Формула ньютона лейбница решение. Определённый интеграл и методы его вычисления

Пусть на некотором отрезке оси Ох задана некоторая непрерывная функция f. Положим, что эта функция не меняет своего знака на всем отрезке.

Если f есть непрерывная и неотрицательная на некотором отрезке функция, а F есть её некоторая первообразная на этом отрезке, тогда площадь криволинейной трапеции S равна приращению первообразной на данном отрезке .

Эту теорему можно записать следующей формулой:

S = F(b) - F(a)

Интеграл функции f(x) от а до b будет равен S. Здесь и далее, для обозначения определенного интеграла от некоторой функции f(x), с пределами интегрирования от a до b, будем использовать следующую запись (a;b)∫f(x). Ниже представлен пример как это будет выглядеть.

Формула Ньютона-Лейбница

Значит, мы можем приравнять между собой эти два результата. Получим: (a;b)∫f(x)dx = F(b) - F(a), при условии, что F есть первообразная для функции f на . Эта формула имеет название формулы Ньютона - Лейбница . Она будет верна для любой непрерывной на отрезке функции f.

Формула Ньютона-Лейбница применяется для вычисления интегралов. Рассмотрим несколько примеров:

Пример 1 : вычислить интеграл. Находим первообразную для подынтегральной функции x 2 . Одной из первообразных будет являться функция (x 3)/3.

Теперь используем формулу Ньютона - Лейбница:

(-1;2)∫x 2 dx = (2 3)/3 - ((-1) 3)/3 = 3

Ответ: (-1;2)∫x 2 dx = 3.

Пример 2 : вычислить интеграл (0;pi)∫sin(x)dx.

Находим первообразную для подынтегральной функции sin(x). Одной из первообразных будет являться функция -cos(x). Воспользуемся формулой Ньютона-Лейбница:

(0;pi)∫cos(x)dx = -cos(pi) + cos(0) = 2.

Ответ: (0;pi)∫sin(x)dx=2

Иногда для простоты и удобства записи приращение функции F на отрезке (F(b)-F(a)) записывают следующим образом:

Используя такое обозначение для приращения, формулу Ньютона-Лейбница можно переписать в следующем виде:

Как уже отмечалось выше, это лишь сокращение для простоты записи, больше ни на что эта запись не влияет. Эта запись и формула (a;b)∫f(x)dx = F(b) - F(a) будут эквивалентны.

Определённым интегралом от непрерывной функции f (x ) на конечном отрезке [a , b ] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. (Вообще, понимание заметно облегчится, если повторить тему неопределённого интеграла) При этом употребляется запись

Как видно на графиках внизу (приращение первообразной функции обозначено ), определённый интеграл может быть как положительным, так и отрицательным числом (Вычисляется как разность между значением первообразной в верхнем пределе и её же значением в нижнем пределе, т. е. как F (b ) - F (a )).

Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a , b ] – отрезком интегрирования.

Таким образом, если F (x ) – какая-нибудь первообразная функция для f (x ), то, согласно определению,

(38)

Равенство (38) называется формулой Ньютона-Лейбница . Разность F (b ) – F (a ) кратко записывают так:

Поэтому формулу Ньютона-Лейбница будем записывать и так:

(39)

Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F (x ) и Ф(х ) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(х ) = F (x ) + C . Поэтому

Тем самым установлено, что на отрезке [a , b ] приращения всех первообразных функции f (x ) совпадают.

Таким образом, для вычисления определённого интеграла необходимо найти любую первообразную подынтегральной функции, т.е. сначала следует найти неопределённый интеграл. Постоянная С из последующих вычислений исключается. Затем применяется формула Ньютона-Лейбница: в первообразную функцию подставляется значение верхнего предела b , далее - значение нижнего предела a и вычисляется разность F(b) - F(a) . Полученное число и будет определённым интегралом. .

При a = b по определению принимается

Пример 1.

Решение. Сначала найдём неопределённый интеграл:

Применяя формулу Ньютона-Лейбница к первообразной

(при С = 0), получим

Однако при вычислении определённого интеграла лучше не находить отдельно первообразную, а сразу записывать интеграл в виде (39).

Пример 2. Вычислить определённый интеграл

Решение. Используя формулу

Свойства определённого интеграла

Теорема 2. Величина определённого интеграла не зависит от обозначения переменной интегрирования , т.е.

(40)

Пусть F (x ) – первообразная для f (x ). Для f (t ) первообразной служит та же функция F (t ), в которой лишь иначе обозначена независимая переменная. Следовательно,

На основании формулы (39) последнее равенство означает равенство интегралов

Теорема 3. Постоянный множитель можно выносить за знак определённого интеграла , т.е.

(41)

Теорема 4. Определённый интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определённых интегралов от этих функций , т.е.

(42)

Теорема 5. Если отрезок интегрирования разбит на части, то определённый интеграл по всему отрезку равен сумме определённых интегралов по его частям , т.е. если

(43)

Теорема 6. При перестановке пределов интегрирования абсолютная величина определённого интеграла не меняется, а изменяется лишь его знак , т.е.

(44)

Теорема 7 (теорема о среднем). Определённый интеграл равен произведению длины отрезка интегрирования на значение подынтегральной функции в некоторой точке внутри его , т.е.

(45)

Теорема 8. Если верхний предел интегрирования больше нижнего и подынтегральная функция неотрицательна (положительна), то и определённый интеграл неотрицателен (положителен), т.е. если


Теорема 9. Если верхний предел интегрирования больше нижнего и функции и непрерывны, то неравенство

можно почленно интегрировать , т.е.

(46)

Свойства определённого интеграла позволяют упрощать непосредственное вычисление интегралов.

Пример 5. Вычислить определённый интеграл

Используя теоремы 4 и 3, а при нахождении первообразных – табличные интегралы (7) и (6), получим


Определённый интеграл с переменным верхним пределом

Пусть f (x ) – непрерывная на отрезке [a , b ] функция, а F (x ) – её первообразная. Рассмотрим определённый интеграл

(47)

а через t обозначена переменная интегрирования, чтобы не путать её с верхней границей. При изменении х меняется и опредёленный интеграл (47), т.е. он является функцией верхнего предела интегрирования х , которую обозначим через Ф (х ), т.е.

(48)

Докажем, что функция Ф (х ) является первообразной для f (x ) = f (t ). Действительно, дифференцируя Ф (х ), получим

так как F (x ) – первообразная для f (x ), а F (a ) – постояная величина.

Функция Ф (х ) – одна из бесконечного множества первообразных для f (x ), а именно та, которая при x = a обращается в нуль. Это утверждение получается, если в равенстве (48) положить x = a и воспользоваться теоремой 1 предыдущего параграфа.

Вычисление определённых интегралов методом интегрирования по частям и методом замены переменной

где, по определению, F (x ) – первообразная для f (x ). Если в подынтегральном выражении произвести замену переменной

то в соответствии с формулой (16) можно записать

В этом выражении

первообразная функция для

В самом деле, её производная, согласно правилу дифференцирования сложной функции , равна

Пусть α и β – значения переменной t , при которых функция

принимает соответственно значения a и b , т.е.

Но, согласно формуле Ньютона-Лейбница, разность F (b ) – F (a ) есть

Рассмотрим функцию . Эту функцию называют: интеграл как функция верхнего предела. Отметим несколько свойств этой функции.
Теорема 2.1. Если f(x) интегрируемая на функция, то Ф(x) непрерывна на .
Доказательство . По свойству 9 определенного интеграла (теорема о среднем) имеем , откуда, при , получаем требуемое.
Теорема 2.2. Если f(x) непрерывная на функция, то Ф’(x) = f(x) на .
Доказательство . По свойству 10 определенного интеграла (вторая теорема о среднем), имеем где с – некоторая точка отрезка . В силу непрерывности функции f получаем
Таким образом, Ф(x) - одна из первообразных функции f(x) следовательно, Ф(x) = F(x) + C, где F(x) - другая первообразная f(x). Далее, так как Ф(a) = 0, то 0 = F(a) + C, следовательно, C = -F(a) и поэтому Ф(x) = F(x) – F(a). Полагая x=b, получаем формулу Ньютона-Лейбница

Примеры
1.

Интегрирование по частям в определённом интеграле

В определенном интеграле сохраняется формула интегрирования по частям. В этом случае она приобретает вид


Пример.

Замена переменных в определённом интеграле

Один из вариантов результатов о замене переменных в определённом интеграле следующий.
Теорема 2.3. Пусть f(x)- непрерывна на отрезке и удовлетворяет условиям:
1) φ(α) = a
2) φ(β) = b
3) производная φ’(t) определена всюду на отрезке [α, β]
4) для всех t из [α, β]
Тогда
Доказательство. Если F(x) первообразная для f(x)dx то F(φ(t)) первообразная для Поэтому F(b) – F(a) = F(φ(β)) – F(φ(α)). Теорема доказана.
Замечание. При отказе от непрерывности функции f(x) в условиях теоремы 2.3 приходится требовать монотонности функции φ(t).

Пример. Вычислить интеграл Положим Тогда dx = 2tdt и поэтому

Определенные интегралы онлайн на сайт для закрепления студентами и школьниками пройденного материала. И тренировки своих практических навыков. Полноценное решение определенных интегралов онлайн для вас в считанные мгновения поможет определить все этапы процесса.. Интегралы онлайн - определенный интеграл онлайн. Определенные интегралы онлайн на сайт для полноценного закрепления студентами и школьниками пройденного материала и тренировки своих практических навыков. Полноценное решение определенных интегралов онлайн для вас в считанные мгновения поможет определить все этапы процесса.. Интегралы онлайн - определенный интеграл онлайн. Для нас определенный интеграл онлайн взять не представляется чем-то сверх естественным, изучив данную тему по книге выдающихся авторов. Огромное им спасибо и выражаем респект этим личностям. Поможет определить определенный интеграл онлайн сервис по вычислению таких задач в два счета. Только укажите правильные данные и все будет Good! Всякий определенный интеграл как решение задачи повысит грамотность студентов. Об этом мечтает каждый ленивец, и мы не исключение, признаем это честно. Если все-таки получится вычислить определенный интеграл онлайн с решением бесплатно, то, пожалуйста, напишите адрес сайт всем желающим им воспользоваться. Как говорится, поделишься полезной ссылкой - и тебя отблагодарят добрые люди за даром. Очень интересным будет вопрос разбора задачки, в которой определенный интеграл будет калькулятор решать самостоятельно, а не за счет траты вашего драгоценного времени. На то они и машины, чтобы пахать на людей. Однако решение определенных интегралов онлайн не всякому сайту по зубам, и это легко проверить, а именно, достаточно взять сложный пример и попытаться решить его с помощью каждого такого сервиса. Вы почувствуете разницу на собственной шкуре. Зачастую найти определенный интеграл онлайн без прилагаемых усилий станет достаточно сложно и нелепо будет выглядеть ваш ответ на фоне общей картины представления результата. Лучше бы сначала пройти курс молодого бойца. Всякое решение несобственных интегралов онлайн сводится сначала к вычислению неопределенного, а затем через теорию пределов вычислить как правило односторонние пределы от полученных выражений с подставленными границами A и B. Рассмотрев указанный вами определенный интеграл онлайн с подробным решением, мы сделали заключение, что вы ошиблись на пятом шаге, а именно при использовании формулы замены переменной Чебышева. Будьте очень внимательны в дальнейшем решении. Если ваш определенный интеграл онлайн калькулятор не смог взять с первого раза, то в первую очередь стоит перепроверить написанные данные в соответствующие формы на сайте. Убедитесь, что все в порядке и вперёд, Go-Go! Для каждого студента препятствием является вычисление несобственных интегралов онлайн при самом преподе, так как это либо экзамен, либо коллоквиум, или просто контрольная работа на паре.. Как только заданный несобственный интеграл онлайн калькулятор будет в вашем распоряжении, то сразу вбивайте заданную функцию, подставляйте заданные пределы интегрирования и нажимайте на кнопку Решение, после этого вам будет доступен полноценный развернутый ответ. И все-таки хорошо, когда есть такой замечательный сайт как сайт, потому что он и бесплатный, и простой в пользовании, также содержит очень много разделов. которыми студенты пользуются повседневно, один из них как раз есть определенный интеграл онлайн с решением в полном виде. В этом же разделе можно вычислить несобственный интеграл онлайн с подробным решением для дальнейших применений ответа как в институте, так и в инженерных работах. Казалось бы, всем определить определенный интеграл онлайн дело нехитрое, если заранее решить такой пример без верхней и нижней границы, то есть не интеграл Лейбница, а неопределенный интеграл. Но тут мы с вами не согласны категорически, так как на первый взгляд это может показаться именно так, однако есть существенная разница, давайте разберем все по полочкам. Такой определенный интеграл решение дает не в явном виде, а в следствие преобразования выражения в предельное значение. Другими словами, нужно сначала решить интеграл с подстановкой символьных значений границ, а затем вычислить предел либо на бесконечности, либо в определенной точке. Отсюда вычислить определенный интеграл онлайн с решением бесплатно означает ни что иное как представление точного решения по формуле Ньютона-Лейбница. Если же рассматривать наш определенный интеграл калькулятор поможет его подсчитать за несколько секунд прямо на ваших глазах. Такая спешка нужна всем желающим как можно быстрее справиться с заданием и освободиться для личных дел. Не стоит искать в интернете сайты, на которых попросят вас регистрироваться, затем пополнить деньги на баланс и все ради того, чтобы какой-нибудь умник подготавливал решение определенных интегралов якобы онлайн. Запомните адрес Math24 - это бесплатный сервис для решения множества математических задач, в том же числе мы поможем найти определенный интеграл онлайн, и чтобы в этом убедиться, просим проверить наше утверждение на конкретных примерах. Введите подынтегральную функцию в соответствующее поле, затем укажите либо бесконечные предельные значения (в это случае будет вычислен и получено решение несобственных интегралов онлайн), либо задайте свои числовые или символьные границы и определенный интеграл онлайн с подробным решением выведется на странице после нажатия на кнопку "Решение". Неправда ли - это очень просто, не требует от вас лишних действий, бесплатно, что самое главное, и в то же время результативно. Вы можете самостоятельно воспользоваться сервисом, чтобы определенный интеграл онлайн калькулятор принес вам максимум пользы, и вы бы получили комфортное состояние, не напрягаясь на сложность всех вычислительных процессов, позвольте нам сделать все за вас и продемонстрировать всю мощь компьютерных технологий современного мира. Если погружаться в дебри сложнейших формул и вычисление несобственных интегралов онлайн изучить самостоятельно, то это похвально, и вы можете претендовать на возможность написания кандидатской работы, однако вернемся к реалиям студенческой жизни. А кто такой студент? В первую очередь - это молодой человек, энергичный и жизнерадостный, желающий успеть отдохнуть и сделать домашку! Поэтому мы позаботились об учениках, которые стараются отыскать на просторах глобальной сети несобственный интеграл онлайн калькулятор, и вот он к вашему вниманию - сайт - самая полезная для молодежи решалка в режиме онлайн. Кстати наш сервис хоть и преподносится как помощник студентам и школьникам, но он в полной мере подойдет любому инженеру, потому что нам под силу любые типы задач и их решение представляется в профессиональном формате. Например, определенный интеграл онлайн с решением в полном виде мы предлагаем по этапам, то есть каждому логическому блоку (подзадачи) отводится отдельная запись со всеми выкладками по ходу процесса общего решения. Это конечно же упрощает восприятие многоэтапных последовательных раскладок, и тем самым является преимуществом проекта сайт перед аналогичными сервисами по нахождению несобственный интеграл онлайн с подробным решением.

Решение прикладных задач сводится к вычислению интеграла, но не всегда это возможно сделать точно. Иногда необходимо знать значение определенного интеграла с некоторой степенью точности, к примеру, до тысячной.

Существуют задачи, когда следовало бы найти приближенное значение определенного интеграла с необходимой точностью, тогда применяют численное интегрирование такое, как метод Симпосна, трапеций, прямоугольников. Не все случаи позволяют вычислить его с определенной точностью.

Данная статья рассматривает применение формулы Ньютона-Лейбница. Это необходимо для точного вычисления определенного интеграла. Будут приведены подробные примеры, рассмотрены замены переменной в определенном интеграле и найдем значения определенного интеграла при интегрировании по частям.

Yandex.RTB R-A-339285-1

Формула Ньютона-Лейбница

Определение 1

Когда функция y = y (x) является непрерывной из отрезка [ a ; b ] ,а F (x) является одной из первообразных функции этого отрезка, тогда формула Ньютона-Лейбница считается справедливой. Запишем ее так ∫ a b f (x) d x = F (b) - F (a) .

Данную формулу считают основной формулой интегрального исчисления.

Чтобы произвести доказательство этой формулы, необходимо использовать понятие интеграла с имеющимся переменным верхним пределом.

Когда функция y = f (x) непрерывна из отрезка [ a ; b ] , тогда значение аргумента x ∈ a ; b , а интеграл имеет вид ∫ a x f (t) d t и считается функцией верхнего предела. Необходимо принять обозначение функции примет вид ∫ a x f (t) d t = Φ (x) , она является непрерывной, причем для нее справедливо неравенство вида ∫ a x f (t) d t " = Φ " (x) = f (x) .

Зафиксируем, что приращении функции Φ (x) соответствует приращению аргумента ∆ x , необходимо воспользоваться пятым основным свойством определенного интеграла и получим

Φ (x + ∆ x) - Φ x = ∫ a x + ∆ x f (t) d t - ∫ a x f (t) d t = = ∫ a x + ∆ x f (t) d t = f (c) · x + ∆ x - x = f (c) · ∆ x

где значение c ∈ x ; x + ∆ x .

Зафиксируем равенство в виде Φ (x + ∆ x) - Φ (x) ∆ x = f (c) . По определению производной функции необходимо переходить к пределу при ∆ x → 0 , тогда получаем формулу вида Φ " (x) = f (x) . Получаем, что Φ (x) является одной из первообразных для функции вида y = f (x) , расположенной на [ a ; b ] . Иначе выражение можно записать

F (x) = Φ (x) + C = ∫ a x f (t) d t + C , где значение C является постоянной.

Произведем вычисление F (a) с использованием первого свойства определенного интеграла. Тогда получаем, что

F (a) = Φ (a) + C = ∫ a a f (t) d t + C = 0 + C = C , отсюда получаем, что C = F (a) . Результат применим при вычислении F (b) и получим:

F (b) = Φ (b) + C = ∫ a b f (t) d t + C = ∫ a b f (t) d t + F (a) , иначе говоря, F (b) = ∫ a b f (t) d t + F (a) . Равенство доказывает формулу Ньютона-Лейбница ∫ a b f (x) d x + F (b) - F (a) .

Приращение функции принимаем как F x a b = F (b) - F (a) . С помощью обозначения формулу Ньютона-Лейбница принимает вид ∫ a b f (x) d x = F x a b = F (b) - F (a) .

Чтобы применить формулу, обязательно необходимо знать одну из первообразных y = F (x) подынтегральной функции y = f (x) из отрезка [ a ; b ] , произвести вычисление приращения первообразной из этого отрезка. Рассмотрим несколько примером вычисления, используя формулу Ньютона-Лейбница.

Пример 1

Произвести вычисление определенного интеграла ∫ 1 3 x 2 d x по формуле Ньютона-Лейбница.

Решение

Рассмотрим, что подынтегральная функция вида y = x 2 является непрерывной из отрезка [ 1 ; 3 ] , тогда и интегрируема на этом отрезке. По таблице неопределенных интегралов видим, что функция y = x 2 имеет множество первообразных для всех действительных значений x , значит, x ∈ 1 ; 3 запишется как F (x) = ∫ x 2 d x = x 3 3 + C . Необходимо взять первообразную с С = 0 , тогда получаем, что F (x) = x 3 3 .

Воспользуемся формулой Ньютона-Лейбница и получим, что вычисление определенного интеграла примет вид ∫ 1 3 x 2 d x = x 3 3 1 3 = 3 3 3 - 1 3 3 = 26 3 .

Ответ: ∫ 1 3 x 2 d x = 26 3

Пример 2

Произвести вычисление определенного интеграла ∫ - 1 2 x · e x 2 + 1 d x по формуле Ньютона-Лейбница.

Решение

Заданная функция непрерывна из отрезка [ - 1 ; 2 ] , значит, на нем интегрируема. Необходимо найти значение неопределенного интеграла ∫ x · e x 2 + 1 d x при помощи метода подведения под знак дифференциала, тогда получаем ∫ x · e x 2 + 1 d x = 1 2 ∫ e x 2 + 1 d (x 2 + 1) = 1 2 e x 2 + 1 + C .

Отсюда имеем множество первообразных функции y = x · e x 2 + 1 , которые действительны для всех x , x ∈ - 1 ; 2 .

Необходимо взять первообразную при С = 0 и применить формулу Ньютона-Лейбница. Тогда получим выражение вида

∫ - 1 2 x · e x 2 + 1 d x = 1 2 e x 2 + 1 - 1 2 = = 1 2 e 2 2 + 1 - 1 2 e (- 1) 2 + 1 = 1 2 e (- 1) 2 + 1 = 1 2 e 2 (e 3 - 1)

Ответ: ∫ - 1 2 x · e x 2 + 1 d x = 1 2 e 2 (e 3 - 1)

Пример 3

Произвести вычисление интегралов ∫ - 4 - 1 2 4 x 3 + 2 x 2 d x и ∫ - 1 1 4 x 3 + 2 x 2 d x .

Решение

Отрезок - 4 ; - 1 2 говорит о том, что функция, находящаяся под знаком интеграла, является непрерывной, значит, она интегрируема. Отсюда найдем множество первообразных функции y = 4 x 3 + 2 x 2 . Получаем, что

∫ 4 x 3 + 2 x 2 d x = 4 ∫ x d x + 2 ∫ x - 2 d x = 2 x 2 - 2 x + C

Необходимо взять первообразную F (x) = 2 x 2 - 2 x , тогда, применив формулу Ньютона-Лейбница, получаем интеграл, который вычисляем:

∫ - 4 - 1 2 4 x 3 + 2 x 2 d x = 2 x 2 - 2 x - 4 - 1 2 = 2 - 1 2 2 - 2 - 1 2 - 2 - 4 2 - 2 - 4 = 1 2 + 4 - 32 - 1 2 = - 28

Производим переход к вычислению второго интеграла.

Из отрезка [ - 1 ; 1 ] имеем, что подынтегральная функция считается неограниченной, потому как lim x → 0 4 x 3 + 2 x 2 = + ∞ , тогда отсюда следует, что необходимым условием интегрируемости из отрезка. Тогда F (x) = 2 x 2 - 2 x не является первообразной для y = 4 x 3 + 2 x 2 из отрезка [ - 1 ; 1 ] , так как точка O принадлежит отрезку, но не входит в область определения. Значит, что имеется определенный интеграл Римана и Ньютона-Лейбница для функции y = 4 x 3 + 2 x 2 из отрезка [ - 1 ; 1 ] .

Ответ: ∫ - 4 - 1 2 4 x 3 + 2 x 2 d x = - 28 , имеется определенный интеграл Римана и Ньютона-Лейбница для функции y = 4 x 3 + 2 x 2 из отрезка [ - 1 ; 1 ] .

Перед использованием формулы Ньютона-Лейбница нужно точно знать о существовании определенного интеграла.

Замена переменной в определенном интеграле

Когда функция y = f (x) является определенной и непрерывной из отрезка [ a ; b ] , тогда имеющееся множество [ a ; b ] считается областью значений функции x = g (z) , определенной на отрезке α ; β с имеющейся непрерывной производной, где g (α) = a и g β = b , отсюда получаем, что ∫ a b f (x) d x = ∫ α β f (g (z)) · g " (z) d z .

Данную формулу применяют тогда, когда нужно вычислять интеграл ∫ a b f (x) d x , где неопределенный интеграл имеет вид ∫ f (x) d x , вычисляем при помощи метода подстановки.

Пример 4

Произвести вычисление определенного интеграла вида ∫ 9 18 1 x 2 x - 9 d x .

Решение

Подынтегральная функция считается непрерывной на отрезке интегрирования, значит определенный интеграл имеет место на существование. Дадим обозначение, что 2 x - 9 = z ⇒ x = g (z) = z 2 + 9 2 . Значение х = 9 , значит, что z = 2 · 9 - 9 = 9 = 3 , а при х = 18 получаем, что z = 2 · 18 - 9 = 27 = 3 3 , тогда g α = g (3) = 9 , g β = g 3 3 = 18 . При подстановке полученных значений в формулу ∫ a b f (x) d x = ∫ α β f (g (z)) · g " (z) d z получаем, что

∫ 9 18 1 x 2 x - 9 d x = ∫ 3 3 3 1 z 2 + 9 2 · z · z 2 + 9 2 " d z = = ∫ 3 3 3 1 z 2 + 9 2 · z · z d z = ∫ 3 3 3 2 z 2 + 9 d z

По таблице неопределенных интегралов имеем, что одна из первообразных функции 2 z 2 + 9 принимает значение 2 3 a r c t g z 3 . Тогда при применении формулы Ньютона-Лейбница получаем, что

∫ 3 3 3 2 z 2 + 9 d z = 2 3 a r c t g z 3 3 3 3 = 2 3 a r c t g 3 3 3 - 2 3 a r c t g 3 3 = 2 3 a r c t g 3 - a r c t g 1 = 2 3 π 3 - π 4 = π 18

Нахождение можно было производить, не используя формулу ∫ a b f (x) d x = ∫ α β f (g (z)) · g " (z) d z .

Если при методе замены использовать интеграл вида ∫ 1 x 2 x - 9 d x , то можно прийти к результату ∫ 1 x 2 x - 9 d x = 2 3 a r c t g 2 x - 9 3 + C .

Отсюда произведем вычисления по формуле Ньютона-Лейбница и вычислим определенный интеграл. Получаем, что

∫ 9 18 2 z 2 + 9 d z = 2 3 a r c t g z 3 9 18 = = 2 3 a r c t g 2 · 18 - 9 3 - a r c t g 2 · 9 - 9 3 = = 2 3 a r c t g 3 - a r c t g 1 = 2 3 π 3 - π 4 = π 18

Результаты совпали.

Ответ: ∫ 9 18 2 x 2 x - 9 d x = π 18

Интегрирование по частям при вычислении определенного интеграла

Если на отрезке [ a ; b ] определены и непрерывны функции u (x) и v (x) , тогда их производные первого порядка v " (x) · u (x) являются интегрируемыми, таким образом из этого отрезка для интегрируемой функции u " (x) · v (x) равенство ∫ a b v " (x) · u (x) d x = (u (x) · v (x)) a b - ∫ a b u " (x) · v (x) d x справедливо.

Формулу можно использовать тогда, необходимо вычислять интеграл ∫ a b f (x) d x , причем ∫ f (x) d x необходимо было искать его при помощи интегрирования по частям.

Пример 5

Произвести вычисление определенного интеграла ∫ - π 2 3 π 2 x · sin x 3 + π 6 d x .

Решение

Функция x · sin x 3 + π 6 интегрируема на отрезке - π 2 ; 3 π 2 , значит она непрерывна.

Пусть u (x) = х, тогда d (v (x)) = v " (x) d x = sin x 3 + π 6 d x , причем d (u (x)) = u " (x) d x = d x , а v (x) = - 3 cos π 3 + π 6 . Из формулы ∫ a b v " (x) · u (x) d x = (u (x) · v (x)) a b - ∫ a b u " (x) · v (x) d x получим, что

∫ - π 2 3 π 2 x · sin x 3 + π 6 d x = - 3 x · cos x 3 + π 6 - π 2 3 π 2 - ∫ - π 2 3 π 2 - 3 cos x 3 + π 6 d x = = - 3 · 3 π 2 · cos π 2 + π 6 - - 3 · - π 2 · cos - π 6 + π 6 + 9 sin x 3 + π 6 - π 2 3 π 2 = 9 π 4 - 3 π 2 + 9 sin π 2 + π 6 - sin - π 6 + π 6 = 9 π 4 - 3 π 2 + 9 3 2 = 3 π 4 + 9 3 2

Решение примера можно выполнить другим образом.

Найти множество первообразных функции x · sin x 3 + π 6 при помощи интегрирования по частям с применением формулы Ньютона-Лейбница:

∫ x · sin x x 3 + π 6 d x = u = x , d v = sin x 3 + π 6 d x ⇒ d u = d x , v = - 3 cos x 3 + π 6 = = - 3 cos x 3 + π 6 + 3 ∫ cos x 3 + π 6 d x = = - 3 x cos x 3 + π 6 + 9 sin x 3 + π 6 + C ⇒ ∫ - π 2 3 π 2 x · sin x 3 + π 6 d x = - 3 cos x 3 + π 6 + 9 sincos x 3 + π 6 - - - 3 · - π 2 · cos - π 6 + π 6 + 9 sin - π 6 + π 6 = = 9 π 4 + 9 3 2 - 3 π 2 - 0 = 3 π 4 + 9 3 2

Ответ: ∫ x · sin x x 3 + π 6 d x = 3 π 4 + 9 3 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter