Блокаторы серотониновых рецепторов препараты. Нейробиология депрессии: серотониновая система мозга

Антисеротониновые средства — лекарственные средства, предотвращающие или устраняющие физиологические эффекты серотонина в организме. В качестве А. с. применяются в основном средства, блокирующие чувствительные к серотонину рецепторы разных типов — S1, S2, S3 (см. Рецепторы). Блокада серотониновых рецепторов в тканях устраняет спазмогенное действие эндогенного или экзогенного серотонина на гладкую мускулатуру сосудов, бронхов, кишечника, его влияние на агрегацию тромбоцитов, проницаемость сосудов и др. Антагонистическим действием в отношении вызванных серотонином реакций обладает также ипразохром.
По показаниям к применению выделяют А. с. преимущественно с антимигренозной активностью (метисегрид, суматриптан, лизурид, пизотифен, ципрогептадин), с антимигренозной и антигеморрагической активностью (ипразохром), с антигеморрагической активностью (кетансерин), с противорвотным действием (гранисетрон, ондансетрон, трописетрон). Спектр физиологических эффектов ряда А. с. расширен за счет присущего им влияния на другие медиаторные процессы. Так, лизурид обладает дофаминергическим действием, пизотифен — антихолинергическим и антигистаминным, кетансерин имеет свойства a-адреноблокатора, выраженное антигистаминное действие оказывает ципрогептадин (см. Блокаторы гистаминовых рецепторов).
А. с. с антимигренозной активностью используют в основном для лечения и предупреждения приступов вазопаралитической формы мигрени.

При применении большинства этих препаратов возможны побочные действия в виде диспептических расстройств, сонливости, слабости, утомляемости, головной боли, артериальной гипотензии. Препараты с противорвотной активностью (селективные антагонисты S3-рецепторов) применяются для профилактики и лечения тошноты и рвоты, в частности, на фоне терапии цитостатиками и лучевой терапии; при их применении возможны головная боль, повышение уровня трансаминаз в сыворотке крови, запор. Общими противопоказаниями для всех А. с. являются беременность и период кормления ребенка грудью.
Форма выпуска и применение основных А. с. приводятся ниже.
Гранисетрон (китрил) — таблетки по 1 мг; 1% раствор для внутривенного введения в ампулах по 3 мл. Для профилактики рвоты взрослым внутрь назначают по 1 мг 2 раза в день (максимальная суточная доза 9 мг); для купирования рвоты внутривенно вводят 3 мл 1% р-ра, разведенных в 20—50 мл изотонического раствора натрия хлорида.
Ипразохром (диваскан) — таблетки по 0,25 мг. Применяют для профилактики мигрени с вегетативными нарушениями, а также для лечения геморрагического диатеза в связи с воздействием васкулярных и тромбоцитарных повреждающих факторов, лечения плазматических нарушений свертывания крови гемофильного типа и фибринолитических кровотечений. Препарат применяется также для лечения диабетической ретинопатии. Назначают взрослым по 1—3 таблетки 3 раза в день.
Кетансерин (суфрокзал) — таблетки по 20 и 40 мг; 0,5% р-р в ампулах по 2 и 10 мл. оказывает блокирующее действие на S2 и a-адренорецепторы. Препарат вызывает расширение кровеносных сосудов и оказывает антигипертензивное действие. Больным гипертонической болезнью и при спазмах периферических сосудов назначают внутрь по 20—40 мг 2 раза в день. Для купирования гипертензивных кризов вводят 2—6 мл 0,5% р-ра внутривенно или внутримышечно.
Лизурид (лизенил) — таблетки 0,025 и 0,2 мг (лизенил форте). Применяют для профилактики мигрени и других вазомоторных цефалгий, начиная с 0,0125 мг в день, при хорошей переносимости дозу увеличивают до 0,025 мг 2—3 раза в день; при аргентаффиноме начинают с 0,0125 мг 2 раза в день, доводя дозу до 0,05 мг 3 раза в день; при демпинг-синдроме 0,025 мг 3 раза в день при необходимости доводят до 0,05 мг 4 раза в сутки. В связи с дофаминергическим действием и способностью подавлять секрецию гормона роста и пролактина применяется при паркинсонизме, акромегалии и для прекращения лактации. В последнем случае используют лизенил форте по 0,2 мг 3 раза в день, при пролактиномах — до 4 мг в день. При акромегалии начинают с дозы 0,1 мг в сутки, повышая ее ежедневно по специальной схеме с достижением через 24 дня суточной дозы 2—2,4 мг (по 0,6 мг 4 раза в день). При паркинсонизме терапевтическая доза составляет 2,6—2,8 мг в день (в 4 приема). Для лечения депрессий применяют в суточной дозе 0,6—3 мг. Могут наблюдаться побочные эффекты в виде ортостатической гипотензии, психических расстройств. Противопоказаниями являются желудочно-кишечные кровотечения, язвенная болезнь в анамнезе, психозы.
Метисегрид (дезерил) — таблетки по 2 мг. Для профилактики приступов мигрени назначают по 2 мг 2—4 раза в день. Побочные эффекты: бессонница, эйфория, воспалительный фиброз в разных органах.
Ондансетрон (зофран) — таблетки по 4 и 8 мг; 1% и 0,5% р-ры в ампулах по 2 и 4 мл. Применяют для предупреждения рвоты при проведении эметогенной химио- и лучевой терапии. Взрослым за 2 часа до терапевтического сеанса вводят 8 мг препарата внутривенно, в последующем назначают внутрь в дозе 8 мг каждые 12 часов; детям однократно внутривенно вводят в дозе 5 мг/м2 непосредственно перед проведением химиотерапии, затем назначают внутрь по 4 мг 2 раза в сутки. Курс лечения в течение 5 дней.

Пизотифен (сандомигран) — таблетки по 0,5 мг. Дополнительно обладает антигистаминными свойствами и слабым антихолинергическим действием; может стимулировать аппетит и вызывать прибавку в весе, усиливает действие транквилизаторов, седативных средств, антидепрессантов, алкоголя. Для профилактики приступов мигрени назначают 0,5 мг 3 раза в день. Противопоказан при закрытоугольной глаукоме, затрудненном мочеиспускании, а также лицам, выполняющим работу, требующую концентрации внимания и быстрых психофизических реакций.
Суматриптан (имигран, менатриптон) — таблетки по 100 мг; 1,2% раствор для подкожного введения в ампулах по 1 мл. Для купирования приступа мигрени и мигрени Хортона подкожно вводят 6 мг препарата (0,5 мл 1,2% р-ра) либо применяют внутрь в дозе 100 мг; повторное применение препарата возможно не ранее, чем через 2 ч. Максимальная суточная доза парентерально 12 мг, внутрь — 300 мг. Возможны кратковременная артериальная гипертензия, изменение функциональных проб печени. Противопоказания: возраст до 14 и старше 65 лет, стенокардия, гипертоническая болезнь, ишемическая болезнь сердца, нарушение функции печени, почек.
Трописетрон (навобан) — капсулы по 5 мг; 0,5% р-р для внутривенного введения в ампулах по 5 мл. Для профилактики рвоты при проведении химиотерапии взрослым в первый день вводят внутривенно 5 мл 0,5% р-ра, разведенного в 100 мл раствора Рингера или 5% р-ра глюкозы либо изотонического раствора натрия хлорида, в последующие дни препарат назначают внутрь по 5 мг 1 раз в сутки перед завтраком. Детям при массе тела менее 25 кг назначают в дозе 0,2 мг/кг. Курс лечения 6 дней.

Синтез серотонина . Серотонин образуется из аминокислоты триптофана путём её последовательного 5-гидроксилирования ферментом 5-триптофангидроксилазой в результате чего получается 5-гидрокситриптофан (5-ГТ) и затем декарбоксилирования получившегося 5-гидрокситриптофана ферментом триптофандекарбоксилазой. 5-триптофангидроксилаза синтезируется только в соме серотонинергических нейронов, гидроксилирование происходит в присутствии ионов железа и кофактора птеридина.

Метаболизм и катаболизм серотонина . Под действием моноаминооксидазы (МАО) серотонин превращается в 5-гидроксииндолальдегид, который, в свою очередь, может обратимо превращаться в 5-гидрокситриптофол под действием алкогольдегидрогеназы. Необратимо 5-гидроксииндолальдегид под действием ацетальдегиддегидрогеназы превращается в 5-гидроксииндолуксусную кислоту, которая затем выводится с мочой и калом. Серотонин является предшественником мелатонина , образующегося в эпифизе. Также, превращаясь с помощью МАО в 5-гидроксииндол-3-ацетальдегид, он может под действием альдегидредуктазы превратиться в триптофол, а под действием ацетальдегидрогеназы-2 - в оксииндолуксусную кислоту (5-HIAA). Серотонин может принимать участие в формировании эндогенных опиатов , вступая в реакцию с ацетальдегидом с образованием гармалола .

В основе функционирования серотонинергической системы лежит выделение серотонина, или 5-гидрокситриптамина (5-hydroxytriptamine, 5-HT) в синаптическую щель. В последней он частично инактивируется и частично захватывается обратно пресинаптической терминалью. Именно на эти процессы влияют антидепрессанты последней генерации, которые получили название ингибиторов обратного захвата серотонина.

Рецепторы серотонина представлены как метаботропными, так и ионотропными. Всего насчитывается семь типов таких рецепторов, 5-HT 1-7, причем 5-НТ 3 ионотропные, остальные - метаботропные, семидоменные, G-белок-сцепленные :
5-HT 1 тип , насчитывающий несколько подтипов: 1А-E, которые могут быть как пре- так и постсинаптическими, подавляет аденилатциклазу;
5-НТ 4 и 7 - стимулируют аденилатциклазу;
5-HT 2 , насчитывающий несколько подтипов: 2А-C, которые могут быть только постсинаптическими, активирует инозитолтрифосфат;
5-HT 5A подтип также подавляет аденилатциклазу.

Краткая информация о серотониновых рецепторах, их распределении, внутриклеточных механизмах действия, функциях :
подтип 5-НТ1А : локализация - ядро шва; эффекторная система - ингибирование аденилатциклазы; функция – ауторецептор;
5-НТ1B : черная субстанция - ингибирование аденилатциклазы – ауторецептор;
5-НТ1D : сосуды головного мозга - ингибирование аденилатциклазы - суживание сосудов;
5-НТ1E : кора, полосатое тело - ингибирование аденилатциклазы;
5-НТ1F : головной мозг, периферия - ингибирование аденилатциклазы;
5-НТ2А : тромбоциты, гладкие мышцы, кора - активация фосфолипазы С - агрегация тромбоцитов, сокращение мышц, нейрональное возбуждение;
5-НТ2В : дно желудка - активация фосфолипазы С – сокращение;
5-НТ2С : хориоидное сплетение - активация фосфолипазы С;
5-НТ3 : периферические рецепторы - ионный механизм (образование каналов – увеличение проницаемости натрия и калия) - нейрональное возбуждение, высвобождение сротонина;
5-НТ4 : гиппокамп, желудочнокишечный тракт - активация аденилатциклазы - нейрональное возбуждение, высвобождение ацетилхолина.

Структура серотонина имеет сходство со структурой психоактивного вещества ЛСД . ЛСД действует как агонист некоторых 5-HT рецепторов и ингибирует обратный захват серотонина, увеличивая его содержание.

Нейроны, являющиеся источником путей серотонинергической системы, находятся рассеянно в коре головного мозга и в агломерированном виде в переднем (ростральном) и заднем (каудальном) ядрах шва мозгового ствола (по данным A. Dahlstrom и K. Fuxe клетки серотонинергической системы сгруппированы в стволе мозга в 9 ядрах, обозначенных авторами В1-В9 в соответствии с их расположением; большинство из них совпадают с медиально расположенным ядром шва; нервные волокна, выходящие из ядер шва, могут быть условно разделены на восходящие и нисходящие). Эти ядра относятся к филогенетически древним, вероятно очень важным для выживания структурам. Они образуют группы клеток, расположенные от передней части мезенцефалона до нижних отделов продолговатого мозга. Отростки этих клеток широко разветвлены и проецируются на большие области коры переднего мозга, его желудочковую поверхность, мозжечок, спинной мозг и образования лимбической системы. Помимо коры и ствола головного мозга нейроны серотонинергической системы концентрируется в некоторых подкорковых образованиях : хвостатое ядро, скорлупа чечевичного ядра, переднее и медиальное ядра зрительного бугра, промежуточном мозге, обонятельном мозге и ряде структур, связанных с ретикулярной активирующей системой, в коре больших полушарий, амигдале и гипоталамусе. В коре лимбической области серотонина значительно больше, чем в неокортексе.

В ядрах шва серотонинергические нейроны локализуются вместе с нейронами другой химической принадлежности (ГАМКергическими, выделяющими субстанцию P, энкефалиновыми и др.). Клеточные эффекты серотонина разнообразны, но в основном имеют ингибиторный, тормозной характер. Функция рецепторов включает как прямую регуляцию ионных каналов, так и многоступенчатую, связанную с G-белками и ферментами, их регуляцию. Фактически в мозге содержится 1%-2% всего серотонина, имеющегося в организме млекопитающих, а подавляющая его часть обнаруживается в экстраневральных структурах, что затрудняет использование показателей метаболизма серотонина для оценки состояния нервной системы. Весь метаболический оборот серотонина в нервной ткани существенно зависит от активного транспорта в мозг триптофана и связан с функциями триптофангидроксилазы, декарбоксилазы ароматических аминокислот и моноаминоксидазы (МАО), основным конечным метаболитом серотонина является 5-гидроксииндолуксусная кислота (5-ГИУК).

Участие серотонина в деятельности центральной нервной системы многообразно. Это прежде всего обусловлено тем, что оно сопровождается изменениями метаболизма в сторону снижения потребления мозгом глюкозы, поглощения кислорода, лактатов и неорганических фосфатов, а также нарушением соотношения натрия и калия. Установлено возбуждающее действие серотонина на парасимпатический отдел ствола головного мозга и лимбической зоны коры. Он активирует бульбарный отдел ретикулярной формации, но тормозит передачу импульсов через зрительный бугор, мозолистое тело и синапсы коры больших полушарий головного мозга. Кроме того, имеются свидетельства влияния серотонинергической системы мозга на возбудимость вазомоторных и терморегулирующих центров, а также рвотного центра.

Согласно современным представлениям, серотонин играет основную роль в регуляции настроения . С нарушением функции серотонинергической системы связывают развитие психических нарушений, проявляющихся депрессией и тревогой. Избыток серотонина обычно вызывает панику, недостаток вызывает депрессию. Дефицит моноаминов, к каковым относится серотонин, способен приводить к нарушению синаптической передачи в нейронах лимбической системы и формировать депрессивные состояния, протекающие в виде разнообразных клинически очерченных синдромов.

Биохимические исследования позволили понять, почему ряд пищевых продуктов может служить своеобразным лекарством от депрессии . При эмоциогенном пищевом поведении, когда пациенты едят для того, чтобы улучшить настроение, уменьшить тоску и апатию, они предпочитают легкоусвояемую углеводную пищу. Повышение поступления углеводов приводит к гипергликемии и вслед за ней к гиперинсулинемии. В состоянии гиперинсулинемии изменяется проницаемость гематоэнцефалического барьера для аминокислоты триптофана - предшественника серотонина, следовательно, увеличивается синтез последнего в центральной нервной системе. Прием пищи может являться своеобразным модулятором уровня серотонина в центральной нервной системе - повышение его синтеза, связанное с поглощением углеводной пищи, приводит одновременно к усилению чувства насыщения и к уменьшению депрессивных проявлений. Тем самым было наглядно показано: булимия и депрессия имеют общий биохимический патогенетический механизм - дефицит серотонина.

Серотонинергическая система имеет отношение к различным видам социального поведения (пищевого, полового, агрессивного) и эмоциям. Нейроэндокринные ритмы, настроение, сон, аппетит и когнитивные функции модулируются серотониновой системой среднего мозга. Серотониновая система другой части мозга – префронтальной коры – нарушается при различных видах асоциального поведения (ауто- и экстероагрессия, убийство). Считается, что истощение серотониновой системы префронтальной коры обуславливает поведенческую расторможенность. Изучение содержания серотонина в крови показало более широкие границы колебания его содержания у больных шизофренией по сравнению с другими больными и с психически здоровыми лицами.

Серотонинергическая система и суицид . Во многих исследованиях было также продемонстрировано снижение в ткани мозга самоубийц уровня 5-гидроксииндолуксусной кислоты. Это послужило основанием для гипотезы, согласно которой торможение метаболического оборота серотонина в некоторых отделах мозга, в частности, в стволовых структурах и префронтальной коре, является одним из нейробиологических механизмов формирования суицидального поведения. На сегодняшний день серотониновая система наиболее изучена с этих позиций, и все авторы сходятся в том, что дефицит серотонинергической медиации является важным механизмом суицидального поведения. У жертв суицида и у лиц с высоким риском суицида, вероятнее всего, имеет место локальное снижение серотониновой медиации, сопровождающееся повышением активности соответствующих постсинаптических рецепторов. Одним из важных подтверждений этой точки зрения является эффективность антидепрессантов - блокаторов обратного захвата серотонина при депрессиях с суицидальными попытками.

Серотонинергическая система и боль . Существенное значение придается серотонину в деятельности антиноцицептивной системы, центральной регуляции болевой чувствительности. Снижение его содержания приводит к ослаблению анальгетического эффекта, понижению болевых порогов, большей частоте развития болевых синдромов. От содержания серотонина в ЦНС зависит и степень выраженности болеутоляющего действия морфина и других наркотических анальгетиков. Полагают также, что анальгетическое действие серотонина может опосредоваться эндогенными опиатами, поскольку он способствует высвобождению бета-эндорфина из клеток передней доли гипофиза. Местное (например, внутримышечное) введение экзогенного серотонина вызывает сильную боль в месте введения. Предположительно серотонин наряду с гистамином и простагландинами, раздражая рецепторы в тканях, играет роль в возникновении болевой импульсации из места повреждения или воспаления.

Серотонинергическая система и половое поведение . Серотонинергическая система мозга участвует в регуляции сексуального поведения. Установлено, что повышение уровня серотонина в мозге сопровождается угнетением половой активности, а снижение его содержания ведет к ее повышению.

Влияние серотонина на функции некоторых эндокринных желез обусловлено, по-видимому, не только его прямым действием, но и центральными механизмами, так как в подбугорной области мозга обнаружены терминали серотонинергических нейронов, стимуляция которых сопровождается усилением выделения кортиколиберина и соматотропного гормона. Важным является и то обстоятельство, что серотонин стимулирует секрецию адреналина и норадреналина в мозговой части надпочечников. Вероятнее всего это осуществляется также через гипоталамо-гипофизарную систему.

Расстройство цикла сон - бодрствование при депрессии связано также с дисметаболизмом серотонина. Он регулирует дельта-сон, инициирует фазу быстрого сна. Нарушения сна могут быть как основной (иногда единственной) жалобой, маскирующей депрессию, так и одной из многих. Это особенно отчетливо видно на примере так называемой скрытой (ларвированной) депрессии (депрессии без депрессии), поскольку при данной форме патологии расстройства сна могут быть ведущим, а порой и единственным проявлением заболевания.

Серотонинергическая система и алкоголизм . При оценке предрасположенности к алкоголизму, особое внимание уделяется анализу генетического полиморфизма серотонинового рецептора подкласса 2А (5-НТ2А), так как серотонин участвует в регуляции потребления алкоголя. Прием алкоголя усиливает высвобождение катехоламинов и изменяет концентрацию опиоидов, приводит к временной активации системы подкрепления, что вызывает положительную эмоциональную реакцию. У человека ген 5-НТ2А находится на длинном плече 13-й хромосомы в локусе q14-q21 и характеризуется рядом полиморфизмов в кодирующей области, из которых диаллельный полиморфизм (1438 G/A) в промоторной области рассматривается в качестве генетического маркера, сцепленного с нервно-психическими заболеваниями, в том числе со злоупотреблением алкоголя.

Серотонинергическая система и мигрень . Было выявленно, что колебания уровня серотонина в плазме коррелируют с динамикой приступа мигрени и была сформулирована «серотониновая гипотеза» мигрени. В ее патогенезе и механизмах действий антимигренозных средств принимают участие лишь некоторые специфичные подтипы 5-НТ1-рецепторов, локализованных в церебральных сосудах и сенсорном ядре тройничного нерва. Показано, что нейроны серотонинергического дорсального ядра шва (одна из основных структур эндогенной антиноцицептивной системы) и норадренергического голубого пятна ствола имеют многочисленные проекции к сосудам головного мозга и спинальному ядру тройничного нepвa. Установлено, что на пресинаптических окончаниях тройничного нерва локализованы 5-НТ1D-рецепторы и рецепторы к эндотелину. Они находятся за пределами гематоэнцефалического барьера, а их активация приводит к ингибированию выделения нейропептидов кальцитонина, субстанции Р и к предупреждению развития нейрогенного воспаления. Согласно этой концепции, при мигрени (форма асептического нейрогенного воспаления) триггерный фактор предположительно нейрогенной или гормональной природы антидромно активирует периваскулярные афферентные терминали тройничного нерва. Это вызывает деполяризацию нервных окончаний и выделение из них мощных вазодилатирующих и алгогенных веществ - нейропептидов кальцитонина, субстанции Р, нейрокинина A и вазоинтестициального пептида. Данные нейропептиды вызывают расширение сосудов, увеличение проницаемости сосудистой стенки, пропотевание белков плазмы и форменных элементов крови, отек сосудистой стенки и прилегающих участков твердой мозговой оболочки, дегрануляцию тучных клеток, агрегацию тромбоцитов. Конечным результатом нейрогенного воспаления и является боль. Увеличение содержания свободного серотонина плазмы в фазу приступа мигрени связывают с распадом тромбоцитов. Очаговая неврологическая симптоматика, характерная для этого этапа мигренозного приступа, возникает вследствие сужения церебральных сосудов и снижения кровотока в отдельных участках мозга. В фазу головной боли наблюдается увеличение экскреции серотонина и его метаболитов с мочой и последующее снижение его содержания в плазме и спинномозговой жидкости. Это приводит к снижению тонуса церебральных сосудов, их избыточному растяжению, периваскулярному отеку, раздражению болевых рецепторов. Есть основание полагать, что у больных мигренью имеется генетически обусловленный дефект обмена серотонина, который может быть обусловлен многими факторами, в том числе нарушением метаболизма тромбоцитов, дефицитом фермента, разрушающего тирамин в желудочно-кишечном тракте (это подтверждается наличием заболеваний желудочно-кишечного тракта у значительного числа лиц, страдающих мигренью). В безболевом периоде мигрени выявлено повышение чувствительности серотониновых и норадреналиновых рецепторов сосудистой стенки. Внутри сосуда активируется агрегация тромбоцитов, что сопровождается выделением серотонина. Снижается содержание моноаминоксидазы, что также приводит к асептическому нейрогенному воспалению сосуда.

Серотонинергическая система и эпилепсия . Одним из нейрохимических механизмов формирования эпилептической активности является изменение обмена триптофана - «утечка» его окисления в центральной нервной системе с серотонинового на кинурениновый путь. В результате в головном мозге снижается уровень серотонина (тормозного нейромедиатора) и возрастает уровень кинуренина, который повышает возбудимость нейронов мозга. Однако, установлено, что серотонин предупреждает у мышей развитие судорог, вызываемых кислородом. Более того, будучи введенным в сонную артерию, он может прекратить развившиеся судороги. Некоторые противосудорожные препараты (фенобарбитал, дилантин и др.) повышают концентрацию серотонина в мозге. Известно и собственно противосудорожное действие серотонина. Он удлиняет положительность сна, вызванного барбитуратами. Особенно выраженное тормозящее действие серотонин оказывает на кору больших полушарий. Тормозящий эффект серотонина обусловлен его непосредственным влиянием на синапсы мозга. Важно то, что, оказывая тормозящее влияние на кору больших полушарий и вовлекающую систему зрительного бугра, серотонин не подавляет активности ретикулярной формации среднего мозга. Не менее выраженным является его свойство избирательно возбуждать подкорковые структуры, связанные с реакцией пробуждения. Серотонину присуща способность активировать холинэстеразу головного мозга, благодаря чему он является не только химическим медиатором, но и модификатором действия ацетилхолина.

Серотонинергическая система и нарушение мозгового кровообращения . Известно, что серотонинергические нейроны шва среднего мозга иннервируют церебральные сосуды и их активность влияет на интенсивность мозгового кровотока. Наиболее отчетливые сдвиги наблюдаются при церебральных инсультах. Экспериментальные данные и клинические исследования свидетельствуют о возможном участии серотонина в патогенезе острых нарушений мозгового кровообращения, в частности ишемических инсультов. В этом плане следует учитывать ангиоспастические эффекты серотонина, реализуемые опосредованно через гипоталамус и при непосредственном воздействии на морфологически измененные сосуды мозга. Этому, по-видимому, предшествует изменение содержания серотонина в веществе мозга. Установленное значительное повышение содержания серотонина в спинномозговой жидкости больных субарахноидальным кровоизлиянием, осложненным «отсроченным» вазоспазмом с развитием инфаркта мозга, cвидетельствует о несомненном участии этого биогенного амина в вазоконстрикторном эффекте в отношении церебральных сосудов.

Серотонинергическая система и иммунная система . Имеются данные об участии серотонинергической системы в регуляции иммуногенеза. Изменение уровня серотонина существенно влияет на патогенез ряда аутоиммунных заболеваний нервной системы, в частности рассеянного склероза. В последнее время сформировалось направление исследований, направленных на изучение состояния серотонинергической системы у таких больных, и показано, что она существенно изменена. Дефицит серотонина обнаружен в плазме крови больных рассеянным склерозом, у них существенно нарушено состояние тромбоцитарной серотонинергической системы, страдает активный транспорт серотонина тромбоцитами в связи со снижением скорости его обратного захвата. О нарушении серотонинергической системы при рассеянном склерозе также свидетельствуют стойко сниженное содержание лимфоцитов, несущих специфические рецепторы к серотонину, а также низкий титр противосеротониновых антител. Серотонин участвует в процессах аллергии и воспаления. Он повышает проницаемость сосудов, усиливает хемотаксис и миграцию лейкоцитов в очаг воспаления, увеличивает содержание эозинофилов в крови, усиливает дегрануляцию тучных клеток и высвобождение других медиаторов аллергии и воспаления.

Серотонин играет важную роль в процессах свёртывания крови . Тромбоциты крови содержат значительные количества серотонина и обладают способностью захватывать и накапливать серотонин из плазмы крови. Серотонин повышает функциональную активность тромбоцитов и их склонность к агрегации и образованию тромбов. Стимулируя специфические серотониновые рецепторы в печени, серотонин вызывает увеличение синтеза печенью факторов свёртывания крови. Выделение серотонина из повреждённых тканей является одним из механизмов обеспечения свёртывания крови по месту повреждения.

Также большое количество серотонина производится в кишечнике . Серотонин играет важную роль в регуляции моторики и секреции в желудочно-кишечном тракте, усиливая его перистальтику и секреторную активность. Кроме того, серотонин играет роль фактора роста для некоторых видов симбиотических микроорганизмов, усиливает бактериальный метаболизм в толстой кишке. Сами бактерии толстой кишки также вносят некоторый вклад в секрецию серотонина кишечником, поскольку многие виды симбиотических бактерий обладают способностью декарбоксилировать триптофан. При дисбактериозе и ряде других заболеваний толстой кишки продукция серотонина кишечником значительно снижается. Массивное высвобождение серотонина из погибающих клеток слизистой желудка и кишечника при воздействии цитотоксических химиопрепаратов является одной из причин возникновения тошноты и рвоты, диареи при химиотерапии злокачественных опухолей. Аналогичное состояние бывает при некоторых злокачественных опухолях, эктопически продуцирующих серотонин.

Большое содержание серотонина также отмечается в матке . Серотонин играет роль в паракринной регуляции сократимости матки и маточных труб и в координации родов. Продукция серотонина в миометрии возрастает за несколько часов или дней до родов и ещё больше увеличивается непосредственно в процессе родов. Также серотонин вовлечён в процесс овуляции - содержание серотонина (и ряда других биологически активных веществ) в фолликулярной жидкости увеличивается непосредственно перед разрывом фолликула, что, по-видимому, приводит к увеличению внутрифолликулярного давления. Серотонин оказывает значительное влияние на процессы возбуждения и торможения в системе половых органов. Например, увеличение концентрации серотонина у мужчин задерживает наступление эякуляции.

Серотониновый синдром : см. статью Серотониновый синдром в разделе «неврология и нейрохирургия» медицинского портала DoctorSPB.ru.

Хотя метерголин, например, действует преимущественно на 5-НТ2-рецепторы. В настоящее время существуют несколько избирательных блокаторов 5-НТ3-рецепторов, а также 5-НТ2A-и 5-НТ2С-рецепторов. Химические формулы всех этих препаратов самые разные, и никаких структурных особенностей, соответствующих их сродству к тем или иным рецепторам, не выявлено.

Типичный 5-НТ2А-блокатор - это кетансерин. Испытываются несколько 5-НТ3-блокаторов для лечения желудочно-кишечных нарушений. В частности, высокоэффективными при вызванной противоопухолевыми средствами рвоте оказались ондансетрон, доласетрон и гранисетрон (Grunberg and Hesketh, 1993-см.).

Клинические эффекты средств, влияющих на передачу, часто бывают отставленными во времени. Особенно это касается , используемых при аффективных расстройствах - и . Эта особенность привлекла внимание к изменениям плотности и чувствительности серотониновых рецепторов, развивающимся на фоне длительного приема соответствующих препаратов. В эксперименте было показано снижение плотности и чувствительности серотониновых рецепторов, вызванное их стимуляторами. Это типичная для многих медиаторных систем компенсаторная реакция. В то же время у крыс и мышей снижение плотности и чувствительности 5-НТ2С-рецепторов вызывается длительным приемом блокаторов этих рецепторов (Sanders-Bush, 1990). Этот парадоксальный эффект вызвал большой интерес, в том числе потому, что он характерен для многих используемых в клинике препаратов, в частности клозапина, кетансерина и амитриптилина. Все эти препараты и некоторые другие блокаторы 5-НТ2А- и 5-НТ2С-рецепторов снижают конститутивную (не обусловленную связыванием с лигандами) активацию рецепторов в линии клеток, экспрессирующих кДНК 5-НТ2С-рецепторов (Barker et al., 1994). Это не укладывается в классические представления о действии блокаторов, согласно которым эти средства лишь препятствуют влиянию стимуляторов, но сами по себе эффектов не оказывают. Некоторые же блокаторы 5-НТ2A-и 5-НТ2С-рецепторов действуют в соответствии с классической схемой. Пока не известно, имеют ли эти различия какое-либо клиническое значение.

Кетансерин

Структурная формула кетансерина.

Открытие кетансерина (структурная формула приведена ниже) ознаменовало новую эру в фармакологии серотонинергических средств. Этот препарат является мощным 5-НТ2A-блокатором; в отношении 5-НТ2С-рецепторов он менее активен, а на 5-НТ1-, 5-НТ3- и 5-НТ4-рецепторы почти не действует. Важно отметить, что кетансерин обладает также высоким сродством к α-адренорецепторам и к Н1-рецепторам (Janssen, 1983).

У больных с артериальной гипертонией кетансерин примерно в такой же степени снижает АД, как и . Видимо, он уменьшает тонус как емкостных, так и резистивных сосудов. Эффект этот, очевидно, обусловлен блокадой не 5-НТ2А-рецепторов, а α1-адренорецепторов. Кетансерин подавляет вызванную серотонином агрегацию тромбоцитов, но не оказывает выраженного влияния на действие других стимуляторов агрегации. В США кетансерин пока не выпускается, однако он производится в Италии, Нидерландах, Швейцарии и некоторых других странах. Тяжелых побочных эффектов не описано. Биодоступность при приеме внутрь составляет около 50%, T1/2- 12-25 ч. Главный путь элиминации - печеночный метаболизм.

Некоторые близкие к кетансерину вещества, например ритансерин, более избирательны, так как обладают низким сродством к α-адренорецепторам. В то же время ритансерин, как и большинство других 5-НТ2А-блокаторов, довольно активен и в отношении 5-НТ2с_рецепторов. Физиологические последствия блокады 5-НТ2С-рецепторов пока не ясны. Экспериментальный препарат MDL-100,907 - это первый из нового ряда 5.НТм-блокаторов с высокой избирательностью по отношению именно к этим рецепторам (по сравнению с 5-НТ2С-рецепторами). Первые испытания MDL-100,907 при шизофрении убедительных результатов пока не принесли.

Атипичные нейролептики

Блокатор 5-НТ2А- и 5-НТ2С-рецепторов клозапин - это представитель нового класса нейролептиков. По сравнению с классическими нейролептиками он реже вызывает экстрапирамидные расстройства и более эффективен в отношении негативных симптомов. Кроме того, клозапин обладает высоким сродством к некоторым типам рецепторов.

Один из современных подходов к разработке новых нейролептиков - это получение препаратов, сочетающих свойства 5-НТ2А-блокатора, 5-НТ2С-блокатора и D2-блокатора (Leysen et al., 1993). Так, рисперидон эффективно блокирует и 5-НТм- и D2-рецепторы. Есть данные о том, что в малых дозах рисперидон облегчает негативные симптомы шизофрении и при этом редко вызывает экстрапирамидные расстройства. Впрочем, эти расстройства довольно часто возникают при употреблении доз выше 6мг/сут. Другие атипичные нейролептики - кветиапин и оланзапин - действуют на многие рецепторы, но их нейролептический эффект, видимо, обусловлен блокадой дофаминовых и серотониновых рецепторов.

Метисергид

Метисергид (бутаноламид 1-метиллизергиновой кислоты) по химическому строению близок к метилэргометрину.

Метисергид - это блокатор 5-НТ2A- и 5-НТ2С-рецепторов (в некоторых экспериментальных моделях он, по-видимому, действует как частичный агонист). Он подавляет сосудосуживающее действие серотонина, а также влияния серотонина на другие гладкомышечные органы. Центральные эффекты серотонина могут как блокироваться, так и воспроизводиться метисергидом. Этот препарат не обладает избирательностью, так как действует и на 5-НТрецепторы; в то же время его клинические эффекты обусловлены, видимо, прежде всего блокадой 5-НТ2-рецепторов. Несмотря на то что метисергид - это производное алкалоидов спорыньи, его сосудосуживающее действие и стимулирующий эффект на мускулатуру матки выражены слабо.

Метисергид применяют для профилактики приступов мигрени и других видов головной боли сосудистого происхождения (включая хортоновскую головную боль). При уже развившемся приступе он не эффективен. Защитное действие метисергида длится 1-2 сут. После прекращения лечения это действие сохраняется еще довольно долго-возможно, из-за накопления метаболита метисергида метилэргометрина, более активного, чем исходное вещество. Метисергид используют при поносе и нарушенном всасывании у больных с карциноидным синдромом, а также постгастрорезекционном демпинг-синдроме - в патогенезе обоих состояний играет важную роль серотонин. В то же время на эффекты других биологически активных веществ, секретируемых карциноидами (например, кининов), метисергид не влияет. Поэтому при нарушенном всасывании у больных с карциноидным синдромом предпочитают назначать октреотид, блокирующий выделение карциноидами всех биологически активных веществ.

Побочные эффекты метисергида обычно умеренные и временные, хотя иногда требуют отмены препарата. Чаще всего наблюдаются желудочно-кишечные нарушения (изжога, понос, схваткообразные боли в животе, тошнота и рвота) и ишемические нарушения, связанные со спазмом сосудов (онемение, покалывание и боли в конечностях, боль в пояснице и животе; реже наблюдаются более тяжелые состояния, например обострение ИБС). К центральным побочным эффектам относятся нарушения равновесия, сонливость, слабость, дурнота, нервозность, бессонница, спутанность сознания, возбуждение, галлюцинации и даже развернутый психоз. Серьезное осложнение, наблюдающееся при длительном приеме, - это воспалительный фиброз (забрюшинного пространства, плевропульмональный, коронарных сосудов и эндокарда). Обычно после отмены препарата фиброз проходит, но известны случаи постоянного поражения клапанов сердца. В связи с этим для профилактики приступов мигрени лучше использовать другие препараты - (например, пропранолол), амитриптилин и НПВС. Если же необходим длительный прием метисергида, то его прерывают на 3 нед или больше каждые 6 мес.

Структурная формула ципрогептадина.

Этот препарат сходен с фенотиазиновыми Н1-блокаторами как по химической структуре, так и по выраженному Неблокирующему действию. Кроме того, ципрогептадин подавляет серотонинергическую передачу в гладкомышечных органах, блокируя 5-НТ2А-рецепторы, а также обладает слабым М-холиноблокирующим и антидепрессантным действием.

Свойства и клиническое применение ципрогептадина во многом такие же, как других Н1-блокаторов. Он эффективен при кожных аллергических реакциях (особенно сопровождающихся зудом) и, видимо, при Холодовой крапивнице. Блокирующее действие ципрогептадина на 5-НТ2А-рецепторы при таких состояниях роли не играет - эти рецепторы не участвуют в развитии аллергических реакций у человека. Некоторые специалисты рекомендуют использовать ципрогептадин для устранения побочных влияний на половую функцию ингибиторов обратного захвата серотонина ( , сертралинаидр). Благодаря 5-НТ2А-блокирующему действию ципрогептадин можно применять при постгастрорезекционном демпинг-синдроме, повышенной перистальтике кишечника у бальных с карциноидным синдромом, для профилактики приступов митрени. Впрочем, при всех этих состояниях ципрогептадин не является препаратом выбора.

Побочные эффекты ципрогептадина во многом такие же, как других Н1-блокаторов (например, сонливость). У детей наблюдаются ускорение роста и повышение веса - очевидно, из-за влияния ципрогептадина на регуляцию секреции СТГ.

Перспективы

Разработка новых избирательных серотонинергических средств облегчается благодаря молекулярно-генетическим методам - клонированию кДНК разных подтипов серотониновых рецепторов и избирательных переносчиков серотонина, выведению мышей с инактивированным генами и т. д. Сегодня известно, что для серотониновых рецепторов характерна конститутивная (не обусловленная связыванием с лигандами) активация. Одни блокаторы этих рецепторов просто препятствуют связыванию с ними стимуляторов, а другие - обратные агонисты - кроме этого еще и подавляют конститутивную активацию (то есть стабилизируют рецептор в неактивированной конформации). Данные о возможности такой активации in vivo пока скудны, но тем не менее разрабатываются и изучаются препараты, устраняющие не только последствия чрезмерной секреции серотонина, но и конститутивную активацию серотониновых рецепторов. Появление экспериментальных моделей таких сложных психических расстройств, как тревожность, депрессия, агрессия, навязчивости и т. д., позволило предсказать терапевтические эффекты одновременной блокады нескольких подтипов серотониновых рецепторов. Дальнейшее усовершенствование подобных моделей даст возможность выяснить роль серотониновых рецепторов в механизмах сна, полового и пищевого поведения, эмоций, восприятия, болевой чувствительности, управления движениями, пищеварения и других физиологических процессов. Это позволит более прицельно влиять на серотонинергическую передачу, а следовательно, и более эффективно лечить многие психические и соматические расстройства.

Серотонин - биогенный амин, образующийся из путем ее гидроксилирования и декарбоксилирования. Значительное количество серотонина содержится в энтерохромаффинных клетках кишечника, ЦНС, преимущественно в гипоталамусе и среднем мозге, тромбоцитах, меньшее количество - в лаброцитах, тучных клетках, надпочечниках. Серотонин оказывает влияние на нервную деятельность, вызывает сокращение гладкой мускулатуры кишечника, матки, бронхов, а также сужение сосудов. В основе реакции организма на серотонин лежат центральные, миотропные, ганглионарные, рефлекторные эффекты.

Образование . Серотонин (5-гидрокси-триптамин, 5-НТ) синтезируется в энтерохромаффинных клетках эпителия кишечника из L- . Серотонин образуется также в нервных клетках мезентериального сплетения и в ЦНС, где играет роль . Тромбоциты не синтезируют серотонин, однако захватывают его и накапливают.

Ондансетрон обладает выраженным противорвотным эффектом при рвоте, вызванной применением цитостатиков. Он является антагонистом 5-НТ3-рецепторов. Аналогами ондансетрона являются трописетрон и гранисетрон.

ЛСД и другие психоделики (психотомиметики), такие как мескалин и псилоцибин, вызывают галлюцинации, расстройства сознания, страх, возможно, из-за активации 5-НТ-рецепторов.

Эффекты серотонина

Изменение гена серотонина как способ лечения ожирения

Авторами научной работы, в ходе которой был обнаружен ключевой ген ожирения - разновидность серотонина, стали сотрудники Университета Макмастера. Общеизвестно, что серотонин является «гормоном радости», его выработка мозгом способствует эмоциональной стабильности и хорошему настроению. Но, как поясняют канадские исследователи, серотонин, отвечающий за приятные эмоции, относится к первому типу данного соединения.

«Он разделяется на два типа: по месту действия и по форме синтеза. Первый тип вырабатывается в головном мозге и влияет на разные эмоции», - пояснили биологи.

Ко второму типу, относится периферический серотонин – эта субстанция регулирует активность бурой , от которой зависит развитие .

Бурый жир содержит компоненты, которые способствуют снижению в крови, а также и переработки их в энергию. На теле человека есть определенные зоны, где располагается бурый жир – и чем активнее его клетки, тем стройнее фигура у человека. Канадские исследователи пришли к заключению, что подавляя серотонин второго типа, можно значительно повысить метаболическую активность клеток бурой жировой ткани. Она, в свою очередь, заставит тело «сжигать» белый жир – причем, это будет происходить независимо от того, насколько употребляет человек.

Читайте также

Серотониновые рецепторы

Эффекты серотонина чрезвычайно разнообразны. Это вещество служит медиатором в ЦНС, влияет на сократимость гладких мышц сосудов и ЖКТ, участвует в сосудисто-тромбоцитарном гемостазе. Методами молекулярного клонирования было выявлено неожиданно большое количество , которые на основании структуры и функции можно разделить на 4 типа. 5-НТ1-, 5-НТ2- и 5-НТ4-рецепторы сопряжены с G-белками и через эти белки и соответствующие системы вторых посредников влияют на функции различных ферментов и на элек-трофизиологические свойства эффекторных клеток. Напротив, 5-НТ3-рецепторы связаны с ионными каналами. Здесь мы рассмотрим стимуляторы и блокаторы серотониновых рецепторов. Новейшие препараты этих групп, избирательно действующие на отдельные подтипы серотониновых рецепторов, были получены в работах с использованием рекомбинантных рецепторов. Мы остановимся также на экспериментальных моделях, которые применяют для исследования средств, влияющих на сложные психические функции и их нарушения - навязчивости, агрессивное поведение, тревожность, депрессию, цикл сон-бодрствование и прочие. Современные избирательные стимуляторы отдельных подтипов серотониновых рецепторов уже с успехом применяются при мигрени и тревожности, а избирательные блокаторы - при ряде . На физиологические эффекты серотонина можно влиять также с помощью средств, действующих на серотонинергическую передачу. Так, ингибиторы обратного захвата серотонина оказались эффективными препаратами для лечения и тревожности.

Несмотря на то что роль серотонина во многих физиологических и патологических процессах не вызывает сомнения, точки его приложения и механизмы действия изучены плохо. Возможно, такая ситуация отчасти обусловлена многообразием серотониновых рецепторов. Эти рецепторы, выявленные вначале фармакологическими методами, сегодня получены путем клонирования кДНК. Рекомбинантные серотониновые рецепторы используют для изучения молекулярных механизмов действия серотонина, а также для поиска средств, избирательно влияющих на отдельные подтипы этих рецепторов. Круг клинического применения подобных средств становится все шире и шире.

Историческая справка

В 1930-х гг. Эрспамер начал изучать локализацию энтерохромаффиных клеток с помощью красителей на производные индола. Самая высокая концентрация таких производных была выявлена в слизистой ЖКТ; далее шли тромбоциты и некоторые отделы ЦНС (Erspamer, 1966). Спустя некоторое время Пейдж и сотр., работавшие в Кливлендской клинике, впервые выделили сосудосуживающее вещество, высвобождаемое из тромбоцитов в процессе остановки кровотечения, и расшифровали его структуру (Rapport et al., 1948). Это вещество, названное Пейджем серотонином (Page, 1976), оказалось тем самым производным индола, которое исследовал Эрспамер. Описание путей синтеза и распада серотонина (Uden-friend, 1959) и его вазопрессорных свойств (Sjoerdsma, 1959) позволило выдвинуть гипотезу, согласно которой проявления так называемого карциноидного синдрома у больных с опухолями из энтерохромаффиных клеток обусловлены повышенной выработкой этого вещества. Действительно, у таких больных суточная экскреция с мочой серотонина и его метаболитов может достигать сотен миллиграммов. Некоторые симптомы этого заболевания в какой-то степени указывают на механизмы действия серотонина. Так, у больных может развиваться психоз, сходный с возникающим при приеме ЛСД. Учитывая же, что в животных и растительных тканях обнаружены сходные с трипта-мином вещества с галлюциногенным действием, можно предположить, что подобные вещества образуются и вызывают психотическую симптоматику у больных с карциноидным синдромом. Предположение о медиаторной функции серотонина в головном мозге млекопитающих было высказано в середине 1950-х гг. (Brodie and Shore, 1957).

Первые данные о молекулярных механизмах действия серотонина были получены в опытах на печеночной двуустке Fasciola hepatica (Mansour, 1979). Под действием серотонина у нее резко возрастала подвижность и концентрация цАМФ; и тот, и другой эффекты блокировались ЛСД. Повышение подвижности было обусловлено цАМФ-зависимым фосфорилированием фосфофруктокиназы - лимитирующего фермента гликолиза. Однако серотониновые рецепторы, опосредующие эти эффекты у печеночной двуустки, видимо, иные, чем сопряженные с аденилатциклазой серотониновые рецепторы млекопитающих. У последних столь подробных данных о механизмах действия серотонина пока получить не удалось.

Серотонин появился у растений и животных уже на ранних этапах эволюции, и именно этим, возможно, объясняется обилие серотониновых рецепторов (Peroutka and Howell, 1994). Клонирование этих рецепторов показало, что некоторые препараты, ранее считавшиеся избирательными по отношению к отдельным их подтипам, на самом деле обладают высоким сродством по отношению к нескольким подтипам (табл. 11.1). Подробнее об истории изучения и эффектах серотонина см. статью Sjoerdsma and Palfreyman (1990).

Химические свойства серотонина

Рисунок 11.1. Структурные формулы важнейших индолалкиламинов.

Источники . Химическое строение серотонина и некоторых близких к нему соединений приведено на рис. 11.1. Серотонин широко распространен в растительном и животном мире: он найден у позвоночных, оболочников, моллюсков, членистоногих, кишечнополостных, во фруктах и в орехах. Он обнаруживается также в ядах - в крапиве, у ос и скорпионов. Многочисленные синтетические или природные близкие к серотонину вещества также в той или иной степени обладают центральными и периферическими физиологическими эффектами. Многие N- или О-метилированные индоламины (например, N,N-диметилтриптамин) являются галлюциногенами. Поскольку они могут вырабатываться в организме, их долго считали возможными виновниками по крайней мере некоторых проявлений психозов. (5-метокси-N-ацетилтриптамин) образуется из серотонина путем N-ацетилирования с последующим О-метилированием (рис. 11.2). Это вещество служит главным индоламином шишковидного тела, где его синтез регулируется внешними факторами (в частности, уровнем освещенности). Мелатонин вызывает депигментацию меланоцитов кожи и подавляет функцию яичников. Возможно, он играет определенную роль в биоритмах и поэтому может оказаться полезным при синдроме смены часовых поясов.

Синтез и катаболизм . Серотонин образуется из незаменимой аминокислоты триптофана в 2 этапа (рис. 11.2). На первом этапе под действием триптофангидроксилазы образуется 5-гидрокситриптофан, это лимитирующая реакция синтеза серотонина. Триптофангидроксилаза представляет собой оксидазу со смешанными функциями. В катализируемой ею реакции принимает участие молекулярный кислород, а в качестве кофермента - тетрагидробиоптерин. Активность триптофангидроксилазы, как и тирозингидроксилазы, регулируется путем фосфорилирования, однако триптофангидроксилаза не ингибируется конечным продуктом по механизму отрицательной обратной связи. В головном мозге триптофангидроксилаза не насыщена субстратом, и поэтому скорость синтеза серотонина зависит от концентрации триптофана. Последний поступает в клетки головного мозга путем активного захвата с помощью переносчика, отвечающего за транспорт нескольких нейтральных и разветвленных аминокислот. В связи с этим содержание триптофана в мозге зависит не только от его концентрации в плазме, но и от концентрации других аминокислот, конкурирующих с триптофаном за переносчик.

Декарбоксилирование 5-гидрокситриптофана приводит к образованию серотонина. Долгий спор о том, являются ли декарбоксилазы 5-гидрокситриптофана и ДОФА разными или одним и тем же ферментом, разрешился методами клонирования кДНК - оказалось, что один и тот же генный продукт отвечает за декарбоксилирование обоих субстратов. Теперь этот фермент называется декарбоксилазой ароматических L-аминокислот. Он чрезвычайно широко распространен и действует на многие субстраты. 5-гидрокситриптофан декарбоксилируется очень быстро и в мозге почти не обнаруживается. В связи с этим попытки повлиять на концентрацию в мозге серотонина путем изменения концентрации 5-гидрокситриптофана обречены на неудачу.

Основной путь катаболизма серотонина - превращение в 5-гидроксииндолуксусную кислоту, также протекающее в 2 этапа (рис. 11.2). Сначала под действием МАО образуется 5-гидро-ксииндолацетальдегид, который затем переходит в 5-гидрокси-индолуксусную кислоту под действием широко распространенного в организме фермента альдегиддегидрогеназы (незначительное количество 5-гидроксииндолацетальдегида превращается в спирт - 5-гидрокситриптофол). 5-гидроксииндолуксусная кислота активно выводится из головного мозга; этот процесс подавляется неспецифическим ингибитором трансэпителиального переноса пробенецидом. Поскольку в нервных клетках на долю 5-гидроксииндолуксусной кислоты приходится почти 100% всех метаболитов серотонина, скорость кругооборота серотонина в головном мозге оценивают по повышению уровня 5-гидроксииндолуксусной кислоты после введения пробенецида. Образующаяся в мозге и других органах 5-гидроксииндолуксусная кислота, а также небольшие количества 5-гидрокситриптофола и глюкуронидов выводятся с мочой. В норме суточная экскреция 5-гидроксииндолуксусной кислоты у взрослого составляет 2-10 мг. Более высокие значения - надежный признак карциноидного синдрома. Резко повышенный синтез серотонина при этом заболевании требует больших количеств пиридиновых нуклеотидов и триптофана, и поэтому признаки дефицита никотиновой кислоты и триптофана не редкость у таких больных. Этанол вызывает повышение содержания НАДН, и в результате 5-гидроксииндолацетальдегид переходит с окислительного пути катаболизма на восстановительный (рис. 11.2).

Это несколько повышает экскрецию 5-гидрокситриптофола и соответственно снижает экскрецию 5-гидроксииндолуксусной кислоты.

Существуют два изофермента МАО - МАО А и МАО В. Сначала их разделяли на основании сродства к субстратам и чувствительности к ингибиторам; в настоящее время оба изофермента клонированы, причем свойства клонированных и естественных форм оказались одинаковыми (Shih, 1991; см. также гл. 10). МАО А обладает преимущественным сродством к серотонину и норадреналину, а ее избирательным ингибитором является клоргилин. МАО В в большей степени действует на β-фенил-этиламин и бензиламин; избирательный ингибитор МАО В - селегилин. Сродство обоих изоферментов к дофамину и триптамину одинаково. В нервных клетках содержатся и МАО А, и МАО В - преимущественно на наружной мембране митохондрий. Основным изоферментом тромбоцитов, в которых также содержится серотонин в высокой концентрации, служит МАО В.

Предполагалось, что существуют и другие пути катаболизма серотонина, например сульфатирование и О- или N-метилирование. Последний путь, в частности, мог бы приводить к образованию эндогенного психотропного вещества - 5-гидрокси-N,N-диметилтриптамина (буфотенина, рис. 11.1). Однако другие метилированные индоламины (N,N-диметилтриптамин, 5-метокси-N,N-диметилтриптамин) обладают гораздо более выраженными галлюциногенными свойствами, и их роль в патогенезе психозов вероятнее.

Инактивация серотонина осуществляется не только путем ферментативного распада, но и посредством обратного захвата. За этот захват отвечает Nа+-зависимый переносчик, расположенный на наружной поверхности пресинаптической мембраны серотонинергического окончания (обеспечивает удаление серотонина из синаптической щели) и наружной поверхности мембраны тромбоцитов (извлекает серотонин из крови). У тромбоцитов это единственный путь пополнения запасов серотонина, так как ферментов синтеза этого вещества в них нет. Переносчик серотонина, как и другие переносчики моноаминов, клонирован (гл. 12).

Точки приложения серотонина

На долю периферических тканей приходится большая часть всего содержания серотонина в организме, хотя он служит также медиатором в ЦНС. Наиболее высока его концентрация в энтерохромаффинных клетках и тромбоцитах. Серотонин играет важнейшую роль в регуляции моторики ЖКТ.

Энтерохромаффинные клетки . Эти клетки располагаются в слизистой ЖКТ. Особенно их много в двенадцатиперстной кишке. В энтерохромаффинных клетках синтезируется из триптофана и накапливается серотонин, а также содержатся другие биологически активные вещества, например вещество Р и кинины. Существует некий уровень базальной секреции серотонина в ЖКТ. Эта секреция усиливается при механическом растяжении (например, при поступлении пищи или гипертонического раствора) и при раздражении двигательных волокон блуждающих нервов. Возможно, стимулирующее действие серотонина на моторику ЖКТ опосредовано также его влиянием на нейроны межмышечного сплетения (Gershon, 1991; см. также гл. 38). Резко повышенная секреция серотонина и других биологически активных веществ при карциноидном синдроме сопровождается соответствующими желудочно-кишечными, сердечнососудистыми и нервными нарушениями. Кроме того, повышенный синтез серотонина может привести к дефициту никотиновой кислоты и триптофана.

Рисунок 11.4. Функции серотонина тромбоцитов.

Тромбоциты . От остальных форменных элементов крови тромбоциты отличаются, в частности, способностью захватывать, хранить и высвобождать серотонин. Синтез серотонина в тромбоцитах не происходит. Серотонин захватывается тромбоцитами из крови и поступает для хранения в секреторные электроноплотные гранулы посредством активного транспорта. Эти процессы во многом сходны с захватом и запасанием норадреналина в симпатических окончаниях (гл. 6 и 12). Через мембрану тромбоцитов серотонин переносится с помощью Nа+-зависимого транспорта, а в гранулы - путем вторичного активного транспорта с использованием в качестве источника энергии электрохимического градиента для Н+, создаваемого Н+-АТФазой. При этом концентрация серотонина в гранулах достигает 0.6 моль/л - это в 1000 раз выще, чем в цитоплазме тромбоцитов. Скорость На+-зависимого захвата серотонина тромбоцитами _ чувствительный показатель активности ингибиторов захвата серотонина.

Главная функция тромбоцитов - гемостаз: они закрывают бреши в поврежденном эндотелии. С другой стороны, целость эндотелия играет важнейшую роль в функционировании тромбоцитов (Furchgott and Vanhoutte, 1989). Эндотелий постоянно контактирует с тромбоцитами, так как из-за действующих в текущей крови сил сдвига они смещаются к периферии сосудов (Gibbons and Dzau, 1994). Сосудосуживающему действию серотонина и тромбоксана А2 противостоит эндотелиальный фактор расслабления сосудов (N0 и, возможно, некоторые другие вещества) (Furchgott and Vanhoutte, 1989; рис. 11.4). Для адгезии и агрегации тромбоцитов имеет решающее значение состояние эндотелия (Hawiger, 1992; Ware and Heistad, Л993). Когда тромбоциты соприкасаются с поврежденным эндотелием, они выделяют вещества, вызывающие их адгезию и высвобождение серотонина. К таким веществам относятся АДФ и тромбоксан А2 (гл. 26 и 55). Связывание серотонина с 5-НТ2А-рецепторами оказывает слабое проагрегантное действие, резко усиливающееся в присутствии коллагена. Если дефект сосудистой стенки достигает гладкомышечных слоев, то серотонин оказывает прямой сосудосуживающий эффект, служащий одним из механизмов гемостаза. Этот эффект усиливается под действием выделяющихся в области повреждения биологически активных веществ - тромбоксана А2, кининов, вазоактивных пептидов. Образованию тромбов при атеросклерозе способствует разрушение эндотелия и, как следствие, отсутствие эндотелиального фактора расслабления сосудов. В этих условиях процессы, ведущие к тромбообразованию, протекают бесконтрольно, по типу порочного круга. Определенную роль в них играет и серотонин. Сходная картина может наблюдаться при других болезнях сосудов, например синдроме Рейно и вазоспастической стенокардии.

Описание к рис. 11.4. Функции серотонина тромбоцитов. Высвобождение серотонина из тромбоцитов запускается их адгезией и агрегацией. В свою очередь, серотонин вызывает 1) активацию б-НТ^-рецепторов тромбоцитов и, врезультате, изменение формы и ускорение агрегации последних, 2) активацию 5-НТ,-по-добных рецепторов эндотелия с выделением эндотелиального фактора расслабления сосудов, 3) активацию S-HT^-peuenTO-ров гладких мышц сосудов и сужение последних. Все эти процессы протекают во взаимодействии со многими другими биологически активными веществами и в конечном счете приводят к остановке кровотечения.

Сердечно-сосудистая система . Типичная реакция кровеносных сосудов на серотонин - сужение. Особенно чувствительны к нему сосуды органов ЖКТ, почек, легких и головного мозга. Серотонин вызывает также сокращение гладких мышц бронхов. Его эффекты на сердце разнообразны, что объясняется активацией разных подтипов серотониновых рецепторов, изменением тонуса вегетативных нервов и рефлекторными реакциями (Saxena and Villalon, 1990). Так, прямое положительное хронотропное и инотропное действие серотонина на сердце может быть замаскировано эффектами возбуждения волокон, идущих от барорецепторов и хеморецепторов. Влияние серотонина на афферентные окончания блуждающих нервов вызывает рефлекс Бецольда-Яриша, проявляющийся резкой бради-кардией и падением АД. Иногда артериолы под действием серотонина не сужаются, а, напротив, расширяются в результате выделения эндотелиального фактора расслабления сосудов и простагландинов, а также подавления высвобождения норадреналина из симпатических окончаний. С другой стороны, сам по себе серотонин усиливает сосудосуживающее действие норадреналина, ангиотензина 11 и гистамина. Это способствует еще более эффективному гемостатическому действию серотонина (Gershon, 1991).

Таблица 11.2. Некоторые эффекты серотонина на ЖКТ.

ЖКТ . Видимо, основным источником и хранилищем серотонина в организме служат энтерохромаффинные клетки слизистой ЖКТ. Выделяемый этими клетками серотонин поступает через воротную вену в печень, где метаболизируется под действием МАО A (Gillis, 1985). Какое-то количество серотонина минует печеночный метаболизм, но быстро захватывается эндотелием легочных капилляров и также подвергается действию МАО. Серотонин, выделяющийся в стенку органов ЖКТ при их механическом растяжении или возбуждении блуждающих нервов, участвует в местной регуляции этих органов. Под влиянием серотонина моторика желудка и кишечника может как усиливаться, так и тормозиться (Dhasmana et al., 1993), так как в ЖКТ имеются по меньшей мере 6 подтипов серотониновых рецепторов (табл. 11.2). Стимулирующий эффект серотонина обусловлен его действием на окончания нервов, подходящих к продольным и циркулярным мышечным слоям (5-НТ4-рецепторы), на интрамуральные нейроны (5-HTj- и 5-НТ|Р-рецепторы) и непосредственно на гладкие мышцы (5-НТ^-рецепторы в кишечнике и 5-НТ2В-рецепторы в дне желудка). В пищеводе серотонин действует на 5-НТ4-рецепторы, что у разных видов животных может сопровождаться как сокращением, так и расслаблением гладких мышц. 5-НТ3-рецепторы (в изобилии присутствующие на окончаниях чувствительных волокон блуждающих и других нервов, а также на энтерохромаффинных клетках) играют ключевую роль в рвотном рефлексе (Grunberg and Hesketh,1993). В межмышечном сплетении обнаружены серотонинергические окончания. Высвобождение серотонина в кишечнике вызывают ацетилхолин, раздражение симпатических нервов, повышение внутрикишечного давления и снижение pH (Gershon, 1991). Выделяющийся при этом серотонин, в свою очередь, запускает перистальтическое сокращение.

ЦНС . Серотонин влияет на многие функции ЦНС, в том числе сон, познавательную деятельность, восприятие, управление движениями, терморегуляцию, болевую чувствительность, аппетит, половое поведение и эндокринную регуляцию. В головном мозге обнаружены все клонированные серотониновые рецепторы, причем часто в одном и том же отделе присутствуют несколько таких рецепторов. Более того, хотя экспрессия серото-ниновых рецепторов в отдельных нейронах изучена недостаточно, можно полагать, что на одном и том же нейроне могут располагаться несколько подтипов этих рецепторов, причем их активация может сопровождаться как синергичными, так и антагонистическими эффектами. Это может быть причиной необычайного разнообразия влияний серотонина на мозговые функции.

Основная область сосредоточения тел серотонинергических нейронов в ЦНС - это ядра шва ствола мозга. Отростки этих нейронов идут ко всем отделам головного и спинного мозга (гл. 12). Серотонин выделяется не только в пресинаптических окончаниях, но и в так называемых варикозных расширениях аксонов, где четко выраженных синапсов нет (Descarries et al., 1990). В этих случаях он действует сразу на многие прилежащие структуры. Такая особенность выделения и действия серотонина согласуется с распространенной точкой зрения о том, что серотонин - это не только медиатор, но и нейромодулятор (гл. 12).

В окончаниях серотонинергических нейронов имеются все компоненты, необх

2590 0

Агонисты серотониновых рецепторов

Агонисты серотониновых рецепторов - триптаны - суматриптану золмитриптан, наратриптан купируют паретическую вазодилатацию, нормализуют тонус паретичных артерий при приступе мигрени.

Антагонисты серотониновых рецепторов (кетансерин, ритансерин), действующие преимущественно на ЦНС, применяют для лечения гипертонической болезни, атеросклероза с артериальной гипертензией, заболеваний с ангиоспазмами периферических артерий - болезни Рейно и перемежающейся хромоты.

Ципрогептадин, пизотифен, празохром назначают в межприступный период мигрени.

Средства, действующие преимущественно на гладкие мышцы сосудов, в зависимости от влияния на ферментные системы (аденилатциклаза, ФДЭ) относятся к разным фармакологическим классам: производные изохинолина, имидазола (папаверин, но-шпа), производные пурина (ксантина - эуфиллин, пентоксифиллин), малого барвинка (винпоцетин, винкапан, винкатон).

Они оказывают спазмолитическое действие, однако при исходно сниженном тонусе артерий дают вазотонический, венотонический эффект. Последняя способность особенно выражена у производных пурина (ксантина). Фармакотерапевтический эффект связан также и с влиянием препаратов на текучесть крови, агрегационную способность тромбоцитов, а также с ноотропным действием.

Механизм действия нитратов связывают с образованием оксида азота («эндотелиальный расслабляющий фактор»), который в свою очередь уменьшает внутриклеточное содержание Са в гладкой мускулатуре. Дилататорный эффект нитратов больше сказывается на венах. Переполнение внутричерепной венозной системы вызывает распирающую головную боль.

Блокаторы кальциевых каналов

Блокаторы кальциевых каналов (антагонисты кальция) (БКК) препятствуют поступлению Са в гладкомышечную клетку снижают тонус коронарных и периферических сосудов, уменьшают сократимость миокарда, подавляют образование и проведение электрических импульсов по проводящей системе сердца. Полагают, что действие одного из них - нимодипина сказывается преимущественно на церебральных артериях.

Гибель нейронов при отеке мозга, вызванном ишемией и гипоксией определяется не только накоплением ионов Na , но и значительным повышением внутриклеточной концентрации ионов Са. Поэтому блокаторы кальциевых каналов играют протективную роль, предупреждая гибель отечного нейрона в условиях ишемической гипоксии и отека мозга.

Традиционно более широко применяются нифедипин (особенно в быстродействующей форме - адалат), нимодипин (нимотоп), амлодипин (норваск).

Широко применяются препараты пролонгированного действия: на базе верапамила - веракард, изоптин SR 240, верогалид ЕР 240, лекоптин, финоптин, фламон; на базе дилтиазема - блокальцин 90 ретард, дильцем, кардил, этизем; на базе нифедипина - адалат SL, зенусин, кордафлекс, кордипин ретард, коринфар ретард, нифекард XL.
Все БКК применяются для лечения АГ и стенокардии. Не исключен их эффект как протекторов нейронов при ишемической гипоксии.

Наиболее частыми побочными эффектами производных дигидропиридина являются связанные с вазодилатацией прилив жара и головная боль, отек лодыжек, который лишь частично уменьшают диуретики.

Ингибиторы ангиотензинпревращающего фермента

Ингибиторы ангиотензинпревращающего фермента (ИАПФ) тормозят образование прессорного пептида - ангиотензина II. Несмотря на снижение системного АД, мозговой кровоток и его регуляция обычно не меняются. ИАПФ снижаютриск кровоизлияния и отека мозга при артериальной гипертензии, по-видимому, вследствие уменьшения фибриноидных изменений и некроза сосудистой стенки.

У больных с артериальной гипертензией и очаговыми поражениями мозга при лечении ИАПФ на фоне снижения системного АД мозговой кровоток увеличивается на 10%. Природный ИАПФ тепротид купирует спазм артерий мозга при субарахноидальном кровоизлиянии.

Снижение системного артериального давления и периферического сосудистого сопротивления ведет к снижению нагрузки на сердце и увеличивает сердечный выброс. ИАПФ снижают содержание альдостерона, что приводит к выведению из организма ионов натрия и задержке ионов калия. Расширяется периферическое русло, уменьшается венозный возврат крови к сердцу. Уменьшение ангиотензина II не только в плазме, но и в мышце сердца предупреждает дилатацию левого желудочка и его гипертрофию.

Группа ИАПФ включает такие препараты, как квинаприл (аккупро), лизиноприл (диротон, принивил, даприл), моэксиприл (люэкс), периндоприл (престариум, ковсрекс), рамиприл (тритаце, кориприл), трандолаприл (гоптен), фозиноприл (моноприл), цилазаприл (инхибейс, прилазид). Последние 4 препарата отличаются пролонгированным действием, для поддержания терапевтического эффекта достаточно одного приема в сутки.

Препарат периндоприл в условиях мультицентрового рандомизированного исследования [в течение 1,5-3 лет] показал способность, надежно контролируя АД, снизить число геморрагических инсультов в 2 раза.
ИАПФ применяют при артериальной гипертензии, особенно реноваскулярного генеза, при гипертоническом кризе, застойной сердечно-сосудистой недостаточности , ангиоспастической форме болезни Рейно, ДЭП с артериальной гипертензией или застойной сердечной недостаточностью.

При этих формах ИАПФ нередко более эффективны, чем симпатолитики, действующие на симпатические окончания, а-блокаторы и антагонисты кальция. При длительном лечении возможны слабость, головная боль, головокружение, протеинурия, анемия, лейкопения, тромбоцитопения, гиперкалиемия (особенно в сочетании с гепарином), ангионевротический отек, извращение или утрата вкусовых ощущений.

Комбинация ИАПФ с другими антигипертензивными средствами, в том числе с антагонистами кальция, в-блокаторами и диуретиками, повышает их эффективность. НСПВС, особенно индометацин, снижают антигипертензивное действие ИАПФ. При внезапной отмене ИАПФ резко повышается АД (синдром отмены), вновь появляется артериальная гипертензия, повышается диастолическое АД.

Антагонисты (блокаторы) ангиотензин (AT) Н-рецепторовбло-кируют действие AT II на его рецепторы в гладкой мускулатуре артерий и купируют его вазоконстрикторный эффект. Таким образом, точкой приложения их действия оказывается последнее звено вазоконстрикторной системы ангиотензиноген-ангиотензин II. В отличие от ИАПФ они не тормозят расщепление брадикинина и других кининов и поэтому их действие не сопровождается кашлем.

В ряду этих препаратов: вальсартан (диован), ирбесартан (апра-вель), лозартан (козаар), кандесартан (атаканд), телмисартан (микардис, прайтор), эпросартан (теветен). Из побочных эффектов отмечают симптоматическую артериальную гипотензию, возможность гиперкалиемии. Необходима предосторожность при стенозе почечных артерий, при стенозе аортального и митрального клапанов, при обструктивной кардиомиопатии. Мультицентровые исследования сравнительной эффективности блокаторов Ат П-рецепто-ров не проводились.

Ингибиторы циклооксигеназы

Ингибиторы циклооксигеназы - НСПВС подробно рассмотрены в главе об анальгезирующих и местноанестезирующих средствах.

Препараты с комплексным вазоактивным и нейрометаболическим действием. Совершенно очевидно, что вазоактивные средства, улучшающие системное и мозговое кровообращение, улучшают и обменные процессы. В тоже время ряд лекарственных средств обладает «прямым» метаболическим, ноотропным свойством. Такие препараты целесообразно называть средствами с вазоактивным и нейрометаболическим действием. Примером таких лекарств можно назвать актовегин.

Актовегин представляет собой депротеинезированный гемоде-риват крови телят. Кроме деривата содержит производные нуклеиновых кислот, электролиты и микроэлементы (натрий, кальций, фосфор, магний), аминокислоты, липиды, олигосахариды. Актовегин является мощным антигипоксантом благодаря способности активировать метаболизм глюкозы и кислорода. При этом повышается устойчивость ткани к гипоксии и стимулируется энергетический метаболизм клетки, особенно значительно в условиях ишемии и гипоксии.

Препарат рекомендуют при разных формах цереброваскулярных расстройств, при энцефалопатии разного генеза, а также больным с соматическими, хирургическими, гинекологическими, эндокринными заболеваниями и в критических состояниях.

Актовегин можно сочетать (не в одном шприце!) с другими ва-зоактивными препаратами: эуфиллином, пентоксифиллином, инстеноном. При этом общая эффективность возрастает даже в случае меньших доз каждого из сочетаемых препаратов.

К числу препаратов с метаболическим и вазоактивным действием можно отнести винпоцетин (кавинтон), циннаризин (стугерон), пентоксифиллин (трентал), дигидроэрготоксин (редергин), ницерголин (сермион), танакан, а также такой комплексный препарат, как инстенон.

Гиполипидемические средства показаны при атеросклерозе любой локализации с уровнем холестерина плазмы крови более 5 ммоль/л или холестеринаболее 3 ммоль/л. Терапия, ведущая к снижению уровня холестерина липопротеидов низкой плотности (ЛПНП) и повышению холестерина ЛПВП, замедляет прогрессирование атеросклероза и даже может способствовать его регрессу. Снижение холестерина ЛПНП на 25-35% играет большую роль в первичной и вторичной профилактике ИБС, атеросклероти-ческой дисциркуляторной энцефалопатии.

Гиполипидемическими свойствами обладают препараты разных фармакологических групп: статины - ловастатин, аторвастатин, правастатин, симвастатин; фибраты - фенофибрат, ципрофибрат; ионообменные смолы - гемфиброзил, холестирамин, а также никотиновая кислота. Выбор гиполипидемических средств и продолжительность лечения определяется кардиологом. Об эффективности судят по данным липидограмм.