Органические кислоты что собой представляют. Какие кислоты встречаются в природе? Признаки нехватки органических кислот в организме

Поскольку по профессии я медик, то о роли кислот в жизни человека знаю достаточно много. Расскажу о тех кислотах, что встречаются в природе, а также о тех, что являются наиболее важными с медицинской точки зрения.

Где кислоты встречаются в природе

С ними мы сталкиваемся каждый день, например, дождевые капли лишь при первом взгляде кажутся чистыми. В действительности они содержат немало веществ в растворенном виде. Например, присутствует раствор угольной кислоты - углекислый газ, ну или серная кислота , что является последствием выброса выхлопных газов. Наша пища также богата кислотами, например, молочнокислая в кефире или угольная кислота в газировке. Благодаря соляной кислоте в нашем организме возможно пищеварение, в ходе которого происходит расщепление белков для синтеза особо важных элементов - аминокислот .

Органические кислоты

Однако наибольшую важность для жизни на нашей планете представляют органические кислоты , что играют особо важную роль в жизненном цикле. Основой человека являются клетки, состоящие из протеина и белков, поэтому нам необходимо питаться для восполнения запаса этих веществ. Однако для питания важны лишь те белки, что содержат аминокислоты . Но что такое аминокислоты? Существует свыше 165 видов, однако ценность для организма представляют лишь 20, что выступают в качестве основной структурной единицы каждой клетки.


Наше тело способно синтезировать всего 12 , естественно, при условии хорошего питания. Остальные 8 невозможно синтезировать, а только получить извне:

  • валин - поддерживает обмен соединений азота. Молочные продукты, а также грибы;
  • лизин - главное предназначение - усвоение, распределение кальция в организме. Мясо, а также хлебобулочные изделия;
  • фенилаланин - поддерживает деятельность мозга и циркуляцию крови. Присутствует в говядине, сое и твороге;
  • триптофан - один из ключевых компонентов сосудистой системы. Овес, бананы и финики;
  • треонин - играет роль в иммунной системе, регулирует работу печени. Молочные продукты, куриные яйца;
  • метионин - укрепление сердечной мышцы. Присутствует в бобах, яйцах;
  • лейцин - способствует восстановление костей и мышц. В достатке содержится в орехах и рыбе;
  • изолейцин - определяет уровень сахара в крови. Семена, печень, курица.

При дефиците одной кислоты организм не в состоянии синтезировать необходимый белок, а значит, вынужден отбирать необходимые элементы из других белков. Это приводит к общему дисбалансу , что перерастает в заболевание, а в детском возрасте вызывает умственные и физические недостатки.

Группа веществ с разнообразными свойствами, содержащаяся в продуктах растительного и животного происхождения, называется . Эта группа одна из шести групп, образующих растительные фитонутриенты . характеризуются тем, что в молекуле имеется одна или несколько карбоксильных групп. Наиболее широко органические кислоты встречаются в продуктах питания растительного происхождения. Часто такие кислоты называются фруктовыми. Они придают определенный вкус плодам. К наиболее часто встречающимся фруктовым кислотам относят лимонную, яблочную, щавелевую, винную, пировиноградную, салициловую, уксусную и др. Данные биологические вещества разные по своей структуре, а также по своей биологической роли в живых организмах. хорошо растворяются в воде и спирте.

Группы органических кислот

Согласно присущим им свойствам разделяют на две разных группы – летучие (легко испаряемые) и нелетучие (образующие осадок). К летучим кислотам относят уксусную, масляную, молочную, пропионовую, муравьиную, валериановую и др. Характерной особенностью летучих кислот является наличие запаха, они перегоняются с паром.

Нелетучие кислоты — это лимонная, винная, щавелевая, яблочная, гликолевая, глиоксилевая, пировиноградная, малоновая, янтарная, фумаровая, изолимонная и др.

Роль органических кислот в организме

Поддерживают кислотно-щелочное равновесие организма человека. Ключевой, очень важной функцией данных кислот является ощелачивание организма. принимают непосредственное участие в процессах пищеварения, в энергетическом обмене веществ, активизируют перистальтику кишечника, замедляют развитие гнилостных бактерий и процессов брожения в толстом кишечнике, нормализуют ежедневный стул, стимулируют выделение желудочного сока в желудочно-кишечном тракте. Таким образом, они улучшают пищеварение, снижают кислотность среды (ощелачивают организм), снижают риск развития желудочно-кишечных заболеваний. Говоря о роли органических кислот в организме человека нужно учесть тот факт, что каждой органической кислоте присущи определенные функции. Из известных органических кислот можно отметить следующее:
— бензойная и салициловые кислоты оказывают антисептический эффект
— урсоловая и олеиновая кислоты препятствуют атрофии скелетных мышц, понижают уровень сахара в крови, расширяют венозные сосуды сердца, способствуют снижению веса
— уроновые кислоты утилизируют соли тяжелых металлов, радионуклиды, способствуют образованию аскорбиновой кислоты
— тартроновая кислота затормаживает превращение углеводов в жиры, тем самым предупреждает ожирение и атеросклероз
— галловая кислота оказывает противогрибковый и противовирусный эффект
— оксикоричные кислоты оказывают желчегонное и противоспалительное действие
— яблочная, лимонная, винная и оксикарбонная кислоты снижают риск образования в организме нитрозаминов (канцерогенных веществ), а также ощелачивают организм
— молочная кислота оказывает противоспалительное и антимикробное действие а также является питанием для полезных бактерий кишечника

Недостаток органических кислот в организме

Нарушение кислотно-щелочного равновесия организма приводит к серьезным заболеваниям. Например, повышенная кислотность в организме снижает эффективность усвоения жизненно необходимых микроэлементов (калий, магний, кальций, натрий). Недостаток вышеупомянутых веществ как правило приводит к заболеваниям сердечнососудистой системы, вызывает заболевания мочевого пузыря и почек. Из-за недостатка кальция возникают боли в мышцах и суставах, снижается иммунитет организма. Повышенная кислотность в организме может возникнуть при неправильном питании. Такое питание связано с недостатком в ежедневном меню фруктов и овощей, избытком мяса и повышенном употреблении рафинированных углеводов. При повышенной кислотности в организме (такую болезнь называют ацидоз) человек набирает лишний вес, так как в его мышцах накапливается избыточная молочная кислота (не переработанная лактоза – молочный сахар). Повышается риск развития сахарного диабета. Дефицит микроэлементов приводит к болям в суставах, возникает остеопороз и хрупкость костей, нарушается обмен веществ. В некоторых случаях ацидоз может привести к возникновению онкологических заболеваний. Особое внимание на кислотно-щелочное равновесие организма нужно обратить людям с диабетом – эта болезнь нарушает правильный баланс веществ.

Основные источники органических кислот


содержатся в плодах растений в свободном состоянии, а в других частях растений – в связанных формах, в виде солей и эфиров. Концентрация органических кислот в растениях разная. В щавеле и шпинате содержание щавелевой кислоты достигает 16%, в яблоках уровень яблочной кислоты достигает 6%, в лимонах- 9% составляет уровень лимонной кислоты. Основные источники по содержанию отдельных видов органических кислот это:

1. Бензойная и салициловые кислоты – плоды клюквы, брусники, сливы, груши, корица
2. Урсоловая и олеиновая кислоты — малина, облепиха, плоды боярышника, яблочная кожура,трава лаванды, брусника, гранат, рябина
3. Уроновые кислоты – яблоки, груши, сливы, персики, алыча, морковь, свекла, капуста
4. Тартроновая кислота – кабачки, огурцы, капуста, айва, баклажаны
5. Галловая кислота – кора дуба, чай
6. Оксикоричные кислоты — мать-и-мачеха, листья подорожника, побеги топинамбура и артишока
7. Молочная кислота — прокисшее молоко, вино, пиво

Для полноценного функционирования организма человека крайне нужны . Поэтому они должны занимать достойное место в Вашем ежедневном меню.

Будьте здоровы и жизнерадостны!

Карбоновая кислота - представитель предельных одноосновных кислот.

Карбоновыми кислотами называются органические вещества, в состав которых входит карбоксильная группа или в упрощенной записи - СООН. Карбоксильная группа состоит из соединенных карбонильной и гидроксильной групп, что определило ее название.

В карбоновых кислотах карбоксильная группа соединена с углеводородным радикалом R, поэтому в общем виде формулу карбоновой кислоты можно записать так: R-СООН.

В карбоновых кислотах карбоксильная группа может быть соединена с различными углеводородными радикалами ~- предельными, непредельными, ароматическими. В связи с этим выделяют предельные, непредельные и ароматические карбоновые кислоты, например:

В зависимости от числа карбоксильных групп, содержащихся в молекулах карбоновых кислот, различают одноосновные и двухосновные кислоты, например:

атом углерод кислота спирт липиды

Одноосновные кислоты называют также монокарбоновыми, а двухосновные - дикарбоновыми кислотами.

Общая формула членов гомологического ряда предельных одноосновных карболовых кислот СnН2n-1СООН, где п = 0, 1, 2, 3..

Номенклатура.

Названия карбоновых кислот по заместительной номенклатуре строят из названия соответствующего алкана с добавлением окончания -овая и слова «кислота». Если углеродная цепь разветвленная, то в начале названия кислоты записывают заместитель с указанием его положения в цепи Нумерацию атомов углерода в цепи начинают с углерода карбоксильной группы.

Некоторые предельные одноосновные кислоты:

Для некоторых членов гомологического ряда предельных карбоновых кислот применяют тривиальные названия, приведены формулы некоторых предельных одноосновных кислот и их названия по заместительной номенклатуре и тривиальные названия.

Изомеры. Начиная с бутановой кислоты С3Н7СООН9 члены гомологического ряда предельных одноосновных кислот имеют изомеры. Их изомерия обусловлена разветвленностыо углеродной цепи углеводородных радикалов. Так, бутановая кислота имеет следующие два изомера (в скобках записано тривиальное название).

Формуле С 4 Н 9 СООН соответствуют четыре изомерные карбоновые кислоты:

Свойства, Кислоты гомологического ряда с нормальным -v строением от муравьиной до> С 8 Н 17 СООН (нонановой кислоты) при обычных условиях ~ бесцветные жидкости, имеющие резкий запах. Высшие члены ряда, начиная с С. 9 Н 19 СООН, - твердые вещества. Муравьиная, уксусная и продионовая кислоты хорошо растворимы в воде, смешиваются с ней в любых отношениях. Другие жидкие кислоты ограниченно растворимы в воде. Твердые кислоты в воде практически нерастворимы.

Особенности химических свойств карбоновых кислот обусловлены сильным взаимным влиянием карбонильной С-О и гидроксильной О-Н групп.

В карбоксильной группе связь между углеродом и карбонильным кислородом сильнополярна.. Однако положительный заряд на атоме углерода частично уменьшается в результате притяжения электронов атома кислорода гидроксильной группы. Поэтому в карбоновых кислотах карбонильный углерод менее склонён к взаимодействию с нуклеофильными частицами чем в альдегидах и кетонах.

С другой стороны, под влиянием карбонильной группы усиливается полярность связи О-Н за счет смещения электронной плотности от кислорода к атому углерода. Все указанные особенности* карбоксильной группы -можно проиллюстрировать следующей схемой:

Рассмотренный характер электронного строения карбоксильной группы обусловливает относительную легкость отрыва водорода этой группы. Поэтому у карбоновых кислот хорошо выражены кислотные свойства. F безводном" состоянии и особенно в водных растворах карбоновые кислоты диссоциируют на ионы;

Кислый характер растворов карбоновых кислот можно установить с помощью индикаторов. Карбоновые кислоты являются слабыми электролитами, причем сила карбоновых кислот уменьшается с увеличением молекулярной массы кислоты.

Наиболее часто встречающиеся жирные кислоты:

· пальмитиновая CH 3 (CH 2)14COOH,

· стеариновая СН 3 (СН 2)16СООН,

· олеиновая СН 3 (СН 2) 7 СН=СН(СН 2)7СООН,

· линолевая СНз(СН2) 4 (СН=СНСН2)2(СН2) 6 СООН,

· линоленовая СН 3 СН 2 (СН=СНСН 2)3(СН2)6СООН,

· арахидоноваяСН 3 (СН 2)4(СН=СНСН 2)4(СН2)2СООН,

· арахиновая СН 3 (СН 2)18СООН и некоторые другие кислоты.

Муравьиная кислота. Это легкоподвижная, бесцветная жидкость с исключительно резким запахом, которая смешивается с водой в любых пропорциях, очень едкая, вызывающая волдыри на коже. Она применяется в качестве консерванта. Уксусная кислота. Обладает теми же свойствами, что и муравьиная. Концентрированная уксусная кислота затвердевает при 17°С, превращаясь в массу, похожую на лед. Ее используют при изготовлении уксусно-кислого глинозема, в качестве добавки в лосьон для бритья, а также при производстве ароматических веществ и растворителей (смывка для лака - амилацетат). Бензойная кислота. Имеет кристаллические иголочки без цвета и запаха. Она плохо растворяется в воде и легко - в этаноле и эфире. Это известное средство для консервации. Обычно применяется в виде натриевой соли как противомикробное и фунгицидное средство.

Молочная кислота. В концентрированном виде обладает кератолитическим действием. В увлажняющих кремах используют натриевую соль молочной кислоты, которая благодаря своим гигроскопическим свойствам оказывает хорошее увлажняющее воздействие, а также отбеливает кожу. Винная кислота. Состоит из бесцветных прозрачных кристаллов или представляет собой кристаллический порошок с приятным кислым вкусом. Она легко растворяется в воде и этаноле. Ее используют в соли для ванн, а также в ополаскивателях для волос после применения лака.

Тиомолочная кислота. Это молочная кислота, в которой один атом кислорода замещен атомом серы.

Масляная кислота. Это жидкость без цвета и запаха, растворимая только в органических растворителях (бензине, бензоле, тетрахлоруглероде). В свободном виде масляная кислота в косметике не употребляется, она является составляющим элементом мыла и шампуней.

Сорбиновая кислота. Эта твердая, белая, многократно ненасыщенная жирная кислота, трудно растворимая в холодной воде и легка растворимая в спирте или эфире. Ее соли и эфиры абсолютно нетоксичны, они используются как консерванты в продуктах питания и косметических средствах. Линолевая, линоленовая, арахидоновая кислаты. Эссенциальные (незаменимые) ненасыщенные жирные кислоты, которые не синтезируются в организме. Комплекс этих кислот называют витамином Г. Их физиалогическая роль заключается в следующем: - нормализация уровня холестерина в крови; - участие в синтезе простангландинов; - оптимизация функций биологических мембран; - участие в липидном обмене кожи. Они входят в состав эпидермальных липидов, образуя строго организованные липидные структуры (пласты) в роговом слое эпидермиса, которые обеспечивают его барьерные функции. При недостатке незаменимых жирных кислот происходит их замена на насыщенные. Например, замена линолевой кислоты на пальмитинавую приводит к дезорганизаци липидных пластов, в эпидермисе образуются участки, лишенные липидов и, следовательно, проницаемые для микраарганизмов и химических агентов. Эссенциальные жирные кислоты содержатся в масле семян кукурузы, пщеницы, сои, льна, кунжуга, арахиса, миндаля, подсолнечника.

Органические кислоты, как не трудно догадаться, – это органические вещества, проявляющие кислотные свойства. В их состав включают карбоновые кислоты, сульфоновые кислоты, а также некоторые другие. Карбоновые кислоты содержат карбоксильную группу -COOH, а сульфоновые содержат сульфогруппу с общей формулой SO 3 H.

Карбоновые кислоты

Карбоновыми кислотами называют производные углеводородов, в молекулах которых один или несколько углеродных атомов образуют карбоксильную группу. Карбоновые кислоты классифицируются по основности (числу карбоксильных групп) и по виду радикала:

  • Одноосновные предельные кислоты . Первый член гомологического ряда – муравьиная кислота HCOOH, далее уксусная (этановая) кислота CH 3 COOH. В природе в составе жиров встречаются высшие жирные кислоты. Из них наиболее важны стеариновая кислота C 17 H3 35 COOH.
  • Двухосновные предельные кислоты . Простейшая из этих кислот – щавелевая (другое название – этандиовая) кислота HOOC-COOH, образующаяся в некоторых растениях (щавель, ревень).

ОПРЕДЕЛЕНИЕ

Кислоты – электролиты, при диссоциации которых из положительных ионов образуются только ионы H + :

HNO 3 ↔ H + + NO 3 —

CH 3 COOH↔ H + +CH 3 COO —

Классификация кислот

Кислоты прежде всего классифицируют на неорганические и органические (карбоновые). Слабые кислотные свойства проявляют такие органические соединения как спирты и фенолы. Неорганические и карбоновые кислоты, в свою очередь, имеют свои собственные классификации. Так, все неорганические кислоты можно классифицировать:

  • по числу атомов водорода, способных к отщеплению в водном растворе (одноосновные –HCl, HNO 2 , двухосновные –H 2 SO 4 , H 2 SiO 3 , трехосновные –H 3 PO 4)
  • по составу кислоты (бескислородсодержащие – HI, HF, H 2 S и кислородсодержащие – HNO 3 , H 2 CO 3)

Карбоновые кислоты классифицируют:

  • по числу карбоксильных групп (одноосновные – HCOOH, CH 3 COOH и двухосновные –H 2 C 2 O 4)

Физические свойства кислот

При н.у. большинство неорганических кислот существуют в жидком состоянии, некоторые – в твёрдом состоянии (H 3 PO 4 , H 3 BO 3).

Органические кислоты с числом атомов углерода до 3 представляют собой легкоподвижные бесцветные жидкости с характерным резким запахом; кислоты с 4-9 атомами углерода - маслянистые жидкости с неприятным запахом, а кислоты с большим количеством атомов углерода- твёрдые вещества, нерастворимые в воде.

Строение карбоксильной группы

ОПРЕДЕЛЕНИЕ

Карбоксильная группа — -COOH состоит из карбонильной группы — > С=O и гидроксильной группы –OH, которые оказывают взаимное влияние друг на друга. Неподеленная пара электронов атома кислорода в гидроксид-ионе смещена в сторону атома углерода карбонильной группы, что ослабляет связь –ОН и обусловливает наличие кислотных свойств (рис 1).

Рис. 1 Строение карбоксильной группы

Получение кислот

Неорганические и органические кислоты получают разными способами. Так, неорганические кислоты можно получить:

  • по реакции кислотных оксидов с водой

    SO 3 + H 2 O = H 2 SO 4

  • по реакции соединения неметаллов с водородом

    H 2 + S ↔ H 2 S

  • по реакции обмена между солями и другими кислотами

    K 2 SiO 3 + 2HCl → H 2 SiO 3 ↓ + 2KCl

Органические кислоты получают путем:

  • окисления альдегидов и первичных спиртов (в качестве окислителей выступают KMnO 4 и K 2 Cr 2 O 7)

    R – CH 2 –OH → R –C(O)H → R-COOH,

    где R – углеводородный радикал.

Химические свойства кислот

К общим химическим свойствам и органических и неорганических кислот относят:

— способность изменять окраску индикаторов, например, лакмус при попадании в раствор кислоты приобретает красную окраску (это обусловлено диссоциацией кислот);

— взаимодействие с активными металлами

2RCOOH + Mg = (RCOO) 2 Mg + H 2

Fe + H 2 SO 4(р — р) = FeSO 4 + H 2

— взаимодействие с основными и амфотерными оксидами

2RCOOH + CaO = (RCOO) 2 Ca + H 2 O

6RCOOH + Al 2 O 3 = 2(RCOO) 3 Al + 3H 2 O

2HCl + FeO = FeCl 2 + H 2 O

6HNO 3 + Al 2 O 3 = 2Al(NO 3) 3 + 3H 2 O

— взаимодействие с основаниями

RCOOH + NaOH = RCOONa + H 2 O

H 2 SO 4 + 2NaOH = Na 2 SO 4 + H 2 O

— взаимодействие с солями слабых кислот

RCOOH + NaHCO 3 = RCOONa + H 2 O + CO 2

CH 3 COONa + HCl = CH 3 COOH + NaCl

Специфические свойства неорганических кислот

К специфическим свойствам неорганических кислот относят окислительно-восстановительные реакции, связанные со свойствами анионов кислот:

H 2 SO 3 + Cl 2 + H 2 O = H 2 SO 4 + 2HCl

Pb + 4HNO 3(конц) = Pb(NO 3) 2 + 2NO 2 + 2H 2 O

Специфические свойства органических кислот

К специфическим свойствам органических кислот относят образование функциональных производных путем замещения гидроксильной группы (1, 2, 3, 4), а также галогенирование (5), восстановление (6) и декарбоксилирование (7).

R –C(O)-OH + PCl 5 = R –C(O)-Cl (хлорангидрид) + POCl 3 + HCl (1)

R –C(O)-OH + H-O-C(O)-R = R – C(O) – O – C(O) – R (ангидрид) (2)

CH 3 COOH + CH 3 -CH 2 -OH = CH 3 -C(O)-O-C 2 H 5 (этилацетат (сложный эфир)) + H 2 O (3)

CH 3 COOH + СH 3 –NH 2 = CH 3 -C(O)-NH-CH 3 (амид) + H 2 O (4)

CH 3 –CH 2 -COOH + Br 2 = CH 3 – CHBr –COOH + HBr (катализатор – P кр) (5)

R-COOH + LiAlH 4 (водный раствор, подкисленный HCl) = R-CH 2 -OH +AlCl 3 + LiCl (6)

CH 2 =CH-CH 2 -COOH = CO 2 + CH 2 =CH-CH 3 (7)

Примеры решения задач

ПРИМЕР 1

Задание Напишите уравнения реакций по следующей схеме:

Решение 1) ЗС 2 Н 5 ОН + 4Na 2 CrO 4 + 7NaOH + 4H 2 O = 3CH 3 COONa + 4Na 3

2) СН 3 СООС 2 Н 5 + NaOH = CH 3 COONa + С 2 Н 5 ОН

3) 5С 2 Н 5 ОН + 4KMnO 4 + 6H 2 SO 4 = 5СН 3 СООН + 2K 2 SO 4 +4MnSO 4 + 11H 2 O

4) CH 3 COONa + C 2 H 5 I = СН 3 СООС 2 Н 5 + Nal

5) CH 3 COONa + HCl = СН 3 СООН + NaCl

6) СН 3 СООН + С 2 Н 5 ОН СН 3 СООС 2 Н 5 + Н 2 О (Воздействие H 2 SO 4)

ПРИМЕР 2

Задание Определите массу пирита (FeS2), необходимую для получения такого количества SO3, чтобы при растворении последнего в растворе серной кислоты с массовой долей 91 % массой 500 г получить олеум с массовой долей 12,5 %.
Решение Запишем уравнения реакций:

1) 4FeS 2 +11O 2 = 2Fe 2 O 3 +8SO 2

2) 2SO 2 +O 2 = 2SO 3

3) SO 3 +H 2 O = H 2 SO 4

Найдем молярные массы веществ, необходимых для дальнейших расчетов:

M(H 2 O) = 18 г/моль; M(SO 3) = 80 г/моль; M(H 2 SO 4) = 98 г/моль; M(FeS 2) = 120 г/моль

Масса воды в 100 г раствора серной кислоты (ω = 91 %) составит:

100 — 91 = 9,0 г

v(H 2 O)=9/18 = 0,5 моль

Из уравнения реакции (3) следует, что

1 моль SO 3 → 1 моль H 2 O → 1 моль H 2 SO 4 , т.е.

0,5 моль H 2 O прореагирует с 0,5 моль SO 3 и образуется 0,5 моль H 2 SO 4

Рассчитаем массу SO 3

m(SO 3)= 0,5 80 = 40 г

Рассчитаем массу H 2 SO 4

m(H 2 SO 4)= 0,5 98 = 49 г

Тогда общая масса H2SO4 составит

m (H 2 SO 4) sum =91 + 49 = 140 г

Для получения олеума (ω = = 12,5 %) на 140 г H 2 SO 4 потребуется SO 3:

m(SO 3) = 12,5 140/87,5 = 20 г

Таким образом, всего SO 3 расходуется

m(SO 3) sum = (40 + 20) = 60 г

v(SO 3) sum =60/80 = 0,75 моль

Из уравнений реакций (2, 3) следует, что на образование 0,75 моль SO 3 расходуется

v(FeS 2)= 0,75/2 = 0,375 моль

m(FeS 2)=0,375 120 = 45 г

Ответ Масса пирита 45 г.