Химический состав хрящевой ткани. Хрящевая ткань: что это такое, клетки хрящевой ткани, виды, строение, функции

Костная и хрящевая ткани составляют человеческий скелет. На эти ткани возложена опорная функция, вместе с этим они защищают внутренние органы, системы органов от неблагоприятных факторов. Для нормального функционирования человеческого организма необходимо, чтобы все заложенные природой хрящи были на анатомически верных местах, чтобы ткани были прочными и регенерирующими по мере необходимости. В противном случае человек сталкивается со множеством неприятных заболеваний, понижающих уровень жизни, а то и вовсе лишающих возможности передвигаться самостоятельно.

Особенности ткани

Ткань, как и любые другие структурные элементы организма, сформирована из специальных клеток. Клетки хрящевой ткани в науке именуются дифферонами. Это понятие сложное, включает в себя несколько разновидностей клеток: стволовые, полустволовые, объединенные в рамках анатомии в группу малоспециализированных, - этой категории присуща способность к активному делению. Также выделяют хондробласты, то есть такие клетки, которые могут делиться, но вместе с тем способны продуцировать межклеточные соединения. Наконец, есть клетки, чья основная задача - создание промежуточного вещества. Их специализированное наименование - хондроциты. В составе этих клеток есть не только волокна хрящевой ткани, функции которых - обеспечение устойчивости, но также основное вещество, именуемое учеными аморфным. Это соединение способно связывать воду, благодаря чему хрящевая ткань стойко сопротивляется нагрузкам на сжатие. Если все клетки сустава здоровы, он будет упругим, прочным.

В науке выделяют три вида хрящевой ткани. Для деления на группы анализируют особенности межклеточного соединительного компонента. Принято говорить о следующих категориях:

  • эластичная;
  • гиалиновая;
  • волокнистая.

А если подробнее?

Как известно из анатомии, все виды хрящевой ткани имеют свои характерные особенности. Так, эластичная ткань отличается спецификой строения межклеточного вещества - для него характерна довольно высокая концентрация коллагеновых волокон. Вместе с тем такая ткань богата аморфным веществом. В то же время в этой ткани наблюдается высокий процент эластичных волокон, которые и дали ей название. Функции хрящевой ткани эластичного типа связаны с этой особенностью: обеспечение упругости, гибкости, стойкого сопротивления внешнему влиянию. Что может рассказать еще интересного анатомия? Где находится хрящевая ткань этого типа? Обычно - в тех органах, которые от природы предусмотрены сгибающимися. Например, из эластичной хрящевой ткани состоят гортанные хрящи, нос и раковины ушей, центр бронхов.

Волокнистая ткань: некоторые особенности

В той точке, из которой начинается гиалиновый хрящ, заканчивается волокнистая соединительная ткань. Обычно эта ткань находится в дисках между позвонками, а также в местах соединения костей, где подвижность не важна. Особенности строения хрящевой ткани этого типа прямо связаны со спецификой ее расположения. Сухожилия, связки в точке контакта с хрящевой тканью провоцируют активно развитую систему коллагеновых волокон. Особенность такой ткани - наличие хрящевых клеток (вместо фибробластов). Эти клетки формируют изогенные группы.

Что еще нужно знать

Курс анатомии человека позволяет четко уяснить себе, для чего нужна хрящевая ткань: для обеспечения подвижности при сохранении упругости, стабильности, безопасности. Эти ткани плотные и позволяют гарантировать механическую защиту. Современная анатомия как наука характеризуется обилием терминов, в том числе дополняющих и взаимно заменяющих друг друга. Так, если речь о стекловидной хрящевой ткани позвоночника, то предполагается, что говорят о гиалиновой. Именно эта ткань формирует концы косточек, составляющих реберную клетку. Из нее же созданы и некоторые элементы дыхательной системы.

Функции хрящевой ткани из категории соединительнотканной - соединение ткани и гиалинового стекловидного хряща, имеющего совершенно другую структуру. А вот сетчатая хрящевая ткань обеспечивает нормальное функционирование надгортанника, системы слуха, гортани.

Зачем нужна хрящевая ткань?

Природа ничего не создает просто так. Все ткани, клетки, органы имеют довольно обширную функциональность (а некоторые задачи и по сей день скрыты от ученых). Как известно из анатомии уже сегодня, функции хрящевой ткани включают в себя гарантию надёжности соединения элементов, обеспечивающих человеку возможность двигаться. В частности, костные элементы позвоночника между собой связаны именно хрящевой тканью.

Как удалось установить в ходе исследований, посвященных аспектам питания хрящевой ткани, она принимает активное участие в углеводном обмене. Это объясняет некоторые особенности регенерации. Отмечается, что в детском возрасте восстановление хрящевой ткани возможно на 100 %, а вот по прошествии лет эта способность теряется. Если взрослый человек сталкивается с повреждением хрящевой ткани, он может рассчитывать только на частичное восстановление подвижности. В то же время восстановление хрящевой ткани - это одна из задач, привлекающих внимание передовых умов медицины нашего времени, поэтому предполагается, что удастся найти эффективное фармацевтическое решение этой проблемы в ближайшее время.

Проблемы с суставами: есть варианты

В настоящее время медицина может предложить несколько методик восстановления поврежденных по разным причинам органов и тканей. Если сустав получил механическую травму либо некое заболевание спровоцировало разрушение биологического материала, в большинстве случаев наиболее эффективным решением проблемы становится протезирование. А вот уколы для хрящевой ткани помогут, когда ситуация зашла еще не столь далеко, дегенеративные процессы начались, но обратимы (хотя бы частично). Как правило, прибегают к средствам, в составе которых есть глюкозамин, сульфат натрия.

Разбираясь, как восстановить хрящевую ткань на начальных этапах заболевания, обычно прибегают к физическим упражнениям, строго следя за уровнем нагрузки. Хороший эффект показывает терапия с использованием блокирующих воспаление препаратов. Как правило, большинству больных назначают лекарственные медикаменты, богатые кальцием в форме, легко усвояемой организмом.

Хрящевая соединительная ткань: откуда берутся проблемы?

В большей части случаев заболевания провоцируются полученными ранее травмами или инфицированием сустава. Иногда дегенерация хрящевой соединительной ткани провоцируется приходящимися на нее длительный временной промежуток повышенными нагрузками. В ряде случаев проблемы связаны с генетическими предпосылками. Свою роль может сыграть переохлаждение тканей организма.

При воспалении хороший результат может дать использование и препаратов для наружного применения, и таблеток. Современные медикаменты сформированы с учетом гидрофильности, характерной для хрящевой ткани позвоночника и других органов. Это означает, что средства для местного применения довольно быстро могут «добраться» до пострадавшей зоны и оказать терапевтический эффект.

Особенности строения

Как видно из анатомии, гиалиновый хрящ, другие хрящевые ткани, а также костные объединены в категорию скелетных. На латинском языке эта группа тканей получила наименование textus cartilaginus. До 80 % этой ткани - это вода, от четырех до семи процентов - соли, а остальной объем - органические компоненты (до 15 %). Сухая часть хрящевой ткани на половину или больше (до 70 %) сформирована из коллагена. Матрикс, производимый клетками ткани, представляет собой комплексное вещество, включающее в себя гиалуроновую кислоту, гликозаминогликаны, протеогликаны.

Клетки ткани: некоторые особенности

Как удалось выяснить учёным, хондробласты представляют собой такие молодые клетки, которые обычно имеют неправильную вытянутую форму. Такая клетка в процессе жизнедеятельности генерирует протеогликаны, эластин, другие незаменимые для нормального функционирования сустава компоненты. Цитолемма такой клетки - микроворсинки, представленные в огромном количестве. В цитоплазме содержится в обилии РНК. Такой клетке свойственна эндоплазматическая сеть высокого уровня развития, представленная как в незернистой форме, так и в зернистой. В цитоплазме хондробластов также присутствуют гликогеновые гранулы, комплекс Гольджи, лизосомы. Обычно в ядре такой клетки одно или два ядра. Образование содержит большое количество хроматина.

Отличительная особенность хондроцитов - крупный размер, поскольку эти клетки уже зрелые. Для них характерна круглая форма, овальная, полигональная. Большинство хондроцитов оснащены отростками, органеллами. Обычно такие клетки занимают лакуны, а вокруг них располагается межклеточное соединительное вещество. Когда лакуна содержит одну клетку, ее классифицируют как первичную. Преимущественно наблюдают изогенные группы, состоящие из пары или тройки клеток. Это позволяет говорить о вторичной лакуне. Стенка такого формирования имеет два слоя: снаружи она создана из волокон коллагена, а изнутри выстлана протеогликановыми агрегатами, взаимодействующими с хрящевым гликокаликсом.

Биологические особенности ткани

Когда хрящевая ткань сустава оказывается в фокусе внимания ученых, обычно ее изучают в качестве скопления хондронов - именно такое наименование получили функциональные, структурные единицы биологической ткани. Хондрон сформирован из клетки или объединённой группы клеток, матрикса, окружающего клетку, и лакуны в виде капсулы. Для каждого из перечисленных выше трех разновидностей хрящевой ткани характерны свои уникальные особенности строения. Например, гиалиновый хрящ, который получил свое наименование от греческого слова «стекло», отличается голубоватым оттенком и характеризуется клетками самой разной формы, строения. Многое зависит от того, какое именно место клетка занимает внутри хрящевой ткани. Обычно гиалиновый хрящ сформирован группами хондроцитов. Такая ткань создает суставы, хрящи ребер, гортани.

Если рассматривать процесс формирования костей в человеческом организме, можно заметить, что на первичном этапе большая их часть состоит из гиалинового хряща. Со временем происходит преобразование суставной ткани в костную.

Что еще особенного?

А вот волокнистый хрящ очень прочен, так как состоит из толстых волокон. Для его клеток характерна вытянутая форма, ядро в виде палочки и цитоплазма, образующая небольшой ободок. Такой хрящ обычно создает фиброзные кольца, свойственные позвоночнику, мениски, диски внутри суставов. Хрящ покрывает некоторые суставы.

Если рассматривать эластичную хрящевую ткань, можно заметить, что она довольно гибкая, так как матрикс богат не только коллагеном, но и эластичными волокнами. Для этой ткани характерны округлые клетки, заключенные в лакуны.

Хрящ и хрящевая ткань

Эти два термина, несмотря на свою схожесть, нельзя путать. Хрящевая ткань является разновидностью соединительных биологических тканей, хрящ же представляет собой анатомический орган. В его структуре есть не только хрящевая ткань, но также присутствует надхрящница, покрывающая ткани органа снаружи. При этом надхрящница не закрывает суставную поверхность. Этот элемент хряща сформирован соединительной тканью, состоящей из волокон.

Надхрящница состоит из двух слоев: фиброзного, покрывающего ее снаружи, и камбиального, которым орган выстлан внутри. Второй также известен как ростковый. Внутренний слой представляет собой скопление малодифференцированных клеток. К таковым относят хондробласты в неактивной стадии, прехондробласты. Из этих клеток сначала формируются хондробласты, затем они прогрессируют до хондроцитов. А вот фиброзный слой отличается развитой кровеносной сетью, представленной обилием сосудов. Надхрящница - это одновременно и защитный слой, и хранилище материала для регенеративных процессов, и ткань, благодаря которой реализуется трофика хрящевой ткани, в структуре которой сосудов нет. А вот если рассматривать гиалиновый хрящ, то в нем основные задачи по трофике ложатся на синовиальную жидкость, а не только лишь на сосуды. Очень важную роль играет система кровоснабжения костной ткани.

Как это работает?

Основа для формирования хряща, хрящевой ткани - мезенхима. Процесс роста ткани в науке именуют хондрогистогенезом. Мезенхимные клетки в точках, где природой предусмотрено наличие хрящевой ткани, размножаются, делятся, разрастаются, округляются. Это приводит к клеточному скоплению, называемому очагом. Наука обычно именует такие места хондрогенными островками. По мере продвижения процесса вперед происходит дифференциация на хондробласты, благодаря чему становится реальным продуцирование фибриллярных белков, попадающих в среду между живыми клетками. Это приводит к формированию первого типа хондроцитов, способных не только производить специализированные белки, но и ряд других незаменимых для нормальной деятельности органов соединения.

По мере развития хрящевой ткани хондроциты дифференцируются, что приводит к формированию второго и третьего типа клеток этой ткани. На этом же этапе появляются лакуны. Мезенхима, расположенная вокруг хрящевого островка, становится источником клеток для создания надхрящницы.

Особенности роста ткани

Развитие хряща принято разделять на два этапа. Сначала ткани проходят период интерстициального роста, во время которого хондроциты активно размножаются и продуцируют межклеточное вещество. Затем наступает стадия оппозиционного роста. Здесь «главные действующие лица» — хондробласты надхрящницы. Кроме того, незаменимую помощь для формирования и функционирования хрящевой ткани оказывают тканевые наложения, расположенные на периферии органа.

По мере старения организма в целом, хрящевой ткани в частности, намечаются дегенеративные процессы. Наиболее склонны к таковым гиалиновые хрящи. Люди пожилого возраста зачастую сталкиваются с болями, спровоцированным солевыми отслоениями в глубоких хрящевых слоях. Чаще накапливаются соединения кальция, что приводит к омелению ткани. Сосуды прорастают в пораженную область, хрящевая ткань постепенно трансформируется в костную. В медицине этот процесс именуют оссификацией. А вот эластичные ткани таким изменениям не повреждены, они не костенеют, хотя и теряют эластичность по прошествии лет.

Хрящевая ткань: проблемы дегенерации

Так сложилось, что с точки зрения человеческого здоровья хрящевая ткань - одна из наиболее уязвимых, и от заболеваний, связанных с суставами, страдают почти все люди пожилого возраста, а зачастую и более молодое поколение. Причин тому много: это и экология, и неправильный образ жизни, и некорректное питание. Конечно же, очень часто мы получаем травмы, сталкиваемся с инфекциями или воспалениями. Разовая проблема - травма или болезнь - проходит, но в старшем возрасте возвращается отголосками - суставными болями.

Хрящ довольно чувствителен ко многим заболеваниям. Проблемы с опорно-двигательной системой возникают, если человек столкнулся с грыжей, дисплазией, артрозом, артритом. Некоторые страдают от недостаточности природного синтеза коллагена. С возрастом хондроциты дегенерируют, и хрящевая ткань от этого сильно страдает. Во многих случаях наилучший терапевтический эффект дает оперативное вмешательство, когда пострадавший сустав меняют на имплантат, но такое решение не всегда применимо. Если есть вероятность восстановления природной хрящевой ткани, не нужно пренебрегать этим шансом.

Суставные болезни: как проявляются?

Большинство страдающих от таких патологий могут точнее любого прогноза предсказать перемену погоды: пораженные заболеванием суставы отзываются на малейшие смены в окружающем пространстве мучительной, тянущей болью. Если больной страдает от поражения суставов, ему нельзя резко двигаться, так как ткани реагируют на это резкой, сильной болью. Как только похожие симптомы начали появляться, нужно сразу же записаться на прием к врачу. Гораздо проще вылечить заболевание или блокировать его развитие, если начать борьбу на ранней стадии. Промедление приводит к тому, что регенерация становится совершенно невозможной.

Для восстановления нормальной функциональности хрящевой ткани было разработано довольно много препаратов. Преимущественно они относятся к категории нестероидных и созданы для блокирования воспаления. Также выпускаются обезболивающие средства - таблетки, уколы. Наконец, в последнее время широкое распространение получили специальные хондропротекторы.

Как лечить?

Наиболее эффективные средства против дегенеративных процессов в хрящевой ткани влияют на клеточном уровне. Они блокируют воспалительные процессы, защищают от негативного влияния хондроциты, а также прекращают дегенеративную активность различных агрессивных соединений, атакующих хрящевую ткань. Если удалось эффективно блокировать воспаление, следующим шагом терапии обычно является восстановление межклеточного соединения. Для этого применяют хондропротекторы.

Было разработано несколько средств этой группы - они построены на разных активных компонентах, а значит, различаются механизмом воздействия на человеческий организм. Для всех средств этой группы характерна эффективность только при приеме длительным курсом, позволяющим достигнуть действительно хороших результатов. Особенное распространение получили препараты, изготовленные на хондроитине сульфата. Это глюкозамин, который участвует в процессе формирования хрящевых белков и позволяет восстановить структуру ткани. За счет поставки вещества из внешнего источника во все виды хрящевой ткани активизируется процесс производства коллагена, гиалиновой кислоты, и хрящ самостоятельно восстанавливается. При правильном использовании медикаментов можно довольно быстро восстановить подвижность сустава и избавиться от боли.

Еще один хороший вариант - средства, содержащие другие глюкозамины. Они восстанавливают ткань от разного рода повреждений. Под влиянием активного компонента обмен веществ в хрящевых тканях сустава нормализуется. Также в последнее время применяют препараты животного происхождения, то есть изготовленные из биологического материала, полученного у животных. Чаще всего это ткани телят, водных существ. Хорошие результаты показывает терапия с применением мукополисахаридов и построенных на них медицинских препаратах.

Классификация хрящевых тканей основана на особенностях строения его межклеточного вещества - матрикса. Такая классификация видов хрящевой ткани далеко не совершенна, поскольку не содержит в себе общего единого принципа. Так, термин «фиброзный» указывает на содержание волокнистых структур, а термин «эластический» - уже на определенную конкретную характеристику белка - эластина, входящего в состав хряща. Термин «гиалиновый» информирует лишь о том, что матрикс хряща внешне однородный, а о структуре и характере белков, составляющих его структуру, вообще не упоминается.
).

Хрящевая ткань присутствует во внескелетных образованиях - гортани, носовых перегородках, бронхах, стромальных компонентах сердца.

Внеклеточный матрикс хрящевой ткани отличается от матрикса других разновидностей соединительной ткани существенными особенностями своих структурных макромолекулярных компонентов. Эти особенности обусловливают выраженное своеобразие архитектоники матрикса и его уникальные функциональные (биомеханические) характеристики.

Волокнистые структуры матрикса образованы особыми, специфическими для хрящевой ткани коллагеновыми белками - «большим» фибриллярным коллагеном II типа и сопутствующими ему «малыми» (минорными) коллагенами IX, XI, а также X и некоторых других типов. Главным компонентом межуточного вещества матрикса является также специфический для хрящевой ткани «большой» протеогликан агрекан, макромолекулы которого образуют огромные (их размеры превышают размеры клеток), занимающие большое пространство агрегаты. В состав макромолекул агрекана, составляя значительную часть их массы, входят сульфатированные гликозаминогликаны - хондроитинсульфаты и кератансульфат.

Клетки хрящевой ткани

Дифферон хрящевой ткани может быть представлен следующим образом: прехондробласты-хондробласты-хондроциты. Опираясь на описание дифферона клеток хрящевых тканей, а также из дидактических соображений, мы опишем три формы хондроцитов: прехондробласты, хондробласты и хондроциты.

Прехондробласты

В диффероне хрящевых клеток выделяют клетки-предшественники хондробластов - прехондробласты. Выделение прехондробластов в определенной мере является условным, так как предполагают, что у хряща и кости имеются единые полустволовые клетки - общие для хондробластов и остеобластов.

Хондробласты

Основные процессы формирования хрящевой ткани происходят в эмбриогенезе, где хондроцит функционирует в качестве своей бластной формы и называется хондробластом. По-видимому, целесообразно говорить о единой популяции клеток хондробласт-хондроцит, которая обеспечивает как формирование хрящевой ткани, так и функционирование ее в зрелом состоянии. Источником пополнения популяции таких клеток являются прехондробласты.

Хондробласт можно определить как клетку, находящуюся в стадии перехода от прехондробласта к зрелому хондроциту. Такая клетка обладает секреторными потенциями, необходимыми для синтеза компонентов матрикса, но сохраняет еще способность к пролиферации. Многие исследователи отмечают, что хондробласт и хондроцит не имеют отчетливых морфологических различий, т.е. в морфологической характеристике хондробластов и хондроцитов еще не удалось определить ту меру специфичности, которая позволила бы уверенно различать эти два типа клеток.

Роль хондробластов-хондроцитов как, возможно, единственной клетки в жизнедеятельности хряща настолько важна, что их назвали «архитекторами хряща». Это название отражает тот факт, что она является единственным продуцентом всех макромолекулярных компонентов матрикса хрящевой ткани. Формирование хряща происходит преимущественно в эмбриогенезе и заканчивается в очень молодом возрасте. Таким образом, этот процесс почти целиком происходит на хондробластической стадии дифференцировки клетки.

Хондроциты

Хондроциты - это высокоспециализированная и метаболически активная клетка. Синтетическая деятельность хондроцита специфична и дифференцирована в направлении продукции и секреции коллагена II типа, минорных коллагенов, агрекана, характерных для хрящевой ткани гликопротеинов, эластина (в эластических хрящах). Ультраструктура зрелого хондроцита соответствует высокому уровню его метаболической активности.

Тот факт, что хондроциты служат источником коллагена хрящевой ткани, документируется и биохимическими, и морфологическими методами. Хондроциты в монослойной клеточной культуре дают внутриклеточную иммунофлюоресценцию с сывороткой, меченной к коллагену II типа. Таким же методом удалось локализовать коллаген II типа внутри клеток хрящевой метафизарной пластинки у детей на биопсийном материале.

Не менее убедительны и данные, относящиеся к синтезу протеогликанов. В хондроцитах при ТЭМ выявляются окрашиваемые рутениевым красным гранулы, которые заполняют весь внеклеточный матрикс хрящевой ткани и представляют собой не что иное, как уплотненные в процессе фиксации агрегаты протеогликанов. Эти гранулы обнаруживаются в везикулах комплекса Гольджи, но они отсутствуют в ГЭС. Это означает, что агрекан приобретает свой полианионный характер (рутениевый красный окрашивает полианионные макромолекулы избирательно) при прохождении через комплекс Гольджи. Эти данные согласуются с результатами радиоавтографических исследований, в которых показано, что S35 избирательно концентрируется в комплексе Гольджи. Таким образом, был не только установлен факт биосинтеза хондроцитами агрекана, но и выявлена точная внутриклеточная локализация центрального звена процесса его биосинтеза.

Сопоставление габаритов хондроцита и агреканового агрегата (первый значительно меньше по занимаемому объему, чем второй) позволило заключить, что внутри хондроцита происходит только синтез мономерных макромолекул агрекана, которые секретируются за пределы клетки в матрикс, где и происходит сборка агрекановых агрегатов.

Синтез хондроцитами тканевых структурных гликопротеинов хрящевой ткани доказан биохимическими методами. Получить морфологические подтверждения этого синтеза трудно. Полагают, что он маскируется выраженными процессами синтеза коллагена и протеогликанов. Способность хондроцитов к синтезу белка эластина была показана при исследовании культивируемых хондроцитов ушной раковины кролика.

Согласно современным представлениям, процесс обызвествления хряща происходит при активном участии в нем хондроцитов. Минерализации предшествуют изменения - как в матриксе, так и в клетках хряща.

Гетерогенность хондроцитов

Хондроциты нормальной хрящевой ткани фенотипически представляют собой гетерогенную популяцию клеток.

В гиалиновом хряще выявляются разные по своим морфологическим и функциональным характеристикам хондроциты. Основными являются три их разновидности.

Хондроциты I типа - относительно немногочисленные клетки с неровными отростчатыми краями, крупным ядром, относительно слабо выраженным ГЭС. Клеткам этого типа, например, в суставном хряще, приписывается возможность митотического деления, т.е. функции, необходимой для осуществление физиологической регенерации в процессе естественной смены популяции хондроцитов.

Хондроциты II типа составляют основную массу клеток и характерны для любой разновидности гиалинового хряща. Такой хондроцит - клетка (15- 20 мкм в диаметре) с крупным ядром и многими мелкими отростками, так называемыми цитоплазматическими «ножками». Ядерный хроматин частично конденсирован и сосредоточен в основном на внутренней поверхности ядерной мембраны. В цитоплазме хорошо развита ГЭС, ее каналы местами расширены и наполнены продуктами синтеза. Комплекс Гольджи всегда хорошо развит. Митохондрии немногочисленны.

Хондроциты III типа - это также высокодифференцированные клетки.

Фенотип хондроцита и закономерности его поддержания

Вопрос о том, каковы возможности и необходимые условия для поддержания фенотипа хондроцита в зрелом хряще в норме и при экстремальных ситуациях, являлся в последние годы предметом как изучения, так и дискуссий. Хондроцит и окружающий его матрикс представляют собой единое в функциональном отношении целое - хондроцит продуцирует матрикс, матрикс обеспечивает поддержание фенотипа хондроцита. Соответственно в нормальном хряще in vivo имеются условия, обеспечивающие поддержание стабильности фенотипа хондроцита.

Полагают, что фенотип хондроцита более лабилен, чем фенотип других клеток соединительной ткани. Он приобретается на определенном этапе хондрогенной дифференцировки мезенхимальных клеток и утрачивается в условиях патологии, что, несомненно, имеет патогенетическое значение. Утрата фенотипа хондроцитов происходит также после изолирования их из хрящевой ткани для последующего культивирования в условиях монослойной клеточной культуры. В этом случае на фоне выраженной пролиферации хондроцитов наблюдается угнетение биосинтеза хрящевого матрикса. Этот феномен обычно называют процессом дедифференциации.

Однако при определенных условиях фенотип хондроцитов (например, после перенесения клеток из монослойной в суспензионную культуру) может быстро восстанавливаться. Происходит редифференциация, при которой активируется ряд генов, участвующих в процессе дифференцировки клеток, в том числе гены, кодирующие компоненты системы передачи сигналов одного из цитокинов - IL-6. Напротив, экспрессия некоторых других генов угнетается. В частности, угнетение затрагивает ген фактора роста соединительной ткани (CTGF). Главным признаком редифференциации является возобновление экспрессии специфических компонентов экстрацеллюлярного матрикса, хотя при этом могут частично сохраняться как появившаяся при дедифференциации экспрессия неспецифических продуктов биосинтеза, в частности, коллагена I типа, так и измененная структура хондроцита.

Для поддержания фенотипа зрелого хондроцита необходимо присутствие нормального полноценного хрящевого матрикса. В норме именно структурные особенности матрикса стабилизируют фенотип клеток. Это заключение подтверждается тем фактом, что при культивировании срезов хряща, т.е. при сохранении матрикса, фенотип хондроцитов не изменяется на протяжении длительного времени культивирования (до 9 недель). В условиях патологии фенотип хондроцита изменяется, а задачей терапии является его восстановление.

Метаболические процессы в клетках хрящевой ткани

Хондроциты, как было указано выше, - это единственная разновидность клеток, представленная в зрелой хрящевой ткани, и именно поэтому только они могут служить источником для формирования внеклеточного матрикса. Продукция матрикса и поддержание его структурной целостности на протяжении жизни организма - основные функции хондроцитов. Именно хондроциты осуществляют биосинтез всех специфических компонентов матрикса. Кроме того, хондроциты контролируют протекающие в матриксе процессы сборки надмолекулярных структур (например, агрегатов агрекана и коллагеновых фибрилл) и течение катаболических реакций.

Как мы уже подчеркивали, численность хондроцитов относительно невелика. Они могут обеспечить формирование матрикса только за счет высокой метаболической (анаболической и катаболической) активности каждой клетки. Эта активность, наиболее выраженная в эмбриональном и раннем постнатальном онтогенезе, является одним из характерных свойств хондроцитов.

Метаболическая активность хондроцитов, за исключением общих для всех клеток процессов, обеспечивающих их собственную жизнедеятельность, направлена на построение и поддержание матрикса. Ее целесообразно рассмотреть после того, как будет представлена характеристика структурных компонентов матрикса и действующих в нем ферментов. Здесь мы лишь обратим внимание на те условия, в которых осуществляются метаболические функции хрящевых клеток.

Относительно немногочисленные клетки хрящевой ткани (хондробласты-хондроциты) должны обеспечить образование и последующее поддержание в состоянии динамического равновесия больших масс экстрацеллюлярного матрикса. Свою задачу клетки хряща выполняют в особых условиях: они функционируют в ткани, бедной кровеносными сосудами, а в суставных хрящах взрослых организмов - в бессосудистой ткани. Если хрящи других локализаций, например межреберные, получают необходимые для метаболизма материалы из капилляров надхрящницы (перихондрия), то в суставном хряще, лишенном перихондрия и отделенным пограничной линией от субхондральной кости, возможности получения этих материалов из крови отсутствуют.

Это означает, что в зрелом суставном хряще хондроциты, удаленные от кровеносных сосудов, получают исходные материалы для метаболических процессов только из омывающей суставную поверхность СЖ за счет их проникновения сквозь толщу матрикса. Физическим механизмом, осуществляющим такое проникновение, является диффузия - перемещение находящихся в растворе молекул из области с более высокой концентрацией в область более низкой концентрации до достижения равномерного распределения молекул растворенного вещества среди молекул растворителя.

Скорость диффузии между полярными и неполярными молекулами отчетливо различается. Но интенсивность диффузии всех низкомолекулярных веществ вполне достаточна для того, чтобы обеспечить метаболические потребности хондроцитов по всей толщине суставного хряща, даже в наиболее массивных участках хрящей тазобедренного сустава человека, где толщина хряща достигает 3,5-5 мм. Исключение составляет кислород; его концентрация в СЖ очень низкая. При реально существующей в синовии концентрации кислорода (3-10 х Ю-8 моль/мл) диффузия обеспечивает проникновение кислорода только до глубины около 1,8 мм. Клетки, расположенные в более удаленных от суставной поверхности слоях хряща, оказываются в условиях дефицита кислорода. Вследствие этого метаболические процессы в хондроцитах различных слоев хряща протекают с неодинаковой активностью. Это - еще одно проявление метаболической неоднородности суставных хрящей.

Метаболизм хондроцитов носит преимущественно анаэробный характер, ибо он осуществляется за счет гликолиза. Такая особенность энергетического обеспечения ткани хряща - приспособительный механизм, позволяющий клеткам функционировать в условиях очень низких концентраций кислорода. Если в межклеточных пространствах мягких тканей парциальное давление кислорода составляет 15-20 мм рт. ст., то в суставном хряще оно не превышает 5-8 мм рт. ст. При этом в базальной зоне хряща оно примерно в 10 раз ниже, чем в поверхностных. Чем ниже концентрация кислорода в матриксе хряща, тем выше интенсивность гликолиза и соответственно - продукция молочной кислоты.

Хондроциты фенотипически адаптированы к анаэробным условиям функционирования. Эксперименты in vitro показали, что по мере повышения степени гипоксии анаболические процессы не только не угнетаются, но даже активируются. Повышается эффективность утилизации глюкозы, что обеспечивает более экономное расходование энергии. Однако при слишком выраженной тканевой гипоксии (такое состояние наблюдается при РА, когда очень резко падает содержание кислорода в СЖ) происходит угнетение экспрессии хондроцитами ряда генов. Уровни мРНК, кодирующих структурные макромолекулы матрикса (коллаген II типа), количество некоторых цитокинов и интегринов в хондроцитах при этом снижается.

В то же время в отличие от клеток других тканей хондроциты дают парадоксальную реакцию на увеличение парциального давления кислорода: угнетением биосинтетических процессов, в частности снижением биосинтеза ДНК и протеогликанов. С возрастом потребление кислорода хондроцитами еще более снижается. Потребление кислорода хондроцитами, особенно поверхностного слоя хряща, понижается при избыточной концентрации глюкозы в СЖ.

Биомеханические свойства хряща

Суставные хрящи выполняют две основные биомеханические функции:

  1. принимают на себя действие сил сжатия (компрессии), обусловленных тяжестью и развивающимися при движениях нагрузками, способствуя их равномерному распределению и переводу аксиально направленных сил в тангенциальные;
  2. образуют устойчивые к износу поверхности сочленяющихся элементов скелета.

Поскольку хрящевая ткань содержит очень мало клеток - около 1 % массы ткани, эти свойства практически полностью зависят от внеклеточного матрикса.

С точки зрения биомеханики матрикс хрящевой ткани представляет собой материал, состоящий из двух различных фаз - твердой и жидкой. Твердая фаза включает в себя неволокнистые структурные макромолекулы, в числе которых преобладают агрегаты агрекана и волокнистые структурные макромолекулы, среди которых преобладает коллаген II типа. Жидкая фаза составляет примерно 80 % массы ткани.

Коллагеновые волокна образуют прочную сеть, которая фиксирует агрегаты агрекана и, ограничивая в пространстве отрицательно заряженные макромолекулы агрекана, не позволяет им распространиться в максимальном объеме. Эта сеть (каркас) мало растяжима и обеспечивает прочность хряща на разрыв.

Композитная твердая фаза матрикса функционирует как пористый, проницаемый, скрепленный волокнами материал, набухший водой. Молекулы воды располагаются внутри пространств, занимаемых диффузными агрегатами агрекана, и именно вода, как несжимаемая жидкость, обеспечивает прочность хряща на сжатие. Протеогликановый компонент матрикса, в силу своих полианионных свойств, ответствен за гипергидратированное состояние хряща и, следовательно, играет определяющую роль в формировании прочности к сдавливающим нагрузкам. Существует выраженная положительная корреляция между концентрацией в хряще агрекана и его прочностью на сжатие.

Только менее 1 % молекул воды прочно удерживается коллагеновыми волокнами. Остальные (более 99%) молекулы воды, располагающиеся в межволокнистой субстанции матрикса, достаточно свободны и подвижны. При компрессионных нагрузках эти свободные молекулы вместе с растворенными в воде низкомолекулярными веществами могут перемещаться по матриксу и «выжиматься» из хряща в СЖ. При уменьшении давления происходит движение в обратном направлении - из СЖ в матрикс. Этим объясняется способность хряща к обратимой деформации (упругость).

При движении воды в пористом материале, каким является матрикс, возникает трение, которое в сочетании с некоторыми особенностями твердой фазы (в основном речь идет о сложной системе межмолекулярных связей компонентов матрикса) обусловливает определенную вязкость хрящевой ткани.

Таким образом, двухфазная модель в целом объясняет вязкоупругие биомеханические свойства хряща. Вместе с тем она встречает и возражения. Главное из них - неправомерность объединения всех твердых компонентов в одну фазу. Эксперименты N.D. Broom, Н. Silyn-Roberts показали, что разрушение значительной части агрекановых агрегатов (с помощью гиалуронидазы) практически не отражается на прочности хряща на разрыв и, следовательно, коллагеновые волокна в этой биомеханической функции независимы от агрекана. Вероятно, укрепление коллагеновых волокон за счет взаимодействия коллагенов различных типов более существенно, чем связи между коллагенами и агреканом, поэтому появляются основания рассматривать агрекан и коллагены как две отдельные фазы, что означает переход к трехфазной биомеханической модели хряща (коллагены-агрекан-вода).

Вполне возможно, что на биомеханических свойствах хряща сказывается влияние гликопротеинов. Это означает, что и трехфазная модель недостаточно учитывает всю многокомпонентность хрящевого матрикса. Но независимо от того, какая биомеханическая модель окажется окончательной, очевидно, что нормальное функционирование хряща возможно только при оптимальных количественных и структурных взаимоотношений всех компонентов матрикса.

В теле человека хрящевые ткани служат опорой и связью между структурами скелета. Выделяют несколько типов хрящевых структур, каждый из которых имеет свое местоположение и выполняет свои задачи. Скелетная ткань подвергается патологическим изменениям вследствие интенсивных физических нагрузок, врожденных патологий, возраста и других факторов. Чтобы уберечь себя от травм и заболеваний, нужно принимать витамины, препараты кальция и не травмироваться.

Значение хрящевых структур

Суставной хрящ скрепляет скелетные кости, связки, мышцы и сухожилия в единую опорно-двигательную систему. Именно этот тип соединительной ткани обеспечивает амортизацию во время движения, уберегая позвоночник от повреждений, предотвращая переломы и ушибы. Функция хрящей - делать скелет упругим, эластичным и гибким. Кроме того, хрящи составляют опорный каркас для многих органов, оберегая их от механических повреждений.

Особенности строения хрящевой ткани

Удельный вес матрикса превышает суммарную массу всех клеток. Общий план строения хряща состоит из 2-х ключевых элементов: межклеточного вещества и клеток. Во время гистологического изучения образца под линзами микроскопа клетки располагаются на сравнительно меньшем проценте площади пространства. Межклеточное вещество содержит порядка 80% воды в составе. Строение гиалинового хряща обеспечивает его главную роль в росте и движении сочленений.

Межклеточное вещество


Прочность хряща определяется его строением.

Матрикс, как орган хрящевой ткани, неоднороден и содержит до 60% аморфной массы и 40% волокон хондрина. Фибриллы по гистологии напоминают коллаген кожи человека, однако отличаются более хаотичным размещением. Основное вещество хряща состоит из комплексов белка, глюкозаминогликанов, соединений гиалуронана и мукополисахаридов. Эти компоненты обеспечивают прочные свойства хрящевой ткани, сохраняя ее проницаемой для необходимых нутриентов. Есть капсула, ее название - надхрящница, это источник элементов регенерации хряща.

Клеточный состав

Хондроциты расположены в межклеточном веществе довольно хаотично. Классификация делит клетки на недифференцированные хондробласты и зрелые хондроциты. Предшественники образовываются надхрящницей, а по мере продвижения в глубже расположенные шары ткани клетки дифференцируются. В хондробластах вырабатываются ингредиенты матрикса, к которым относятся белки, протеогликаны и глюкозаминогликаны. Молодые клетки путем деления обеспечивают интерстициальный рост хряща.

Хондроциты, расположенные в глубинных шарах ткани, группируются по 3-9 клеток, известные как «изогенные группы». Этот зрелый тип клеток имеет небольшое ядро. Они не делятся, а скорость их обмена веществ сильно снижена. Изогенная группа охвачена переплетенными коллагеновыми волокнами. Клетки в этой капсуле разделены молекулами протеинов и имеют многообразную форму.

При дегенеративно-дистрофических процессах появляются многоядерные клетки хондрокласты, которые разрушают и поглощают ткани.

Таблица представляет основные отличия структуры типов хрящевых тканей:

Вид Особенности
Гиалиновый Тонкие волокна коллагена
Имеет базофильную и оксифильную зоны
Эластический Состоит из эластина
Очень гибкий
Имеет ячеистую структуру
Фиброзный Сформирован из большого количества коллагеновых фибрилл
Хондроциты сравнительно более крупного размера
Прочный
Способен выдержать большое давление и сжатие

Кровоснабжение и нервы


Ткань не снабжается кровью из собственных сосудов, а получает ее методом диффузии из рядом расположенных.

Благодаря очень плотной структуре хрящи не имеют кровеносных сосудов даже самого мелкого диаметра. Кислород и все необходимые для жизнедеятельности и функционирования питательные вещества поступают методом диффузии из рядом расположенных артерий, надхрящницы или кости, а также извлекаются из синовиальной жидкости. Продукты распада также выводятся диффузно.

В верхних шарах надхрящницы находится только небольшое количество отдельных ответвлений нервных волокон. Таким образом, нервный импульс не формируется и не распространяется при патологиях. Локализация болевого синдрома определяется только тогда, когда болезнь разрушает кость, а структуры хрящевой ткани в суставах практически полностью уничтожены.

Разновидности и функции

В зависимости от типа и взаиморасположения фибрилл гистология выделяет такие виды хрящевой ткани:

  • гиалиновую;
  • эластическую;
  • волокнистую.

Каждый вид характеризуется определенным уровнем упругости, устойчивости и плотности. Местонахождение хряща определяет его задачи. Основная функция хрящей - обеспечение прочности и стабильности соединений частей скелета. Гладкий гиалиновый хрящ, который встречается в суставах, делает возможным совершать движения костей. Благодаря своему внешнему виду он называется стекловидным. Физиологическое соответствие поверхностей гарантирует плавное скольжение. Особенности строения гиалинового хряща и его толщина делают его составной частью ребер, колец верхних дыхательных путей.

Форма носа образуется эластичным типом хрящевой ткани.

Эластический хрящ образовывает внешность, голос, слух и дыхание. Это относится к структурам, которые находятся в остове бронхов малого и среднего калибра, ушных раковин и кончике носа. Элементы гортани участвуют в образовании личного и неповторимого тембра голоса. Волокнистый хрящ связывает скелетные мышцы, сухожилия и связки со стекловидным хрящом. Из фиброзных структур построены межпозвоночные и внутрисуставные диски и мениски, ими покрыты височно-нижнечелюстное и грудино-ключичное сочленения.

Хрящевой ткани функционально присуща опорная роль. Она работает не на растяжение, как плотная соединительная ткань, а благодаря внутреннему напряжению хорошо сопротивляется сдавливанию и служит амортизатором для костного аппарата.

Эта особая ткань служит для неподвижного соединения костей, образуя синхондрозы. Покрывая суставные поверхности костей, смягчает движение и трение в суставах.

Хрящевая ткань очень плотная и вместе с тем достаточно эластичная. Ее биохимический состав богат плотным аморфным веществом. Развивается хрящ из промежуточной мезенхимы.

На месте будущего хряща мезенхимные клетки ускоренно размножаются, отростки их укорачиваются и клетки тесно соприкасаются друг с другом.

Затем появляется промежуточное вещество, благодаря чему в зачатке отчетливо просматриваются одноядерные участки, которые являются первичными хрящевыми клетками -- хондроб ластами. Они размножаются и дают все новые массы промежуточного вещества.

Скорость размножения хрящевых клеток к этому периоду сильно замедляется, и они вследствие большого количества промежуточного вещества оказываются далеко отодвинутыми друг от друга. Вскоре клетки утрачивают способность делиться митозом, но еще сохраняют способность делиться амитотически.

Однако теперь дочерние клетки далеко не расходятся, так как окружающее их промежуточное вещество уплотнилось.

Поэтому хрящевые клетки располагаются в массе основного вещества группами по 2--5 и более клеток. Все они происходят от одной начальной клетки.

Такую группу клеток называют изогенной (isos-- равный, одинаковый, genesis -- возникновение).

Рис. 1.

А -- гиалиновый хрящ трахеи;

Б -- эластический хрящ ушной раковины теленка;

В -- волокнистый хрящ межпозвоночного диска теленка;

а -- надхрящница; б ~ хрящ; в -- более старый участок хряща;

  • 1 -- хондробласт; 2 -- хондроцит;
  • 3 -- изогенная группа хондроцитов; 4 -- эластические волокна;
  • 5 -- пучки коллагеновых волокон; 6 -- основное вещество;
  • 7 -- капсула хондроцита; 8 -- базофилъная и 9 -- оксифильная зона основного вещества вокруг изогенной группы.

Клетки изогенной группы не делятся митозом, дают мало промежуточного вещества несколько иного химического состава, которое образует вокруг отдельных клеток хрящевые капсулы, а вокруг изогенной группы -- поля.

Хрящевая капсула, как выявлено электронной микроскопией, образована тонкими фибриллами, концентрически расположенными вокруг клетки.

Следовательно, в начале развитие хрящевой ткани животных рост ее происходит увеличением массы хряща изнутри.

Затем наиболее старый участок хряща, где не размножаются клетки и не образуется промежуточное вещество, перестает увеличиваться в размере, а хрящевые клетки даже дегенерируют.

Однако рост хряща в целом не прекращается. Вокруг устаревшего хряща из окружающей мезенхимы обособляется слой клеток, которые становятся хондробластами. Они выделяют вокруг себя промежуточное вещество хряща и постепенно им уплотняется.

Вместе с тем по мере развития хондробласты теряют способность делиться митозом, меньше образуют промежуточного вещества и становятся хондроцитами. На образовавшийся таким путем слой хряща за счет окружающей мезенхимы наслаиваются все новые и новые слои его. Следовательно, хрящ растет не только изнутри, но и снаружи.

У млекопитающих различают: гиалиновый (стекловидный), эластический и волокнистый хрящ.

Гиалиновый хрящ (рис. 1--А) наиболее распространенный, молочно-белого цвета и несколько просвечивает, поэтому его часто называют стекловидным.

Он покрывает суставные поверхности всех костей, из него образованы реберные хрящи, хрящи трахеи и некоторые хрящи гортани. Гиалиновый хрящ состоит, как и все ткани внутренней среды, из клеток и промежуточного вещества.

Клетки хряща представлены хондробластами и хондроцитами. Отличается от гиалинового хряща сильным развитием коллагеновых волокон, которые образуют пучки, лежащие почти параллельно друг другу, как в сухожилиях!

Аморфного вещества в волокнистом хряще меньше, чем в гиалиновом. Округлые светлые клетки волокнистого хряща лежат между волокнами параллельными рядами.

В местах, где волокнистый хрящ расположен между гиалиновым хрящом и оформленной плотной соединительной тканью, в его строении наблюдается постепенный переход от одного вида ткани к другому. Так, ближе к соединительной ткани коллагеновые волокна в хряще образуют грубые параллельные пучки, а хрящевые клетки лежат рядами между ними, подобно фиброцитам плотной соединительной ткани. Ближе к гиалиновому хрящу пучки разделяются на отдельные коллагеновые волокна, образующие нежную сеть, а клетки утрачивают правильность расположения.

Расположение хряща в организме n Хрящевые ткани выполняют формообразующую функцию у плода и опорную во взрослом организме. Хрящевую ткань можно встретить: n в области суставов (покрывая суставную поверхность относительно узким слоем), n в метафизах (т. е. между эпифизом и диафизом) трубчатых костей, n в межпозвонковых дисках, в передних отделах рёбер, в стенке дыхательных органов (гортани, трахеи, бронхов) и т. д.

Развитие n Как и все прочие ткани внутренней среды организма, скелетные ткани развиваются n из мезенхимы (клетки которой, в свою очередь, выселяются из сомитов и спланхнотомов

Особенности n особая природа межклеточного вещество придаёт два важнейших свойства: n упругость и n прочность. n межклеточного вещества данных тканей. n Во многих случаях хрящ покрыт надхрящницей - волокнистой соединительной тканью, которая участвует в росте и питании хряща.

Важная особенность хрящевых тканей - - отсутствие кровеносных сосудов. Поэтому питательные вещества поступают в хрящ - путём диффузии из сосудов надхрящницы В ряде случае надхрящницы нет - например, у суставных хрящей, поскольку их поверхность должна быть гладкой. Здесь питание осуществляется со стороны синовиальной жидкости и со стороны подлежащей кости.

Клеточный состав n Хондробласты – молодые клетки, располагаются в глубоких слоях надхрящницы по одиночке и расположены ближе к поверхности хряща n -небольшие уплощённые клетки, способные к -пролиферации и -синтезу компонентов межклеточного вещества хряща. n в них хорошо выражены ЭПС гранулярный, комплекс Гольджи, митохондрии n Хондробласты, выделяя компоненты межклеточного вещества, -"замуровывают" себя в нём и превращаются в хондроциты.

Функции n основная функция хондробластов - выработка органической части межклеточного вещества: белки коллаген и эластин, гликозаминогликаны (ГАГ) и протеогликаны (ПГ). n хондробласты обеспечивают аппозиционный (поверхностный) рост хряща со стороны надхрящницы.

Хондроциты n а) Хондроциты - главный тип клеток хряща. n -лежат в особых полостях межклеточного вещества (лакунах) и n - могут делиться митозом, при этом дочерние клетки не расходятся, остаются вместе - образуются изогенные группы (из 2 -6 клеток), происходящие из одной клетки. n б) Они имеют n -больший (по сравнению с хондробластами) размер и овальную форму. n Хорошо развиты гранулярная ЭПС и комплекс Гольджи

Функции n Хондроциты, прекратившие деление, активно синтезируют компоненты межклеточного вещества. n За счёт деятельности хондроцитов происходит увеличение массы хряща изнутри - интерстициальный рост.

Хондрокласты n В хрящевой ткани кроме клеток образующих межклеточное вещество есть и их антогонисты - разрушители межклеточного вещества - это хондрокласты (можно отнести к макрофагической системе): довольно крупные клетки, в цитоплазме много лизосом и митохондрий. Функция - разрушение поврежденных или изношенных участков хряща.

Межклеточное вещество n Межклеточное вещество хрящевой ткани содержит волокна и основное вещество. n много волокнистых структур: n -коллагеновых волокон, n а в эластическом хряще - эластических волокон.

n Межклеточное вещество обладает высокой гидрофильностью, содержание воды доходит до 75% массы хряща, это обуславливает высокую плотность и тургор хряща. Хрящевые ткани в глубоких слоях не имеют кровеносных сосудов,

n Основное аморфное вещество содержит: n -воду (70 -80 %), -минеральные вещества (4 -7 %), -органический компонент (10 -15 %), представленный n -протеогликанами и -гликопротеинами.

Протеогликаны n Протеогликановый агрегат содержит 4 компонента. n В основе агрегата - длинная нить гиалуроновой кислоты (1). n С помощью глобулярных связующих белков (2) с этой нитью связаны n линейные (фибриллярные) пептидные цепи т. н. корового (сердцевинного) белка (3). n В свою очередь, от последних отходят олигосахаридные ветви (4).

Эти комплексы n обладают высокой гидрофильностью; поэтому связывают большое количество воды и n обеспечивают высокую упругость хряща. n При этом они сохраняют проницаемость для низкомолекулярных метаболитов.

n Надхрящница - это слой соединительной ткани, покрывающий поверхность хряща. В надхрящнице выделяют наружный фиброзный (из плотной неоформленной СТ с большим количеством кровеносных сосудов) и внутренний клеточный слой, содержащее большое количестволовых, полустволовых клеток.

Гиалиновый хрящ n Внешне эта ткань имеет голубовато-белый цвет и похожа на стекло (греч. hyalos - стекло). Гиалиновый хрящ - покрывает все суставные поверхности костей, содержится в грудинных концах ребер, в воздухоносных путях.

Отличительные признаки n 1. межклеточное вещество гиалинового хряща в препаратах окрашенных гематоксилин-эозином кажется гомогенным, не содержащим волокон. n 2. вокруг изогенных групп имеется четко выраженная базофильная зона - так называемый территориальный матрикс. Это связано с тем, что хондроциты выделяют в большом количестве ГАГ с кислой реакцией, поэтому этот участок окрашивается основными красками, т. е. базофильна. Слабооксифильные участки между территориальными матриксами называются интертерриториальным матриксом. n

n Большое количество протеогликановых агрегатов. n Гликозаминогликаны. Высокая упругость зависит от содержания ГАГ n Хондроитинсульфаты (хондроитин-6 -сульфат, хондроитин-4 -сульфат) n Кератансульфаты n содержится коллаген II типа, который является более гидрофильным (за счёт более высокого содержания гидроксигрупп) и n образует лишь фибриллы (не объединяющиеся в волокна). n Коллаген IX, VI и Х n Белок хондронектин

Клеточный состав n а) Сразу под надхрящницей располагаются n молодые хондроциты (3) - n по несколько крупнее по размерам и более овальные по форме. n б) Глубже находятся n зрелые хондроциты n крупные овальные клетки со светлой цитоплазмой, n образующие изогенные группы (4) по 2 -6 клеток.

n 1) Суставные поверхности костей. n 2) Воздухоносные пути. n 3) Места соединения рёбер с грудиной.

Эластический хрящ n В ушной раковине, надгортаннике, хрящах гортани. В межклеточном веществе кроме коллагеновых волокон имеется большое количество беспорядочно расположенных эластических волокон, что придает эластичность хрящу. В эластическом хряще меньше содержание липидов, хондроитинсульфатов и гликогена.

n б) в толще хрящевой пластинки - изогенные группы хондроцитов, n крупные, овальные и n имеют светлую цитоплазму. n Группы хондроцитов обычно имеют n вид цепочек (из 2 -х, реже большего числа клеток), ориентированы перпендикулярно к поверхности.

Возрастные изменения n Из-за относительно низкого содержания коллагеновых фибрилл и отсутствия коллагена Х, в эластическом хряще n не происходит отложение солей кальция (обызвествление) при нарушении питания.

Волокнистый хрящ n Волокнистый хрящ расположен в местах прикрепления сухожилий к костям и хрящам, межпозвоночных дисках. По строению занимает промежуточное положение между плотной оформленной соединительной и хрящевой тканью. n

n В межклеточном веществе гораздо больше коллагеновых волокон, расположенных ориентированно - образуют толстые пучки, хорошо видимые под микроскопом. Хондроциты чаще лежат по одиночке вдоль волокон, не образуя изогенные группы. Имеют вытянутую форму, палочковидное ядро и узкий ободок цитоплазмы.

n На периферии волокнистый хрящ постепенно переходит n в плотную оформленную соединительную коллагеновые волокна которой приобретают ориентацию и идут от одного позвонка к другому. ткань, косую n б) В центральной части диска волокнистый хрящ переходит в пульпозное ядро, которое содержит гиалиновый хрящ, коллаген II типа (в виде фибрилл)

Регенерация хрящей n Гиалиновый – незначительна. В основном участвует надхрящница n Эластический - меньше подвержен дегенерации и не обызвествляется n Волокнистый – слабая регенерация, способен обызвествляться

Состав n Костные ткани состоят из клеток и межклеточного вещества. n К дифферону костной ткани относятся n 1. стволовые и полустволовые (остеогенные) клетки, n остеобласты, n остеоциты n 2. остеокласты.

Остеобласты n Остеобласты являются наиболее функционально активными клеточными элементами дифферона при остеогистогенезе. Во взрослом организме источником клеток, поддерживающих популяцию остеобластов, являются клетки рассредоточенного камбия в остеогенном слое надкостницы, Остеобласты имеют кубическую или призматическую форму. Ядро расположено эксцентрично. Остеобласты - типичные активно синтезирующие и секретирующие клетки, секреция осуществляется всей поверхностью клетки. В клетке имеется хорошо развитая гранулярная эндоплазматическая сеть, заполняющая практически всю цитоплазму, множество свободных рибосом и полисом,

Функции n секретируют коллаген I типа, щелочную фосфатазу, остеокальцин, остеопонтин, трансформирующие факторы роста, остеонектин, коллагеназу и др. n Высоко дифференцированные остеобласты характеризуются постепенным снижением активности щелочной фосфатазы, остеокальцина, остеопонтина и отсутствием пролиферативной активности.

n Роль в минерализации органической основы костного матрикса. Процесс минерализации костного матрикса начинается с отложения аморфного фосфата кальция. Во внеклеточный матрикс катионы кальция попадают из кровотока, где находятся в связанном с белками состоянии. n В присутствии щелочной фосфатазы, синтезированной остеобластами, находящиеся в межклеточном веществе глицерофосфаты расщепляются с образованием фосфат-аниона. Избыток последнего приводит к локальному увеличению Са и Р до уровня, при котором фосфат кальция выпадает в осадок. Подавляющая фракция минерала кости находится в виде кристаллов гидроксиапатитов. Кристаллы образуются на коллагеновых волокнах костного матрикса. Последние имеют структурные особенности, способствующие этому процессу. Дело в том, что молекулы предшественника коллагена - тропоколлагена таким образом упакованы в волокно, что между окончанием одной и началом другой остается зазор, называемый зоной отверстий. Именно в этой зоне первоначально и откладывается костный минерал. В дальнейшем кристаллы начинают расти в обе стороны, и процесс охватывает все волокно

n Существенная роль в минерализации синтезированного органического матрикса кости принадлежит матриксным пузырькам. Такие пузырьки являются производными комплекса Гольджи остеобластов, имеют мембранное строение и содержат различные ферменты, необходимые для реакций минерализации или их ингибирования, а также аморфные фосфаты кальция. Матриксные пузырьки выходят из клеток во внеклеточное пространство и высвобождают заключенные в них продукты. Последние инициируют процессы минерализации.

Остеоциты n По количественному составу самые многочисленные клетки костной ткани. Это отростчатые клетки, лежат в костных полостях - лакунах. Диаметр клеток достигает до 50 мкм. Цитоплазма слабобазофильна. Органоиды развиты слабо (гранулярный ЭПС, ПК и митохондрии). Не делятся. n Функция: принимают участие в физиологической регенерации костной ткани, вырабатывают органическую часть межклеточого вещества. n На остеобласты и остеоциты стимулирующее влияние оказывает гормон щитовидной железы кальцитонин - усиливается синтез органической части межклеточного вещества и усиливается отложение кальция, при этом концентрация кальция в крови снижается.

Остеокласты n n n Специализированные макрофаги. Их диаметр достигает до 100 мкм. Различные компартменты остеокластов специализированы для выполнения определенных функций. базальная зона, в ней в составе многочисленных (5 - 20) ядер сосредоточен генетический аппарат клетки. светлая зона, непосредственно контактирующая с костным матриксом. Благодаря ей, остеокласт по всему периметру плотно адгезируется к кости, создавая изолированное пространство между собой и поверхностью минерализованного матрикса. Адгезия остеокласта обеспечивается за счет ряда рецепторов к компонентам матрикса, основными из которых являются рецепторы к витронектину. Избирательная проницаемость этого барьера позволяет создавать специфическую микросреду в зоне адгезии клетки. везикулярная зона содержит лизосомы. Через мембрану гофрированной каемки транспортируются ферменты, кислые субстанции, образуется угольная кислота Н 2 СО 3; угольная кислота растворяет соли кальция, растворенный кальций вымывается в кровь. осуществляющие деминерализацию и дезорганизацию костного матрикса, что приводит к формированию резорбционной (эрозионной) лакуны Хаушипа.

Остеокласты n остеокласты имеют много ядер и большой объем цитоплазмы; зона цитоплазмы, прилегающая к костной поверхности называется гофрированной каемкой, здесь много цитоплазматических выростов и лизосом функции - разрушение волокон и аморфного вещества кости

n Толстые коллагеновые волокна, лишенные цементирующего вещества, создают вид "щеточной каемки" Лизосомальные ферменты осуществляют протеолиз коллагена и других белков матрикса. Продукты протеолиза удаляются из остеокластических лакун трансцеллюлярным транспортом. В целом процесс снижения р. Н в лакуне осуществляется двумя механизмами: путем экзоцитоза кислого содержимого вакуолей в лакуну и благодаря действию протонных насосов - Н+-АТФаз, локализованных в мембране гофрированной каемки. Источником для ионов водорода служит вода и диоксид углерода, являющиеся результатом митохондриальных реакций окисления.

Межклеточное вещество n 1. Неорганическая часть матрикса В значительной части содержит кальций (35%) и фосфор (50%) (фосфорнокислые и углекислые соли кальция) главным образом, в виде кристаллов гидроксиапатита (Ca 10(PO 4)6(OH)2 · (3 · Ca(OH)2), n и немного - в аморфном состоянии, небольшое количество фосфата магния - составляют 70% межклеточного вещества. В плазме неорганический фосфор содержится в виде анионов НРО 4 -2 и Н 2 РО 4 -2. n n Соотношение органической и неорганической части межклеточного вещества зависит от возраста: у детей органической части несколько больше 30%, а неорганической части меньше 70%, поэтому у них кости менее прочные, но зато более гибкие (не ломкие); в пожилом возрасте, наоборот, доля неорганической части увеличивается, а органической части уменьшается, поэтому кости становятся более твердыми, но более ломкими. - присутствуют кровеносные сосуды:

Органическая часть костного матрикса Органическая часть межклеточного вещества представлена n коллагеновыми (коллаген I, Х, V типов) очень мало гликозаминогликанов и протеогликанов. n - гликопротеины (щелочная фосфатаза, остеонектин); n - протеогликаны (кислые полисахариды и гликозаминогликаны - хондроитин-4 - и хондроитин-6 сульфаты, дерматансульфат и кератансульфат.); n - факторы роста (фактор роста фибробластов, трансформирующие факторы роста, костные морфогенетические белки) - цитокины, выделяемые клетками костной ткани и крови, осуществляющие местную регуляцию остеогенеза.

белки, осуществляющие адгезию клеток n Остеонектин - гликопротеин кости и дентина, имеет высокое сродство к коллагену I типа и к гидроксиапатиту, содержит Сасвязывающие домены. Поддерживает в присутствии коллагена концентрацию Са и Р. Предполагается, что белок участвует во взаимодействии клетки и матрикса. n Остеопонтин является главным компонентом белкового состава матрикса, в частности поверхностей раздела, где он и аккумулируется в виде плотного покрова, названного линиями цементации (lamina limitans). Благодаря своим физико-химическим свойствам регулирует кальцификацию матрикса, специфично участвует в адгезии клеток к матриксу или матрикса к матриксу. Продукция остеопонтина - одно из наиболее ранних проявлений активности остеобластов. n Остеокальцин (ОК) - небольшой белок (5800 Да, 49 аминокислот) в минерализованном матриксе кости, участвует в процессе кальцификации,

Классификация n Различают трубчатые, плоские и смешанные кости. Диафизы трубчатых костей и кортикальные пластинки плоских и смешанных костей построены из пластинчатой костной ткани покрытой надкостницей или периостом. В периосте принято различать два слоя: наружный - волокнистый, состоящий преимущественно из волокнистой соединительной ткани; внутренний, прилегающий к поверхности кости - остеогенный, или камбиальный.

Виды костных тканей грубоволокнистая (ретикулофиброзная) пластинчатая (тонковолокнистая) Основная особенность Коллагеновые волокна образуют а) Костное вещество толстые пучки, идущие в разных (организовано в пластинки). направлениях. б) Причём, в пределах одной пластинки волокна имеют одинаковое направление, а в пределах соседних пластинок - разное. Локализация 1. Плоские кости эмбриона. 2. Бугорки костей; места заросших черепных швов. Почти все кости взрослого человека: плоские (лопатка, тазовые кости, кости черепа), губчатые (рёбра, грудина, позвонки) и трубчатые.

Пластинчатая костная ткань может иметь губчатую и компактную организацию. Губчатое костное вещество Компактное костное вещество Локализация Из губчатого вещества состоят: эпифизы трубчатых костей, внутренний слой (примыкающий к костномозговому каналу) диафизов трубчатых костей, губчатые кости, внутренняя часть плоских костей. Компактную структуру имеют большая часть диафизов трубчатых костей и поверхностный слой плоских костей. Отличительная черта Губчатое вещество построено из бессосудистых костных перекладин (балок), между которыми находятся промежутки – костные ячейки. В компактном костном веществе практически нет промежутков: за счёт разрастания костной ткани вглубь ячеек, остаются лишь узкие пространства для сосудов – т. н. центральные каналы остеонов Костный мозг В ячейках губчатого вещества содержатся сосуды, питающие кость, и красный костный мозг - кроветворный орган. Костномозговая полость диафизов трубчатых костей у взрослых содержит жёлтый костный мозг - жировую ткань.

Строение Состоят из костных пластинок а) При этом пластинки губчатого вещества обычно ориентированы вдоль направления костных балок, а не вокруг сосудов, как в остеонах компактного вещества. б) в достаточно толстых балках остеоны могут встречаться. Единица строения костные пластинки. Состоят из костных пластинок В компактном же веществе имеются пластинки 3 -х типов: общие (генеральные) – окружают всю кость, остеонные - лежат концентрическими слоями вокруг сосуда, образуя т. н. остеоны; вставочные - находятся между остеонами. остеоны.

Строение остеона-основной структурной единицы кости В центре каждого остеона - кровеносный сосуд (1), вокруг последнего – несколько концентрических слоёв костных пластинок (2), называемых остеонными. Остеоны отграничены резорбционной (спайной) линией (3). Между остеонами лежат вставочные костные пластинки (4), которые представляют собой остатки прежних генераций остеонов. костные пластинки включают клетки (остеоциты), коллагеновые волокна и основное вещество, богатое минеральными соединениями. волокна в межклеточном веществе неразличимы, а само межклеточное вещество имеет твёрдую консистенцию.

Развитие КОСТИ ИЗ МЕЗЕНХИМЫ (прямой остеогистогенез). Из мезенхимы образуется незрелая (грубоволокнистая) кость, которая впоследствии замещается пластинчатой костью В развитии различают 4 этапа: n 1. образование остеогенного островка - в области образования кости клетки мезенхимы превращаются в остеобласты n

2. образованние межклеточного вещества n остеобласты начинают образовывать межклеточное вещество кости, при этом часть остеобластов оказывается внутри межклеточного вещества, эти остеобласты превращаются в остеоциты; другая часть остеобластов оказывается на поверхности межклеточного вещества,

3. кальцификация n межклеточного вещества кости межклеточное вещество пропитывается солями кальция. n а) На третьей стадии в межклеточном веществе появляются т. н. матриксные пузырьки, сходные с лизосомами. Они накапливают кальций и (за счёт щелочной фосфатазы) неорганический фосфат. n б) При разрыве пузырьков происходит минерализация межклеточного вещества, т. е. отложение кристаллов гидроксиапатита на волокнах и в аморфном веществе. В результате, образуются костные трабекулы (балки) - минерализованные участки ткани, содержащие все 3 типа костных клеток - n n n с поверхности - остеобласты и остеокласты, а в глубине - остеоциты.

4. Образование остеонов n В последующем во внутренней части плоской кости n первичная губчатая ткань замещается на вторичную, n которая построена уже из костных пластинок, ориентированных по ходу балок.

Развитие пластинчатой костной ткани тесно связано с 1. процессом разрушения отдельных участков кости и врастанием кровеносных сосудов в толщу ретикулофиброзной кости. В этом процессе как в период эмбрионального остеогенеза, так и после рождения принимают участие остеокласты. 2. сосудами, подрастающие к трабекулам. В частности, вокруг сосудов костное вещество формируется в виде концентрических костных пластинок, составляющих первичные остеоны.

РАЗВИТИЕ КОСТИ НА МЕСТЕ ХРЯЩА (непрямой остеогенез) n на месте хряща сразу образуется зрелая (пластинчатая) кость n в развитии различают 4 этапа: n 1. образование хряща - на месте будущей кости образуется гиалиновый хрящ

2. перихондральное окостенение проходит только в области диафиза в области диафиза надхрящница превращается в надкостницу, в которой появляются остеогенные клетки, затем остеобласты за счет остеогенных клеток надкостницы на поверхности хряща начинается образование кости в виде общих пластинок, имеющих циркулярный ход, наподобие годовых колец дерева

3. эндохондральное окостенение n Происходит как в области диафиза, так и в области эпифиза; внутрь хряща врастают кровеносные сосуды, где имеются остеогенные клетки - остеобласты, за счет которых вокруг сосудов происходит образование кости в виде остеонов, и остеокласты. n одновременно с образованием кости происходит разрушение хряща

зона пузырчатого хряща (4). На границе ещё сохранившегося хряща хрящевые клетки находятся в набухшем, вакуолизированном состоянии, т. е. имеют пузырчатую форму зона столбчатого хряща (5). В соседней области эпифиза продолжается рост хряща и, размножающиеся клетки выстраиваются в колонки вдоль длинной оси кости.

n а) В последующем произойдёт окостенение и самого эпифиза (за исключением суставной поверхности) - энхондральным путём. n б) Т. е. здесь тоже произойдёт минерализация, n сюда прорастут сосуды, разрушится вещество хряща и образуется вначале грубоволокнистая, n а потом пластинчатая костная ткань.

n 4. перестройка и рост кости - старые участки кости постепенно разрушаются и на их месте образуются новые; за счет надкостницы образуются общие костные пластинки, за счет остеогенных клеток, находящихся в адвентиции сосудов кости, образуются остеоны. Между диафизом и эпифизом сохраняется прослойка хрящевой ткани, за счет котрой рост кости в длину продолжается до конца периода роста организма в длину, т. е. до 20 -21 года.

Рост кости Источники роста До 20 -летнего возраста происходит рост трубчатых костей: в ширину - путём аппозиционного роста со стороны надхрящницы, в длину - за счёт активности метаэпифизарной хрящевой пластинки. Метаэпифизарный хрящ а) Метаэпифизарная пластинка - часть эпифиза, примыкающая к диафизу и сохраняющая (в отличие от остальной части эпифиза) хрящевую структуру. б) В ней имеются 3 зоны (по направлению от эпифиза к диафизу): пограничная - содержит овальные хондроциты, зона столбчатых клеток - она-то и обеспечивает рост хряща в длину за счёт размножения хондроцитов, зона пузырчатого хряща - граничит с диафизом и подвергается окостенению. в) Таким образом, одновременно происходят 2 процесса рост хряща (в столбчатой зоне) и его замещение костью (в пузырчатой зоне).

Регенерация n Регенерация и рост кости в толщину осуществляется за счет периоста и эндоста. Все трубчатые кости, а также большинство плоских костей гистологически являются тонковолокнистой костью.

n В костной ткани постоянно происходят два противоположно направленных процесса - резорбция и новообразование. Соотношение этих процессов зависит от нескольких факторов, в том числе возраста. Перестройка костной ткани осуществляется в соответствии с действующими на кость нагрузками. n Процесс ремоделирования костной ткани происходит в несколько фаз, в каждую из которых ведущую роль выполняют те или иные клетки Первоначально участок костной ткани, подлежащий резорбции, "помечается" остеоцитами при помощи специфических цитокинов (активация). Разрушается протективный слой на костном матриксе. К оголенной поверхности кости мигрируют предшественники остеокластов, сливаются в многоядерную структуру - симпласт - зрелый остеокласт. На следующем этапе остеокласт деминерализует костный матрикс (резорбция), уступает место макрофагам, которые завершают разрушение органической матрицы межклеточного вещества кости и подготавливают поверхность к адгезии остеобластов (реверсия). На последнем этапе в зону разрушения прибывают предшественники, дифференцирующиеся в остеобласты, они синтезируют и минерализуют матрикс в соответствии с новыми условиями статической и динамической нагрузки на кость (формирование).