Числа фибоначчи применение. Практическое применение ряда Фибоначчи

Министерство образования и науки Украины

Одесский государственный экономический университет

кафедра________________________

Реферат по курсу "Экономический анализ"

на тему:

"Числа Фибоначчи: технический анализ".

Выполнил: студент 33 группы ФМЭ

Кушниренко Сергей

Научный руководитель:

Коптельцева Лидия Васильевна

Одесса

Введение. 3

История и свойства последовательности. 3

Использование чисел Фибоначчи в изменении тренда. 5

Множественные ценовые цели по Фибоначчи. 8

Заключение. 11

Список литературы.. 12

Введение.

Итальянский купец Леонардо из Пизы (1180-1240), более известный под прозвищем Фибоначчи был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.
Жизнь и научная карьера Леонарда теснейшим образом связана с развитием европейской культуры и науки.
В век Фибоначчи возраждение было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих 2, император (с 1220 года) "Священной Римской империи Германской Нации". Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства. Поэтому к преподаванию в основанном им Неаполитанском университете, наряду с христианскими учеными, он привлек арабов и евреев.
Столь любимые его дедом рыцарские турниры, на которых сражающиеся калечили друг друга на потеху публике, Фридрих II совсем не признавал. Вместо этого он культивировал гораздо менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами.
На таких турнирах и заблистал талант Леонарда Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей.
Впоследствии Фибоначчи пользовался неизменным покровительством Фридриха II.
Это покровительство стимулировало выпуск научных трактатов Фибоначчи:
обширнейшей "Книге абака", написанной в 1202 году, но дошедшей до нас во втором своем варианте, который относится к 1228 г.; "Практики геометрии"(1220г.); "Книги квадратов"(1225г.). По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику чуть ли не до времен Декарта (17 в.).

Наибольший интерес представляет сочинение "Книга абака". Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течении нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими ("арабскими") цыфрами.

Основной целью ланного реферата является изучение основных свойствчисел Фибоначчи и их применение в практике трендового анализа.

История и свойства последовательности.

Леонард Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Числовая последовательность Фибоначчи имеет много интересных свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.

Одно из самых главных следствий этих свойств различных членов последовательности определяются следующим образом:

1.Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют (ФИ), и мы поговорим о нем подробнее немного позже.

2.При делении каждого числа на следующее за ним через одно получаем число 0.382; наоборот – соответственно 2.618.

3.Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236. упомянем также 0.5 (1/2). Все они играют особую роль в природе, и в частности – в техническом анализе.

Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи.

Например, число 0.618 представляет собой постоянный коэффициент в так называемом золотом сечении (рис.1), где любой отрезок делится таким образом, что соотношение между его меньшей и большей частью равно соотношению между большей частью и всем отрезком. Таким образом, число 0.618 известно еще как золотой коэффициент или золотая середина. Такого типа пропорцию можно встретить абсолютно везде (рис.2).

Рисунок 1. Золотое сечение


Рисунок 2. Примеры соотношений Фибоначчи



Золотой коэффициент используется природой для построения ее частей, начиная от больших и заканчивая малыми. Современная наука считает, что Вселенная развивается по так называемой золотой спирали (рис.3), которая строится именно с помощью золотого коэффициента. Эта спираль в буквальном смысле не имеет конца и начала. Меньшие витки никогда не сходятся в одну и ту же точку, а большие неограниченно развиваются в пространстве.

Рисунок 3. Золотая спираль

Некоторые из соблюдающихся соотношений:

Самое важное заключается в том, что с помощью всех этих, в каком-то роде мистических, чисел, описываются разнородные процессы во Вселенной.

Использование чисел Фибоначчи в изменении тренда.

Изучив вышеизложенную последовательность, можно предположить использование последовательность Фибоначчи при прогнозировании цены, то есть. в техническом анализе.

Эту мысль высказал еще в 30-е годы один из самых известных людей, внесших вклад в теорию технического анализа – Ральф Нельсон Эллиотт. С тех пор конкретная польза применения этой идеи практически во всех методах технического анализа не вызывает сомнения.

Ральф Hельсон Эллиотт был инженером. После серьезной болезни в начале 1930х гг. он занялся анализом биржевых цен, особенно индекса Доу-Джонса. После ряда весьма успешных предсказаний Эллиотт опубликовал в 1939 году серию статей в журнале Financial World Magazine. В них впервые была представлена его точка зрения, что движения индекса Доу-Джонса подчиняются определенным ритмам. Согласно Эллиотту, все эти движения следуют тому же закону, что и приливы - за приливом следует отлив, за действием (акцией) следует противодействие (реакция). Эта схема не зависит от времени, поскольку структура рынка, взятого как единое целое, остается неизменной.

Эллиотт писал: "Закон природы включает в рассмотрение важнейший элемент- ритмичность. Закон природы - это не некая система, не метод игры на рынке, а явление, характерное, видимо, для хода любой человеческой деятельности. Его применение в прогнозировании революционно."

Этот шанс предсказать движения цен побуждает легионы аналитиков трудиться денно и нощно. Вводя свой подход, Эллиотт был очень конкретен. Он писал: "любой человеческой деятельности присущи три отличительных особенности: форма, время и отношение, -и все они подчиняются суммационной последовательности Фибоначчи".

Один из простейших способов применения чисел Фибоначчи на практике – определение отрезков времени, через которое произойдет то или иное событие, например, изменение тренда. Аналитик отсчитывает определенное количество фибоначчиевских дней или недель (13, 21, 34, 55 и т.д.) от предыдущего сходного события.

Числа Фибоначчи имеют широкое применение при определении длительности периода в Теории Циклов. За основу каждого доминантного цикла берется определенное количество дней, недель, месяцев, связанное с числами Фибоначчи. Например, длина Цикла (Волны) Кондратьева равна 54 годам. Отметим близость этой величины к фибоначчиевскому числу 55.

Один из способов применения числа Фибоначчи – построение дуг (рис.4).

Рисунок 4. Дуги.


Центр для такой дуги выбирается в точке важного потолка (top) или дна (bottom). Радиус дуг вычисляется с помощью умножения коэффициентов Фибоначчи на величину предыдущего значительного спада или подъема цен.

Выбираемые при этой коэффициенты имеют значения 38.2%, 50%, 61.8%. В соответствии со своим расположением дуги будут играть роль сопротивления или поддержки.

Последовательность Фибоначчи определяется следующим образом:

Несколько первых её членов:

История

Эти числа ввёл в 1202 г. Леонардо Фибоначчи (Leonardo Fibonacci) (также известный как Леонардо Пизанский (Leonardo Pisano)). Однако именно благодаря математику 19 века Люка (Lucas) название "числа Фибоначчи" стало общеупотребительным.

Впрочем, индийские математики упоминали числа этой последовательности ещё раньше: Гопала (Gopala) до 1135 г., Хемачандра (Hemachandra) — в 1150 г.

Числа Фибоначчи в природе

Сам Фибоначчи упоминал эти числа в связи с такой задачей: "Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?". Решением этой задачи и будут числа последовательности, называемой теперь в его честь. Впрочем, описанная Фибоначчи ситуация — больше игра разума, чем реальная природа.

Индийские математики Гопала и Хемачандра упоминали числа этой последовательности в связи с количеством ритмических рисунков, образующихся в результате чередования долгих и кратких слогов в стихах или сильных и слабых долей в музыке. Число таких рисунков, имеющих в целом долей, равно .

Числа Фибоначчи появляются и в работе Кеплера 1611 года, который размышлял о числах, встречающихся в природе (работа "О шестиугольных снежинках").

Интересен пример растения — тысячелистника, у которого число стеблей (а значит и цветков) всегда есть число Фибоначчи. Причина этого проста: будучи изначально с единственным стеблем, этот стебель затем делится на два, затем от главного стебля ответвляется ещё один, затем первые два стебля снова разветвляются, затем все стебли, кроме двух последних, разветвляются, и так далее. Таким образом, каждый стебель после своего появления "пропускает" одно разветвление, а затем начинает делиться на каждом уровне разветвлений, что и даёт в результате числа Фибоначчи.

Вообще говоря, у многих цветов (например, лилий) число лепестков является тем или иным числом Фибоначчи.

Также в ботанике известно явление ""филлотаксиса"". В качестве примера можно привести расположение семечек подсолнуха: если посмотреть сверху на их расположение, то можно увидеть одновременно две серии спиралей (как бы наложенных друг на друга): одни закручены по часовой стрелке, другие — против. Оказывается, что число этих спиралей примерно совпадает с двумя последовательными числами Фибоначчи: 34 и 55 или 89 и 144. Аналогичные факты верны и для некоторых других цветов, а также для сосновых шишек, брокколи, ананасов, и т.д.

Для многих растений (по некоторым данным, для 90% из них) верен и такой интересный факт. Рассмотрим какой-нибудь лист, и будем спускаться от него вниз до тех пор, пока не достигнем листа, расположенного на стебле точно так же (т.е. направленного точно в ту же сторону). Попутно будем считать все листья, попадавшиеся нам (т.е. расположенные по высоте между стартовым листом и конечным), но расположенными по-другому. Нумеруя их, мы будем постепенно совершать витки вокруг стебля (поскольку листья расположены на стебле по спирали). В зависимости от того, совершать витки по часовой стрелке или против, будет получаться разное число витков. Но оказывается, что число витков, совершённых нами по часовой стрелке, число витков, совершённых против часовой стрелки, и число встреченных листьев образуют 3 последовательных числа Фибоначчи.

Впрочем, следует отметить, что есть и растения, для которых приведённые выше подсчёты дадут числа из совсем других последовательностей, поэтому нельзя сказать, что явление филлотаксиса является законом, — это скорее занимательная тенденция.

Свойства

Числа Фибоначчи обладают множеством интересных математических свойств.

Вот лишь некоторые из них:

Фибоначчиева система счисления

Теорема Цекендорфа утверждает, что любое натуральное число можно представить единственным образом в виде суммы чисел Фибоначчи:

где , , , (т.е. в записи нельзя использовать два соседних числа Фибоначчи).

Отсюда следует, что любое число можно однозначно записать в фибоначчиевой системе счисления , например:

причём ни в каком числе не могут идти две единицы подряд.

Нетрудно получить и правило прибавления единицы к числу в фибоначчиевой системе счисления: если младшая цифра равна 0, то её заменяем на 1, а если равна 1 (т.е. в конце стоит 01), то 01 заменяем на 10. Затем "исправляем" запись, последовательно исправляя везде 011 на 100. В результате за линейное время будет получена запись нового числа.

Перевод числа в фибоначчиеву систему счисления осуществляется простым "жадным" алгоритмом: просто перебираем числа Фибоначчи от больших к меньшим и, если некоторое , то входит в запись числа , и мы отнимаем от и продолжаем поиск.

Формула для n-го числа Фибоначчи

Формула через радикалы

Существует замечательная формула, называемая по имени французского математика Бине (Binet), хотя она была известна до него Муавру (Moivre):

Эту формулу легко доказать по индукции, однако вывести её можно с помощью понятия образующих функций или с помощью решения функционального уравнения.

Сразу можно заметить, что второе слагаемое всегда по модулю меньше 1, и более того, очень быстро убывает (экспоненциально). Отсюда следует, что значение первого слагаемого даёт "почти" значение . Это можно записать в строгом виде:

где квадратные скобки обозначают округление до ближайшего целого.

Впрочем, для практического применения в вычислениях эти формулы мало подходят, потому что требуют очень высокой точности работы с дробными числами.

Матричная формула для чисел Фибоначчи

Нетрудно доказать матричное следующее равенство:

Но тогда, обозначая

получаем:

Таким образом, для нахождения -го числа Фибоначчи надо возвести матрицу в степень .

Вспоминая, что возведение матрицы в -ую степень можно осуществить за (см.

Числа Фибоначчи - элементы числовой последовательности.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (или Фибоначчи), который жил и работал торговцем и математиком в итальянском городе Пизе. Он один из самых прославленных европейских ученых своего времени. Среди его величайших достижений - введение арабских цифр, заменивших римские. Fn =Fn-1 +Fn-2

Математический ряд асимптотически (то есть приближаясь все медленнее и медленнее) стремится к постоянному отношению. Однако это отношение иррационально; оно имеет бесконечную, непредсказуемую последовательность десятичных значений, выстраивающихся после него. Оно никогда не может быть выражено точно. Если каждое число, являющееся частью ряда, разделить на предшествующее значение (например, 13-^8 или 21 -ИЗ), результат действия выразится в отношении, которое колеблется вокруг иррационального числа 1,61803398875, чуть больше или чуть меньше соседних отношений ряда. Отношение никогда, до бесконечности, не будет точным до последней цифры (даже при использовании самых мощных компьютеров, созданных в наше время). Ради краткости, будем использовать в качестве отношения Фибоначчи число 1,618 и просим читателей не забывать об этой погрешности.

Числа Фибоначчи имеют важное значение и во время выполнения анализа Алгоритм Евклида для определения наибольшего общего делителя двух чисел. Числа Фибоначчи происходят в формулу о диагонали треугольником Паскаля (биномиальных коэффициентов).

Числа Фибоначчи оказались связанными с « золотым сечением».

О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Что же такое « золотое сечение»? Ответ неизвестен до сих пор. Числа Фибоначчи действительно актуальны для теории практики в наше время. Подъем значимости произошел в 20 веке и продолжается до сих пор. Использование чисел Фибоначчи в экономике и информатике и привлекло массы людей к их изучению.

Методика моего исследования заключалась в изучении специализированной литературы и обобщении полученной информации, а так же проведении собственных исследований и выявлений свойств чисел и сферы их использования.

В ходе научных исследования определила само понятия чисел Фибоначчи, их свойства. Так же я выяснила интересные закономерности в живой природе, непосредственно в строении семян подсолнуха.

На подсолнухе семечки выстраиваются в спирали, причем количества спиралей, идущих в другую сторону, различны - они являются последовательными числами Фибоначчи.

На этом подсолнухе 34 и 55.

То же наблюдается и на плодах ананаса, где спиралей бывает 8 и 14. С уникальным свойством чисел Фибоначчи связаны листьев кукурузы.

Дроби вида a/b, соответствующие винтообразному расположению листьев ног стебелька растения, часто являются отношениями последовательных чисел Фибоначчи. Для орешника это отношение равно 2/3, для дуба-3/5, для тополя 5/8, для ивы 8/13 и т. д.

Рассматривая расположения листьев на стебле растений можно заметить, что между каждыми парами листьев (А и С) третья расположено в месте золотого сечения(В)

Ещё интересное свойство числа Фибоначчи является, что произведение и частное двух любых различных чисел Фибоначчи, отличных от единицы, никогда не является числом Фибоначчи.

В результате исследования я пришла к следующим выводам: числа Фибоначчи - уникальная арифметическая прогрессия, появившаяся в 13 веке нашей эры. Данное прогрессия не теряет своей актуальности, что и подтвердилось в ходе моих исследований. Число Фибоначчи встречаются не то и в программировании и экономических прогнозах, в живописи, архитектуре и музыке. Картины таких известных художников, как Леонардо да Винчи, Микеланджело, Рафаэля и Боттичелли скрывают в себе магию золотого сечения. Даже И. И. Шишкин использовал золотое сечение в своей картине «Сосновая роща».

В это сложно поверить, но золотое сечение встречается и в музыкальных произведениях таких великих композиторов, как Моцарт, Бетховен, Шопен и т. д.

Числа Фибоначчи встречается и в архитектуре. Например, золотое сечение использовалось при строительстве Парфенона и собора Парижской Богоматери

Я обнаружила, что Числа Фибоначчи используются и в наших краях. Например, наличники домов, фронтоны.

еонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Иными словами, число пар кроликов создает ряд, каждый член в котором - сумма двух предыдущих. Он известен как ряд Фибоначчи , а сами числа - числа Фибоначчи . Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффицент пропорциональности, приблизительно равный 1,618, известен как золотое сечение . В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них - филлотаксис (листорасположение) - правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Последовательность Фибоначчи. Если смотреть на листья растения сверху, можно заметить, что они распускаются по спирали. Углы между соседними листьями образуют правильный математический ряд, известный под названием последовательности Фибоначчи. Благодаря этому каждый отдельно взятый лист, растущий на дереве, получает максимально доступное количество тепла и света.

Пирамиды в Мексике

Hе только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения, то же самое явление обнаpужено и у мексиканских пиpамид. Возникает мысль, что как египетские, так и мексиканские пиpамиды были возведены пpиблизительно в одно вpемя людьми общего пpоисхождения.
Hа попеpечном сечении пиpамиды видна фоpма, подобная лестнице.В пеpвом яpусе 16 ступеней, во втоpом 42 ступени и в тpетьем - 68 ступеней.
Эти числа основаны на соотношении Фибоначчи следующим обpазом:
16 x 1.618 = 26
16 + 26 = 42
26 x 1.618 = 42
42 + 26 = 68

После нескольких первых чисел последовательности отношение любого ее члена к последующему приблизительно равно 0,618, а к предшествующему – 1,618. Чем больше порядковый номер члена последовательности, тем ближе отношение к числу фи, являющемуся иррациональным числом и равному 0,618034… Отношение между членами последовательности, разделенными одним числом, примерно равно 0,382, а обратное ему число равно 2,618. На рис. 3-2 приведена таблица соотношений всех чисел Фибоначчи от 1 до 144.

Ф является единственным числом, которое, будучи прибавленным к 1, дает обратное себе число: 1 + 0,618 = 1: 0,618. Это родство процедур сложения и умножения приводит к следующей последовательности уравнений:

Если мы продолжим этот процесс, мы создадим прямоугольники размером 13 на 21, 21 на 34 и так далее.

Теперь проверьте это. Если вы разделите 13 на 8, вы получите 1,625. И если вы разделите большее число на меньшее число, то эти коэффициенты становятся всё ближе и ближе к числу 1.618, известному многим людям как Золотое сечение, числу, которое очаровывало математиков, учёных и художников на протяжении многих веков.

Таблица коэффициентов Фибоначчи

По мере роста новой прогрессии числа образуют третью последовательность, составленную из чисел, прибавленных к произведению четверки и числа Фибоначчи. Это делается возможным в связи с тем. что отношение между членами последовательности, отстоящими друг от друга на две позиции, равно 4.236. где число 0,236 является обратным к 4,236 и. кроме того, разностью между 4,236 и 4. Другие множители приводят к другим последовательностям, все они основаны на коэффициентах Фибоначчи.

1. Никакие из двух последовательных чисел Фибоначчи не имеют общих делителей.

2. Если члены последовательности Фибоначчи пронумеровать как 1, 2, 3, 4, 5, 6, 7 и т. д., мы обнаружим, что, за исключением четвертого члена (число 3), номер любого числа Фибоначчи, являющегося простым числом (т. е. не имеющим иных делителей, кроме себя самого и единицы), также является простым чистом. Сходным образом, за исключением четвертого члена последовательности Фибоначчи (число 3), все со ставные номера членов последовательности (то есть те, что имеют как минимум два делителя за исключением себя самого и единицы), соответствуют составным числам Фибоначчи, что и показывает приведенная ниже таблица. Обратное не всегда оказывается верным.

3. Сумма любых десяти членов последовательности делится на одиннадцать.

4. Сумма всех чисел Фибоначчи до определенной точки последовательности плюс единица равна числу Фибоначчи, отстоящему на две позиции от последнего прибавленного числа.

5. Сумма квадратов любых последовательных членов, начинающихся с первой 1, всегда будет равна последнему (из данной выборки) числу последовательности, умноженному на следующий член.

6. Квадрат числа Фибоначчи минус квадрат второго члена последовательности в сторону уменьшения всегда будет числом Фибоначчи.

7. Квадрат любого числа Фибоначчи равен предыдущему члену последовательности, умноженному на следующее число в последовательности, плюс или минус единица. Прибавление и вычитание единицы чередуются по мере развития последовательности.

8. Сумма квадрата числа Fn и квадрата следующего числа Фибоначчи F равна числу Фибоначчи F,. Формула F - + F 2 = F„ , применима к прямоугольным треугольникам, где сумма квадратов двух более коротких сторон равна квадрату самой длинной стороны. Справа приведен пример, использующий F5, F6 и квадратный корень из Fn.

10. Одно из удивительных явлений, которое, насколько нам известно, до сих пор не упоминалось, состоит в том, что отношения между числами Фибоначчи равны числам, очень близким к тысячным долям других чисел Фибоначчи, при разности, равной тысяч ной доле еще одного числа Фибоначчи (см. рис. 3-2). Так, в направлении возрастания отношение двух идентичных чисел Фибоначчи равно 1, или 0,987 плюс 0,013: соседние числа Фибоначчи имеют отношение 1.618. или 1,597 плюс 0,021; числа Фибоначчи, расположенные с двух сторон от некоторого члена последовательности, имеют отношение 2.618, или 2.584 плюс 0,034, и так далее. В обрат ном направлении соседние числа Фибоначчи имеют отношение 0.618. или 0,610 плюс 0,008: числа Фибоначчи, расположенные с двух сторон от некоторого члена последовательности, имеют отношение 0.382, или 0.377 плюс 0,005; числа Фибоначчи между которыми расположены два члена последовательности, имеют отношение 0.236, или 0,233 плюс 0,003: числа Фибоначчи, между которыми расположены три члена последовательности, имеют отношение 0 146. или 0.144 плюс 0,002: числа Фибоначчи, между которыми расположены четыре члена последовательности, имеют отношение 0,090, или 0,089 плюс 0.001: числа Фибоначчи, между которыми расположены пять членов последовательности, имеют отношение 0.056. или 0,055 плюс 0,001; числа Фибоначчи, между которыми расположено от шести до двенадцати членов последовательности, имеют отношения, которые сами являются тысячными долями чисел Фибоначчи, начиная с 0,034. Интересно, что в этом анализе коэффициент, связывающий числа Фибоначчи, между которыми располагаются тринадцать членов последовательности, снова начинает ряд с числа 0.001, с тысячной доли того числа, где он начался! При всех подсчетах мы действительно получаем подобие или «самовоспроизведение в бесконечном ряду», раскрывающее свойства «самой прочной связи среди всех математических отношений».

И, наконец, заметим, что(V5 + 1)/2 = 1.618 и[\^5- 1)/2 = 0.618. где V5 = 2,236. 5 оказывается наиболее важным для волнового принципа числом, а его квадратный корень является математическим ключом к числу ф.

Число 1,618 (или 0,618) известно как золотое отношение, или золотое среднее. Связанная с ним пропорциональность приятна для глаза и уха. Оно проявляется и в биологии, и в музыке, и в живописи, и в архитектуре. В своей статье, вышедшей в декабре 1975 года в журнале Smithsonian Magazine, Вильям Хоффер сказал:

«...Отношение числа 0,618034 к 1 является математической основой формы игральных карт и Парфенона, подсолнуха и морской раковины, греческих ваз и спиральных галактик внешнего космоса. В основании очень многих произведений искусства и архитектуры греков лежит эта пропорция. Они называли ее «золотая середина».

Плодовитые кролики Фибоначчи выскакивают в самых неожиданных местах. Числа Фибоначчи, несомненно, являются частью мистической природной гармонии, которая приятна для ощущений, приятно выглядит и даже звучит приятно. Музыка, к примеру, основана на октаве в восемь нот. На фортепиано это представлено 8 белыми и 5 черными клавишами - в целом 13. Не случайно, что музыкальный интервал, приносящий нашему слуху самое большое наслаждение - это секста. Нота «ми» вибрирует в отношении 0.62500 к ноте «до». Это всего лишь на 0.006966 отстоит от точной золотой середины. Пропорции сексты передают приятные для слуха вибрации улитке среднего уха - органа, который тоже имеет форму логарифмической спирали.

Постоянное возникновение чисел Фибоначчи и золотой спирали в природе точно объясняет, почему отношение 0,618034 к 1 настолько приятно в произведениях искусства. Человек видит в искусстве отражение жизни, которая имеет в основании золотую середину».

Природа использует золотое отношение в своих наиболее совершенных творениях - от таких мелких, как микроизвилины мозга и молекулы ДНК (см. рис. 3 9), до таких крупных, как галактики. Оно проявляется и таких различных явлениях, как рост кристаллов, преломление светового луча в стекле, строение мозга и нервной системы, музыкальные построения, структура растений и животных. Наука предоставляет все больше свидетельств того, что у природы действительно есть главный пропорциональный принцип. Кстати, вы держите эту книгу двумя из своих пяти пальцев, причем каждый палец состоит из трех частей. Итого: пять единиц, каждая из которых делится на три - прогрессия 5-3-5-3, подобная той, что лежит в основе волнового принципа.

Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.

Если мы примем весь отрезок c за 1, то отрезок a будет равен 0,618, отрезок b - 0,382, только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618; 1/0,618=1,618). Отношение c к a равно 2,618, а с к b 1,618. Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.


Каждый член золотой логарифмической последовательности явлется степенью Золотой Пропорции (z ). Часть ряда выглядит примерно так: ... z -5 ; z -4 ; z -3 ; z -2 ; z -1 ; z 0 ; z 1 ; z 2 ; z 3 ; z 4 ; z 5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост в последовательности обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...

(числа Фибоначчи, англ. Fibonacci sequence, Fibonacci numbers) – ряд чисел, выведенный известным математиком Фибоначчи. Имеет следующий вид: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181 и др.

История ряда Фибоначчи

Леонардо из Пизы (Фибоначчи) пришел в математику из-за практической потребности в установлении деловых контактов. В молодости Фибоначчи много путешествовал, сопровождал отца в разных деловых поездках, что позволяло ему общаться с местными учеными.

Ряд чисел, который сегодня носит его имя, был выведен благодаря проблеме с кроликами, которую автор изложил в книге под названием «Liber abacci» (1202 год): один человек посадил в загон, со всех сторон окруженный стеной, пару кроликов. Вопрос: сколько пар кроликов может произвести эта пара за год, если известно, что ежемесячно, начиная со второго месяца, каждая пара производит на свет еще одну пару кроликов.

В итоге Фибоначчи определил, что число пар кроликов в каждый из последующих двенадцати месяцев будет соответственно:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Где каждое последующее число - это сумма двух предыдущих. Это ряд (числа) Фибоначчи. Данная последовательность имеет множество свойств, интересных с математической точки зрения. Например, если разделить линию на 2 сегмента таким образом, чтобы соотношение между меньшим и большим сегментом было пропорционально соотношению между большим сегментом и всей линией, получится коэффициент пропорциональности, известный как «золотое сечение». Он приблизительно равен 0,618. Ученые эпохи Возрождения считали, что именно эта пропорция, если ее соблюдать в архитектурных сооружениях, способна больше всего радовать глаз.

Применение ряда Фибоначчи

Ряд Фибоначчи нашел широкое применение в самых разных областях науки и жизни. Например, в природе: в строении ураганов, раковин и даже галактик. Не стал исключением и валютный рынок Форекс, где последовательный ряд чисел стал использоваться для прогнозирования трендов. Следует отметить, что между этими числами есть неизменные отношения. Например, как упоминалось выше, отношение предыдущего числа к следующему асимптотически стремится к 0,618 (золотое сечение). Отношения некоторого числа к предыдущему также стремится к величине 0,618.

Помимо прогнозирования трендов, числа Фибоначчи на Форекс используются для прогноза направления движения цены. Например, разворот тренда по золотому сечению происходит на уровне около 61,8% от предыдущего изменения цены (см. рис. 1). Соответственно, самым выгодным вариантом в таком случае будет закрытие позиции чуть ниже данного уровня. Опираясь на ряд Фибоначчи можно рассчитывать наиболее выгодные моменты закрытия и открытия сделок.

Также, одним из способов применения последовательных чисел ряда Фибоначчи на рынке Форекс является построение дуг. Выбор центра для такой дуги происходит в точке важного дна или потолка. Радиус дуг рассчитывается при помощи умножения коэффициентов Фибоначчи на значение предыдущего существенного подъема или спада цен.

Выбираемые коэффициенты имеют значения 0.333, 0.382, 0.4, 0.5, 0.6, 0.618, 0.666. Расположение дуг определяет их роль: поддержки или сопротивления. Чтобы получить представление также о времени возникновения движений цены, дуги, как правило, используют совместно со скоростными или веерными линиями.

Принцип их построения аналогичен: нужно выбрать точки прошлых экстремумов и построить горизонтальную линию из вершины первого из них и вертикальную – из вершины второго. Затем следует поделить получившийся вертикальный отрезок на соответствующие коэффициентам части, нарисовать лучи, идущие из первой точки сквозь только что избранные. При использовании отношений 2/3 и 1/3 получаются скоростные линии, при более строгих 0,618, 0,5 и 0,382 – веерные линии. Все они служат линиями поддержки или сопротивления для ценового тренда (см. рис. 2).

Пересечения веерных дуг и линий служат сигналами для определения поворотных точек тренда – как по времени, так и по цене.

(Рис. 2 – Ряд Фибоначчи, построение дуг)

Более волатильные пары валют характеризуются достижением больших уровней Фибоначчи по сравнению с менее волатильными. Максимальные движения фиксируются по парам Доллар/Франк и Фунт/Доллар, затем идут Доллар/Йена и Евро/Доллар.

Использование ряда Фибоначчи на валютном рынке Форекс имеет одну особенность – их можно применять лишь для хороших импульсных движений.