Трансдукция осуществляется с помощью умеренного фага. Медицинская микробиология, иммунология и вирусология

Трансдукция - разновидность рекомбинативной изменчивости микроорганизмов, сопровождающаяся переносом генетической информации от донора к реципиентус помощью бактериофага. Перенос участков бактериальной хро­мосомы фагами был открыт в 1951г. Ледербергом и Циндером у Salmonella typhimurium, впоследствииописана у многих родов бактерий: Salmonella, Escherichia, Shigella, Bacillus, Pseudomonas, Vibrio, Streptococcus, Slaphylococcus, Corynebacterium. Капсидная оболочка бактериофага защищает ДНК от действия нуклеаз, поэтому трансдукция, в отличие от трансформации, не чувствительна к нуклеазам. Трансдукцию осуществляют умеренные фаги . Они переносят лишь небольшой фрагмент генома клетки хозяина, и как правило, среди особей одного вида, но возможен и межвидовой перенос генетической информации, если бактериофаг имеет широкий спектр хозяев.

В зависимости от исхода взаимодействия фага с бактерией выделяют литические и умеренные фаги.

Литические (вирулентные) фаги впрыскиваютнуклеиновую кислоту в клетку и репродуцируются в ней, после чего покидают клетку путем лизиса.

Лизогенные, или умеренные фаги , инъецировав свою ДНК в клетку, могут вести двояко: 1) начать цикл репродукции и покинуть клетку путем лизиса; 2) интегрировать свою генетическую информацию в геном бактерии и в его составе передаваться дочерним клеткам. Фаги, встроенные в геном бактерий, называют профагами , а бактерии со встроенными в геном фагами, - лизогенными. В результате действия факторов, прерывающих лизогению (УФ, ионизирующей радиация, химические мутагены), вновь синтезируются вирусные частицы, которые покидают клетку. Примером умеренного фаг является фаг l, поражающий E. coli . Этапы его трансдукции:

  1. Адсорбция фага к рецепторам на поверхности E. coli .
  2. Проникновение хвостовой части фага через клеточную стенку и инъекция ДНК в клетку-хозяина.
  3. Рекомбинация кольцевой молекулы ДНК фага с ДНК хозяина и установление лизогении (фаговая ДНК находится в интегрированном состоянии).
  4. Передача профага дочерним клеткам в процессе размножения E. coli . Чем больше делений, тем большее количество клеток содержит бактериофаг.
  5. Окончание лизогении. ДНК бактериофага вырезается из бактериальной хромосомы. Происходит синтез вирусных белков и репликация ДНК фага, сопровождающиеся созреванием вирусных частиц и их выходом из клетки путем ее лизиса. Во время вырезания бактериофаг может захватывать близлежащие бактериальные гены, которые в последующем попадают в клетку реципиента.
  6. Встраивание генома бактериофага, несущего бактериальные гены, в ДНК бактерии-реципиента. В зависимости от места встраивания бактериофага выделяют следующие виды трансдукции:

a. Неспецифическую (общую). Бактериофаг может встраиваться в любом месте генома бактерии и потому способен переносить любой фрагмент ДНК хозяина.

b. Специфическую. Бактериофаг встраивается в строго определенные места генома бактерии, а потому переносит лишь строго определенные фрагменты ДНК.

c. Абортивную . Участок бактериальной хромосомы донора, перенесенный бактериофагом, не вступает в рекомбинацию с хромосомой реципиента, а остается вне хромосомы. Происходит транскрипция перенесенной ДНК (на это указывает синтез соответ­ствующего генного продукта), но не репликация. В процессе деления клетки донорский фрагмент переходит только в одну из дочер­них клеток и со временем утрачивается.

Поведение фагов в бактериальной клетке

Фаги способны к реализации двух путей развития в бактериальной клетке:

  • Литический - после попадания в бактерию ДНК фага сразу же начинается его репликация, синтез белков и сборка готовых фаговых частиц, после чего происходит лизис клетки. Фаги, развивающиеся только по такому сценарию, называют вирулентными.
  • Лизогенный - попавшая в бактериальную клетку ДНК фага встраивается в её хромосому или существует в ней как плазмида , реплицируясь при каждом делении клетки. Такое состояние бактериофага носит название профаг . Система его репликации в этом случае подавлена синтезируемыми им самим репрессорами. При снижении концентрации репрессора профаг индуцируется и переходит к литическому пути развития. Реализующие подобную стратегию бактериофаги называются умеренными. Для некоторых из них стадия профага является обязательной, другие в некоторых случаях способные сразу развиваться по литическому пути.

Перенос фрагментов ДНК бактерии

Общая (неспецифическая) трансдукция

Осуществляется фагом P1, существующим в бактериальной клетке в виде плазмиды, фагами P22 и Mu, встраивающимися в любой участок бактериальной хромосомы. После индуцирования профага с вероятностью в 10 −5 на одну клетку возможна ошибочная упаковка фрагмента ДНК бактерии в капсид фага, ДНК самого фага в нём в этом случае нет. Длина этого фрагмента равна длине нормальной фаговой ДНК, его происхождение может быть любым: случайный участок хромосомы, плазмида, другие умеренные фаги.

Попадая в другую бактериальную клетку, фрагмент ДНК может включаться в её геном, обычно путём гомологичной рекомбинации. Перенесённые фагом плазмиды способны замыкаться в кольцо и реплицироваться уже в новой клетке. В ряде случае фрагмент ДНК не встраивается в хромосому реципиента, не реплицируется, но сохраняется в клетке и транскрибируется . Это явление носит название абортивной трансдукции.

Специфическая трансдукция

Наиболее хорошо изучена специфическая трансдукция на примере фага λ . Этот фаг встраивается только в один участок (att-сайт) хромосомы E. coli с определённой последовательностью нуклеотидов (гомологичной att-участку в ДНК фага). Во время индукции его исключение может пройти с ошибкой (вероятность 10 −3 -10 −5 на клетку): вырезается фрагмент тех же размеров что и ДНК фага, но с началом не в том месте. При этом часть генов фага теряется, а часть генов E. coli захватывается им. Вероятность переноса гена в этом случае падает при увеличении расстояния от него до att-сайта.

Для каждого специфически встраивающегося в хромосому умеренного фага характерен свой att-сайт и, соответственно, расположенные рядом с ним гены, которые он способен передавать. Ряд фагов может встраиваться в любое место на хромосоме и переносить любые гены по механизму специфической трансдукции. Кроме того, в хромосоме обычно есть последовательности, частично гомологичные att-участку ДНК фага. При повреждении полностью гомологичного att-сайта можно добиться включения фага в хромосому по этим последовательностям и передачу в ходе специфической трансдукции генов, соседних уже с ними.

Когда умеренный фаг, несущий бактериальные гены, встраивается в хромосому новой бактерии-хозяина, она содержит уже два одинаковых гена - собственный и принесённый извне. Поскольку фаг лишён части собственных генов, часто он не может индуцироваться и размножиться. Однако при заражении этой же клетки «вспомогательным» фагом того же вида, индуцирование дефектного фага становится возможным. Из хромосомы выходят и реплицируются как ДНК нормального «вспомогательного» фага, так и ДНК дефектного, вместе с переносимыми им бактериальными генами. Поэтому около 50% образующихся фаговых частиц несут бактериальную ДНК. Это явление носит название трансдукции с высокой частотой (HFT от англ. high frequency transduction ).

История изучения

Эстер Ледерберг была первой учёной, кому удалось выделить бактериофаг лямбда, ДНК вирус, из Escherichia coli K-12 в 1950 году.

Собственно открытие трансдукции связано с именем американского учёного Джошуа Ледерберга . В году он совместно с Нортоном Циндером обнаружил общую трансдукцию. В Ледербергом и др. было показано существование абортивной трансдукции, в - специфической.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Трансдукция (генетика)" в других словарях:

    Раздел общей генетики (См. Генетика), в котором объектом исследования служат бактерии, микроскопические грибы, актинофаги, вирусы животных и растений, бактериофаги и др. микроорганизмы. До 40 х гг. 20 в. считалось, что, поскольку у… …

    - [нэ], и; ж. [от греч. genētikos относящийся к рождению, происхождению]. Наука о законах наследственности и изменчивости организмов. Г. человека. Г. растений. Медицинская г. Космическая г. * * * генетика (от греч. génesis происхождение), наука о… … Энциклопедический словарь

    - (от лат. transductio перемещение) перенос генетического материала из одной клетки в другую с помощью вируса (См. Вирусы), что приводит к изменению наследственных свойств клеток реципиентов. Явление Т. было открыто американскими учёными Д … Большая советская энциклопедия

    Раздел генетики (См. Генетика) и молекулярной биологии (См. Молекулярная биология), ставящий целью познание материальных основ наследственности (См. Наследственность) и изменчивости (См. Изменчивость) живых существ путём исследования… … Большая советская энциклопедия

    абортивная трансдукция - Форма трансдукции, при которой фрагмент генома бактерии донора не включается в хромосому бактерии рецепиента и не реплицируется, а вместе с геномом вирусной частицы переносчика остается в цитоплазме в виде эписомы и может передаваться только в… …

    неспецифическая (общая, генерализованная) трансдукция - Перенос от бактерии к бактерии произвольного фрагмента бактериальной хромосомы путем его упаковки в капсид бактериофага вместо фагового генома (обычно такой фрагмент при Н.т. достаточно крупный до 2 % всех генов бактерии); к фагам, способным… … Справочник технического переводчика

    ограниченная (специфическая) трансдукция - Передача от бактериального донора бактериальному реципиенту с помощью бактериофага строго определенного фрагмента бактериальной ДНК, расположенного вблизи сайта интеграции бактериофага (как правило, нескольких генов); к бактериофагам,… … Справочник технического переводчика

    Соматических клеток генетика - * саматычных клетак генетыка * somatic cell genetics изучение наследственности и наследственной изменчивости собственно соматических клеток (см.). Изучение генных мутаций у соматических клеток, открытие явления гибридизации соматических клеток и… … Генетика. Энциклопедический словарь

    У этого термина существуют и другие значения, см. Трансформация. Трансформация процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у такой клетки новых для неё наследуемых… … Википедия

    Эстер Мириам Циммер Ледерберг Эстер Ледерберг читает лекцию в медицинской школе им. Каназавы по приглашению доктора Акабори, 1962 г. Дата рождения: 18 декабря 1922 Место рождения: Бронкс, Нью Йорк Дата смерти: 11 ноября 2006 Место смерти … Википедия

Трансдукция была открыта Дж. Ледербергом и Н.Циндером в 1952 г. у Salmonella typhimurium и фага Р22.

Трансдукция – перенос генетической информации (хромосомных генов или плазмид) от клетки-донора к клетке-реципиенту, который осуществляется при участии бактериофагов. При трансдукции фрагменты хромосомы или плазмиды должны упаковаться в головку бактериофага; выйти в составе этой фаговой частицы из клетки-донора в результате ее лизиса и попасть в другую клетку (клетку-реципиент) при новом акте заражения. Белковый капсид фаговой головки предохраняет находящуюся в ней ДНК от разрушения внеклеточными нуклеазами. В этом отношении трансдуцирующая ДНК более «сохранна», чем «голая» ДНК при трансформации. Поскольку адсорбция хвостового отростка фага на рецепторах поверхности клетки видоспецифична, то и перенос генетического материала при трансдукции может происходить, в основном, между близкородственными бактериями.

При трансдукции размеры переносимого фрагмента ДНК определяются размерами головки бактериофага. Различные фаги могут переносить фрагменты ДНК от 20 до 40 т. п. н. Таким образом, при трансдукции передаются как единичные гены, как и сцепленные маркеры. Рекомбинанты, получаемые при данном способе обмена генетической информацией, называются трансдуктантами .

Изучение трансдукции показало, что одни фаги могут переносить разные бактериальные гены, а другие – только определенные. В соответствии с этим принято выделять два типа трансдукции: 1) генерализованная (неспецифическая, или общая); 2) специфическая, или ограниченная.

При генерализованной трансдукции может переноситься любой бактериальный признак с частотой 10 –5 –10 –6 . Количество бактериальной ДНК, которое может переноситься фагом, обычно составляет 1–2 % всей ДНК, содержащейся в клетке. Исключение составляет бактериофаг РBS1 B. subtilis , который может трансдуцировать до 8 % генома хозяина. В осуществлении генерализованной трансдукции бактериальный вирус является только «пассивным» переносчиком генетического материала бактерий. Трансдуцирующие дефектные фаги содержат только фрагменты бактериальной ДНК. А генетическая рекомбинация у трансдуцируемых бактерий происходит по общим закономерностям рекомбинационного процесса.

Характерными особенностями специфической трансдукции являются: 1) каждый трансдуцирующий фаг передает только строго определенную, весьма ограниченную область бактериальной хромосомы; 2) фаг не только переносит генетический материал, но и обеспечивает его включение в бактериальную хромосому; 3) вирус включает ДНК бактерий в свой геном и передает ее, лизогенизируя бактерии-реципиенты.

Наиболее известным примером специфической трансдукции является трансдукция, осуществляемая фагом λ, который способен заражать клетки бактерий E. coli с последующей интеграцией его ДНК в геном бактерий.

Трансдукция имеет практическое использование:

Позволяет трансдуцировать плазмиды и короткие фрагменты хромосомы донора;

Для конструирования штаммов заданного генотипа, в частности изогенных штаммов. Изогенные штаммы, сконструированные при помощи генерализованной трансдукции, различаются только по участку хромосомы, переносимому трансдуцирующим фагом;

Для точного картирования бактериальных генов, установления порядка и их расположения в оперонах.

Вопросы для самоконтроля

1 Какие процессы могут происходить в клетке-реципиенте, после попадания вовнутрь нее донорной ДНК и перехода в состояние мерозиготы?

2 Что такое процесс трансформации? Какие стадии он включает?

3 Перечислите основные стадии процесса конъюгации.

4 Охарактеризуйте процесс трансдукции. Чем отличается специфическая трансдукция от генерализованной?

Практическое занятие 8

Цель: изучение основных способов генетического обмена у бактерий; выявление общих и отличительных особенностей процессов трансформации, конъюгации и трансдукции.

Материалы и оборудование : демонстрационные схемы (рисунки): а) мерозиготы; б) процесса трансформации; в) механизма бактериальной конъюгации; г) F-плазмиды бактерий E. сoli ; д) генерализованной трансдукции; ж) специфической трансдукции; электронная микрофотография конъюгирующих клеток E. сoli ; цветные карандаши.

Ход работы

В протоколе занятия:

1 Дать общую характеристику способам обмена генетической информацией у бактерий: указать три основных способа обмена генетической информацией, их общие особенности.

2 Нарисовать схему мерозиготы и показать два пути ее развития.

3 Охарактеризовать процесс трансформации согласно схеме описания: понятие трансформации, история открытия, этапы процесса трансформации, компетентность, практическое использование трансформации.

4 Составить графологическую схему «Стадии процесса трансформации», отразив в этой схеме по отдельности процесс трансформации: а) плазмидной ДНК; б) бактериальной ДНК.

5 Охарактеризовать процесс конъюгации согласно схеме описания: понятие конъюгации, история открытия, этапы процесса конъюгации, количество переносимой ДНК при конъюгации, практическое использование конъюгации.

6 Составить графологическую схему «Передача генетического материала при конъюгации», отразив в этой схеме по отдельности участие в качестве клеток-доноров: а) F + -доноров; б) доноров Hfr-типа.

7 Охарактеризовать процесс трансдукции согласно схеме описания: понятие трансдукции, история открытия, этапы процесса трансдукции, количество переносимой ДНК при трансдукции, типы трансдукции, практическое использование трансдукции.

8 Составить графологические схемы «Генерализованная трансдукция», «Специфическая трансдукция». Обратить внимание на существенные отличия между этими двумя типами трансдукции.

Изучение явления трансформации послужило толчком к открытию другого явления - трансдукции - переноса и рекомбинации генов у бактерий с помощью бактериофага.

Опыт, позволивший открыть этот новый генетический механизм и новый способ изучения наследственности, заключается в следующем.

U-образная трубка в нижней части была разделена посредине бактериальным фильтром. В одну половину этой трубки были помещены тифозные бактерии (Salmonella typhimurium) штамма 22А, а в другую половину трубки - штамма 2А. При этом бактериальные клетки не могли переходить сквозь перегородку.

Штамм 22А нес мутацию, блокирующую синтез триптофана Т — , и поэтому при культивировании бактерии нуждались в добавке триптофана в среду. Штамм бактерии 2А имел мутацию, блокирующую синтез гистидина Н — , и поэтому нуждался в нем при культивировании.

После инкубации этих двух разных штаммов в трубке, разделенной только бактериальным фильтром, был произведен рассев клеток обоих штаммов. При рассеве клеток штамма 22А на среде, лишенной триптофана, было обнаружено небольшое число колоний. Следовательно, некоторые клетки штамма 22А каким-то образом приобрели способность синтезировать триптофан и смогли дать колонии на среде без этой аминокислоты. Частота появления таких клеток была равна 1х10 -5 .

Можно было предположить, что эти измененные клетки что явились или в результате обратной мутации от Т — к Т + или перехода трансформирующего фактора от штамма 2А. Но штамм 22А отличался высокой стабильностью, и поэтому указанную частоту появления (10 6) клеток генотипа Т + нельзя было объяснить возникновением обратных мутаций. Трансформирующий фактор в среде также не был обнаружен. Фильтрующимся агентом, переносящим ген Т + от штамма 2А к штамму 22А, оказался бактериофаг.

Таковы первые факты, доказавшие передачу наследственной информации с помощью бактериофага от бактерии одного генотипа к бактерии другого генотипа. Это открытие было сделано в 1952 г. Н. Циндером и Дж. Ледербергом.

Используемый в исследованиях Циндера и Ледерберга штамм 22A Solmonella typhirnurium не обладал способностью синтезировать триптофан, но после совместного содержания в разделенной фильтром U-образной трубке со штаммом 2А приобрел свойство синтезировать триптофан. Это могло произойти только в том случае, если фаг, вышедший из клеток штамма 2А, проник через фильтр, внедрился в некоторые клетки штамма 22А и передал им часть наследственной информации - фрагмент наследственного материала штамма 2А.

Следовательно, ДНК фага, лизогенизирующего бактерию, каким — то образом претерпевает рекомбинацию с ДНК бактериальной клетки, в силу чего в новые фаговые частицы включаются гены клетки-хозяина. Эти фаги, заражая вновь клетки другого генотипа, также передают ей свою ДНК с новой информацией. Так, клетки штамма 22А приобрели ген, ответственный за синтез триптофана.

Как мы видели, фаги являются переносчиками наследственной информации от бактерии одного генотипа к бактерии другого генотипа. И это возможно только при условии, если ДНК фага вступает интимные связи с ДНК хромосом бактериальных клеток. Это явление переноса отдельных наследственных задатков от бактерии-донора, в которой происходили размножение фага и рекомбинация Готического материала фага и хозяина-бактерии к реципиенту, и называется трансдукцией .

Донором является культура бактерии, способная синтезировать метионин М + и ферментировать галактозу Gal + , а также имеющая стрептомициноустойчивость Sm r . Бактерия-реципиент не синтезирует метионин М — , не сбраживает галактозу Gal — и чувствительна к стрептомицину Sm s . Фаголизат, полученный от донора M + Gal + Sm r , вносят в культуру реципиента M — Gal — Sm s . После инкубации клетки реципиента рассевают на соответствующих селективных средах, в результате чего обнаруживаются три новых класса рекомбинантов M — Gal + Sm s , M + Gal — Sm S , M — Gal — Sm r .

В случае трансдукции донор через фаг передает лишь отдельный фрагмент ДНК. Поэтому инфицированные бактерии реципиента являются как бы диплоидными по переданному фрагменту (мерозиготы) и частично гетерозиготами (гетерогеноты), в потомстве которых могут быть рекомбинантные бактерии M + Gal — Sm s и M — Gal — Sm s возникшие при трансдукции.

Судьба переданного фрагмента хромосомы донора в клетке реципиента может быть различной. Этот фрагмент может, во-первых, внедриться в хромосому хозяина и реплицироваться совместно и синхронно с соответствующим участком хромосомы хозяина (завершенная трансдукция), во-вторых, может быть удален из клетки хозяина и, в-третьих, может сохранять автономность и передаваться от клетки к клетке независимо от хромосомы хозяина (абортивная трансдукция).

Фаг может переносить самые различные гены бактерий, обусловливающие определенный характер синтеза аминокислот, различные ферментативные свойства, устойчивость к антибиотикам (стрептомицину, пенициллину) и иммунность к другому фагу. Как правило, одновременно трансдуцируется один, реже - два тесно сцепленных гена и очень редко три гена. Эта особенность была использована в опытах М. Демереца с сотрудниками, которым удалось посредством учета результатов трансдукции провести картирование тесно сцепленных генных локусов, обеспечивающих синтез цистеина у Salmonella.

Таким образом, трансдукция так же, как и трансформация, является своеобразным процессом рекомбинации генов. Рекомбинация генов является одним из механизмов, осуществляющих у бактерий комбинативную изменчивость, которая у высших организмов обеспечивается мейозом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Специфическая трансдукция

Отличается от неспецифической тем, что в этом случае трансдуцирующие фаги всегда переносят только определенные гены, а именно, те из них, которые располагаются в хромосоме лизогенной клетки слева от attL или справа от attR. Специфическая трансдукция всегда связана с интеграцией умеренного фага в хромосому клетки-хозяина. При выходе (исключении) из хромосомы профаг может захватить ген с левого или правого фланга, например или gal, или bio. Но в этом случае он должен лишиться такого же размера своей ДНК с противоположного конца, чтобы ее общая длина оставалась неизменной (иначе она не может быть упакована в головку фага). Поэтому при такой форме исключения обр

Специфическую трансдукцию у E. coli осуществляет не только фаг лямбда, но и родственные ему лямбдоидные и другие фаги. В зависимости от места расположения сайтов attB на хромосоме они при своем исключении могут включать различные бактериальные гены, сцепленные с профагом, и трансдуцировать их в другие клетки. Встраивающийся в геном материал может замещать до 1 / 3 генетического материала фага.

Трансдуцирующий фаг в случае инфицирования реципиентной клетки интегрируется в ее хромосому и привносит в нее новый ген (новый признак), опосредуя не только лизогенизацию, но и лизогенную конверсию.

Таким образом, если при неспецифической трансдукции фаг является только пассивным переносчиком генетического материала, то при специфической фаг включает этот материал в свой геном и передает его, лизогенизируя бактерии, реципиенту. Однако лизогенная конверсия может произойти и в том случае, если геном умеренного фага содержит такие собственные гены, которые у клетки отсутствуют, но отвечают за синтез существенно важных белков. Например, способностью вырабатывать экзотоксин обладают только те возбудители дифтерии, в хромосому которых интегрирован умеренный профаг, несущий оперон tox. Он отвечает за синтез дифтерийного токсина. Иначе говоря, умеренный фаг tox вызывает лизогенную конверсию нетоксигенной дифтерийной палочки в токсигенную.

Метод агаровых слоев заключается в следующем. Вначале в чашку наливают слой питательного агара. После застывания на этот слой добавляют 2 мл расплавленного и охлажденного до 45 °C агара 0,7 %-ного, в который предварительно добавляют каплю концентрированной суспензии бактерий и определенный объем суспензии фага. После того как верхний слой застынет, чашку помещают в термостат. Бактерии размножаются внутри мягкого слоя агара, образуя сплошной непрозрачный фон, на котором хорошо видны колонии фага в виде стерильных пятен (рис. 84, 2). Каждая колония образуется за счет размножения одного исходного фагового вириона. Применение этого метода позволяет: а) путем подсчета колоний точно определить количество жизнеспособных фаговых вирионов в данном материале;

б) по характерным признакам (размер, прозрачность и др.) изучать наследственную изменчивость у фагов.

По спектру своего действия на бактерии фаги подразделяются на поливалентные (лизируют родственные бактерии, например поливалентный сальмонеллезный фаг лизирует почти все сальмонеллы), монофаги (лизируют бактерии только одного вида, например фаг Vi-I лизирует только возбудителей брюшного тифа) и типоспецифические фаги, которые избирательно лизируют отдельные варианты бактерий внутри вида. С помощью таких фагов производится наиболее тонкая дифференциация бактерий внутри вида, с разделением их на фаговарианты. Например, с помощью набора фагов Vi-II возбудитель брюшного тифа делится более чем на 100 фаговариантов. Поскольку чувствительность бактерий к фагам является относительно стабильным признаком, связанным с наличием соответствующих рецепторов, фаготипирование имеет важное диагностическое и эпидемиологическое значение.