Где формируются эритроциты. Механизмы реализации путей гибели клетки

Эритроци́ты также известные под названием кра́сные кровяны́е тельца́ , -клетки крови человека. Эритроциты - высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO 2) в обратном направлении. У позвоночных, кроме млекопитающих, эритроциты имеют ядро, у эритроцитов млекопитающих ядро отсутствует.

Наиболее специализированы эритроциты млекопитающих, лишённые в зрелом состоянии ядра и органелл и имеющие форму двояковогнутого диска, обусловливающую высокое отношение площади к объёму, что облегчает газообмен. Особенности цитоскелета и клеточной мембраны позволяют эритроцитам претерпевать значительные деформации и восстанавливать форму (эритроциты человека диаметром 8 мкм проходят через капилляры диаметром 2-3 мкм).

Транспорт кислорода обеспечивается гемоглобином (Hb), на долю которого приходится ≈98 % массы белков цитоплазмы эритроцитов (в отсутствии других структурных компонентов). Гемоглобин является тетрамером, в котором каждая белковая цепь несёт гем - комплекс протопорфирина IX с ионом двухвалентного железа, кислород обратимо кординируется с ионом Fe 2+ гемоглобина, образуя оксигемоглобин HbO 2:

Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование - стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты - промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся. Содержимое эритроцита представлено главным образом дыхательным пигментом гемоглобином, обусловливающим красный цвет крови. Однако на ранних стадиях количество гемоглобина в них мало, и на стадии эритробластов цвет клетки синий; позже клетка становится серой и, лишь полностью созрев, приобретает красную окраску.

Важную роль в эритроците выполняет клеточная (плазматическая) мембрана, пропускающая газы (кислород, углекислый газ), ионы (Na, K) и воду.Плазмолемму пронизывают трансмембранные белки - гликофорины, которые, благодаря большому количеству остатков сиаловой кислоты, ответственны примерно за 60 % отрицательного заряда на поверхности эритроцитов.

На поверхности липопротеидной мембраны находятся специфические антигены гликопротеидной природы - агглютиногены - факторы систем групп крови(на данный момент изучено более 15 систем групп крови: AB0, резус фактор, антиген Даффи (англ.)русск., антиген Келл, антиген Кидд (англ.)русск.), обусловливающие агглютинацию эритроцитов при действии специфических агглютининов.



Эффективность функционирования гемоглобина зависит от величины поверхности соприкосновения эритроцита со средой. Суммарная поверхность всех эритроцитов крови в организме тем больше, чем меньше их размеры. У человека диаметр эритроцита составляет 7,2-7,5 мкм, толщина - 2 мкм, объём - 76-110 мкм³ Мембрана эритроцита представляет собой пластичную молекулярную мозаику, состоящую из белков, липопротеинов и гликопротеинов и, возможно, чисто липидных участков. Толщина ее составляет около 10 нм, она примерно в миллион раз более проницаема для анионов, чем для катионов. Перенос веществ через мембрану совершается в зависимости от их химических свойств разными способами: гидродинамически (путем диффузии), когда вещества, как в растворе, проходят через заполненные водой мембранные поры, или, если вещества растворимы в жирах, путем проникновения через липидные участки. Некоторые вещества способны вступать в легко обратимые связи со встроенными в мембрану молекулами - переносчиками, и в дальнейшем они или пассивно, или в результате так называемого активного транспорта проходят через мембрану.

45.Образование эритроцитов. Факторы, участвующие в образовании эритроцитов и гемоглобина, регуляция эритропоэза. СОЭ, ключевые факторы, определяющие величину СОЭ.

главным стимулом развития эритроцитов яв-ся гипоксия. Гипоксия – снижение сод-ия кислорода в тканях. Дефицит О2 способствует обр-ию эритропоэтинов в эпителие почек. Эритропоэтины поступают в кровь, затем в ККМ, где стимулируют диф-ку и развитие стволовых клеток в эритроциты. Регуляцией эритропоэза зан-ся витамин в12 и фолиевая кислота. Эти витамины необходимы для созревания и развития ядра клетки. Витамин в12 связывается в желудке с белком переносчиком и оьразуется транскобаламин и перенсится в 12 п.к.. Там он подвергается гидролизу, а вит. В12 с внутренним фактором кроветворения пост-ет в подвздошную кишку. В этом отделе в присутствий Са2+ связывается с мембраной энтероцита. Попадает вв кровь, и транспортируется к к-мишеням. Витамин В12 уч-ет в синтезе ДНК в эритробластах. Витамин в6 - кофермент, уч-ий в обр-ий гема в эритробластах. Витамин С – способствует метаболизму фолиевой кислоты в эритробластах. СОЭ – неспециический показатель на наличие болезни, т.к. повышается уровень белков плазмы крови и скорость оседания эритроцитов повышается. В норме от 5 до 10 мм/час.

1

В миниобзоре приведены сведения об основных результатах исследования эритроцитарных белков. Обсуждается строение и функции комплексов белка 4.1.R и белка 3 полосы, результаты исследованиябелков – транспортеров, включая роль аквапорина 1 в транспорте двуокиси углерода. Обсуждается представления о механизме Gárdos эффекта в эритроцитах. Приведены сведения об интерактоме белков цитозоля эритроцитов. Обсуждаются вопросы развития окислительного стресса в эритроцитах включая, роль белка пероксиредоксина 2. Показано участие гемоглобина в механизмах старения эритроцитов.

эритроциты

гемоглобин

окислительный стресс

1. Миндукшев И.В., Кривошлык В.В., Добрылко И.А. и др. // Биологические мембраны. – 2012. – Т.27, № 1. – С. 23–28.

2. Barvitenko N.N., Adragna N.C., Weber R.E. Erythrocyte Signal Transduction Pathways, their Oxygenation Dependence and Functional Significance // Cell Physiol Biochem – 2005. – № 15. –P. 1–18.

3. Baines A.J. Evolution of spectrin function in cytoskeletal and membrane networks // Biochem Soc Trans. – 2009. – Vol. 37(Pt 4). – P. 796–803.

4. Blank ME, Ehmke H. Aquaporin-1 and HCO3(-)-Cl- transporter-mediated transport of CO2 across the human erythrocyte membrane // Physiol. – 2003. – Vol. 550(Pt 2). – P. 419–429.

5. Brazhe N.A., Abdali S, Brazhe A.R., Luneva O.G. et al. //Biophys J. – 2009. – Vol. 97(12). – P. 3206–3214.

6. Bruce L.J., Beckmann R., Ribeiro M.L., Peters L.L. et al. // Blood. – 2003. – Vol. 101, № 10. – P. 4180–4188.

7. Burak Çimen M.Y. Free radical metabolism in human erythrocytes // Clinica Chimica Acta. – 2008. – Vol. 390, № 1–2. –P. 1–11.

8. Blodgett DM, Graybill C, Carruthers A. Analysis of glucose transporter topology and structural dynamics // J Biol Chem. – 2008. – № 283: 36416–36424.

9. Campanella M.E., Chu H., Low P.S. Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane // PNAS. – 2005. –Vol. 102, № 7. – P. 2402–2407.

10. Davies J.A. Degradation of oxidized proteins by the 20S proteasome // Biochimie. – 2001. – Vol. 83. – P. 301–310.

11. D’Alessandro A, Righetti PG, Zolla L. The red blood cell proteome and interactome: an update // Proteome Res. – 2010. – Vol. 9 (1). – P. 144–163.

12. Endeward, V., Musa-Aziz, R., Cooper, G. J., Chen, L. et al. // The FASEB Journal. – 2006. – Vol. 20, № 12. – P. 1974–1981.

13. Gauthier E, Guo X, Mohandas N, An X. Phosphorylation-dependent perturbations of the 4.1R-associated multiprotein complex of the erythrocyte membrane // Biochemistry. – 2011. –Vol. 50(21). – P. 4561–4567.

14. Goodman S.R. Kurdia A., Ammann L., Kakhniashvili D., Daescu O. // Exp Biol Med. – 2007. – Vol. 232, №11. – P. 1391–1408

15. Ian A. Lewis, M. Estela Campanella, John L. Markley and Philip S. Low Role of band 3 in regulating metabolic flux of red blood cells // PNAS. – 2009. –Vol. 106, № 44. – P. 18515–18520.

16. Lang P.A., Kaiser S., Myssina S., Wieder T., Lang F., Huber S.M. // Am J Physiol Cell Physiol. – 2003. – Vol. 285(6). –P. 1553–1560.

17. Lang F., Lang K.S., Wieder T., Myssina S. et al. // Pflugers Arch. – 2003. – Vol. 447(2). – P. 121–125.

18. Li H.T., Feng L., Jiang W.D., Liu Y. et al. // Aquat Toxicol. – 2013. –Vol. 126. – P. 169–179.

19. Low F.M., Hampton M.B., Peskin A.V., Winterbourn C.C. Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte // Blood. – 2007. –Vol. 109(6). – P. 2611–2617.

20. Low F.M., Hampton M.B., Winterbourn C.C. Peroxiredoxin 2 and peroxide metabolism in the erythrocyte // Antioxid Redox Signal. – 2008. – Vol. 10(9). – P. 1621–1630.

21. Mairbäurl H., Weber R.E. Oxygen Transport by Hemoglobin // Physiol. – 2012. – Vol. 2. – P. 1463–1489.

22. Maher A.D., Kuchel P.W. The Gárdos channel: a review of the Ca2 + -activated K + channel in human erythrocytes // Int J Biochem Cell Biol. – 2003. – Vol. 35(12). – P. 1182–1197.

23. Manno S., Takakuwa Y., Mohandas N. Modulation of erythrocyte membrane mechanical function by protein 4.1 phosphorylation. // J Biol Chem. – 2005. – Vol. 280. – P. 7581–7582.

24. Manta B., Hugo M, Ortiz C., Ferrer-Sueta G., Trujillo M., Denicola A. // Arch Biochem Biophys. – 2009. – Vol. 484(2). – P. 146–154.

25. Matarrese P., Straface E., Pietraforte D., Gambardella L., et al. // FASEB J. – 2005. – Vol. 19, № 3. – P. 416–418.

26. Metere A, Iorio E, Pietraforte D, Podo F, Minetti M. Arch Biochem Biophys. – 2009. – Vol. 484(2). – P. 173–82.

27. Neelam S., Kakhniashvili D.G., Wilkens S., Levene S., Goodman S.R. // Exp Biol Med – 2011. – Vol. 236, № 5. – P. 580–591.

28. Nunomura W., Takakuwa Y., Parra M., Conboy J. Mohandas N. // J. Biol. Chem. – 2000. – Vol. 275. – P. 24540–24546.

29. Nunomura W., Takakuwa Y. Regulation of protein 4.1R interactions with membrane proteins by Ca2 + and calmodulin // Front Biosci. – 2006. – Vol. 11. – P. 1522–1539.

30. Puchulu-Campanella E, Chu H, Anstee D.J et al. // J.Biol Chem. – 2013. – Vol. 288(2). – P. 848–858.

31. Takakuwa Y. Protein 4.1, a multifunctional protein of the erythrocyte membrane skeleton: structure and functions in erythrocytes and nonerythroid cells. // Int J Hematol. – 2000. – Vol. 72(3). – P. 298–309.

32. Rinehart J., Gulcicek E.E., Joiner C.H., Lifton R.P., Gallagher P.G. // Curr Opin Hematol. –2010. – Vol. 17(3). – P. 191–197.

33. Rocha S., Costa E., Coimbra S., Nascimento H. et al. //Blood Cells Mol Dis. – 2009. – Vol. 43(1). – P. 68–73.

34. Salomao M., Zhang X., Yang Y., Lee S. et al. //Proc Natl Acad Sci. – 2008. – Vol. 10, № 105(23). – P. 8026–8031.

Достижения протеомики существенно расширили наши представления об индивидуальных белках, строении и функциях макромолекулярных белковых комплексах в эритроцитах. На мембране эритроцитов обнаружены макромолекулярные ассоциаты, которые названы комплекс белка 4.1.R и комплекс белка 3 полосы. Предложена модель организации макромолекулярного комплекса цитоскелетных и трансмембранных белков с участием белка 4.1 R. По горизонтали белок 4.1 R. взаимодействует с актином, спектрином и белком p55, причем последний определяет узловые соединения между мембраной и компонентами цитоскелета. По вертикали белок 4.1 R взаимодействует с цитоплазматическим доменом трансмембранного белка гликофорина С, белком 3 полосы и CD44, что создает своего рода мостик между сетью белков и мембранным бислоем . Основная функция комплекса белка 4.1 R - определение механических свойств и деформируемость мембран эритроцитов. Высказано предположение, что нарушения этого комплекса детерминируют не только нестабильность эритроцитарных мембран, но и ремоделирование поверхности красных клеток. . Проводятся исследования по выявлению факторов, регулирующих множественные белок - белковые взаимодействия в комплексе белка 4.1 R. Одним из таких факторов является фосфорилирование белка 4.1 R с участием протеинкиназы С. В результате снижается способность белка 4.1 R образовывать комплекс со спектрином и актином, диссоциация от гликофорина С, что приводит к изменению механических свойств мембран эритроцитов . Высказано мнение, что эластичность мембраны эритроцитов в большей степени зависит от динамической перестройки комплекса димеры спектрина/тетрамеры спектрина по влиянием сдвига напряжения в кровотоке .

Белок 3 полосы формирует основу (кор) для макромолекулярного комплекса интегральных и периферических белков мембраны эритроцитов. Первоначально было предположено, что этот комплекс функционирует как интегрированная структурная единица (метаболон) для обмена CO2/O2 в эритроцитах . Более поздними исследованиями показано, что тетрамер белка 3 полосы связан с анкирином, который, в свою очередь, взаимодействует со спектрином. Трансмембранные гликопротеины GPA, Rh, RhAG связываются с белком 3 полосы, тогда как CD47 and LW взаимодействуют с Rh/RhAG. Два цитоплазматических домена белка 3 полосы имеют сайты связывания растворимых белков. Причем большой N -концевой терминальный домен имеет сайты связывания как для дезоксигемоглобина, так и для ряда ферментов гликолиза (глицеральдегид-3-фосфатдегидрогеназа и альдолаза). Предположительно, взаимодействие ферментов гликолиза с доменом белка 3 полосы проходит при участии стыковочных белков. С-терминальный участок связывает карбоангидразу II. Связывание карбоангидразы II приводит к двум событиям: поглощению углекислого газа и высвобождение кислорода из гемоглобина. В условиях высокой оксигенации связывание гликолитических ферментов с белком 3 полосы ингибирует гликолиз при усилении пентозофосфатного пути. В условиях низкой оксигенации взаимодействие дезоксигемоглобина с белком 3 полосы приводит к усилению гликолиза и снижению пентозофосфатного пути. Расширены представления о роли 2, 3 -дифосфоглицерата. Этот метаболит взаимодействует с комплексом спектри-актин-белок 4.1, способствует взаимодействию с комплексом спектрин-антин-белок 4.1 .

Получены новые данные о мембранных белках - транспортерах. Наряду с известными транспортерами, такими как Nа+, К+-АТФ-аза и Са2+-АТФ-аза, показано присутствие Na+/K+/2Cl− кo-транспортера и транспортера глюкозы. Относительно последнего мнения расходятся. По одним представлениям, транспортер глюкозы представлен GLUT1 1 , по другим - GLUT1, GLUT3, GLUT4 . Есть сведения об участии в переносе глюкозы гликофорина А . Также было предположено наличие других транспортеров, в частности, водород-лактат котранспортера. Приведены данные, подтверждающие наличие белка - транспортера XK, участвующего в переносе аминокислот и олигопептидов .

В мембранах эритроцитов обнаружено присутствие аквапорина 1. Blank ME и Ehmke H. показали, что не только HCO3(-)-Cl- транспортер, но и аквапорин 1 эритроцитов непосредственное принимает участие в транспорте двуокиси углерода через мембрану эритроцита . Endeward V. привели данные, демонстрирующие, что через аквопорин 1 переносится до 60 % углекислого газа, что позволяет рассматривать аквопорин как основной путь поступления CO2 в эритроцит

Для эритроцитов обнаружен феномен выхода ионов калия (Ca(2+)-dependent K(+) efflux). Ответственным за этот эффект (Gárdos effect) является специфический канальный мембранный белок (Gárdos channel), активатором которого являются ионы кальция . Одной из функций Ca(2+)-dependent K(+) каналов является их участие в регуляции апоптоза эритроцитов . Начато изучение функции неселективных катионных каналов в регуляции объема клетки. По представлениям Lang F и соавт. . в эритроцитах человека неселективные катионные каналы открываются при осмотическом сморщивании клеток. Также среди стимуляторов активации каналов называют окислительный стресс и гипоэнергетическое состояние. Катионные каналы проницаемы для кальция и их открытие приводит к увеличению уровня кальция в цитозоле. Ионы кальция, поступающие через катионный канал, стимулируют активацию скрамблазы, что ведет к разрушению асимметрии фосфатидилсерина в мембранах эритроцитов и стимулирует Ca(2+)-зависимый выход K(+), что приводит к потере ионов калия и сморщиванию клеток. Нарушение асимметрии фосфатидилсерина подтверждается связыванием аннексина, что является признаком апоптозных клеток. Экспозиция фосфатидилсерина на внешней стороне мембраны эритроцитов стимулирует фагоциты к поглощению апоптозных эритроцитов .

Rinehart J и соавт. высказали мнение, что KCl котранспорт и активация Gardos каналов играет большую роль в регуляции водно-солевого баланса в эритроцитах .

В цитозоле эритроцитов содержится большое количество белков. По данным , с помощью протеомных технологий идентифицирован 751 белок. Это позволило определить степень взаимодействия и взаимного влияния этих белков (интерактом). Обращает внимание наличие определенных кластеров, один из которых авторы назвали ROD Box (Repair Or Destroy). Этот бокс содержит белки, которые, используя энергию АТФ, участвуют в рефолдинге поврежденных белков. В состав этого бокса входят шапероны и белки протеасомных субъединицы, белки теплового шока . Исследованием показано наличие действующих 20S протеосом (независимых от АТФ и убиквитина) в зрелых эритроцитах. Авторы ставят закономерный вопрос о причинах сохранения этих протеосом в зрелых эритроцитах. Высказано предположение, что 20S протеасомы более устойчивы к окислительному стрессу . Другим вопросом является существование убиквитинзависимой претолитической деградации белков в эритроцитах.

Присутствие в мембранах полиненасыщенных жирных кислот, среда, богатая кислородом и содержащая железо, делает эритроциты подверженными окислительному стрессу. Источником АФК в эритроцитах является аутоокисление гемоглобина, в результате образуется супероксиданионы (O2.−). При этом гемоглобин превращается метгемоглобин. Кроме супероксиданионов образуется пероксид водорода и другие активные формы кислорода (реакции Габера-Вейса и Фентона). Активные формы кислорода индуцируют активацию перекисного окисления липидов, окислительное повреждение белков эритроцитов, т.е. способствуют развитию окислительного стресса.

Образование МДА способствует формированию перекрестных сшивок между фосфолипидами и белками мембраны. Результатом является нарушение функции мембраны, деформабильности клетки и ограничение жизни эритроцита. Наиболее чувствительны к образованию МДА белки - транспортеры ионов и белок 3 полосы, а также глицероальдегид-3 - фосфатдегидрогеназа и фосфофруктокиназа. Предполагается, что критичным звеном для выживания эритроцита является окислительное повреждение Са2 + АТФ-зы . Увеличение образования пероксида водорода способствует увеличению метгемоглобина, ПОЛ и комплексов спектрин - гемоглобин. При взаимодействии супроксиданионов с оксидом азота образуется пероксинитрит. Пероксинитрит вызывает множественные внутриэритроцитарные изменения, включая повреждение цитоскелета, мембранных белков, индуцирует образование метгемоглобина и способствует активации различных протеаз . Кроме того, под действием пероксинитрита происходит экспонирование фосфатидилсерина на наружном слое мембраны эритроцита . Пероксинитрит индуцирует фосфорилирование тирозина белка 3 полосы и одновременно ингибирует активность мембраносвязанного белка, фосфотирозинфосфатазы. Результатом этих параллельных эффектов пероксинитрита является активация гликолиза . Помимо пероксинитрита феномен индукции апоптоза эритроцитов был показан для гидроксильных радикалов .

От окислительного стресса эритроциты защищают мембраносвязанные протеиназы, ферменты АОЗ и другие белки . В настоящее время большое внимание уделяется изучению белка пероксиредоксин 2 (Prx2), как одному из важнейших белков антиоксидантной защиты эритроцитов. Prx2 - это тиол-зависимая пероксидаза. В комбинации с каталазой и глутатионпероксидазой Prx2 составляют эффективную систему для утилизации пероксида водорода, образующегося в низких концентрациях при аутоокислении гемоглобина. Восстановленная форма пероксиредоксина поддерживается тиоредоксинредуктазой, но активность последней достаточно низкая. Prx2 обладает высокой чувствительностью к окислению пероксидом водорода. Предложена модель каталитического цикла Prx2, состоящая из трех стадий. Интересно отметить, что этот цикл требует 2 конформационных состояния: полный фолдинг с формированием активного центра и локальный дефолдинговая форма, которая требуется для восстановления Prx2 . Помимо функции некаталитического скэвэнджера пероксида водорода пероксиредоксин регулирует транспорт ионов, связываясь с мембраной эритроцита и активируя Gárdos каналы, но механизм этого процесса пока не ясен . Увеличение внутриклеточного пероксида водорода приводит к увеличению доли мембраносвязанного гемоглобина и активации перекисного окисления липидов. Связывание Prx2 с мембраной также возрастало при увеличении концентрации пероксида водорода. Значение этого явления ясно не до конца. Тем не менее, по мнению авторов, хотя рост мембраносвязанного гемоглобина и мембраносвязанного Prx2 являются двумя независимыми процессами, но оба этих события являются маркерами окислительного стресса эритроцитов .

Появились новые данные о локализации гемоглобина внутри эритроцита. Согласно Brazhe NA и соавт. существует 2 популяции гемоглобина в эритроцитах: субмембранная и цитозольная. При этом конформация молекул субмембранного гемоглобина отличается от таковой цитозольной фракции . Требуется дальнейшие исследования этого феномена. Расширены представления об аллостерических регуляторах связывания кислорода с гемоглобином. По мнению Mairbäurl и Weber, регуляция обусловлена изменениями таких аллостерических эффекторов как протоны (H+), двуокись углерода (CO2), органические фосфаты и хлориды (Cl−) .

Большой интерес представляет обсуждение вопроса о роли гемоглобина в старении эритроцитов. Показано, что стареющие эритроциты аккумулируют окислительно -денатурированный гемоглобин, переокисленные липиды, высокомолекулярные агрегаты белки, теряют сиаловые кислоты. Эти процессы ведут к снижению фосфолипидной симметрии, образованию перекрестных связей спектрин-гемоглобин, агрегацию белка 3 полосы, увеличение гликированных конечных продуктов. Предположено, что взаимодействие гемоглобина, особенно, в условиях гипоксии с белком 3 полосы мембраны эритроцитов является критичным для изменения мембраны эритроцитов, что в свою очередь, является триггерным механизмом для удаления клеток из гемоциркуляции. Эти перестройки мембраны включают экспозицию антигенных сайтов, увеличение захода кальция в эритроциты, утечку калия из эритроцитов, что приводит к сморщиванию клеток и потерю деформабильности. Нерешенной проблемой является вероятное окислительное повреждение специфических белков мембран при окислительно-восстановительных реакциях, которые имеют место при связывании гемоглобина с мембраной . Дальнейшие протеомные исследования могут выявить специфические белки, участвующие в механизмах старения эритроцитов.

Имеются фактические данные о развитии апоптоза эритроцитов. В обзоре приведено достаточно подробное описание сигнальных путей включения апоптоза красных клеток. Согласно , первый путь связан с активацией циклооксигеназы, образованием простагландина Е2 и формированием катионных каналов. Второй путь связан с каскадной активацией сфингомиелиназы. Кроме того, процесс апоптоза эритроцитов может быть индуцирован пероксинитритом , гидроксильными радикалами , а также метгемоглобином . Также приведены результаты исследования, демонстрирующие взаимосвязь между изменением деформационных свойств мембран эритроцитов и запуском программы апоптоза .

Таким образом, накоплены данные, расширяющие представления о метаболических процессах в эритроцитах. В перспективе эти результаты могут быть использованы при интерпретации и прогнозирования изменения структуры и функций эритроцитов при различных патологических состояниях.

Библиографическая ссылка

Муравлёва Л.Е., Молотов-Лучанский В.Б., Клюев Д.А., Понамарева О.А., Калина А.С., Колебаева Г.Т. БЕЛКИ ЭРИТРОЦИТОВ. МИНИОБЗОР // Успехи современного естествознания. – 2013. – № 4. – С. 28-31;
URL: http://natural-sciences.ru/ru/article/view?id=31639 (дата обращения: 13.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Основная функция которых состоит в транспорте кислорода (О2) из легких в ткани и двуокиси углерода (СО2) из тканей в легкие.

Зрелые эритроциты не имеют ядра и цитоплазматических органелл. Поэтому они не способны к синтезу белков или липидов, синтезу АТФ в процессах окислительного фосфорилирования. Это резко уменьшает собственные потребности эритроцитов в кислороде (не более 2% от всего кислорода, транспортируемого клеткой), а синтез АТФ осуществляется в ходе гликолитического расщепления глюкозы. Около 98% массы белков цитоплазмы эритроцита составляет .

Около 85% эритроцитов, называемых нормоцитами, имеют диаметр 7-8 мкм, объем 80-100 (фемтолитров, или мкм 3) и форму — в виде двояковогнутых дисков (дискоциты). Это обеспечивает им большую площадь газообмена (суммарно для всех эритроцитов около 3800 м 2) и уменьшает расстояние диффузии кислорода до места его связывания с гемоглобином. Примерно 15% эритроцитов обладают различной формой, размерами и могут иметь отростки на поверхности клеток.

Полноценные «зрелые» эритроциты обладают пластичностью — способностью к обратимой деформации. Это позволяет им проходить но сосудам с меньшим диаметром, в частности, через капилляры с просветом в 2-3 мкм. Такая способность к деформации обеспечивается за счет жидкостного состояния мембраны и слабого взаимодействия между фосфолипидами, белками мембраны (гликофорины) и цитоскелетом белков внутриклеточного матрикса (спектрин, анкирин, гемоглобин). В процессе старения эритроцитов происходит накопление в мембране холестерола, фосфолипидов с более высоким содержанием жирных кислот, возникает необратимая агрегация спектрина и гемоглобина, что вызывает нарушение структуры мембраны, формы эритроцитов (из дискоцитов они превращаются в сфероциты) и их пластичности. Такие эритроциты не могут проходить через капилляры. Они захватываются и разрушаются макрофагами селезенки, а отдельные из них гемолизируются внутри сосудов. Гликофорины придают гидрофильные свойства наружной поверхности эритроцитов и электрический (дзета) потенциал. Поэтому эритроциты отталкиваются друг от друга и находятся в плазме во взвешенном состоянии, определяя суспензионную устойчивость крови.

Скорость оседания эритроцитов (СОЭ)

Скорость оседания эритроцитов (СОЭ) — показатель, характеризующий оседание эритроцитов крови при добавлении антикоагулянта (например, цитрата натрия). Определение СОЭ производят, измеряя высоту столбика плазмы над эритроцитами, осевшими в вертикально расположенном специальном капилляре за 1 ч. Механизм этого процесса определяется функциональным состоянием эритроцита, его зарядом, белковым составом плазмы и другими факторами.

Удельный вес эритроцитов выше, чем плазмы крови, поэтому в капилляре с кровью, лишенной возможности свертываться, они медленно оседают. СОЭ составляет у здоровых взрослых людей 1-10 мм/ч у мужчин и 2-15 мм/ч у женщин. У новорожденных СОЭ равно 1-2 мм/ч, а у пожилых людей — 1-20 мм/ч.

К основным факторам, влияющим на СОЭ, относят: количество, форму и размеры эритроцитов; количественное соотношение различных видов белков плазмы крови; содержание желчных пигментов и др. Повышение содержания альбуминов и желчных пигментов, а также повышение количества эритроцитов в крови вызывает возрастание дзета-потенциала клеток и уменьшение СОЭ. Увеличение содержания в плазме крови глобулинов, фибриногена, снижение содержания альбуминов и уменьшение количества эритроцитов сопровождается увеличением СОЭ.

Одной из причин более высокого значения СОЭ у женщин, по сравнению с мужчинами, является более низкое количество эритроцитов в крови женщин. СОЭ увеличивается при сухоядении и голодании, после вакцинации (вследствие увеличения содержания глобулинов и фибриногена в плазме), во время беременности. Замедление СОЭ может наблюдаться при повышении вязкости крови вследствие усиленного испарения пота (например, при действии высокой внешней температуры), при эритроцитозе (например, у жителей высокогорья или у альпинистов, у новорожденных).

Количество эритроцитов

Число эритроцитов в периферической крови взрослого человека составляет: у мужчин — (3,9-5,1)*10 12 клеток/л; у женщин — (3,7-4,9) . 10 12 клеток/л. Их количество в разные возрастные периоды у детей и взрослых отражено в табл. 1. У пожилых людей количество эритроцитов приближается в среднем к нижней границе нормы.

Увеличение количества эритроцитов в единице объема крови выше верхней границы нормы называется эритроцитозом : для мужчин — выше 5,1 . 10 12 эритроцитов/л; для женщин — выше 4,9 . 10 12 эритроцитов/л. Эритроцитоз бывает относительным и абсолютным. Относительный эритроцитоз (без активации эритропоэза) наблюдается при повышении вязкости крови у новорожденных (см. табл. 1), во время физической работы или действии на организм высокой температуры. Абсолютный эритроцитоз является следствием усиленного эритропоэза, наблюдаемого при адаптации человека к высокогорью или у тренированных на выносливость лиц. Эригроцитоз развивается при некоторых заболеваниях крови (эритремии) или как симптом других заболеваний (сердечной или легочной недостаточности и др.). При любом виде эритроцитоза обычно увеличивается содержание в крови гемоглобина и гематокрит.

Таблица 1. Показатели красной крови у здоровых детей и взрослых

Эритроциты 10 12 /л

Ретикулоциты, %

Гемоглобин, г/л

Гематокрит, %

МСНС г/100 мл

Новорожденные

1-я неделя

6 месяцев

Взрослые мужчины

Взрослые женщины

Примечание. MCV (mean corpuscular volume) — средний объем эритроцитов; МСН (mean corpuscular hemoglobin) среднее содержание гемоглобина в эритроците; МСНС (mean corpuscular hemoglobin concentration) — содержание гемоглобина в 100 мл эритроцитов (концентрация гемоглобина в одном эритроците).

Эритропения — это уменьшение количества эритроцитов в крови меньше нижней границы нормы. Она также может быть относительной и абсолютной. Относительная эритропения наблюдается при увеличении поступления жидкости в организм при не измененном эритропоэзе. Абсолютная эритропения (анемия) является следствием: 1) повышенного кроверазрушения (аутоиммунный гемолиз эритроцитов, избыточная кроверазрушающая функция селезенки); 2) понижения эффективности эритропоэза (при дефиците железа, витаминов (особенно, группы В) в пищевых продуктах, отсутствии внутреннего фактора Кастла и недостаточном всасывании витамина В 12); 3) кровопотери.

Основные функции эритроцитов

Транспортная функция заключается в переносе кислорода и углекислого газа (дыхательная или газотранспортная), питательных (белки, углеводы и др.) и биологически активных (NO) веществ. Защитная функция эритроцитов заключается в их способности связывать и обезвреживать некоторые токсины, а также участвовать в процессах свертывания крови. Регуляторная функция эритроцитов заключается в их активном участии в поддержании кислотно-основного состояния организма (рН крови) с помощью гемоглобина, который может связывать С0 2 (снижая тем самым содержание Н 2 С0 3 в крови) и обладает амфолитными свойствами. Эритроциты могут также участвовать в иммунологических реакциях организма, что обусловлено наличием в их клеточных мембранах специфических соединений (гликопротеинов и гликолипидов), обладающих свойствами антигенов (аглютиногенов).

Жизненный цикл эритроцитов

Местом образования эритроцитов в организме взрослого человека является красный костный мозг. В процессе эритропоэза из полипотентной стволовой гемопоэтической клетки (ПСГК) через ряд промежуточных этапов образуются ретикулоциты, которые выходят в периферическую кровь и превращаются через 24-36 ч в зрелые эритроциты. Срок их жизни — 3-4 месяца. Место гибели — селезенка (фагоцитоз макрофагами до 90%) или внутрисосудистый гемолиз (обычно до 10%).

Функции гемоглобина и его соединения

Основные функции эритроцитов обусловлены наличием в их составе особого белка — . Гемоглобин осуществляет связывание, транспорт и высвобождение кислорода и углекислого газа, обеспечивая дыхательную функцию крови, участвует в регуляции , выполняя регуляторную и буферную функции, а также придает эритроцитам и крови красный цвет. Гемоглобин выполняет свои функции лишь находясь в эритроцитах. В случае гемолиза эритроцитов и выхода гемоглобина в плазму он не может выполнять свои функции. Гемоглобин в плазме связывается с белком гаптоглобином, образующийся комплекс захватывается и разрушается клетками фагоцитирующей системы печени и селезенки. При массивном гемолизе гемоглобин удаляется из крови почками и появляется в моче (гемоглобинурия). Период его полу вы ведения составляет около 10 мин.

Молекула гемоглобина имеет две пары полипептидных цепей (глобин — белковая часть) и 4 гема. Гем — комплексное соединение протопорфирина IX с железом (Fe 2+), которое обладает уникальной способностью присоединять или отдавать молекулу кислорода. При этом железо, к которому присоединяется кислород остается двухвалентным, оно может легко окисляться также до трехвалентного. Гем является активной или так называемой простетической группой, а глобин — белковым носителем гема, создающим для него гидрофобный карман и защищающим Fe 2+ от окисления.

Существует ряд молекулярных форм гемоглобина. В крови взрослого человека содержатся НbА (95-98% НbА 1 и 2-3% НbA 2) и HbF (0,1-2%). У новорожденных преобладает HbF (почти 80%), а у плода (до 3-месячного возраста) — гемоглобин типа Gower I.

Нормальное содержание гемоглобина в крови мужчин составляет в среднем 130-170 г/л, у женщин — 120-150 г/л, у детей — зависит от возраста (см. табл. 1). Общее содержание гемоглобина в периферической крови равно примерно 750 г (150 г/л. 5 л крови = 750 г). Один грамм гемоглобина может связать 1,34 мл кислорода. Оптимальное выполнение эритроцитами дыхательной функции отмечается при нормальном содержании в них гемоглобина. Содержание (насыщение) в эритроците гемоглобина отражают следующие показатели: 1) цветовой показатель (ЦП); 2) МСН — среднее содержание гемоглобина в эритроците; 3) МСНС — концентрация гемоглобина в эритроците. Эритроциты с нормальным содержанием гемоглобина характеризуются ЦП = 0,8-1,05; МСН = 25,4-34,6 пг; МСНС = 30-37 г/дл и называются нормохромными. Клетки со сниженным содержанием гемоглобина имеют ЦП < 0,8; МСН < 25,4 пг; МСНС < 30 г/дл и получили название гипохромных. Эритроциты с повышенным содержанием гемоглобина (ЦП > 1,05; МСН > 34,6 пг; МСНС > 37 г/дл) называются гиперхромными.

Причиной гипохромии эритроцитов чаще всего является их образование в условиях дефицита железа (Fe 2+) в организме, а гиперхромии — в условиях недостатка витамина В 12 (цианокобаламин) и (или) фолиевой кислоты. В ряде районов нашей страны имеется низкое содержание Fe 2+ в воде. Поэтому у их жителей (особенно, у женщин) повышена вероятность развития гипохромной анемии. Для ее профилактики необходимо компенсировать недостаток поступления железа с водой пищевыми продуктами, содержащими его в достаточных количествах или специальными препаратами.

Соединения гемоглобина

Гемоглобин, связанный с кислородом, называется оксигемоглобином (НbО 2). Его содержание в артериальной крови достигает 96-98%; НbО 2 , отдавший O 2 после диссоциации, называется восстановленным (ННb). Гемоглобин связывает углекислый газ, образуя карбгемоглобин (НЬСО 2). Образование НbС0 2 не только способствует транспорту СО 2 , но и снижает образование угольной кислоты и поддерживает тем самым гидрокарбонатный буфер плазмы крови. Оксигемоглобин, восстановленный гемоглобин и карбгемоглобин называются физиологическими (функциональными) соединениями гемоглобина.

Карбоксигемоглобин — соединение гемоглобина с угарным газом (СО — оксид углерода). Гемоглобин обладает существенно большим сродством к СО, чем к кислороду, и образует карбоксигемоглобин при небольших концентрациях СО, теряя при этом способность связывать кислород и создавая угрозу для жизни. Еще одним нефизиологическим соединением гемоглобина является метгемоглобин. В нем железо окислено до трехвалентного состояния. Метгемоглобин не способен вступать в обратимую реакцию с О 2 и является соединением функционально не активным. При его избыточном накоплении в крови также возникает угроза для жизни человека. В связи с этим, метгемоглобин и карбоксигемоглобин называются еще патологическими соединениями гемоглобина.

У здорового человека метгемоглобин постоянно присутствует в крови, но в очень небольших количествах. Образование метгемоглобина происходит под действием окислителей (перекисей, нитропроизводных органических веществ и др.), которые постоянно поступают в кровь из клеток различных органов, особенно, кишечника. Образование метгемоглобина ограничивают антиоксиданты (глутатион и аскорбиновая кислота), присутствующие в эритроцитах, а его восстановление в гемоглобин происходит в процессе ферментативных реакций с участием эритроцитарных ферментов дегидрогеназ.

Эритропоэз

Эритропоэз - это процесс образования эритроцитов из ПСГК. Количество эритроцитов, содержащихся в крови, зависит от соотношения эритроцитов, образующихся и разрушающихся в организме за одно и то же время. У здорового человека количество образующихся и разрушающихся эритроцитов равно, что обеспечивает в нормальных условиях поддержание относительно постоянного числа эритроцитов в крови. Совокупность структур организма, включающих периферическую кровь, органы эритропоэза и разрушения эритроцитов называют эритроном.

У взрослого здорового человека эритропоэз происходит в гемопоэтическом пространстве между синусоидами красного костного мозга и завершается в кровеносных сосудах. Под влиянием сигналов клеток микроокружения, активированных продуктами разрушения эритроцитов и других клеток крови, раннедействующие факторы ПСГК дифференцируются в коммитированные олигопотентные (миелоидные), а затем в унипотентные стволовые гемопоэтические клетки эритроидного ряда (БОЕ-Э). Дальнейшая дифференцировка клеток эритроидного ряда и образование непосредственных предшественников эритроцитов — ретикулоцитов происходит под влиянием позднедействующих факторов, среди которых ключевую роль играет гормон эритропоэтин (ЭПО).

Ретикулоциты выходят в циркулирующую (периферическую) кровь и в течение 1-2 дней преобразуются в эритроциты. Содержание ретикулоцитов в крови составляет 0,8-1,5% от количества эритроцитов. Продолжительность жизни эритроцитов составляет 3-4 месяца (в среднем 100 дней), после чего они выводятся из кровотока. За сутки в крови замещается около (20-25) . 10 10 эритроцитов ретикулоцитами. Эффективность эритропоэза при этом составляет 92-97%; 3-8% клеток- предшественниц эритроцитов не завершают цикл дифференцирования и разрушаются в костном мозге макрофагами — неэффективный эритропоэз. В особых условиях (например, стимуляции эритропоэза при анемиях) неэффективный эритропоэз может достигать 50%.

Эритропоэз зависит от многих экзогенных и эндогенных факторов и регулируется сложными механизмами. Он зависит от достаточного поступления в организм с пищей витаминов, железа, других микроэлементов, незаменимых аминокислот, жирных кислот, белка и энергии. Их недостаточное поступление ведет к развитию алиментарной и других форм дефицитных анемий. Среди эндогенных факторов регуляции эритропоэза ведущее место отводится цитокинам, в особенности эритропоэтину. ЭПО является гормоном гликопротеиновой природы и основным регулятором эритропоэза. ЭПО стимулирует пролиферацию и дифференцирование всех клеток-предшественниц эритроцитов, начиная с БОЕ-Э, увеличивает скорость синтеза в них гемоглобина и угнетает их апоптоз. У взрослого человека главным местом синтеза ЭПО (90%) являются перитубулярные клетки ночек, в которых образование и секреция гормона увеличиваются при снижении напряжения кислорода в крови и в этих клетках. Синтез ЭПО в почках усиливается под влиянием гормона роста, глюкокортикоидов, тестостерона, инсулина, норадреналина (через стимуляцию β1-адренорецепторов). В небольших количествах ЭПО синтезируется в клетках печени (до 9%) и макрофагах костного мозга (1%).

В клинике для стимуляции эритропоэза используется рекомбинантный эритропоэтин (rHuEPO).

Угнетают эритропоэз женские половые гормоны эстрогены. Нервная регуляция эритропоэза осуществляется АНС. При этом увеличение тонуса симпатического отдела сопровождается усилением эритропоэза, а парасимпатического — ослаблением.

Эритроциты – одни из очень важных элементов крови. Наполнение органов кислородом (О 2) и удаление из них углекислого газа (СО 2) – основная функция форменных элементов кровяной жидкости.

Значительны и другие свойства кровяных клеток. Знание того, что такое эритроциты, сколько живут, где разрушаются и других данных, позволяет человеку следить за здоровьем и вовремя его корректировать.

Общее определение эритроцитов

Если рассматривать кровь под сканирующим электронным микроскопом, то можно увидеть, какую форму и размер имеют эритроциты.



Кровь человека под микроскопом

Здоровые (неповрежденные) клетки – это маленькие диски (7-8 мкм), вогнутые с двух сторон. Их еще называют красными кровяными тельцами.

Количество эритроцитов в кровяной жидкости превышает уровень лейкоцитов и тромбоцитов. В одной капле крови человека имеется около 100 млн. этих клеток.

Зрелый эритроцит покрыт оболочкой. Он не имеет ядра и органелл, кроме цитоскелета. Внутренность клетки заполнена концентрированной жидкостью (цитоплазмой). Она насыщена пигментом гемоглобином.

В химический состав клетки, кроме гемоглобина, входят:

  • Вода;
  • Липиды;
  • Белки;
  • Углеводы;
  • Соли;
  • Ферменты.

Гемоглобин – это белок, состоящий из гема и глобина . Гем содержит атомы железа. Железо в гемоглобине, связывая в легких кислород, окрашивает кровь в светло-красный цвет. Она становится темной, когда кислород высвобождается в тканях.

Кровяные тельца имеют большую поверхность за счет своей формы. Повышенная плоскость клеток улучшает обмен газов.

Красная кровяная клетка эластична. Очень маленький размер эритроцита и гибкость позволяют ему легко проходить через мельчайшие сосуды – капилляры (2-3 мкм).

Сколько живут эритроциты

Продолжительность жизни эритроцитов – 120 дней. За это время они выполняют все свои функции. Затем разрушаются. Место отмирания – печень, селезенка.

Красные кровяные тельца разлагаются быстрее, если меняется их форма. При появлении у них выпуклостей образуются эхиноциты, углублений – стоматоциты . Пойкилоцитоз (изменение формы) приводит клетки к гибели. Патология формы диска возникает от повреждения цитоскелета.

Видео — функции крови. Эритроциты

Где и как образуются

Жизненный путь эритроциты начинают в красном костном мозге всех костей человека (до пятилетнего возраста).

У взрослого, после 20 лет, красные кровяные клетки вырабатываются в:

  • Позвоночнике;
  • Грудине;
  • Ребрах;
  • Подвздошной кости.


Их образование проходит под влиянием эритропоэтина – почечного гормона.

С возрастом эритропоэз, то есть процесс образования эритроцитов, снижается.

Образование кровяной клетки начинается с проэритробласта. В результате многократного деления создаются зрелые клетки.

От единицы, образующей колонию, эритроцит проходит следующие этапы:

  1. Эритробласт.
  2. Пронормоцит.
  3. Нормобласты разных видов.
  4. Ретикулоцит.
  5. Нормоцит.

Первородная клетка имеет ядро, которое сначала становится меньше, а затем вообще покидает клетку. Цитоплазма ее постепенно наполняется гемоглобином.

Если в крови наряду со зрелыми эритроцитами находятся ретикулоциты, это нормальное явление. Более ранние виды эритроцитов в крови указывают на патологию.

Функции эритроцитов

Эритроциты реализуют в организме свое главное предназначение – являются переносчиками дыхательных газов – кислорода и углекислого газа.

Этот процесс осуществляется в определенном порядке:


Кроме газообмена, форменные элементы выполняют и другие функции:


В норме каждый эритроцит в кровотоке – свободная в движении клетка. При увеличении показателя кислотности крови рН и других негативных факторах возникает склеивание красных кровяных клеток. Их склеивание называется агглютинацией.

Такая реакция возможна и очень опасна при переливании крови от одного человека к другому. Чтобы в этом случае предупредить слипание эритроцитов, нужно знать группу крови пациента и его донора.

Реакция агглютинации послужила основой для деления крови людей на четыре группы. Они отличаются друг от друга сочетанием агглютиногенов и агглютининов.

С особенностями каждой группы крови познакомит следующая таблица:

При определении группы крови ошибаться ни в коем случае нельзя. Знать групповую принадлежность крови особенно важно при ее переливании. Не каждая подходит определенному человеку.

Чрезвычайно важно! Перед переливанием крови обязательно нужно определить ее совместимость. Вливать человеку несовместимую кровь нельзя. Это опасно для жизни.

При введении несовместимой крови возникает агглютинация эритроцитов . Это происходит при таком сочетании агглютиногенов и агглютининов: Аα, Вβ. При этом у больного появляются признаки гемотрансфузионного шока.

Они могут быть такими:

  • Головная боль;
  • Беспокойство;
  • Покрасневшее лицо;
  • Пониженное артериальное давление;
  • Учащенный пульс;
  • Стеснение в груди.

Агглютинация завершается гемолизом, то есть в организме происходит разрушение эритроцитов.

Небольшое количество крови или эритроцитарной массы можно переливать таким образом:

  • I группы – в кровь II, III, IV;
  • II группы – в IV;
  • III группы – в IV.

Важно! Если возникает необходимость в переливании большого количества жидкости, вливают кровь только той же группы.

Количество эритроцитов в крови определяется во время лабораторного анализа и подсчитывается в 1 мм 3 крови.

Справка. При любом заболевании назначается клинический анализ крови. Он дает представление о содержании гемоглобина, уровне эритроцитов и скорости их оседания (СОЭ). Кровь сдается утром, на голодный желудок.

Нормальная величина гемоглобина:

  • У мужчин – 130-160 единиц;
  • У женщин – 120-140.

Наличие красного пигмента сверх нормы может говорить о:

  1. Большой физической активности;
  2. Повышение вязкости крови;
  3. Потери влаги.

У жителей высокогорья, любителей частого курения гемоглобин также повышен. Низкий уровень гемоглобина возникает при малокровии (анемии).

Количество безъядерных дисков:

  • У мужчин (4,4 х 5,0 х 10 12 /л) — выше, чем у женщин;
  • У женщин (3,8 – 4,5 х 10 12 /л.);
  • У детей свои нормы, которые определяются возрастом.

Уменьшение количества красных телец или его увеличение (эритроцитоз) показывают, что в деятельности организма возможны нарушения.

Так при анемии, потери крови, понижении скорости формирования красных телец в костном мозге, быстрой их гибели, увеличенном содержании воды уровень эритроцитов понижается.

Увеличенная цифра красных телец может обнаружиться во время приема некоторых лекарств, например кортикостероидов, мочегонных средств. Следствием незначительного эритроцитоза является ожог, диарея.

Эритроцитоз также происходит при таких состояниях, как:

  • Синдром Иценко-Кушинга (гиперкортицизм);
  • Раковые образования;
  • Поликистоз почек;
  • Водянка почечных лоханок (гидронефроз) и др.

Важно! У беременных женщин нормальные показатели кровяных клеток меняются. Это чаще всего связано с зарождением плода, появлением у ребенка собственной кровеносной системы, а не с болезнью.

Показателем сбоя в работе организма является и скорость оседания эритроцитов (СОЭ).

Не рекомендуется на основании анализов ставить себе диагнозы. Только специалист после тщательного обследования с применением различных методик может сделать правильные выводы и назначить эффективное лечение.

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Кровь – это жидкая соединительная ткань, которая наполняет всю сердечно-сосудистую систему человека. Ее количество в организме взрослого человека достигает 5 литров. Она состоит из жидкой части под названием плазма и таких форменных элементов как лейкоциты , тромбоциты и эритроциты . В данной статье мы поговорим именно об эритроцитах, их строении, функциях, способе образования и т.д.

Что представляют собой эритроциты?

Данный термин произошел от 2-ух слов «erythos » и «kytos », что в переводе с греческого языка означает «красный » и «вместилище, клетка ». Эритроциты представляют собой красные кровяные тельца крови человека, позвоночных, а также некоторых беспозвоночных животных, на которые возложены весьма разнообразные очень важные функции.

Образование красных клеток

Образование данных клеток осуществляется в красном костном мозге. Первоначально происходит процесс пролиферации (разрастания ткани путем размножения клетки ). Затем из стволовых гемопоэтических клеток (клеток – родоначальниц кроветворения ) формируется мегалобласт (крупное красное тельце, содержащее ядро и большое количество гемоглобина ), из которого в свою очередь образуется эритробласт (ядросодержащая клетка ), а потом и нормоцит (тельце, наделенное нормальными размерами ). Как только нормоцит утрачивает свое ядро, он тут же превращается в ретикулоцит – непосредственного предшественника красных кровяных клеток. Ретикулоцит попадает в кровеносное русло и трансформируется в эритроцит. На его трансформацию уходит около 2 - 3 часов.

Строение

Данным кровяным тельцам присуща двояковогнутая форма и красный окрас, обусловленный наличием в клетке большого количества гемоглобина. Именно гемоглобин составляет основную часть данных клеток. Их диаметр варьирует в пределах от 7 до 8 мкм, а вот толщина достигает 2 - 2,5 мкм. Ядро в созревших клетках отсутствует, что значительно увеличивает их поверхность. Помимо этого отсутствие ядра обеспечивает быстрое и равномерное проникновение внутрь тельца кислорода. Продолжительность жизни данных клеток составляет около 120 дней. Общая поверхность красных кровяных клеток человека превышает 3000 квадратных метров. Данная поверхность в 1500 раз больше поверхности всего человеческого тела. Если разместить все красные клетки человека в один ряд, то Вы сможете получить цепочку, длина которой будет составлять около 150000 км. Разрушение данных телец происходит преимущественно в селезенке и частично в печени .

Функции

1. Питательная : осуществляют перенос аминокислот от органов пищеварительной системы к клеткам организма;


2. Ферментативная : являются носителями различных ферментов (специфических белковых катализаторов );
3. Дыхательная : данная функция осуществляется гемоглобином, который способен присоединять к себе и отдавать как кислород, так и углекислый газ;
4. Защитная : связывают токсины за счет присутствия на их поверхности специальных веществ белкового происхождения.

Термины, применяемые для описания данных клеток

  • Микроцитоз – средний размер красных кровяных клеток меньше нормального;
  • Макроцитоз – средний размер красных кровяных клеток больше нормального;
  • Нормоцитоз – средний размер красных кровяных клеток нормальный;
  • Анизоцитоз – размеры красных кровяных клеток значительно отличаются, одни чересчур маленькие, другие очень большие;
  • Пойкилоцитоз – форма клеток варьирует от правильной до овальной, серповидной;
  • Нормохромия – красные кровяные тельца окрашены нормально, что является признаком нормального уровня в них гемоглобина;
  • Гипохромия – красные кровяные клетки окрашены слабо, что указывает на то, что гемоглобина в них меньше нормы.

Скорость оседания (СОЭ)

Скорость оседания эритроцитов или СОЭ – это достаточно известный показатель лабораторной диагностики , под которым подразумевается скорость разделения несвернувшейся крови, которую помещают в специальный капилляр. Кровь разделяется на 2 слоя – нижний и верхний. Нижний слой состоит из осевших красных кровяных телец, а вот верхний слой представлен плазмой. Данный показатель принято измерять в миллиметрах в час. Величина СОЭ напрямую зависит от пола пациента. В нормальном состоянии у мужчин данный показатель составляет от 1 до 10 мм/час, а вот у женщин – от 2 до 15 мм/час.

При повышении показателей речь идет о нарушениях работы организма. Существует мнение, что в большинстве случаев СОЭ повышается на фоне увеличения соотношения в плазме крови белковых частиц крупных и мелких размеров. Как только в организм попадают грибки , вирусы либо бактерии , уровень защитных антител тут же возрастает, что и приводит к изменениям соотношения белков крови. Из этого следует, что особенно часто СОЭ увеличивается на фоне воспалительных процессов таких как воспаление суставов, ангина , воспаление легких и т.д. Чем выше данный показатель, тем ярче выражен воспалительный процесс. При легком течении воспаления показатель возрастает до 15 - 20 мм/час. Если же воспалительный процесс является тяжелым, тогда он подскакивает до 60 - 80 мм/час. Если во время курса терапии показатель начинает снижаться, значит, лечение было подобрано правильно.

Помимо воспалительных заболеваний увеличение показателя СОЭ возможно и при некоторых недугах невоспалительного характера, а именно:

  • Злокачественные образования;
  • Тяжелые недуги печени и почек ;
  • Тяжелые патологии крови;
  • Частые переливания крови;
  • Вакцинотерапия.
Нередко показатель повышается и во время менструаций , а также в период беременности . Использование некоторых медикаментов также может спровоцировать увеличение СОЭ.

Гемолиз – что это такое?

Гемолиз представляет собой процесс разрушения мембраны красных кровяных клеток, вследствие чего гемоглобин выходит в плазму и кровь становится прозрачной.

Современные специалисты выделяют следующие виды гемолиза:
1. По характеру течения :

  • Физиологический : происходит разрушение старых и патологических форм красных клеток. Процесс их разрушения отмечается в мелких сосудах, макрофагах (клетках мезенхимного происхождения ) костного мозга и селезенки, а также в клетках печени;
  • Патологический : на фоне патологического состояния разрушению подвергаются здоровые молодые клетки.
2. По месту возникновения :
  • Эндогенный : гемолиз происходит внутри организма человека;
  • Экзогенный : гемолиз осуществляется вне организма (к примеру, во флаконе с кровью ).
3. По механизму возникновения :
  • Механический : отмечается при механических разрывах мембраны (к примеру, флакон с кровью пришлось встряхнуть );
  • Химический : отмечается при воздействии на эритроциты веществ, которым свойственно растворять липиды (жироподобные вещества ) мембраны. К числу таких веществ можно отнести эфир, щелочи, кислоты, спирты и хлороформ;
  • Биологический : отмечается при воздействии биологических факторов (ядов насекомых, змей, бактерий ) либо при переливании несовместимой крови;
  • Температурный : при низких температурах в красных кровяных тельцах формируются кристаллики льда, которым свойственно разрывать оболочку клеток;
  • Осмотический : происходит тогда, когда красные кровяные тельца попадают в среду с более низким чем у крови осмотическим (термодинамическим ) давлением. При таком давлении клетки набухают и лопаются.

Эритроциты в крови

Общее число данных клеток в крови человека просто огромно. Так, к примеру, если Ваш вес составляет около 60 кг, тогда в Вашей крови как минимум 25 триллионов красных кровяных телец. Цифра очень большая, так что для практичности и удобства специалисты вычисляют не общий уровень данных клеток, а их число в небольшом количестве крови, а именно в ее 1 кубическом миллиметре. Важно отметить, что нормы содержания данных клеток определяются сразу же несколькими факторами – возрастом пациента, его полом и местом проживания.


Норма содержания красных кровяных телец

Определить уровень данных клеток помогает клинический (общий ) анализ крови .
  • У женщин - от 3.7 до 4.7 триллионов в 1 л;
  • У мужчин - от 4 до 5.1 триллионов в 1 л;
  • У детей старше 13 лет - от 3.6 до 5.1 триллионов в 1 л;
  • У детей в возрасте от 1 года до 12 лет - от 3.5 до 4.7 триллионов в 1 л;
  • У детей в 1 год - от 3.6 до 4.9 триллионов в 1 л;
  • У детей в полгода - от 3.5 до 4.8 триллионов в 1 л;
  • У детей в 1 месяц - от 3.8 до 5.6 триллионов в 1 л;
  • У детей в первый день их жизни - от 4.3 до 7.6 триллионов в 1 л.
Высокий уровень клеток в крови новорожденных обусловлен тем, что во время внутриутробного развития их организм нуждается в большем количестве красных кровяных телец. Только так плод может получать необходимое ему количество кислорода в условиях относительно низкой его концентрации в крови матери.

Уровень эритроцитов в крови беременных

Чаще всего количество данных телец во время беременности слегка понижается, что является совершенно нормальным явлением. Во-первых, во время вынашивания плода в организме женщины задерживается большое количество воды, которая попадает в кровь и разбавляет ее. Кроме этого организмы практически всех будущих мамочек не получают достаточное количество железа, вследствие чего формирование данных клеток опять таки уменьшается.

Повышение уровня эритроцитов в крови

Состояние, характеризующееся повышением уровня красных кровяных клеток в крови, именуют эритремией , эритроцитозом или полицитемией .

Самыми частыми причинами развития данного состояния являются:

  • Поликистоз почек (заболевание, при котором в обеих почках появляются и постепенно увеличиваются кисты );
  • ХОБЛ (хронические обструктивные болезни легких – бронхиальная астма , эмфизема легких, хронические бронхиты);
  • Синдром Пиквика (ожирение , сопровождающееся легочной недостаточностью и артериальной гипертензией , т.е. стойким повышением артериального давления );
  • Гидронефроз (стойкое прогрессирующее расширение почечной лоханки и чашечек на фоне нарушения оттока мочи );
  • Курс терапии стероидами;
  • Врожденные либо приобретенные миеломы (опухоли из элементов костного мозга ). Физиологическое понижение уровня данных клеток возможно в периоды между 17.00 и 7.00, после приема пищи и при взятии крови в положении лежа. О других причинах понижения уровня данных клеток Вы сможете узнать, получив консультацию специалиста .

    Эритроциты в моче

    В норме красных кровяных телец в моче быть не должно. Допускается их присутствие в виде единичных клеток в поле зрения микроскопа. Находясь в осадке мочи в очень маленьких количествах, они могут указывать на то, что человек занимался спортом либо выполнял тяжелую физическую работу. У женщин их незначительное количество может наблюдаться при гинекологических недугах, а также во время менструации.

    Значительное повышение их уровня в моче можно заметить сразу же, так как моча в таких случаях приобретает бурый либо красный оттенок. Самой распространенной причиной появления данных клеток в моче принято считать заболевания почек и мочевыводящих путей. К их числу можно причислить различные инфекции , пиелонефрит (воспаление ткани почек ), гломерулонефрит (заболевание почек, характеризующееся воспалением гломерулы, т.е. обонятельного клубочка ), почечнокаменную болезнь, а также аденому (доброкачественную опухоль ) предстательной железы. Выявить данные клетки в моче удается и при опухолях кишечника , различных нарушениях свертываемости крови, сердечной недостаточности , оспе (заразной вирусной патологии ), малярии (остром инфекционном заболевании ) и т.д.

    Нередко красные кровяные клетки появляются в моче и на фоне терапии некоторыми медикаментами типа уротропина . Факт наличия эритроцитов в моче должен насторожить как самого больного, так и его лечащего врача. Такие пациенты нуждаются в проведении повторного анализа мочи и полном обследовании. Повторный анализ мочи должен браться с использованием катетера. В случае если повторный анализ еще раз установит факт наличия в моче многочисленных красных клеток, тогда обследованию подвергают уже мочевыводящую систему.