Механизмы действия гидрофильных гормонов на клетки-мишени. Роль гормонов щитовидной железы в процессах роста, психического развития и метаболизма Механизм действия тиреоидных гормонов на клетку мишень

Гидрофильные гормоны не способны проникать через мембрану клетки и поэтому передача сигнала осуществляется при посредстве мембранных белков-рецепторов.

Существует три типа этих рецепторов.

Первый тип – это белки, имеющие одну трансмембранную полипептидную цепь.

С рецепторами этого типа соединяются такие гормоны как соматотропный гормон, пролактин, инсулин и ряд гормоноподобных веществ – ростовых факторов. При соединении гормона с рецептором этого типа происходит фосфорилирование цитоплазматической части этого рецептора, в результате чего осуществляется активация белков-посредников (мессенджеров), обладающих ферментативной активностью. Это свойство позволяет белку-мессенджеру проникнуть в ядро клетки и там активировать ядерные белки, участвующие в транскрипции соответствующих генов и мРНК. В конечном итоге, клетка начинает синтезировать специфические белки, которые и меняют ее метаболизм. Cхема, иллюстрирующая этот механизм, представлена на Рис. 10.

Рис. 10. Механизм действия гидрофильных гормонов на клетку-мишень,

имеющую рецепторы первого типа

Второй тип рецепторов, воспринимающих воздействие гидрофильных гормонов на клетки-мишени – это так называемые «рецепторы – ионные каналы». Рецепторы этого типа являются белками, имеющими четыре трансмембранных фрагмента. Соединение молекулы гормона с таким рецептором приводит к открытию трансмембранных ионных каналов, благодаря чему ионы электролитов по градиенту концентрации могут поступать в протоплазму клетки. С одной стороны это может приводить к деполяризации клеточной мембраны (так, например, происходит с постсинаптической мембраной клеток скелетной мышцы при передаче сигнала с нервного моторного волокна на мышцу), а с другой – ионы электролитов (например, Са ++) могут активировать серин-тирозиновые киназы, и за счет их ферментативного действия на внутриклеточные белки вызывать изменение клеточного метаболизма.

Схема, иллюстрирующая этот механизм, представлена на Рис. 11.

Рис. 11. Механизм действия гидрофильных гормонов на клетку-мишень,

имеющую рецепторы второго типа

Третий тип рецепторов, воспринимающих воздействие гидрофильных гормонов на клетки-мишени, определяется как «рецепторы, сопряженные с G-белками» (сокращенно – GPCR – “G-protein coupled receptors”).

С помощью G-рецепторов на исполнительный клеточный аппарат передаются сигналы, возбуждаемые нейропередатчиками и нейротрансмиттерами (адреналин, норадреналин, ацетилхолин, серотонин, гистамин и др.), гормонами и опиоидами (адренокортикотропин, соматостатин, вазопрессин, ангиотензин, гонадотропин, некоторые факторы роста и нейропептиды и др.). Кроме того, G-рецепторы обеспечивают передачу химических сигналов, воспринимаемых вкусовыми и обонятельными рецепторами.

G-рецепторы, равно как и большинство мембранных рецепторов, состоят из трех частей: внеклеточная часть, часть рецептора, погруженная в мембрану клетки и внутриклеточная часть, контактирующая с G-белком. При этом внутримембранная часть рецептора – это полипептидная цепочка, пересекающая мембрану семь раз.

Функцией G-белков является открытие ионных каналов (т.е. изменение концентрации ионов электролитов в протоплазме клеток-мишеней) и активация белков-посредников (внутриклеточных мессенджеров). В результате с одной стороны происходит активация соответствующих ферментных систем клетки (протеинкиназ, протеинфосфатаз, фосфолипаз), а с другой, фосфорилированные белки, обладающие мощной ферментативной активностью, приобретают возможность проникнуть в ядро клетки и там фосфорилировать и активировать белки, участвующие в транскрипции генов и мРНК. В конечном итоге, метаболизм клетки меняется как за счет ферментативных превращений внутриклеточных белков, так и благодаря биосинтезу новых белков. Схема, иллюстрирующая механизмы взаимодействия молекулы гормона с G-рецептором клетки-мишени, приведена на Рис. 12.

Страница 4 из 9

Механизмы действия гормонов на клетки-мишени

В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.

Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют вторыми посредниками. Молекулы гормонов очень разнообразны по форме, а "вторые посредники" - нет.

Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов?

Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок - кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы - ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.

Разберем более подробно механизмы действия гормонов и внутриклеточных посредников.

Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:

аденилатциклазная (или гуанилатциклазная) системы;

фосфоинозитидный механизм.

Прежде чем выяснить роль циклазной системы в механизме действия гормонов, рассмотрим определение этой системы. Система циклазная – это система, состоящая из содержащихся в клетке аденозинциклофосфата, аденилатциклазы и фосфодиэстеразы, регулирующая проницаемость клеточных мембран, участвует в регуляции многих обменных процессов живой клетки, опосредует действие некоторых гормонов. То есть роль циклазной системы заключается в том, что они являются вторыми посредниками в механизме действия гормонов.

Система «аденилатциклаза - цАМФ». Мембраны фермент аденилатциклаза может находиться в двух формах - активированной и неактивированной. Активация аденилатциклазы происходит под влиянием гормон-рецепторного комплекса, образование которого приводит к связыванию гуанилового нуклеотида (ГТФ) с особым регуляторным стимулирующим белком (GS-белок), после чего GS-белок вызывает присоединение магния к аденилатциклазе и ее активацию. Так действуют активизирующие аденилатциклазу гормоны глюкагон, тиреотропин, паратирин, вазопрессин, гонадотропин и др. Некоторые гормоны, напротив, подавляют аденилатциклазу (соматостатин, ангиотензин-П и др.).

Под влиянием аденилатциклазы из АТФ синтезируется цАМФ, вызывающий активацию протеинкиназ в цитоплазме клетки, обеспечивающих фосфорилирование многочисленных внутриклеточных белков. Это изменяет проницаемость мембран, т.е. вызывает типичные для гормона метаболические и, соответственно, функциональные сдвиги. Внутриклеточные эффекты цАМФ проявляются также во влиянии на процессы пролиферации, дифференцировки, на доступность мембранных рецепторных белков молекулам гормонов.

Система «гуанилатциклаза - цГМФ». Активация мембранной гуанилатциклазы происходит не под непосредственным влиянием гормон-рецепторного комплекса, а опосредованно через ионизированный кальций и оксидантные системы мембран. Так реализуют свои эффекты натрийуретический гормон предсердий - атриопептид, тканевой гормон сосудистой стенки. В большинстве тканей биохимические и физиологические эффекты цАМФ и цГМФ противоположны. Примерами могут служить стимуляция сокращений сердца под влиянием цАМФ и торможение их цГМФ, стимуляция сокращений гладких мышц кишечника цГМФ и подавление цАМФ.

Кроме аденилатциклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат - это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы "С", который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.

Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок (17 кДа), на 30 % состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2. Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс "Са+2-кальмодулин" становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса "Са+2-кальмодулин" на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

Таким образом, в роли "вторых посредников" для передачи сигналов от гормонов в клетках-мишенях могут быть:

циклические нуклеотиды (ц-АМФ и ц-ГМФ);

комплекс "Са-кальмодулин";

диацилглицерин;

инозитолтрифосфат.

Механизмы передачи информации от гормонов внутри клеток-мишеней с помощью перечисленных посредников имеют общие черты:

одним из этапов передачи сигнала является фосфорилирование белков;

прекращение активации происходит в результате специальных механизмов, инициируемых самими участниками процессов, - существуют механизмы отрицательной обратной связи.

Гормоны являются основными гуморальными регуляторами физиологических функций организма, и в настоящее время хорошо известны их свойства, процессы биосинтеза и механизмы действия. Гормоны являются высокоспецифичными веществами по отношению к клеткам-мишеням и обладают очень высокой биологической активностью.

Строение

Являются производными холестерола – стероиды.

Строение женских половых гормонов

Синтез

Женские гормоны: эстрогены синтезируются в фолликулах яичников, прогестерон – в желтом теле. Частично гормоны могут образовываться в адипоцитах в результате ароматизации андрогенов.

Схема синтеза стероидных гормонов (полная схема)

Регуляция синтеза и секреции

Активируют : синтез эстрогенов – лютеинизирующий и фолликулостимулирующий гормоны, синтез прогестерона – лютеинизирующий гормон.

Уменьшают : половые гормоны по механизму обратной отрицательной связи.

  1. В начале цикла несколько фолликулов начинают увеличиваться в размерах в ответ на ФСГ-стимуляцию. Затем один из фолликулов начинает расти быстрее.
  2. Под влиянием ЛГ гранулезные клетки этого фолликула синтезируют эстрогены, которые подавляют секрецию ФСГ и способствуют регрессии других фолликулов.
  3. Постепенное накопление эстрогенов к середине цикла является стимулом для секреции ФСГ и ЛГ перед овуляцией.
  4. Резкое повышение концентрации ЛГ также может быть обусловлено постепенным накоплением прогестерона (под влиянием того же ЛГ) и срабатыванием механизма обратной положительной связи.
  5. После овуляции образуется желтое тело, продуцирующее прогестерон.
  6. Высокие концентрации стероидов подавляют секрецию гонадотропных гормонов, желтое тело в результате дегенерирует и синтез стероидов снижается. Это вновь активирует синтез ФСГ и цикл повторяется.
  7. При возникновении беременности желтое тело стимулируется хорионическим гонадотропином, который начинает синтезироваться через две недели после овуляции. Концентрации эстрогенов и прогестерона в крови при беременности возрастают в десятки раз.

Гормональные изменения во время менструального цикла

Мишени и эффекты

Эстрогены

1. При половом созревании эстрогены активируют синтез белка и нуклеиновых кислот в органах половой сферы и обеспечивают формирование половых признаков: ускоренный рост и закрытие эпифизов длинных костей, определяют распределение жира на теле, пигментацию кожи, стимулируют развитие влагалища, маточных труб, матки, развитие стромы и протоков грудных желез, рост подмышечных и лобковых волос.

2. В организме взрослой женщины :

Биохимические эффекты

Другие эффекты

  • активирует в печени синтез транспортных белков для тироксина, железа, меди и т.п.,
  • стимулирует синтез факторов свертывания крови – II, VII, IX, X, плазминогена, фибриногена, подавляет синтез антитромбина III и адгезию тромбоцитов,
  • увеличивает синтез ЛПВП, подавляет ЛПНП, повышает концентрацию ТАГ в крови и снижает содержание холестерола,
  • снижает резорбцию кальция из костной ткани.
  • стимулирует рост железистого эпителия эндометрия,
  • определяет структуру кожи и подкожной клетчатки,
  • подавляет перистальтику кишечника, что повышает абсорбцию веществ.

Прогестерон

Прогестерон является основным гормоном второй половины цикла и его задача – обеспечить наступление и сохранение беременности.

Биохимические эффекты

Другие эффекты

  • повышает активность липопротеинлипазы на эндотелии капилляров,
  • увеличивает концентрацию инсулина в крови,
  • подавляет реабсорбцию натрия в почках,
  • является ингибитором ферментов дыхательной цепи , что снижает катаболизм,
  • ускоряет выведение азота из организма женщины.
  • расслабляет мышцы беременной матки,
  • усиливает реакцию дыхательного центра на СО 2 , что снижает в крови парциальное давление СО 2 при беременности и в лютеиновую фазу цикла,
  • обусловливает рост молочной железы при беременности,
  • сразу после овуляции является хематтрактантом для сперматозоидов, движущихся по маточным трубам.

Патология

Гипофункция

Врожденная или приобретенная гипофункция половых желез неизбежно приводит к остеопорозу. Патогенез его не вполне понятен, хотя известно, что эстрогены замедляют резорбцию кости у женщин детородного возраста.

Гиперфункция

Женщины . Повышение прогестерона может проявляться маточными кровотечениями и нарушением менструального цикла. Повышение эстрогенов может проявляться маточными кровотечениями.

Мужчины . Высокие концентрации эстрогенов ведут к недоразвитию половых органов (гипогонадизму), к атрофии простаты и сперматогенного эпителия яичек, ожирению по женскому типу и росту грудных желез.

  • < Назад

Гормоны оказывают влияние на клетки-мишени.

Клетки-мишени — это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

Биохимические механизмы передачи сигнала от гормона в клетку-мишень.

Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:

    узнавание гормона;

    преобразование и передачу полученного сигнала в клетку.

Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать?

Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства.

Большинство рецепторов изучены недостаточно, потому что их выделение и очистка очень сложные, а содержание каждого вида рецепторов в клетках очень низкое. Но известно, что гормоны взаимодействуют со своими рецепторами физико-химическим путем. Между молекулой гормона и рецептором формируются электростатические и гидрофобные взаимодействия. При связывании рецептора с гормоном происходят конформационные изменения белка-рецептора и комплекс сигнальной молекулы с белком-рецептором активируется. В активном состоянии он может вызывать специфические внутриклеточные реакции в ответ на принятый сигнал. Если нарушен синтез или способность белков-рецепторов связываться с сигнальными молекулами, возникают заболевания — эндокринные нарушения.

Есть три типа таких заболеваний.

    Связанные с недостаточностью синтеза белков-рецепторов.

    Связанные с изменением структуры рецептора — генетических дефекты.

    Связанные с блокированием белков-рецепторов антителами.

Механизмы действия гормонов на клетки-мишени.

В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных — рецепторы находятся в наружной мембране.

Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют вторыми посредниками. Молекулы гормонов очень разнообразны по форме, а "вторые посредники" — нет.

Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов?

Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок — кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы — ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.

Разберем более подробно механизмы действия гормонов и внутриклеточных посредников.

Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:

    аденилатциклазная (или гуанилатциклазная) системы;

    фосфоинозитидный механизм.

Аденилатциклазная система.

Основные компоненты: мембранный белок-рецептор, G-белок, фермент аденилатциклаза, гуанозинтрифосфат, протеинкиназы.

Кроме того, для нормального функционирования аденилатциклазной системы, требуется АТФ.

Белок-рецептор, G-белок, рядом с которым располагаются ГТФ и фермент (аденилатциклаза) встроены в мембрану клетки.

До момента действия гормона эти компоненты находятся в диссоциированнном состоянии, а после образования комплекса сигнальной молекулы с белком-рецептором происходят изменения конформации G-белка. В результате одна из субъединиц G-белка приобретает способность связываться с ГТФ.

Комплекс "G-белок-ГТФ" активирует аденилатциклазу. Аденилатциклаза начинает активно превращать молекулы АТФ в ц-АМФ.

ц-АМФ обладает способностью активировать особые ферменты — протеинкиназы, которые катализируют реакции фосфорилирования различных белков с участием АТФ. При этом в состав белковых молекул включаются остатки фосфорной кислоты. Главным результатом этого процесса фосфорилирования является изменение активности фосфорилированного белка. В различных типах клеток фосфорилированию в результате активации аденилат-циклазной системы подвергаются белки с разной функциональной активностью. Например, это могут быть ферменты, ядерные белки, мембранные белки. В результате реакции фосфорилирования белки могут становятся функционально активными или неактивными.

Такие процессы будут приводить к изменениям скорости биохимических процессов в клетке-мишени.

Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ.

Кроме участников аденилатциклазной системы в некоторых клетках-мишенях имеются белки-рецепторы, связанные с G-белками, которые приводят к торможению аденилатциклазы. При этом комплекс "GTP-G-белок" ингибирует аденилатциклазу.

Когда останавливается образование цАМФ, реакции фосфорилирования в клетке прекращаются не сразу: пока продолжают существовать молекулы цАМФ — будет продолжаться и процесс активации протеинкиназ. Для того, чтобы прекратить действие цАМФ, в клетках существует специальный фермент — фосфодиэстераза, который катализирует реакцию гидролиза 3′,5′-цикло-АМФ до АМФ.

Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, т. е. усиливается действие гормона.

Кроме аденилатциклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат — это вещество, которое является производным сложного липида — инозитфосфатида. Оно образуется в результате действия специального фермента — фосфолипазы "С", который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.

Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок — кальмодулин. Это низкомолекулярный белок (17 кДа), на 30 % состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2. Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс "Са+2-кальмодулин" становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты — аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса "Са+2-кальмодулин" на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других — ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

Таким образом, в роли "вторых посредников" для передачи сигналов от гормонов в клетках-мишенях могут быть:

    циклические нуклеотиды (ц-АМФ и ц-ГМФ);

  1. комплекс "Са-кальмодулин";

    диацилглицерин;

    инозитолтрифосфат.

Механизмы передачи информации от гормонов внутри клеток-мишеней с помощью перечисленных посредников имеют общие черты:

    одним из этапов передачи сигнала является фосфорилирование белков;

    прекращение активации происходит в результате специальных механизмов, инициируемых самими участниками процессов, — существуют механизмы отрицательной обратной связи.

Гормоны являются основными гуморальными регуляторами физиологических функций организма, и в настоящее время хорошо известны их свойства, процессы биосинтеза и механизмы действия.

Признаки, по которым гормоны отличаются от других сигнальных молекул следующие.

    Синтез гормонов происходит в особых клетках эндокринной системы. При этом синтез гормонов является основной функцией эндокринных клеток.

    Гормоны секретируются в кровь, чаще в венозную, иногда в лимфу. Другие сигнальные молекулы могут достигать клеток-мишеней без секреции в циркулирующие жидкости.

    Телекринный эффект (или дистантное действие) — гормоны действуют на клетки-мишени на больщом расстоянии от места синтеза.

Гормоны являются высокоспецифичными веществами по отношению к клеткам-мишеням и обладают очень высокой биологической активностью.

Конечными эффектами действия гормонов на клеточном уровне могут быть изменения метаболизма, проницаемости мембраны для различных ве ществ (ионов, глюкозы и др.), процессов роста, дифференцировки и деления клеток, сократительной или секреторной активности и др. Реализация этих эффектов начинается со связывания гормона со специфическими клеточны ми белками-рецепт орами: мембранными или внутриклеточными (цито плазматическими и ядерными). Эффект действия гормонов через мембранные рецепторы проявляется относительно быстро (в течение нескольких минут), а через внутриклеточные рецепторы - медленно (от получаса и более).

Действие через м ем бранны е рецепторы типично для белково-пептид ных гормонов и производных аминокислот. Эти гормоны (за исключением тироидных), являются гидрофильными и не могут проникать сквозь били пидный слой плазмалеммы. Поэтому, гормональный сигнал передается в клетку по относительно длинной цепи, которая в общем случае выглядит так: гормон -> мембранный рецептор -> мембранный фермент -> вторичный посредник -> протеинкиназа -> внутриклеточные функциональные белки -> физиологический эффект.

Соответственно действие гормона через мембранные рецепторы реа лизуется в несколько этапов:

1) взаимодействие гормона с мембранным рецептором приводит к изменению конформации рецептора и его активированию;

2) рецептор активирует (реже - ингибирует) связанный с ним мем бранный фермент;

3) фермент изменяет концентрацию в цитоплазме того или иного низкомолекулярного вещества - вторичного посредника",

4) вторичный посредник активирует определенную цитоплазматичес кую протеинкиназу - фермент, катализирующий фосфорилирование и из менение функциональных свойств белков;

5) протеинкиназа изменяет активность внутриклеточных функцио нальных белков, регулирующих внутриклеточные процессы (ферментов, ионных каналов, сократительных белков и т.п.), в результате чего реализу ется тот или иной конечный эффект действия гормона, например, ускоре ние синтеза или распада гликогена, запуск мышечного сокращения и др.

В настоящее время известны четыре типа ферментов, связанных с мембранными рецепторами гормонов, и пять основных вторичных посредников (рис. 1, табл. 1).

Рис. 1. Основные системы трансмембранной передачи гормонального сигнала.

Обозначения: Г - гормоны; R - мембранные рецепторы; G - G-белки; Ж - тирозин-

киназа; Г Ц - гуанилатциклаза; А Ц ~ аденилатциклаза; Ф.П С - фосфолипаза С; фл - мембранные фосфолипиды; ИТФ - инозитолтрифосфат, Д АТ - диацилглицерол; ЭПР - эндоплазматический ретикулум; ПК - различные протеинкиназы.

Таблица 1

Мембранные ферменты и вторичные посредники, опосредующие действие гормонов через мембранные рецепторы

Мембранный фермент

Вторичные посредники

Основные активирующие гормоны

Тирозинкиназа

инсулин, гормон роста, пролактин

Гуанилатциклаза

предсердный натрийуретический гормон

Аденилатциклаза

многие гормоны, например, адреналин через 3-адренорецепторы

Фосфорилаза С

многие гормоны, например, адреналин через а г адренорецепторы

В зависимости от того, как осуществляется связь между рецептороми мембранным ферментом различают два типа рецепторов: 1) каталитические рецепторы; 2)рецепторы, сопряженные с G-белками.

Каталитические рецепторы: рецептор и фермент связаны непосредственно (могут представлять собой одну молекулу с двумя функциональными участками). Мембранными ферментами у этих рецепторов могут быть:

Тирозинкиназа (разновидность протеинкиназ); действие гормонов через тирозинкиназные рецепторы не требует обязательного наличия вторичных посредников;

Гуанилатциклаза - катализирует образование вторичного посредника циклической ГМФ (цГМФ) из ГТФ.

Рецепторы, сопряженные с G-белками: сигнал от молекулы рецептора передается сначала особому мембранному G-белку1, который далее активирует или ингибирует определенный мембранный фермент, которым может быть:

Аденилатциклаза - катализирует образование вторичного посредника циклической АМФ (цАМФ) из АТФ;

Фосфолипаза С - катализирует образование из мембранных фосфо­липидов двух вторичных посредников: инозитолтрифосфата (ИТФ) и диацилглицерола (ДАГ). ДАГ стимулирует протеинкиназу, а также является предшественником простагландинов и подобных им биологически активных веществ. Основной эффект ИТФ заключается в повышении содержания в цитоплазме еще одного вторичного посредника - ионов Са 2+ , которые поступают в цитозоль через ионные каналы плазмалеммы (из внеклеточной среды) или внутриклеточных депо Са2+(эндоплазматического ретикулума и митохондрий). Свое физиологическое действие ионы Са2+ осуществляют, как правило, в соединении с белком кальмодулином.

Действие через внутриклеточные рецепторы типично для стероидных и тироидных гормонов, которые благодаря своей жирорастворимости способны проникать через клеточные мембраны внутрь клетки и ее ядра (рис. 2).

Взаимодействуя с ядерными рецепторами, указанные гормоны влияют на процессы клеточного деления и реализации генетической информации (экспрессии генов), в частности, регулируют скорость биосинтеза функциональных клеточных белков - ферментов, рецепторов, пептидных гормонов и др.

В результате действия гормонов на цитоплазматические рецепторы изменяется активность клеточных органелл, например, интенсивность биологического окисления в митохондриях или синтеза белка в рибосомах.

В комплексе с цитоплазматическими рецепторами гормоны могут прони кать в ядро, действуя так же, как через ядерные рецепторы.

Рис.2. Механизмы внутриклеточного действия гормонов.

Обозначения: Г - гормоны; Rh - ядерные рецепторы; Rif - цитоплазматические рецепторы.