроля загазованности атмосферного воздуха на территории ООО "Астраханьгазпром" и в г. Нариманове.


1.2 Источники загрязнения атмосферного воздуха


Основные источники загрязнения атмосферного воздуха - ООО "Астраханьгазпром, ООО "Астраханьэнерго. Основные источники загрязнения водных объектов - ЖКХ г. Астрахань, морской транспорт

В области отмечается низкое качество возвратных вод, сбрасываемых в открытые водоемы предприятиями - природопользователями. Наиболее часто отмечается превышение по таким ингредиентам как азот аммония, азот нитритов, азот нитратов, нефтепродукты, железо, медь. Проверены сбросы 26 предприятий, 43 очистных сооружений канализации и водопроводов, 4 рыбоводных предприятий, 6 ливнево-дренажных канализаций.

В атмосферу от стационарных источников поступило 118,5 тыс. т загрязняющих веществ, в том числе в г. Астрахань - 9,2 тыс. т.

Основным загрязнителем воздушного бассейна области является предприятие ООО "Астраханьгазпром - его выбросы составляют 102 тыс. т или 86% от областного объема. Увеличение валовых выбросов загрязняющих веществ в атмосферу на предприятии ООО "Астраханьгазпром по сравнению с 2002 г. на 3,2 тыс. т связано с увеличением объемов переработки пластового газа.

По данным инвентаризации объектов захоронения и хранения отходов на территориях города и 439 населенных пунктов Астраханской области выявлено более 440 свалок отходов, из которых около 300 - несанкционированных, 7 полигонов отходов, из них 6 полигонов ТБО и 1 полигон промышленных отходов. Общая площадь земель, занятых свалками, составляет 634 га, полигонами - 65 га. Из общего количества несанкционированных свалок в г. Астрахани имеется 91 свалка. Общая площадь земель, занятых несанкционированными свалками отходов - 182,4 га, в т. ч. в г. Астрахани - 63,0 га.

На несанкционированных свалках размещаются твердые бытовые отходы, отходы из жилищ, формируемые населением, отходы потребления на производстве подобные бытовым, мусор уличный, выборочно мусор строительный и металлолом.

Количество отходов, накопленных на санкционированных свалках, составляет 282,2 тыс. т, несанкционированных - 47,7 тыс. т., на полигонах ТБО и отходов производства 2677 тыс. т.

На территории г. Астрахань на несанкционированных свалках накоплено 30,8 тыс. т отходов. В Правобережной части города вновь создалась напряженная экологическая обстановка, связанная с отсутствием площадей под размещение твердых промышленных и бытовых отходов. Аналогичное положение в ближайшие 1-2 года возможно сложится и в Левобережной части города, так как существующий полигон твердых бытовых отходов, расположенный в пос. Фунтово Приволжского района, может принимать отходы до 2006 г.

Неблагоприятная экологическая ситуация сложилось с утилизацией жидких нечистот и хозбытовых сточных вод из выгребных ям неканализованной части города, размещаемых в настоящее время на иловых (сливных) картах южных очистных сооружениях биологической очистки канализации. В данное время требуется их ликвидация и строительство сливных насосных станций в соответствии с требованиями строительных норм и правил.

Главные источники загрязнения атмосферы - промышленные, транспортные и бытовые выбросы.

Ежегодно промышленность и транспорт Астраханской области выбрасывают в атмосферу около 200 тысяч тонн загрязняющих веществ. Это означает, что на одного жителя области в среднем приходится до 200 кг загрязнений. Значительная часть выбросов в атмосферу области (около 60%) приходится на предприятие "Астраханьгазпром".

Для того, чтобы защитить людей и другие организмы от воздействия загрязнителей, устанавливают предельно допустимые концентрации (ПДК) загрязняющих веществ в природной среде.

В последние годы выбросы в атмосферу загрязняющих веществ от промышленных предприятий снижаются. Это связано со спадом производства на предприятиях г. Астрахани и некоторым улучшением работы предприятия "Астраханьгазпром" в вопросах экологии. Но вместе с тем, увеличивается количество загрязняющих веществ, поступающих в атмосферу от передвижных источников - автотранспорта.

Загрязняющие вещества, поступающие в воздух, как правило, несвойственны его составу или имеют незначительное содержание в естественных условиях. Это такие вещества, как: сернистый газ, водород, сажа, аммиак, оксиды азота, формальдегид и другие летучие органические вещества. Загрязняющим веществом является и углекислый газ, так как повышение его содержания в атмосферном воздухе вызывает "парниковый эффект" - потепление климата Земли.

Любое увеличение мощности промышленных предприятий приведет к повышению загрязнения атмосферы. В настоящее время наиболее приемлемым способом снижения загрязнения окружающей среды выбросами промышленных предприятий является использование пылеулавливающего и газоочистного оборудования.

На состояние воздушной среды оказывают влияние предприятия коммунального хозяйства. В холодные зимы загрязнение воздуха от этих предприятий возрастает.

Мощным источником загрязнения атмосферного воздуха в прошлые годы явились аварийные выбросы загрязняющих веществ предприятиями "Астраханьгазпром" и "Астраханьбумпром". При этом в воздушную среду поступали метан, сероводород (H2S), меркаптаны, оксиды азота (NO, NO2), сажа, но больше всего диоксида серы. Между тем, повышенное содержание в атмосфере соединений серы и азота вызывает кислотные осадки. Это стало большой экологической проблемой, как для Астраханской области, так и страны в целом.

Автотранспорт является одним из основных, а часто - главным источником загрязнения воздуха. Поэтому снизить загрязнение воздуха позволяет использование всевозможных устройств, уменьшающих поступление загрязняющих веществ с выхлопными газами. В развитых странах сейчас широко используются такие устройства - катализаторы, обеспечивающие более полное сжигание топлива и частичное улавливание загрязняющих веществ. Важным мероприятием по снижению токсичных выбросов от автомобилей является замена содержащих ядовитый свинец добавок в бензин менее токсичными и использование неэтилированного бензина. Весь бензин, производимый на предприятии "Астраханьгазпром", вырабатывается без добавок, содержащих свинец, что значительно сокращает загрязнение окружающей среды этим опасным веществом.

В нашей стране применение автомобильных катализаторов не является обязательным, поэтому на автомобилях отечественного производства они не используются. В последние годы на дорогах России появилось много старых автомобилей импортного производства, использование которых в зарубежных странах без катализаторов запрещено. Это значительно ухудшило качество атмосферного воздуха на улицах многих городов, и, в том числе, в Астрахани.

1.3 Деятельность человека как фактор воздействия на окружающую среду


Охрана атмосферы включает постоянный контроль не только за ее состоянием, но и за организацией работы предприятий и автотранспорта. Ежегодно в Астраханской области проводится операция "Чистый воздух", в ходе которой проверяются автопредприятия, станции техобслуживания автомобилей, автомобили на магистралях на токсичность и дымность. Затем разрабатываются меры по снижению загрязнения воздуха: создаются посты диагностики, оснащенные современными приборами контроля, организуются участки по ремонту, регулировке двигателей и другие.

Как сообщает Департамент информации администрации Астраханской области, в целях снижения загрязненности атмосферного воздуха в 8-километровой особо контролируемой зоне Астраханского газового комплекса и развития сети наблюдений за состоянием воздуха в городе Астрахани и области постановлением исполняющего обязанности главы администрации области должен быть проведен ряд соответствующих мероприятий. Руководству ООО "Астраханьгазпром" предложено разработать комплекс воздухоохранных мероприятий, который предусматривал бы организацию санитарно-защитной зоны с обязательным отселением ее жителей. Кроме того, ОАО "Газпром" будет предложено осуществить мероприятия по снижению удельных выбросов в атмосферу и повышению экологичности выпускаемой продукции. Астраханскому центру по гидрометеорологии и мониторингу окружающей среды предложено разработать и внедрить методические рекомендации по прогнозу высокого уровня загрязнения пограничного слоя атмосферы в районе АГК и города Нариманова, а также по регулированию выбросов. В будущем году наблюдения за экологическим состоянием атмосферного воздуха, возможно, будут вестись также в Ахтубинске и Знаменске.

очистка воздух туманоуловитель загрязнение

Одной из актуальных для Астраханской области остается экологическая проблема. Связана она, прежде всего, с воздушными выбросами автомобилей и газового комплекса, а также загрязнением воды. За последнее время индекс загрязнений воздуха от АГПЗ в Аксарайске заметно снизился. Однако концентрация вредных газов в атмосфере остается достаточной высокой, особенно в районе города Нариманов.

Показатели загрязнения питьевой воды в Астраханском регионе ниже, чем в других районах РФ, о чем свидетельствуют пробы питьевой воды. Однако распространение химических веществ по рекам сохраняется. Особенно остро стоит проблема, связанная с очистительными сооружениями и канализациями. Эти объекты плохо функционируют. В результате вода после паводка застаивается, гниет, образуя очаг заболеваний.

Эти задачи должны решать органы местного самоуправления, разрабатывая новые проекты и привлекая средства. Например, нарастает проблема переработки отходов предприятий и строительства мусороперерабатывающего завода на территории нашей области. Ее надо решать. Однако, по данным управления природных ресурсов МПР России по Астраханской области, воды Нижней Волги характеризуются как умеренно загрязненные. Тем не менее, количество очищенной воды увеличивается очень медленно.

По состоянию на 31 декабря 2012 г. сеть особо охраняемых природных территорий Астраханской области состояла из двух государственных природных заповедников, четырех государственных природных заказников, трех биологических заказников и 35 памятников природы.

В целом, состояние природных комплексов существующих на территории области ООПТ в истекшем году было удовлетворительным. Однако назрела необходимость обследования территорий некоторых памятников природы для принятия решения о целесообразности их реорганизации в связи с утратой ими в значительной мере основных охраняемых природных объектов и комплексов и природоохранных функций. По-прежнему, серьезную угрозу природным комплексам ООПТ продолжают представлять пожары. Остался не решенным вопрос упорядочения проживания граждан и выпаса ими личного скота на территории государственного природного заказника "Степной".

В 2012 г. эколого-токсикологическая обстановка в р. Волга и ее дельте характеризовалась стабилизацией показателей нефтяного, фенольного, детергентного загрязнения и таких металлов, как кадмий, никель, кобальт. Наиболее неблагополучная ситуация наблюдалась на водотоках Белинского банка и в р. Волга в городской черте, где были отмечены повышенные концентрации всех ТМ. Воды Волго-Каспийского канала имеют высокий уровень нефтяного загрязнения.

При проведении гидробиологического мониторинга в 2012 г. было установлено, что акватория Волго-Ахтубинской поймы, согласно классификации качества поверхностных вод, оценивается как переходная от "слабо" до "умеренно-загрязненной". В целом токсикологическая ситуация Каспийского моря была сравнительно благоприятной для гидробионтов.

2. Методы и средства защиты атмосферного воздуха


2.1 Классификация методов очистки атмосферного воздуха


Механические методы

Механические методыоснованы на использовании сил тяжести, сил инерции, центробежных сил, диффузии, захвата и др. К этой группе методов относятся: инерционное пылеулавливание, мокрое пылеулавливание, фильтрация.

Инерционное пылеулавливание основано на том, что твердые частицы и капли выпадают из запыленного газового потока при резком изменении его направления. Наибольшее распространение получили инерционные пылеуловители, которые предназначены для улавливания крупных фракций пыли размером более 50 мкм, и циклоны, используемые для удаления золы из дымовых газов и сухой (древесной, асбоцементной, металлической) пыли с размером частиц 25-30 мкм из воздуха, ротационныепылеуловители, предназначенные для очистки воздуха рабочих помещений.


Рис. 1 Малогабаритный пылеулавливатель


Принцип действия циклона - одного из самых распространенных пылеочистительных аппаратов - основан на использовании центробежной силы, возникающей при вращательно-поступательном движении газового потока: центробежная сила отбрасывает частицы пыли к стенкам корпуса циклона, затем частицы пыли, стекая по стенкам, выпадают в бункер, а очищенный газ через расположенный по оси циклона выхлопной патрубок выбрасываются в атмосферу или поступают к потребителю. Циклоны составляют самую многочисленную группу экотехнической аппаратуры - более 90 % от общего числа применяемых в промышленности пылеуловителей. Ими улавливается более 80 % от общей массы уловленной всеми аппаратами пыли


а б

Рис. 2. Батарейный циклон: а - схема (1 - патрубок; 2 - распределительная камера;

3 - направляющие элементы; 4 - пылесборник; 5 - камера;

6 - патрубок); б - циклон на котельной вагонного депо


Мокрое пылеулавливание основано на промывании запыленного газового потока жидкостью, подаваемой в виде брызг или тумана.

Действие аппаратов мокрой очистки газов основано на захвате частиц пыли жидкостью, которая уносит их из аппаратов в виде шлама. Процессу улавливания пыли в мокрых пылеуловителях способствует конденсационный эффект - укрупнение частиц пыли за счет конденсации на них водяных паров. Поскольку в этих аппаратах процесс пылеочистки обычно сопровождается процессами абсорбации и охлаждения газов, они применяются и в качестве теплообменных аппаратов, и для очистки газообразных составляющих. Обычно в качестве орошающей жидкости, если не требуется химическая очистка, используется вода. Часто аппараты мокрой очистки газов используются в качестве предварительной ступени перед аппаратами других типов.


а б

Рис. 3. Ротационный пылеуловитель: 1 - спиралевидный кожух; 2 - шибер, необходимый для направления загрязненного воздуха в циклон; 3 - циклон для окончательного осаждения твердых частиц


Аппараты мокрой очистки газов называются пенными газоочистителями и скрубберами, они подразделяются на полые и насадочные, центробежные, динамические, турбулентные. Скрубберы (рис.15) удаляют частицы размером более 10 мкм, а пенные газоочистители улавливают частицы размером до 2 мкм. Они применяются на участках окраски изделий и нанесения полимерных покрытий в замкнутых системах воздухопользования. Эффект очистки составляет 90-99 %.


Рис. 4. Полый скруббер

1 - корпус; 2 - оросительная система


Фильтрацияоснована на пропускании запыленного газового потока через фильтрующий материал. Фильтрацию применяют для сверхтонкой очистки атмосферного воздуха от древесной, асбоцементной, абразивной пыли, золы, сажи, частиц металлов, их оксидов, ангидридов. В зависимости от фильтрующего материала, фильтры принято делить на тканевые, волокнистые, пористые и зернистые (из сыпучих материалов). В тканевых фильтрах используют не только ткани, но и нетканые материалы, такие как войлок или фетр. Фильтры из хлопчатобумажных тканей применяются для фильтрации нейтральных и щелочных газов при относительно невысокой температуре. В волокнистых фильтрах применяют набивные слои из натуральных или синтетических волокон, шлаковаты, стружки металлов или полимерных материалов, а так же сформированные слои (фильтровальная бумага, картон). Широкое распространение получили фильтры из синтетического и стеклянного волокна. Они обладают высокой термостойкостью и механической прочностью. Наиболее распространенными пылеулавливающими аппаратами, работающими по методу фильтрации, являются рукавные фильтры, которые представляют из себя мешок, натянутый на трубчатую раму. Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей применяют волокнистые фильтры - туманоулавители улавливающие частицы размером менее 3 мкм, принцип действия которых основан на осаждении капель на поверхности волокон с последующим стеканием жидкости под действием сил тяжести. Эффективность очистки составляет 90-99 %.


Рис. 5. Многосекционный рукавный фильтр:

Распределительная коробка для подачи газа; 2 - рукава для оседания пыли; 3 - встряхивающее устройство; 4 - шнек для удаления осевшей пыли; 5 - коллектор для выпуска очищенного газа атмосферу.


Рис. 6. Фильтрующая установка циклон на котельных вагонного депо


Физические методы

Физические методы базируются на использовании электрических и электростатических полей, процессов охлаждения, конденсации и кристаллизации. Электростатическая очистка газов осуществляется в вертикальных и горизонтальных электрофильтрах, она основана на электризации загрязняющих частиц размером до 0,1 мкм и выделении их из газа под действием электрического поля (до 50 кВ), создаваемого специальными электродами.

Электрофильтры - одно - или двухсекционные аппараты прямоугольной формы (рис.18). Корпуса аппаратов - стальные, покрытые снаружи теплоизоляцией. Активная зона электрофильтров состоит из осадительных электродов (плоских полотен, набранных из пластинчатых элементов специального профиля) и коронирующих электродов (трубчатых рам, в которых натянуты коронирующие элементы). Расстояние между соседними осадительными электродами (300 мм) является также шириной единичного газового прохода. Удаление уловленной пыли с электродов - механическое, путем периодического встряхивания их ударами молотков

По способу удаления осаждающихся на электродах частиц различают сухие и мокрые электрофильтры. Сухие электрофильтры используются для удаления сухой пыли, а мокрые применяют для очистки газов от паров кислот: серной, соляной, азотной. Эффект очистки составляет 97-99 %.


Рис. 7. Однозонный электрофильтр с поперечным движением газа

- осадительные элетроды; 2 - коронирующие электроды


Физико-химические методы

Физико-химические методы основаны на физико-химических взаимодействиях загрязнителей с очищающими агентами. К таким методам относятся: абсорбция, хемосорбция, адсорбция, каталитический метод, термический метод.

Абсорбция основана на разделении газовоздушной смеси на составные части путем поглощения одного или нескольких газовых компонентов этой смеси жидким поглотителем (абсорбентом). Для удаления из выбросов аммиака, хлористого и фтористого водорода применяют воду. Для удаления ароматических углеводородов используют серную кислоту. В настоящее время наибольшее распространение в качестве абсорберов получили скрубберы-абсорберы


Рис. 8. Орошаемый скруббер-абсорбер с насадкой:

Насадка; 2 - разбрызгиватель


Адсорбцияоснована на извлечении из газов смесей вредных примесей с помощью твердых адсорбентов. Наиболее широко в качестве адсорбентаиспользуется активированный уголь, кроме того, существуют и такие сорбенты, как активированный глинозем, силикагель, активированный оксид алюминия, синтетические цеолиты. Некоторые адсорбенты пропитывают реактивами, повышающими эффективность адсорбции и превращающими вредную примесь в безвредную за счет происходящей на поверхности адсорбента хемосорбции. Основным очистным оборудованием являются вертикальные, горизонтальные, скрубберы - адсорберы.

Хемосорбция основана на поглощении газов и паров жидкими и твердыми поглотителями с образованием химических соединений. Этот метод используется для удаления из выбросов сероводорода и окислов азота. В качестве очистного оборудования используются скрубберы, а химическими поглотителями являются мышьякощавелевые и этаноламиновые растворы.

Каталитический методочистки заключается в селективном ускорении химической реакции и превращении загрязнителя в безвредное вещество. Для снижения токсичности выхлопных газов применяют каталитические нейтрализаторы, в которых загрязненный воздух пропускают над катализатором, чаще всего оксидом алюминия. С помощью такого очистного оборудования можно очистить воздух от угарного газа, углеводородов, окислов азота. В жидкостных нейтрализаторах применяют для уменьшения содержания альдегидов и оксидов азота 10 % -ные водные растворы Na2SO3 или NaHSO4 с добавкой 0,5 % -ного основного реагента для предохранения от преждевременного окисления. Таким методом может быть достигнута полная очистка газов от альдегидов, а содержание оксидов азота снижено на 70 %.


Рис. 9. Каталитический нейтрализатор: 1 - корпус; 2 - реактор;

3 - сетка; 4 - теплоизоляция; 5 - катализатор; 6 - фланец


Термический метод основан на дожигании и термической деструкции вредных веществ в выбросах. Используется в том случае, когда вредные примеси в выбросах горючи. Этот метод применяют для очистки выбросов от лакокрасочных и пропиточных участков. Системы термического и огневого обезвреживания обеспечивают эффективность очистки до 99 %.

Биологический метод

В природных условиях аэрозоли микроэлементов могут удаляться с поверхности листьев дождем, ветром или вместе со слоем кутикулярного воска. Кроме того, удаление происходит за счет абсорбции микроэлементов листьями с последующей транслокацией. Удаление аэрозолей с листьев дождем зависит от характера поверхности листа и характеристик микроэлементов.

Все растения обнаруживают способность избирательно извлекать химические элементы. В условиях окружающей среды сложного геохимического состава растения выработали механизмы активного поглощения элементов, участвующих в жизненных процессах, и удаления токсичных избытков других элементов.

У растений в ходе эволюции и в течение жизни вырабатываются механизмы, приводящие к адаптации и нечувствительности к изменению химического баланса в окружающей среде. Поэтому реакции растений на микроэлементы в почве и окружающем воздухе должны всегда рассматриваться для конкретной системы почва - растение.

Надземные части растений - это коллекторы всех атмосферных загрязнителей. Химический состав городских растений может служить индикатором для выделения загрязненных областей.

Очистные сооружения промышленных предприятий пока не позволяют полностью освобождать отходы производства от вредных примесей. Поэтому дополнительным способом доочистки воздуха является биологический. Роль биологического фильтра играет растительность, в первую очередь, древесная. Безудержная эксплуатация и сведение лесов, расширение сельскохозяйственных посевов сокращают продуктивность работы зеленого фильтра, как по площади, так и по времени. Известно, что агроценозы, даже самые высокоурожайные, уступают естественным лесным фитоценозам по суммарной за год биологической продуктивности в сходных экологических условиях. Следовательно, так же уменьшается фотосинтетическая деятельность, обеспечивающая необходимый баланс СО2 и О2 в атмосфере и связывание атмосферных загрязнителей. Проблема сохранения "зеленых легких" планеты и их биосферной функции стоит достаточно остро.

Результаты исследований свидетельствуют о важной роли древесных растений в процессах выведения газообразных примесей из атмосферного воздуха. При этом многие считают, что основной способ снижения уровня загрязнения воздуха - технологический (фильтры, уловители), а биологический способ можно рассматривать только как дополнительный, вспомогательный.

Наземные органы растений активно реагируют на повышение концентрации химических элементов в почве, накапливая их выше уровня, необходимого для обеспечения нормального роста и развития растений. Растения могут усваивать, и вовлекать в метаболизм двуокись серы, окислы азота, аммиак, подобно ассимиляции листьями углекислого газа. В условиях повышенного содержания в атмосфере этих газов в тканях происходит значительное увеличение содержания азота и серы.

Поглотительная способность насаждений зависит от состава пород, полноты, класса бонитета, возраста, ассимиляционной поверхности крон деревьев, длительности вегетации. Наибольшей поглотительной способностью обладают древесные растения. За ними, по мере снижения поглотительной способности, идут местные сорные травы, цветочные растения и газонные травы. В фитоценозах газы поглощают не только растительность, но и почва, вода, подстилка, поверхность стволов и ветвей деревьев и другие элементы. Изучалось влияние выхлопных газов автотранспорта на видовой и количественный состав лесного напочвенного покрова. В результате чего было установлено, что на всех пробных площадях наибольшее распространение в лесном напочвенном покрове получила будра плющевидная.

Роль отдельных компонентов экосистемы в поглощении поллютантов можно определить только экспериментально. В природных условиях распределение поллютанта в экосистеме зависит от характера загрязнения воздуха и процессов транслокации ингредиента в экосистеме, как под влиянием биологических процессов, так и экологических условий.

На поглощение поллютанта растениями и отдельными элементами экосистем влияют экологические факторы. В оптимальных для фитоценоза условиях (повышенная освещенность и влажность воздуха, температура +25.30°С) лучше выражено и поглощение вредных газов растениями. В неблагоприятных для фитоценоза условиях снижается поглощение газов растительностью и усиливается роль почвы.

Лесные зеленые насаждения можно рассматривать как промышленный фитофильтр, призванный обезвредить атмосферные загрязнители. Критерием эффективности его работы должна быть способность снижать уровень загрязнения воздуха до предельно допустимых концентраций.

2.2 Классификация систем очистки воздуха и их параметры


По агрегатному состоянию загрязнители воздуха подразделяются на пыли, туманы и газопарообразные примеси. Промышленные выбросы, содержащие взвешенные твердые или жидкие частицы, представляют собой двухфазные системы. Сплошной фазой в системе являются газы, а дисперсной - твердые частицы или капельки жидкости.

Системы очистки воздуха от пыли делятся на четыре группы: сухие и мокрые пылеуловители, а также электрофильтры и фильтры.

Выбор типа пылеуловителя зависит от характера пыли (от размеров пылинок и её свойств; сухая, волокнистая, липкая пыль и т.д.), ценность данной пыли и необходимой степени очистки.

Сухие пылеуловители

Гравитационные пылеуловители. Простейшим типом пылеуловителей являются пылеосадочные камеры, относящиеся к гравитационным пылеуловителям. Их действие основано на том, что скорость потока запыленного воздуха, поступающего в камеру и расширяющегося в ней, уменьшается, вследствие чего находящиеся в нем твердые частицы осаждаются под влиянием собственного веса.

Для повышения эффективности очистки и сокращения времени осаждения пылевых частиц, т.е. сокращения длины камеры, ее разбивают на ряд каналов или устраивают лабиринты. Из-за своей громоздкости все эти камеры широкого распространения не получили. Эффективность очистки в лабиринтовых камерах доходит до 55-60%.

Инерционные пылеуловители. К сухим инерционным пылеуловителям относятся циклоны, струйные ротационные пылеуловители типа ротоклон и др.

Циклоны. Циклоны представляют собой пылеулавливающие аппараты, в которых улавливание пыли происходит а результате инерционной сепарации/

Очищаемый воздух, поступая в верхнюю цилиндрическую часть циклона тангенциально и вращаясь, опускается из кольцевого пространства, образуемого корпусом циклона и выхлопной трубой, в конусную часть и, продолжая вращаться, поднимается, выходя через выхлопную трубу. При этом как в нисходящем, так и в восходящем вихревом течении циклона происходит непрерывное изменение направления скорости потока, а поэтому скорость частиц, движущихся в потоке, в каждый данный момент времени не совпадает со скоростью потока. Аэродинамические силы, которые возникают под влиянием разности скоростей движения воздуха к частиц пыли, искривляют траектории частиц. Достигают же стенок циклона, т.е. сепарируются из потока, те частицы, вес которых достаточно велик.

Под влиянием силы тяжести, радиального стока, турбулентности, уменьшения угла конусности циклона и других гидродинамических факторов отделившиеся частицы опускаются в коническую часть циклона или в присоединенный к нему бункер.

Циклоны широко применяются для очистки от пыли вентиляционных выбросов, а также находят большое распространение во многих отраслях промышленности (горнорудной, керамической, энергетической и др.).

Особенно широкое распространение получили циклоны НИИОГаза, СИОТ и ЛИЭОТ.

Эффективность очистки воздуха в циклоне зависит от дисперсного состава пыли, массы отдельных пылевых частиц, скорости движения воздуха в подводящем патрубке, от конструкции и размеров циклона (чем меньше диаметр циклона, тем выше его эффективность).

Циклоны могут устанавливаться как на всасывании, так и на нагнетании.

Циклоны, в которых очищается воздух, содержащий влажную пыль (например, в литейных цехах), должны устанавливаться в отапливаемых помещениях, так как в противном случае возможны смерзание пыли и выход циклонов из строя.

Из различных конструкций циклонов наибольшее распространение получили циклоны ЦН (ЦН-11, ЦН-15, ЦН-15у, ЦН-24), СИОТ и вцнииот.

На основе оценки показателей действия циклонов - эффективности, экономичности и удобства компоновки - циклон ЦН-11 утвержден Госстроем СССР в качестве унифицированного пылеуловителя.

В циклоне ЦН-11 НИИОГаза повышенной эффективности. Запыленный воздух поступает в тангенциально расположенный входной патрубок. Вращаясь в цилиндрической части корпуса, частицы пыли, выделившиеся из воздуха, опускаются в бункер. Пыль удаляется из бункера через его, нижнее отверстие. Очищенный воздух по выхлопной трубе поступает в улитку и удаляется из циклона в атмосферу. Циклон ЦН-11 НИИОГаза выпускается с улиткой и без нее.

При необходимости очистки значительного количества запыленного воздуха рекомендуется вместо одного циклона большого размера устанавливать несколько циклонов меньших размеров. Так, при расходе воздуха более 5500 м3/ч рекомендуется компоновать циклоны ЦН-11 в группы по 2, 4, 6,8, 10, 12 и 14 циклонов.

Относительные характеристики циклонов при аэродинамическом сопротивлении 981 Па (100 кгс/м2) и одинаковой пропускной способности.

Циклоны конструкции НИИОГаза серии ЦН можно применять для улавливания золы из дымовых газов котельных, работающих на твердом топливе, сухой пыли из воздуха в системах аспирации помольных установок, пыли из сушилок и из воздуха пневматических транспортных систем при начальной запыленности от 0,3 до 400 г/м3. Циклоны НИИОГаза не следует устанавливать для очистки слипающейся, взрывоопасной и волокнистой пыли.

Конструкция циклона СИОТ характеризуется отсутствием цилиндрической части и треугольной формой входного патрубка.

Циклоны СИОТ можно применять для очистки воздуха от сухой неслипающейся неволокнистой пыли. Эти циклоны выпускают семи номеров (№ 1-7) пропускной способностью от 1500 до 10 000 м3/ч.

Циклоны ВЦНИИОТ применяют для средней очистки воздуха от сухой неслипающейся неволокнистой пыли и для очистки воздуха от абразивной пыли. Их можно применять также при слипающихся пыли типа сажи и талька. Для повышения эффективности пылеосаждения и предохранения пыли от взмучивания и уноса из пылеприемного бункера в нижней части циклона имеется внутренний конус.

Спирально-конусные циклоны НИИОГаза СДК-ЦН-33 и СК-ЦН-34 относятся к аппаратам с высоким аэродинамическим сопротивлением и могут устанавливаться только в тех случаях, когда при максимальной степени очистки аэродинамическое сопротивление не нормируется.

Циклоны Л И ОТ № 1 изготовляются как правого, так и левого исполнения. У циклона правого исполнения воздух движется по часовой стрелке (если смотреть на Циклон сверху), а у циклона левого исполнения - против часовой стрелки. Циклоны Л И ОТ могут устанавливаться как на всасывании, так и на нагнетании.

В деревообрабатывающей промышленности для улавливания древесных отходов применяют циклоны Гипродрева, Гипродревпрома и циклоны типа Клайпедского ОЭКДМ. Циклон Клайпедского ОЭКДМ можно применять для улавливания стружки, опилок, пыли и древесных отходов на деревообрабатывающих заводах и в цехах производства древесностружечных плит. Циклон, устанавливаемый на нагнетании, может быть как правого, так и левого исполнения. Все циклоны для улавливания древесных отходов при установке следует - заземлять.

Струйные ротационные пылеуловители типа ротоклон. Ротационный пылеуловитель представляет собой вентилятор, который одновременно с перемещением воздуха очищает его от пыли. Очистка воздуха происходит под действием центробежных сил, возникающих при вращении рабочего колеса.

В ротационный пылеуловитель типа ротоклон запыленный воздух поступает через всасывающее отверстие. При вращении центробежного колеса пылевоздушная смесь движется по межлопаточным каналам и под действием сил инерции и сил Кориолиса пылевые частицы прижимаются к поверхности диска колеса и к поверхностям набегающих лопаток. Пыль небольшим количеством воздуха (3-5%) поступает через зазор между корпусом и диском колеса в кольцеобразный приемник. Из приемника пыль через патрубок направляется в бункер, где оседает. Воздух из бункера через отверстие вновь возвращается в пылеприемник. Очищенный воздух поступает в улитку кожуха и через нагнетательное отверстие покидает пылеуловитель.

Ротационные пылеуловители имеют высокую эффективность при улавливании пылевых частиц размером не менее 8 мкм (83%), а при улавливаний частиц пыли размером более 20 мкм эффективность их достигает 97%.

При ротационном методе пылеотделения эффект пылезадержания может быть увеличен с помощью водяной пленки. В этом случае для очистки воздуха может быть использован центробежный вентилятор.

Мокрые пылеуловители

Инерционные пылеуловители. К мокрым инерционным пылеуловителям относятся центробежные скрубберы, циклоны-промыватели, пылеуловители Вентури и др.

Принцип действия центробежного скруббера ВТИ состоит в следующем. Запыленный воздух вводится в скруббер наклонно расположенным патрубко, в котором находится смывное приспособление. Воздушный поток со смоченными и укрупненными частицами пыли со скоростью 15 - 23 м/с входит тангенциально в корпус. По стенкам корпуса сверху вниз винтообразно стекает водяная пленка, подаваемая оросительной трубкой через форсунки, установленные касательно к внутренней поверхности цилиндра. Эта пленка смывает отделяющуюся пыль со стенок вниз. Шлам собирается в конусе и через конусный патрубок (гидрозатвор) поступает в шламоотстойник.

Очищенный воздух через улитку и выходной патрубок удаляется в атмосферу.

Степень очистки в скруббере колеблется от 86 до 99% и повышается с увеличением удельного веса пыли, скорости движения воздуха во входном патрубке и с уменьшением диаметра корпуса.

Центробежный скруббер ВТИ применяют в вытяжных системах вентиляции для очистки воздуха от кварцевой, коксовой, угольной, известковой, абразивной пыли и т.п.

В циклоне-промывателе СИОТ улавливание пыли происходит в результате осаждения ее на смоченную внутреннюю поверхность стенок корпуса под действием сил инерции и благодаря промывки воздуха водой, распыляемой во входном патрубке воздушным потоком. Вода подается в циклон во входной патрубок и на днище водораспределителя, которое расположено в верхней части циклона. Циклон-промыватель состоит из корпуса, входного и выходного патрубков, а также из раскручивателя. Для поддержания постоянного давления воды, необходимой для промывки воздуха, циклон-промыватель снабжается водонапорным бачком с шаровым клапаном.

Циклоны-промыватели применяют для очистки воздуха от различных видов пыли, кроме цементирующихся и волокнистых. Их следует устанавливать на всасывании.

Действие пылеуловителя Вентури (турбулентного промывателя) основано на использовании энергии газового потока для распыления впрыскиваемой воды. Газовый поток, имеющий высокую степень турбулентности, способствует коагуляции частиц. Крупные капли жидкости, содержащие частицы пыли, легко улавливаются в устанавливаемых вслед за трубой Вентури мокрых циклонах, циклонах-каплеуловителях и т.п.

Достоинство трубы Вентури с подачей воды к горловине состоит в возможности укрупнения пылевых частиц до размера 10 мкм в результате соударений их с каплями жидкости, чем и объясняется высокая степень очистки, достигающая 99,9%.

Капли жидкости после трубы Вентури могут улавливаться в пылеуловителе мокрого типа или в мощных электрических фильтрах. Агрегаты пылеуловителя Вентури могут содержать одну или несколько труб. Укрупнение частиц пыли в трубе Вентури в результате коагуляции происходит под воздействием сил инерции движения частиц, броуновского движения, турбулентной и поляризационной диффузии, электростатических сил и в большой степени под влиянием конденсации водяных паров, возникающей при адиабатическом расширении газа.

От скорости движения газа в большой степени зависит также эффективность очистки. Увеличение диаметра капель с увеличением удельного расхода воды приводит к увеличению сопротивления труб Вентури и повышению эффективности их работы. Расход воды в больших трубах может достигать 0,5-I кг/м3.

При всех своих достоинствах трубы Вентури имеют существенный недостаток - большое аэродинамическое сопротивление пылегазового тракта-10 000 Па (1000 кгс/м3 и больше), а следовательно, и большой расход энергии.

Пылеуловители Вентури используют главным образом для очистки газов на предприятиях металлургической, химической и других отраслей промышленности, а также для улавливания пыли из вентиляционных выбросов.

Пенные пылеуловители. В качестве пенных пылеуловителей используют пенные газоочистители ПГС-ЛТИ и ПГП-ЛТИ. Пенные газоочистители применяют для очистки от пыли нейтральных газов с температурой до 100° С, которые не образуют в процессе промывки водой кристаллизующихся солей, забивающих отверстия решеток или отлагающихся на поверхностях аппарата. Очищаемые газы должны иметь плотность не менее 0,6 кг/м3 и высокую начальную запыленность. Степень очистки при размерах частиц 15-20 мкм составляет 96-90%, при размерах частиц 3-5 мкм падает до 80%.

Мокрые пылеуловители следует устанавливать в отапливаемых помещениях во избежание выхода их из строя в зимнее время года. Необходимо периодически проверять соответствие расхода и распределения воды по отдельным насадкам или форсункам по паспортным данным.

Тканевые пылеуловители

При применении тканевых пылеуловителей степень очистки воздуха может составлять 99% и более. При пропускании запыленного воздуха через ткань содержащаяся в нем пыль задерживается в порах фильтрующего материала или на слое пыли, накапливающейся на его поверхности.

Тканевые пылеуловители по форме фильтрующей поверхности выполняют рукавными и рамочными. В качестве фильтрующего материала применяют хлопчатобумажные ткани, фильтр-сукно, капрон, шерсть, нитрон, лавсан, стеклоткань и различные сетки.

Тканевые рукавные пылеуловители получили большое распространение для улавливания тонких и грубых фракций пыли.

Изготовляются рукавные пылеуловители одинарными и сдвоенными. Одинарные рукавные пылеуловители состоят из четырех, шести, восьми или десяти секций, а сдвоенные - из удвоенного числа секций. В каждой секции в шахматном порядке установлено по 14 матерчатых рукавов в три ряда. Площадь фильтрующей поверхности каждого рукава составляет 2 м2, а одной секции - 28 м2.

Во избежание конденсации влаги на ткани и стенках рукавов при установке пылеуловителей следует учитывать температуру и влажность очищаемого воздуха. Рукавный пылеуловитель РФГ состоит из корпуса, бункера, газораспределительного короба, фильтровальных рукавов, крышки с механизмом встряхивания рукавов и переключения дроссель-клапанов, коллектора очищенного воздуха 6, вентилятора для продувки рукавов, шпека для выгрузки пыли и шлюзового затвора.

Очищаемый воздух подводится воздуховодом к входному фланцу газораспределительного короба бункера (с передней или задней торцовой стороны пылеуловителя) и опускается под влиянием направляющей перегородки в нижнюю часть бункера, где поворачивается на 180° и поступает в рукава. Проходя через ткань рукавов, воздух очищается от пыли, которая оседает на внутренней поверхности рукавов. Очищенный воздух поступает в межрукавное пространство секций и далее в предназначенный для него коллектор.

Регенерация ткани осуществляется одновременным встряхиванием рукавов и их обратной продувкой. В этом случае регенерируемая секция отключается от коллектора очищенного воздуха.

Каждая половина сдвоенного пылеуловителя имеет свой механизм встряхивания и переключения клапанов. Встряхивание и переключение клапанов на продувку осуществляется электродвигателем через редуктор. Продолжительность встряхивания одной секции составляет 1 мин при длительности процесса фильтрования 9 мин, а весь рабочий цикл составляет 10 мин.

Для продувки рукавов используется вентилятор, установленный на одном валу с электродвигателем. Одновременно продувают только одну секцию. Продувочный воздух поступает в секцию из коллектора продувочного воздуха, проходит через ткань рукавов в направлении, обратном потоку очищаемого воздуха, и поступает во внутреннюю полость рукавов. В процессе регенерации ткани пыль с поверхности рукавов сбрасывается в бункер, а из последнего транспортируется шнеком к шлюзовому затвору, через который и удаляется.

Допускаемая нагрузка запыленного воздуха на 1 м2 фильтрующего материала и общая пропускная способность пылеуловителя зависят от дисперсного состава пыли и первоначальной запыленности воздуха и могут быть определены по данным ГПИ Сантехпроекта.

Из других тканевых пылеуловителей в настоящее время применяют фильтры рукавные всасывающие ФВ. К-30. ФВК-60, ФВК-90, ФВ-30, ФВ-45, ФВ-60, ФВ-90; фильтры рукавные ФР-10, ФРМ1-6. ФРМ1-8, ФРМЫО и т.д.

Электрические пылеуловители

Эффективность электрического пылеуловителя зависит от свойств очищаемого газа (воздуха) и улавливаемой пыли, загрязнения пылью осадительных и коронирующих электродов, электрических параметров пылеуловителя, скорости движения газа и равномерности его распределения в электрическом поле.

В электропылеуловителях содержащиеся в воздухе частицы пыли приобретают заряд и осаждаются на осадительных электродах. Эти процессы происходят в электрическом поле, образованном двумя электродами с разноименными зарядами. Один из электродов является одновременно и осадителем.

Приобретение частицами пыли электрического заряда в электропылеуловителе вызвано как их бомбардировкой ионами под действием электрического поля - частицы пыли размером более 1 мкм, так и тем, что с ними приходят в соприкосновение ионы (тепловое - броуновское движение молекул) - частицы пыли размером менее 1 мкм.

Предельный заряд частиц размером более 1 мкм пропорционален напряженности электрического поля и квадрату радиуса частицы.

Каждая секция электропылеуловителя имеет электрическое поле высотой 8,5 м с поперечным сечением 2,8X4,3 м. Скорость вертикального перемещения запыленного воздуха составляет 1,75-2 м/с. Пропускная способность одной секции 75 000-100 000 м3/ч очищаемого воздуха.

Осадительные электроды, выполненные в виде металлических пластин, опираются на балки корпуса. Система коронирующих электродов представляет собой раму из труб с натянутыми между ними горизонтальными проводами из проволоки сечением 4X4 мм. Тяги, на которых подвешены рамы коронирующих электродов, проходят через изоляторы.

Для удаления пыли с осадительных и коронирующих электродов предусмотрены механизмы встряхивания. При встряхивании электродов пыль осыпается по пылевым желобам в сборные бункера, откуда и удаляется.

Расход электроэнергии данным пылеуловителем 0,2 кВт на 1000 м3/ч очищаемого воздуха. Сопротивление 98 Па (10 кгс/м2). При комбинации пылеуловителя ДВП с батарейными циклонами эффективность его достигает 98%.

Воздушные фильтры могут быть разделены на три класса, из которых фильтры I класса задерживают пылевые частицы всех размеров (при низшем пределе эффективности очистки атмосферного воздуха 99%), фильтры II класса - частицы размером более 1 мкм (при эффективности 85%), а фильтры III класса - частицы размером от 10 до 50 мкм (при эффективности 60%).

Фильтры I класса (волокнистые) задерживают пылевые частицы всех размеров в результате диффузии и соприкасания, а также крупные частицы в результате их зацепления волокнами, заполняющими фильтр.

В фильтрах II класса (волокнистых с более толстыми волокнами) частицы мельче 1 мкм задерживаются неполностью. Более крупные частицы эффективно задерживаются в результате механического зацепления и инерции. Задержание частиц крупнее 4-5 мкм в сухих фильтрах этого класса малоэффективно.

В фильтрах III класса, заполненных более толстыми волокнами, проволокой, перфорированными и зигзагообразными листами и т.п., в основном действует инерционный эффект. Для уменьшения пор и каналов в заполнении фильтров последние смачиваются.

Эффективность и сопротивление фильтров внутри каждого из классов неодинаковы.

3. Очистка воздуха с использованием туманоуловителя


3.1 Общая характеристика туманоуловителя


Для улавливания туманов применяют волокнистые и сеточные фильтры-туманоуловители и мокрые электрофильтры. Принцип действия волокнистых фильтров-туманоуловителей основан на захвате частиц жидкости волокнами при пропускании туманов через волокнистый слой. При контакте с поверхностью волокна происходит коалесценция уловленных частиц и образование пленки жидкости, которая движется внутри слоя волокон и затем распадается на отдельные капли, которые удаляются с фильтра.

Достоинство фильтров: высокая эффективность улавливания (в том числе тонкодисперсных туманов), надежность в работе, простота конструкции, монтажа и обслуживания.

Недостатки: возможность быстрого зарастания при значительном содержании в тумане твердых частиц или при образовании нерастворимых солей вследствие взаимодействия солей жесткости воды с газами (СО2, SO2, HF и др.).

Перемещение уловленной жидкости в фильтре происходит под действием гравитационной, аэродинамических и капиллярных сил, оно зависит от структуры волокнистого слоя (диаметра волокон, пористости и степени однородности слоя, расположения волокон в слое), скорости фильтрации, смачиваемости волокон, физических свойств жидкости и газа. При этом чем больше плотность упаковки слоя и меньше диаметр волокон, тем больше жидкости удерживается в нем.

Волокнистые туманоуловители

Волокнистые туманоуловители разделяют на низкоскоростные и высокоскоростные. Те и другие представляют собой набор фильтрующих элементов. Фильтрующие элементы низкоскоростного туманоуловителя включают две соосно расположенные цилиндрические сетки из проволоки диаметром 3,2 мм, приваренные к дну и входному патрубку. Пространство между сетками заполнено тонким волокном диаметром от 5 до 20 мкм с плотностью упаковки 100-400 кг/м3 и толщиной слоя от 0,03 до 0,10 м. Волокна изготовляют из специальных стекол или полипропилена, полиэфиров, поливинилхлорида, фторопласта и других материалов.

Фильтрующие элементы крепят на трубной решетке в корпусе колонны (до 50-70 элементов). Туманоуловители работают при скорости газа vг<0,2 м/с и имеют производительность до 180000 м3/ч.

Высокоскоростные туманоуловители выполняются в виде плоских элементов, заполненных пропиленовыми войлоками. Их можно использовать для улавливания тумана кислот (H2SO4, НС1, HF, НзРO4) и концентрированных щелочей. Войлоки выпускают из волокон диаметром 20, 30, 50 и 70 мкм.

Наиболее часто применяют двухступенчатые установки (с различными по конструкции фильтрами), которые могут быть двух типов. В установках первого типа головной фильтр предназначен для улавливания крупных частиц и снижения концентрации тумана. Второй фильтр служит для очистки от высокодисперсных частиц. В установках второго типа первый фильтр служит агломератором, в котором осаждаются частицы всех размеров, а уловленная жидкость выносится потоком газов в виде крупных капель, поступающих во второй фильтр-брызгоуловитель. В фильтрах-брызгоуловителях используются войлоки из волокон диаметром 70 мкм. При скорости фильтрации 1,5-1,7 м/с сопротивление составляет 0,5 кПа, а эффективность очистки для частиц более 3 мкм близка к 100%.

Для очистки воздуха от туманов, кислот, щелочей, масел и других жидкостей используются волокнистые фильтры, принцип действия которых основан на осаждении капель на поверхности пор с последующим их стеканием под действием гравитационных сил. В пространстве между двумя цилиндрами, изготовленными из сеток, размещается волокнистый фильтрующий материал. Жидкость, оседающая на фильтрующем материале, стекает через гидрозатвор в приемное устройство. Крепление к корпусу туманоуловителя осуществляется фланцами.

В качестве материала фильтрующего элемента используется войлок, лавсан, полипропилен и другие материалы толщиной 5…15 см. Эффективность туманоуловителей для размеров частиц менее 3 мкм может достигать 0,99.

Для улавливания кислотных туманов применяются также сухие электрофильтры.

Волокнистые туманоуловители разделяют на низкоскоростные и высокоскоростные. Те и другие представляют собой набор фильтрующих элементов. Фильтрующие элементы низкоскоростного туманоуловителя включают две соосно-расположенные цилиндрические сетки из проволоки диаметром 3,2 мм, приваренные к дну и входному патрубку. Пространство между сетками заполнено тонким волокном диаметром от 5 до 20 мкм с плотностью упаковки 100-400 кг/м3 и толщиной слоя от 0,03 до 0,10 м. Волокна изготовляют из специальных стекол или полипропилена, полиэфиров, поливинилхлорида, фторопласта и других материалов.

Фильтрующие элементы крепят на трубной решетке в корпусе колонны (до 50-70 элементов).

Высокоскоростные туманоуловители выполняются в виде плоских элементов, заполненных пропиленовыми войлоками. Их можно использовать для улавливания тумана кислот (Н2SO4, НС1, HF, Н3РО4) и концентрированных щелочей.

Наиболее часто применяют двухступенчатые установки (с различными по конструкции фильтрами), которые могут быть двух типов. В установках первого типа головной фильтр предназначен для улавливания крупных частиц и снижения концентрации тумана. Второй фильтр служит для очистки от высокодисперсных частиц. В установках второго типа первый фильтр служит агломератором, в котором осаждаются частицы всех размеров, а уловленная жидкость выносится потоком газов в виде крупных капель, поступающих во второй фильтр-брызгоуловитель. В фильтрах-брызгоуловителях используются войлоки из волокон диаметром 70 мкм. При скорости фильтрации 1,5-1,7 м/с сопротивление составляет 0,5 кПа. а эффективность очистки для частиц более 3 мкм близка к 100%.

Фильтры для очистки аспирационного воздуха от частиц тумана хромовой и серной кислоты имеют производительность от 2 до 60 тыс. м3/ч. При скорости фильтрации 3-3,5 м/с эффективность очистки составляет 96-99,5%, сопротивление фильтров 150-500 Па.

Для улавливания масла разработаны фильтры с вращающимся цилиндрическим фильтрующим элементом, что обеспечивает эффективную и непрерывную регенерацию слоя от уловленного масла. Производительность таких фильтров от 500 до 1500 м3/ч, эффективность очистки составляет 85-94%.

Для очистки от грубодисперсных примесей брызг используют каплеуловители, состоящие из пакетов вязаных металлических сеток, из легированных сталей, сплавов на основе титана и других коррозионностойких материалов. Сетки (с диаметром проволоки 0,2-0,3 мм) гофрируют и укладывают в пакеты толщиной от 50 до 300 мм и в качестве сепараторов устанавливают в колонне. Для повышения эффективности улавливания тумана предусматривают две ступени сеточных сепараторов. Сепараторы эффективно работают при концентрации пара в газах не более 100-120 г/м3. Сетки могут быть изготовлены также из фторопласта и полипропилена.

Для улавливания тумана кислот применяют мокрые электрофильтры. По принципу действия они не отличаются от сухих электрофильтров.


3.2 Расчёт туманоуловителя


Расчет напорного зернистого фильтра

Исходные данные:


Q = 250 м3/ч;


Режим взрыхляющей промывки B;

Диаметры стандартных фильтров D, мм: 700, 1000, 1500, 2000, 2600, 3000, 3400;

В - промывка водой:

интенсивность подачи воды i = 12 л/ (с?м2);

продолжительность подачи воды t = 20 мин.

Зернистые фильтры применяют для глубокой очистки вод от мелкодисперсных частиц, а также для доочистки сточных вод после биологической или физико-химической очистки.

Фильтры с зернистым слоем подразделяют на медленные (скорость фильтрования до 0,3 м/ч) и скоростные (скорые - 2-15 м/ч и сверхскорые - более 25 м/ч), открытые и закрытые (напорные), с мелкозернистой фильтрующей загрузкой (размер частиц 0,4 мм), среднезернистой (0,4-0,8 мм) и крупнозернистой (более 0,8 мм), однослойные и многослойные, вертикальные и горизонтальные.

Высота слоя в открытых фильтрах равна 1-2 м, в закрытых 0,5-1 м. Напор воды в закрытых фильтрах создается насосами.

Наиболее широко применяются фильтрующие материалы: кварцевый песок, дробленый антрацит, керамическая крошка и другие.

Промывку фильтров, как правило, производят очищенной водой (фильтратом), подавая ее снизу вверх. При этом зерна загрузки переходят во взвешенное состояние и освобождаются от прилипших частиц загрязнений. Может быть произведена водовоздушная промывка, при которой сначала зернистый слой продувают воздухом для разрыхления, а затем подают воду .

Схема вертикального напорного зернистого фильтра представлена на рис. 9.

Фильтр состоит из цилиндрического корпуса 1, нижнего распределительного устройства 2, верхнего распределительного устройства 3 и размещенного внутри корпуса слоя фильтрующего материала 4. Снаружи фильтра расположены трубопроводы подвода и отвода воды и сжатого воздуха.

Нижнее распределительное устройство 2 предназначено для обеспечения равномерного сбора очищенной воды и равномерного распределения по площади поперечного сечения фильтра взрыхляющей воды и сжатого воздуха.

Верхнее распределительное устройство 3 предназначено для подвода в фильтр и равномерного распределении по площади поперечного сечения обрабатываемой воды, а также для удаления из фильтра промывной воды.

Распределительное устройство состоит из вертикального коллектора и радиально расположенных перфорированных распределительных труб.


Корпус; 2 - нижнее распределительное устройство; 3 - верхнее распределительное устройство; 4 - слой зернистого фильтрующего материала

Рис. 9. Схема вертикального напорного зернистого фильтра


Подготовка насыпного фильтра к работе заключается в промывке слоя фильтрующей загрузки от задержанных загрязнений. Для хорошей промывки необходимо, чтобы зерна фильтрующего материала находились во взвешенном состоянии. При этом надо создать такие условия, при которых зерна фильтрующего материала сталкивались между собой и происходило бы полное оттирание с их поверхности налипших загрязнений.

Промывку фильтрующего материала осуществляют восходящим потоком воды, которую подают в фильтр через нижнее распределительное устройство 2. Необходимым условием промывки является расширение объема слоя фильтрующего материала на 40 - 50 %, позволяющее зернам фильтрующего материала свободно перемещаться в потоке воды.

Отлетающие с поверхности фильтрующих зерен частицы загрязнений вместе с восходящим потоком воды отводятся из фильтра через верхнее распределительное устройство 3.

Необходимое расширение фильтрующего слоя достигается при соответствующей скорости потока воды, которая характеризуется интенсивностью промывки.

Качество промывки контролируют, анализируя пробы воды, выходящей из фильтра, на мутность.

Для повышения качества промывки в фильтр через нижнее распределительное устройство подают сжатый воздух. Фильтрующий слой обрабатывают сжатым воздухом в течение 3-5 мин до подачи в фильтр промывной воды.

По окончании промывки мутный фильтрат сбрасывают либо в дренаж, либо в емкость повторного использования промывной воды.

Во время работы фильтра вода подается через верхнее распределительное устройство 2 на слой зернистого фильтрующего материала 4, проходит его и с помощью нижнего распределительного устройства 3 собирается и отводится из фильтра в общий коллектор.

При снижении прозрачности фильтрата, а также при достижении максимально допустимого перепада давления на слое фильтрующего материала фильтр отключают на промывку.

При производительности установки до 70 м3/ч устанавливается не менее трех фильтров, свыше 70 м3/ч - не менее четырех фильтров.

Приближенно необходимая общая площадь фильтрования F , м2, при нормальном режиме работы определяется следующим образом:



где Q - производительность фильтрационной установки по осветленной воде, м3/ч;

v - допускаемая скорость фильтрования, при нормальном режиме работы v = 5 м/ч;

? - коэффициент, учитывающий расход воды на собственные нужды, принимается ? = 1,1.

Площадь фильтрования f , м2, каждого фильтра определяется из уравнения:

гдеа - количество фильтров, минимальное количество фильтров а = 2.



Определяется диаметр фильтра D , м



Объем воды V , м3, на одну отмывку осветлительного фильтра равен

где i и t - соответственно интенсивность (л/ (с?м2) и продолжительность (мин) взрыхляющей промывки фильтра, в зависимости от принятого характера промывки (водой или с воздухом)



Среднечасовой расход воды на собственные нужды q , м3/ч, равен

где n - число промывок в сутки осветлительного фильтра, принимаем n = 2.

Для выбранных стандартных фильтров определяется скорость фильтрования



Если скорость фильтрования превышает допускаемую (v = 5 м/ч), то необходимо увеличить диаметр или количество установленных фильтров.


Заключение


Оценка и прогноз химического состояния приземной атмосферы, связанного с природными процессами ее загрязнения, существенно отличается от оценки и прогноза качества этой природной среды, обусловленного антропогенными процессами. Вулканической и флюидной активностью Земли, другими природными феноменами нельзя управлять. Речь может идти только о минимизации последствий негативного воздействия, которое возможно лишь в случае глубокого понимания особенностей функционирования природных систем разного иерархического уровня, и, прежде всего, Земли как планеты. Необходим учет взаимодействия многочисленных факторов, изменчивых во времени и пространстве, К главным факторам относятся не только внутренняя активность Земли, но и ее связи с Солнцем, космосом. Поэтому мышление "простыми образами" при оценке и прогнозе состояния приземной атмосферы недопустимо и опасно.

Антропогенные процессы загрязнения воздушного бассейна в большинстве случаев поддаются управлению.

Экологическая практика в России и за рубежом показала, что ее неудачи связаны с неполным учетом негативных воздействий, неумением выбрать и оценить главные факторы и последствия, низкой эффективностью использования результатов натурных и теоретических экологических исследований при принятии решений, недостаточной разработанностью методов количественной оценки последствий загрязнения приземной атмосферы и других жизнеобеспечивающих природных сред.

Во всех развитых странах приняты законы об охране атмосферного воздуха. Они периодически пересматриваются с учетом новых требований к качеству воздуха и поступления новых данных о токсичности и поведении загрязняющих веществ в воздушном бассейне. В США сейчас обсуждается уже четвертый вариант закона о чистом воздухе. Борьба идет между сторонниками охраны окружающей среды и компаниями, экономически не заинтересованными в повышении качества воздуха. Г1равительством Российской Федерации разработан проект закона об охране атмосферного воздуха, который в настоящее время обсуждается. Улучшение качества воздуха на территории России имеет важное социально-экономическое значение.

Это обусловлено многими причинами, и, прежде всего, неблагополучным состоянием воздушного бассейна мегаполисов, крупных городов и промышленных центров, в которых проживает основная часть квалифицированного и трудоспособного населения.

Легко сформулировать формулу качества жизни в столь затяжной экологический кризис: гигиенически чистый воздух, чистая вода, качественная сельскохозяйственная продукция, рекреационная обеспеченность потребностей населения. Сложнее это качество жизни реализовать при наличии экономического кризиса, ограниченных финансовых ресурсов. В такой постановке вопроса необходимы исследования и практические мероприятия, составляющие основу "экологизации" общественного производства.

Экологическая стратегия, прежде всего, предполагает разумную экологически обоснованную технологическую и техническую политику. Эту политику можно сформулировать коротко: производить больше с меньшими затратами, т.е. сберегать ресурсы, использовать их с наибольшим эффектом, совершенствовать и быстро менять технологии, внедрять и расширять рециклинг. Иными словами, должна быть обеспечена стратегия превентивных экологических мер, заключающаяся во внедрении самых совершенных технологий при структурной перестройке хозяйства, обеспечивающих энерго - и ресурсосбережение, открывающая возможности совершенствования и быстрой смены технологий, внедрение рециклинга и минимизацию отходов. Концентрация усилий при этом должна быть направлена на развитие производства потребительских товаров и увеличение доли потребления. В целом хозяйство России должно максимально сократить энерго - и ресурсоемкость валового национального продукта и потребление энергии и ресурсов в расчете на одного жителя. Сама рыночная система и конкуренция должны способствовать реализации этой стратегии.

Охрана природы - задача нашего века, проблема, ставшая социальной. Снова и снова мы слышим об опасности, грозящей окружающей среде, но до сих пор многие из нас считают их неприятным, но неизбежным порождением цивилизации и полагают, что мы еще успеем справиться со всеми выявившимися затруднениями. Однако воздействие человека на окружающую среду приняло угрожающие масштабы. Чтобы в корне улучшить положение, понадобятся целенаправленные и продуманные действия. Ответственная и действенная политика по отношению к окружающей среде будет возможна лишь в том случае, если мы накопим надёжные данные о современном состоянии среды, обоснованные знания о взаимодействии важных экологических факторов, если разработает новые методы уменьшения и предотвращения вреда, наносимого Природе Человеком.

Список использованной литературы


1. Буторина М.В., Воробьев П.В., Дмитриева А.П. и др. Инженерная экология и экологический менеджмент. - М.: Логос, 2008.

Гарин В.М., Клёнова И.А., Колесников В.И. Экология для технических вузов. - Ростов н/Д: Феникс, 2009.384 с.

Еремичев И.А. Основы экологического права. Учебное пособие. - М.: Центр юридической литературы "Щит", 2009.

Инженерная экология: Учебник / Под ред. проф.В.Т. Медведева. - М.: Гардарики, 2008.

Инженерная экология и экологический менеджмент: Учебник / Под ред.Н.И. Иванова, И.М. Фадина. - М.: Логос, 2009.

Луканин В.Н., Трофименко Ю.В. Промышленно-транспортная экология. М.: Высшая школа, 2009.

Охрана окружающей природной среды. / Под редакцией Г.В. Дуганова. - Киев: "Выща школа, 2009.

Родзевич Н.Н., Пашканг К.В. Охрана и преобразование природы. - М.: Просвещение, 2009.

Степановских А.С. Охрана окружающей среды. - М.: ЮНИТИ-ДАНА, 2000.559 с.

Экология города: Учебник. / Под ред. Ф.В. Стромберга. - К.: Либра, 2008.