Фибринолиз. Плазмин

Принцип: Метод основан на осаждении в кислой среде и при низкой температуре эуглобулиновой фракции, содержащей факторы свертывания и фибринолиза. Главным компонентом эуглобулиновой фракции является плазминоген, кроме того, в ней содержится около 25% фибриногена, протромбин и другие факторы свертывающей системы крови. Полученный осадок эуглобулинов растворяется. Фибриноген превращается в фибрин. Время от момента образования сгустка фибрина до его растворения выражает фибринолитическую активность крови.

Реактивы: 1. 0,1 М раствор оксалата аммония или щавелевокислого натрия; 2. Раствор борнокислого натрия (9,0 г NaCI и 1,0 г Na2B4O7 растворяют в 1 л дистиллированной воды); 3. Кислая вода: 1 мл 1 % раствора уксусной кислоты и 90 мл дистиллированной воды. 4. 0,025 М раствор СаСl2.

Ход определения. 0,1 мл плазмы переносят в центрифужную пробирку и добавляют 1,8 мл кислой воды. При этом из плазмы выпадает эуглобулиновая фракция белка. Содержимое пробирки осторожно перемешивают и помещают пробирку в холодильник при + 4°С. Через 20 минут центрифугируют в течение 10 минут при 2000 об./мин. Надосадочную жидкость отсасывают. К осадку приливают 0,1 мл борнокислого натрия и ставят в термостат при 37°С на несколько минут до полного растворения. Приливают 0,1 мл CaCl2. Отмечают момент образования сгустка и вновь ставят в термостат до полного лизиса.

Нормальные величины: сгусток лизируется в течение 150 - 220 и даже 260 минут.

Унифицированный метод определения фибринолитической активности методом лизиса эуглобулинов плазмы (по Е. Kowalski et al., 1959).

Принцип: Время растворения сгустка, установленное по лизису эуглобулиновой фракции, отражает фибринолитическую активность плазмы, освобожденной от ингибиторов.

Реагенты и оборудование: 1. 1,42 % раствор оксалата аммония или 1,34 % раствор оксалата натрия; 2. 1 % раствор уксусной кислоты; 3. боратный раствор (9 г хлорида натрия и 1 г бората натрия, которые растворяют в 1000 мл дистиллированной воды. Боратный раствор и раствор уксусной кислоты лучше хранить при 4°C до 6 мес); 4. 0,025 М раствор хлорида кальция; 5. водяная баня на 37 °С.

Ход определения: Кровь, взятую из вены, смешивают с антикоагулянтом в соотношении 9:1 и до центрифугирования хранят в бане со льдом. Центрифугируют 10 мин при 1500 об/мин. В пробирку наливают 0,5 мл плазмы и 8 мл дистиллированной воды, смешивают их и добавляют 0,15 мл 1 % раствора уксусной кислоты (рН смеси должен быть 5,3). Пробирку оставляют на 30 мин при +4 °С. Затем смесь центрифугируют со скоростью 1500 об/мин 5 мин, сливают надосадочную жидкость и удаляют остатки жидкости, опрокинув пробирку на фильтровальную бумагу. Осадок эуглобулинов растворяют в 0,5 мл боратного раствора. Две пробы раствора по 0,2 мл переносят в пробирки диаметром 10 мм и опускают в баню при 37 °С. Через 1 мин к каждой пробе добавляют по 0,2 мл раствора хлорида кальция. Через несколько минут образуется сгусток. Время окончания лизиса определяют по полному исчезновению (растворению) сгустка.

Нормальные величины: 183—263 мин.

Оценка результатов и замечания по методу: Если уменьшен фибри-нолитический потенциал плазмы (вследствие нарушения активации плазми-ногена из-за недостатка его активаторов, замедления калликреин-кининовой активации, ингибиции фактора ХПа, уменьшения количества плазмино-гена), эуглобулиновый лизис продолжается более 300 мин. Такое явление наблюдается у больных тромбозами, с предтромботическими состояниями, III—IV стадиями ДВС-синдрома, у страдающих геморрагическим васкули-том, сепсисом, токсикозами беременности. Замедление лизиса считают признаком предтромбоза, который отражает состояние гиперкоагуляции или способствует его развитию.

При повышении плазминового потенциала лизис эуглобулинов ускорен (продолжается менее 150 мин), когда активируется плазминоген вследствие увеличения как экзогенных (стрептококкокиназа, стафилококкокиназа, уро-киназа, трипсинемия и др.), так и эндогенных (активаторы тканей, фактор ХПа, кинин, калликреин) активаторов. Степень активации плазмина, как правило, отражает или интенсивность внутрисосудистого свертывания и защитную реакцию организма на угрозу образования тромбов (вторичный фибринолиз), или самостоятельное включение плазминовой системы ее активаторами в патологический процесс (первичный фибринолиз). Первичный фибринолиз играет роль в развитии некоторых геморрагических состояний у пациентов акушерских, хирургических, урологических отделений. Поэтому он корригируется антифибринолитическими препаратами (ЭАКК, трасилолом, контрикалом, гордоксом и др.). Между тем больным со вторичным фибринолизом эти препараты, как правило, противопоказаны, у них фибринолиз нормализуется после введения гепарина.

Нормальный замедленный или ускоренный эуглобулиновый лизис отражает активный потенциал плазминовой системы. Однако заключение о состоянии плазминовой системы в целом и ее роли в развитии геморрагий и тромбообразования невозможно, если не получены данные исследования спонтанного фибринолиза и активности ингибиторов плазмина, сопоставленные с клиническими данными больного.

Лизис эуглобулиновой фракции плазмы необходимо определять в пределах 1—2 ч после взятия крови.

Нужно очень тщательно удалять надосадочную жидкость со стенок пробирки: сразу же после сливания надосадочной жидкости стенки пробирки осушить свернутой в трубочку фильтровальной бумагой, не дотрагиваясь до осадка эуглобулинов, и еще раз “снять” остатки надосадочной жидкости другой фильтровальной бумагой, смоченной в дистиллированной воде. В надосадочной жидкости много ингибиторов плазминовой системы, поэтому ее незначительные капельки на стенках пробирки резко удлиняют лизис сгустка, искажая данные исследования.

После образования сгустка пробирку нельзя встряхивать, так как иногда после незначительного встряхивания сгусток ретрагирует и резко удлиняется его лизис.

Эуглобулиновыи лизис на 35—45 мин протекает быстрее в суховоздуш-ном термостате, чем в водяной бане. Поэтому контрольные исследования у здоровых и у больных должны проводиться в одинаковых условиях.

Эуглобулиновыи лизис можно значительно ускорить, добавив в систему активаторов фибринолиза (стрептокиназу, урокиназу и др.) или предварительно обработав плазму каолином.

Разведенную эуглобулиновую фракцию можно переносить на фибриновые пластины для оценки интенсивности лизиса по площади лизируемого фибрина.

Термин «гемолиз» относится к числу часто употребляемых в любой области медицинской деятельности. Многие знают его назначение, другие догадываются, что с кровью произошло что-то необратимое, коль многозначительно произносится это слово, для третьих это понятие вообще ничего не значит, если человек здоров и медициной не интересуется в принципе.

Гемолиз в крови происходит постоянно, он завершает жизненный цикл красных кровяных телец, которые живут 4 месяца , разрушаются в плановом порядке и «умирают» – событие это для здорового организма остается незамеченным. Другое дело, если эритроциты прекращают свое существование в качестве полноценного переносчика кислорода по другим причинам, коими могут стать различные яды, разрушающие оболочки эритроцитов, лекарственные средства, инфекции, антитела.

Где происходит гемолиз?

Разрушаться могут в разных местах. Различая этот распад по локализации, можно выделить следующие виды гемолиза:

  • Иной раз на красные кровяные тельца влияет окружающая их среда – циркулирующая кровь (внутрисосудистый гемолиз )
  • В других случаях разрушение происходит в клетках органов, участвующих в кроветворении или накапливающих форменные элементы крови – костный мозг, селезенка, печень (внутриклеточный гемолиз ).

Правда, растворение сгустка и окрашивание плазмы в красный цвет происходит и в пробирке (in vitro). Чаще всего гемолиз в анализе крови случается:

  1. По причине нарушения техники забора материала (мокрая пробирка, например) или несоблюдения правил хранения проб крови. Как правило, в таких случаях гемолиз происходит в сыворотке, в момент или после образования сгустка;
  2. Провоцируется умышленно для проведения лабораторных исследований, требующих предварительного гемолиза крови, а точнее, лизиса эритроцитов с целью получения отдельной популяции других клеток.

Рассуждая о видах гемолиза в организме и вне его, думаем, нелишним будет напомнить читателю об отличии плазмы от сыворотки . В плазме присутствует растворенный в ней белок – фибриноген, который впоследствии полимеризуется в фибрин, составляющий основу сгустка, опустившегося на дно пробирки и превращающий плазму в сыворотку. При гемолизе крови это имеет принципиальное значение, поскольку в нормальном физиологическом состоянии кровь в сосудистом русле не сворачивается. Тяжелое состояние, возникающее в результате воздействия крайне неблагоприятных факторов – внутрисосудистый гемолиз или относится к острым патологическим процессам, требующим немало усилий для спасения жизни человека. Но и тогда мы будем говорить о плазме, а не о сыворотке, ибо сыворотка в полноценном виде наблюдается только вне живого организма, после образования качественного кровяного сгустка, в основном, состоящего из нитей фибрина.

Биохимические анализы крови, взятые с антикоагулянтом и изучаемые в плазме, или отобранные без применения противосвертывающих растворов в сухую пробирку и исследуемые в сыворотке, не могут идти в работу. Гемолиз эритроцитов в пробе является противопоказанием к проведению исследования, ибо результаты будут искажены.

Гемолиз как естественный процесс

Как указывалось выше, гемолиз в какой-то мере постоянно происходит в организме, ведь старые отслужившие эритроциты умирают, а их место занимают новые – молодые и трудоспособные. Естественный или физиологический гемолиз , перманентно протекающий в здоровом организме, представляет собой естественную гибель старых красных кровяных телец и происходит данный процесс в печени, селезенке и красном костном мозге.

Другое дело, когда эритроцитам еще жить и жить, а какие-то обстоятельства приводят их к преждевременной гибели – это патологический гемолиз .

Очень неблагоприятные факторы, воздействуя на дискоциты (коими являются нормальные эритроциты), увеличивают их до сферической формы, нанося непоправимый вред оболочке. Клеточная мембрана, не имея от природы особых способностей к растяжению, в конечном итоге разрывается, а содержимое эритроцита () беспрепятственно выходит в плазму.

В результате выхода красного кровяного пигмента в плазму, она окрашивается в неестественный цвет. Лаковая кровь (блестящая красная сыворотка) – главный признак гемолиза, который можно созерцать собственными глазами.

Как он проявляется?

Не дает особых проявлений и хронический гемолиз, сопровождающий некоторые болезни и существующий, как один из симптомов (серповидноклеточная , ) – это вялотекущий процесс, где все терапевтические мероприятия направлены на основное заболевание.

Безусловно, каких-то признаков естественного гемолиза, как бы мы не старались, мы не увидим. Подобно другим физиологическим процессам, он запрограммирован природой и протекает незаметно.

Разрушающиеся эритроциты неправильной формы при серповидноклеточной анемии

Неотложных и интенсивных мероприятий требует острый гемолиз, главными причинами которого являются:


При развитии острог гемолиза жалобы больного будут присутствовать лишь при условии, что он находится в сознании и может сообщить о своих ощущениях:

  1. Резко сдавливает грудь;
  2. Во всем теле появляется жар;
  3. Болит в груди, животе, но особенно – в поясничной области (боль в пояснице – типичный симптом гемолиза ).

К объективным признакам относят:

  • Падение артериального давления;
  • Ярко выраженный внутрисосудистый гемолиз (лабораторные исследования);
  • Гиперемия лица, которая вскоре сменяется бледностью, а затем и цианозом;
  • Беспокойство;
  • Непроизвольное мочеиспускание и дефекация указывает на высокую степень тяжести состояния.

Признаки острого гемолиза у пациентов, проходящих курс лучевой и гормонотерапии или находящихся в состояния наркоза, стерты и не проявляются так ярко, поэтому могут быть пропущены.

Кроме этого, гемотрансфузионные осложнения имеют такую особенность: через пару часов острота процесса затихает, АД повышается, боли особо не беспокоят (остаются ноющие в пояснице), поэтому создается впечатление, что «пронесло». К сожалению, это не так. Спустя какое-то время все возвращается на круги своя, но только с новой силой:

  1. Повышается температура тела;
  2. Нарастает желтуха (склеры, кожа);
  3. Беспокоит сильная головная боль;
  4. Доминирующим признаком становится расстройство функциональных способностей почек: резкое уменьшение количества выделяемой мочи, в которой появляется много свободного белка и гемоглобин, прекращение выделения мочи. Результатом неэффективности лечения (или его отсутствия) на этой стадии является развитие анурии, уремии и гибель больного.

В состоянии острого гемолиза при проведении лечения больному постоянно берут анализы крови и мочи, которые несут нужную для врача информацию об изменениях в лучшую или худшую сторону. Со стороны крови наблюдается:

  • Нарастающая анемия (эритроциты разрушаются, гемоглобин выходит в плазму);
  • , как продукт распада эритроцитов (гипербилирубинемия);
  • Нарушения в системе свертывания, что покажет .

Что касается мочи (если она есть), то даже по цвету уже можно увидеть признаки гемолиза (цвет красный, а иногда и черный), при биохимическом исследовании – гемоглобин, белок, калий.

Лечение

Лечение острого гемолиза (гемолитического криза, шока) всегда требует незамедлительных мероприятий, которые, однако, зависят от причины его развития и степени тяжести состояния больного.

Пациенту назначается кровезамещающие растворы, заменное (у новорожденных с ГБН), плазмаферез, вводятся гормоны, проводится процедура гемодиализа. Ввиду того, что ни при каких обстоятельствах ни сам больной, ни его родственники в домашних условиях с подобным состоянием не справятся, расписывать все схемы лечения нет особого смысла. К тому же принятие определенной тактики лечения осуществляется на месте, по ходу проведения всех мероприятий, опираясь на постоянный лабораторный контроль.

Причины и виды патологического гемолиза

Виды гемолиза в зависимости от причин его развития многообразны, как и сами причины:


Изучая свойства красных кровяных телец при диагностике некоторых болезней, иной раз требуется такой анализ крови, как осмотическая резистентность эритроцитов (ОРЭ), которую мы рассмотрим отдельно, хотя она имеет непосредственное отношение к осмотическому гемолизу.

Осмотическая резистентность эритроцитов

Осмотическая резистентность красных клеток крови определяет устойчивость их оболочек при помещении в гипотонический раствор.

ОСЭ бывает:

  • Минимальной – о ней говорят, когда менее устойчивые клетки начинают разрушаться в 0,46 – 0,48% растворе хлорида натрия;
  • Максимальной – все кровяные тельца распадаются при концентрации NaCl 0,32 – 0,34%.

Осмотическая резистентность эритроцитов находится в прямой зависимости от того, какую форму имеют клетки и в какой степени зрелости они пребывают. Характеристикой формы эритроцитов, играющей роль в их устойчивости, считается индекс сферичности (соотношение толщины к диаметру), который в норме равен 0,27 – 0,28 (очевидно, что разбежка небольшая).

Шаровидная форма свойственна очень зрелым эритроцитам, находящимся на грани завершения жизненного цикла, стойкость мембран таких клеток очень низкая. При гемолитической анемии появление шаровидных (сфероидных) форм свидетельствует о скорой гибели этих кровяных телец, данная патология сокращает их продолжительность жизни в 10 раз, они не могут выполнять свои функции более двух недель, поэтому, просуществовав в крови 12 – 14 дней, погибают. Таким образом, с появлением шаровидных форм при гемолитической анемии повышается и индекс сферичности, который становится признаком преждевременной смерти эритроцитов.

Наибольшей стойкостью к гипотонии наделены молодые, только покинувшие костный мозг, клетки – и их предшественники. Обладая уплощенной дисковидной формой, невысоким индексом сферичности, молодые эритроциты хорошо переносят подобные условия, поэтому такой показатель, как осмотическая резистентность эритроцитов может использоваться для характеристики интенсивности эритропоэза и, соответственно, гемопоэтической активности красного костного мозга.

Один маленький вопрос

В заключение хотелось бы затронуть одну маленькую тему, которая, между тем, нередко интересует пациентов: гемолиз эритроцитов при лечении некоторыми лекарственными препаратами.

Отдельные фармацевтические средства действительно вызывают усиление разрушения красных кровяных телец. Гемолиз эритроцитов в данных случаях рассматривается как побочный эффект лекарства, который уходит при отмене препарата. К таким лекарственным средствам относятся:

  • Некоторые анальгетики и антипиретики (ацетилсалициловая кислота и аспиринсодержащие, амидопирин);
  • Подобные недостатки есть у отдельных (диакарб, например) и препаратов нитрофуранового ряда (фурадонин);
  • Имеют склонности преждевременно разрушать оболочки эритроцитов и многие сульфаниламиды (сульфален, сульфапиридазин);
  • На мембрану красных клеток крови могут оказывать действие лекарства, снижающие (толбутамид, хлорпропамид);
  • Вызывать гемолиз эритроцитов могут препараты, направленные на лечение туберкулеза (изониазид, ПАСК) и средства против малярии (хинин, акрихин).

Особой опасности организму такое явление не несет, паниковать не стоит, однако о своих сомнениях все же следует сообщить лечащему врачу, который и решит проблему.

Видео: опыт – гемолиз эритроцитов под воздействием спирта

Определение протеина S коагуляционным методом . Для определения протеина S используется тест-система, содержащая очищенный активный протеин С, его субстрат – фактор Vа и дефицитную по протеину S плазму. Специфичность метода относительная, так на результаты теста могут существенно влиять фактор V Лейден, высокий уровень ф. VIII и волчаночный антикоагулянт, поэтому предпочтительно использовать иммунохимический метод.

Определение протеина S иммунохимическим методом . Метод достаточно широко распространен. Наборы последних разработок позволяют определять «свободный протеин S» без предварительной обработки. Недостатком иммунохимического метода является то, что он выявляет протеолитически неактивные формы протеина S, которые иногда появляются в плазме.

Нормальные величины : Референсные значения общего протеина S в плазме крови –60 – 140%, свободного – 65 – 144%.

Клиническое значение :

Дефицит протеина S связан с риском развития тромбоза. Снижение активности протеина S может быть обусловлено врожденным (наследственным) дефицитом или дисфункцией протеина S, недостаточность наблюдается при заболеваниях печени (нарушен синтез), лечении пероральными (непрямыми) антикоагулянтами; нефротическом синдроме (потеря с мочой); ДВС-синдроме; в острой фазе воспалительных заболеваний или при обострении хронических (увеличивается связанная и снижается свободная форма протеина S), при наличии аутоантител к протеину S.

6. Тесты для исследования фибринолитической системы

Наиболее распространенные в клинической практике методы оценки состояния фибринолитической системы основаны на:
1) исследовании времени и степени лизиса (растворения) сгустков крови или эуглобулиновой фракции плазмы (общеоценочные пробы);
2) определении содержания отдельных компонентов фибринолитической системы - плазминогена, его активаторов и ингибиторов (ТАП; ПАИ-1; α2-антиплазмин).


6.1. Время лизиса эуглобулиновых сгустков

Базисным методом исследования системы фибринолиза является определение фибринолитической активности эуглобулиновой фракции плазмы крови.

Спонтанный эуглобулиновый лизис

Из плазмы крови выделяют эуглобулиновую фракцию, содержащую плазминоген, фибриноген и факторы свертывания и не содержащую ингибиторов фибринолиза (они удаляются с надосадочной жидкостью, которая не использу­ется в реакции). При добавлениихлорида кальция из фибриногена образуется сгусток фибрина, который затем спонтанно лизируется плазмином. Время от момен­та образования сгустка фибрина до его растворения отражает фибринолитическую активность исследуемой плазмы.

Нормальные величины : В норме время лизиса эуглобулинового сгустка составляет 120-140 мин.

Клиническое значение :

Уко­рочение времени лизиса свидетельствует об активации фибринолиза, а удлине­ние - об угнетении фибринолитического процесса.

Стимулированный эуглобулиновый лизис

Образования плазмина, и, следовательно, растворение сгустка может быть значительно ускорено предварительным введением в плазму каолина (актива­тора XII фактора) или стрептокиназы (активатора плазминогена).

Нормальные величины : В клоттинговом тесте («ХIIа-зависимый фибринолиз») время лизиса фибринового сгустка нормальной плазмы составляет 5-12 мин.

Клиническое значение :

Нарушения ХIIа-зависимого фибринолиза обусловлены изменением содержания и степени активации основных плазменных протеолитических систем (свертывания, фибринолиза, калликреин-кининовой и др.) в связи с тем, что фактор XII является триггерным для этих систем. Укорочение времени лизиса сгустка в ХIIа-зависимом фибринолизе свидетельствует о преобладании фибринолитических свойств плазмы над прокоагулянтными, удлинение - об истощении резервов фибринолитической системы.

При активации плазминогена стрептокиназой время лизиса сгустка фибрина зависит от количества плазминогена в плазме: укорочение времени лизиса фибринового сгустка наблюдается при активации фибринолиза, удлинение - при его угнетении.

При отклонениях содержания фибриногена в плазме, а также неполноценной полимеризации фибрина возможно получение ошибочных результатов: при снижении фибриногена время лизиса укорачивается, что трактуется ошибочно как гиперфибринолиз, при гиперфибриногенемии время лизиса удлиняется.

В связи с недостаточной специфичностью в последнее время вместо теста спонтанного лизиса эуглобулинового сгустка начали использовать определение отдельных факторов фибринолитической системы, в первую очередь плазминогена.

6.2. Компоненты плазминовой (фибринолитической) системы

Фибринолитическая система включает 4 основных компонента: плазминоген, плазмин, активаторы и ингибиторы фибринолиза.

Плазмин - основной протеолитический фермент системы фибринолиза, об­разующийся из неактивного проэнзима плазминогена . О ко­личественной и качественной характеристике плазмина судят по времени лизиса сгустка фибрина.

Существуют различные методы определения содержания плазминогена в плазме крови. Наиболее широко распространен метод с использованием хромогенного суб­страта. Он основан на том, что плазминоген способен образовывать со стрептокиназой комплекс, который гидролизует пептидный хромогенный субстрат. При этом высвобождается паранитроанилин, количество которого прямо пропорционально активности плазминогена в образце плазмы.


Нормальные величины : В плазме здорового человека активность плазминогена составляет 80-120%.

Клиническое значение :

Плазминоген относится к белкам "острой фазы", поэтому при инфекциях, травмах, опухолях и в последние месяцы беременности его концентрация в крови нарастает.

Дефицит плазминогена наблюдается при инфаркте миокарда, легочной тром­боэмболии, тромбозе глубоких вен нижних конечностей, коагулопатиях потреб­ления. Дефицит плазминогена крайне редкое событие, чаще встречается дефицит тканевого активатора плазминогена (ТАП). Определение плазминогена используют для диагностики ДВС-синдрома и тромбофилий; выявления нарушений фибринолиза; контроля лечения фибринолитическими препаратами при тромбозах, тромбоэмболиях, инфарктах.

Тканевый активатор плазминогена (ТАП ). ТАП обладает высокой амидазной активностью, что позволяет эффективно использовать для его определения метод хромогенных субстратов.

Клиническое значение :

Дефицит ТАП является одним из потенциальных факторов риска тромбоза, хотя клинически это подтверждается не всегда. Тканевой активатор плазминогена высвобождается в кровоток из эндотелиальных клеток сосудистой стенки при стрессовых воздействиях, в частности при манжеточной пробе (дозированном пережатии вен). Сначала определяют базовый уровень ТАП, потом на 10-15 минут на предплечье накладывают жгут или раздувают манжетку, вызывающую венозный стаз, затем берут вторую порцию крови, в которой повторно определяют ТАП. Сравнивают результаты обеих проб.

Определение ТАП проводится у больных с тромбофилией как часть панели тестов на выявление причины тромбофилии, особенно при нагрузочных манжеточных пробах.

7. Тесты активации свертывания крови и фибринолиза

7.1. Продукты деградации фибриногена/фибрина (ПДФ)

При мощной активации фибринолиза происходит образо­вание продуктов деградации фибриногена и фибрина (ПДФ), в результате чего отсутст­вуют благоприятные условия для формирования физиологического тромба. Плазмин вызывает последовательное асимметричное расщепление молекул фибриногена с образованием крупномолекулярных фрагментов X и Y, которые получили на­звание "ранние ПДФ", и фрагментов D, Е ("поздние или конечные ПДФ").

Референсные значения: Содержание продуктов деградации фибриногена (ПДФ) в плазме в норме со­ставляет 5-10 мкг/мл.

7.2. D-димеры

D-димеры – специфические продукты деградации фибрина. Концентрация D-димеров в сыворотке пропорциональна активности фибринолиза и количеству лизируемого фибрина, т. е. отражает и процесс образования фибрина в кро­ви, и его лизис. D-димеры – показатель того, что в процессе фибринолиза расщепляется именно фибрин , а не фибриноген или фибрин-мономеры.

Определение D-димеров проводится иммуноферментным методом с использованием моноклональных антител , методом иммунодиффузии, турбидиметрии, латекс-агглютинации. Во всех методах исследования используются моноклональные антитела к эпитопам на D-димере, которые образуются при расщеплении нерастворимого фибрина плазмином. Этих эпитопов нет на фибриногене и растворимых фибрин-мономерных комплексах (РФМК). Поскольку эти антитела не взаимодействуют с фибриногеном, исследования могут проводиться как в плазме, так и сыворотке.

Нормальное состояние крови в кровеносном русле обеспечивается деятельностью трех систем:

1) свертывающей;

2) противосвертывающей;

3) фибринолитической.

Процессы свертывания (коагуляции), противодействия свертыванию (антикоагуляции) и фибринолиза (растворения образовавшихся тромбов) находятся в состоянии динамического равновесия. Нарушение существующего равновесия может стать причиной патологического тромбообразования или, наоборот, кровоточивости.

Нарушения гемостаза — нормального функционирования указанных систем — наблюдается при многих заболеваниях внутренних органов: ишемической болезни сердца, ревматизме, сахарном диабете, заболеваниях печени, злокачественных новообразованиях, острых и хронических заболеваниях легких и др. Многие врожденные и приобретенные заболевания крови сопровождаются повышенной кровоточивостью. Грозным осложнением воздействия на организм ряда экстремальных факторов является ДВС-синдром (синдром диссеминированного внутрисосудистого свертывания крови).

Свертывание крови является жизненно важным физиологическим приспособлением, направленным на сохранение крови в пределах сосудистого русла. Образование сгустка (тромба) при нарушении целостности сосуда должно рассматриваться как защитная реакция, направленная на предохранение организма от кровопотери.

В механизме образования кровоостанавливающего тромба и патологического тромба, закупоривающего мозговой сосуд или сосуд, питающий мышцу сердца, много общего. Справедливо высказывание известного отечественного гематолога В. П. Балуды: «Образование гемостатического тромба в сосудах перерезанной пуповины — первая защитная реакция новорожденного организма. Патологический тромбоз — нередкая непосредственная причина смерти больного при ряде заболеваний».

Тромбоз коронарных (питающих мышцу сердца) и мозговых сосудов как следствие повышения активности свертывающей системы — одна из ведущих причин смертности в Европе и США.

Процесс свертывания крови — тромбообразование — чрезвычайно сложен.

Сущность тромбоза (греч. thrombos — сгусток, свернувшаяся кровь) заключается в необратимой денатурации белка фибриногена и форменных элементов (клеток) крови. В тромбообразовании принимают участие самые разнообразные вещества, находящиеся в тромбоцитах, плазме крови, сосудистой стенке.

Весь процесс свертывания можно представить как цепь взаимосвязанных реакций, каждая из которых заключается в активации веществ, необходимых для следующего этапа.

Выделяют плазменный и сосудисто-тромбоцитар-ный гемостаз. В последнем самое активное участие принимают тромбоциты.

Тромбоциты — кровяные пластинки — мелкие безъядерные неправильно округлой формы клетки крови. Диаметр их составляет 1-4 мкм, а толщина 0,5-0,75 мкм. Они образуются в костном мозге путем отщепления участков вещества гигантских клеток — мегакариоцитов. Тромбоциты циркулируют в крови в течение 5-11 дней, а затем разрушаются в печени, легких, селезенке.

Кровяные пластинки различаются по форме, степени зрелости; в 1 мкл крови их содержится 200-400 тысяч.

Тромбоциты содержат биологически активные вещества (в частности, гистамин и серотонин), ферменты. Выделяют 11 факторов свертывания крови, находящихся в тромбоцитах.

3.1. Тромбоцитарно-сосудистый гемостаз

Характеризуется целым рядом последовательных фаз. Повреждение сосудистой стенки, обнажение ее внутренних структур способствуют адгезии и агрегации тромбоцитов (адгезия — свойство тромбоцитов прилипать к поврежденной внутренней поверхности сосуда; агрегация — свойство тромбоцитов при повреждении сосуда менять форму, набухать, соединяться в агрегаты). В эту фазу выделяются биологически активные вещества, которые вызывают сужение сосуда, уменьшая размер повреждения, усиливают адгезию и агрегацию тромбоцитов. Образуется первичный рыхлый тромбацитарный тромб (тромбоцитарная «гемостатическая пробка») — рис. 2.

ПОВРЕЖДЕНИЕ ВНУТРЕННЕЙ ПОВЕРХНОСТИ СОСУДА

АДГЕЗИЯ ТРОМБОЦИТОВ

АКТИВАЦИЯ ТРОМБОЦИТОВ

АГРЕГАЦИЯ ТРОМБОЦИТОВ

ПЕРВИЧНЫЙ ТРОМБОЦИТАРНЫЙ ТРОМБ

Рис. 2. Схема тромбоцитарно-сосудистого гемостаза

3.2. Плазменный гемостаз

Плазменный гемостаз представляет собой каскад последовательных превращений, происходящих в плазме крови с участием 13 факторов свертывания (табл. 3). Факторы свертывания согласно международной классификации обозначены римскими цифрами.

Большинство факторов свертывания крови — вещества белковой природы, образующиеся в печени. Их недостаток может быть связан с нарушением функции печени.

Основные фазы процесса:

    1) образование тромбопластина;
    2) образование тромбина;
    3) образование фибрина.

Первая фаза — образование и высвобождение тромбопластина (тромбокиназы) — весьма активного фермента.

Различают тканевой (внешний) тромбопластин, выделяющийся из клеток поврежденного сосуда и тканей, и кровяной (внутренний), освобождающийся при разрушении тромбоцитов.

Вторая фаза — образование тромбина. Последний образуется при взаимодействии протромбина и тромбопластина с обязательным участием ионов кальция и других факторов свертывающей системы.

Тромбин, расщепляя фибриноген, превращает его в нерастворимый белок фибрин. Это и есть третья фаза свертывания крови.

Нити фибрина, выпадая в осадок, образуют густую сеть, в которой «запутываются» клетки крови, прежде всего эритроциты.

Сгусток приобретает красный цвет. Тромбин, кроме того, активирует XIII фактор свертывания крови (фибринстабилизирующий), который связывает нити фибрина, укрепляя тромб.

3.3. Противосвертывающая система

Включает следующие основные компоненты:

Простациклин (тормозит адгезию и агрегацию тромбоцитов);

Антитромбин III (активирует тромбин и другие факторы свертывания крови);

Гепарин (препятствует образованию кровяного тромбопластина, сдерживает превращение фибриногена в фибрин).

3.4. Фибринолитическая система

Эта система разрушает фибрин. Основным компонентом ее является плазмин (фибринолизин), который образуется из плазминогена под действием тканевого активатора плазминогена (ТАП).

Плазмин расщепляет фибрин на отдельные фрагменты — продукты деградации фибрина (ПДФ).

В дальнейшем тромб, остановивший кровотечение, подвергается ретракции (сжатию) и лизису (растворению).

Патологическое тромбообразование в сосудах мозга, коронарных артериях нередко приводит к инсульту, инфаркту миокарда.

Тромбоз вен нижних конечностей может осложниться отрывом тромба и занесением его током крови в сосудистую систему легких — тромбоэмболией легочной артерии (ТЭЛА).

Для распознавания нарушений в системе свертывания крови существует различные лабораторные методы исследования.

Таблица 3

Факторы свертывания крови (плазменные)

Название фактора

Свойства и функции

Фибриноген

Белок. Под влиянием тромбина превращается в фибрин

Протромбин

Белок. Синтезируется в печени при участии витамина К

Тромбопластин (тромбокиназа)

Протеолитический фермент. Превращает протромбин в тромбин

Ионы кальция

Потенцируют большинство факторов свертывания крови

Проакцелерин

Акцелерин

Потенцирует превращение протромбина в тромбин

Проконвертин

Синтезируется в печени при участии витамина К. Активирует тканевой тромбопластин

Антигемофильный глобулин А

Фактор Кристмаса

Участвует в образовании тканевого тромбопластина

Фактор Стюарта -Прауэра (тромботропин)

Участвует в образовании тромбина, кровяного и тканевого тромбопластина

Предшественник плазменного тромбопластина

Участвует в образовании плазменного тромбопластина

Фактор Хагемана (фактор контакта)

Начинает и локализует тромбообразование

Фибринстабилизирующий фактор

Переводит нестабильный фибрин в стабильный

Для распознавания нарушений в системе свертывания крови существуют различные лабораторные методы исследования.

3.5. Исследования, характеризующие свертывающую систему крови

3.5.1. Исследования, характеризующие сосудисто-тромбоцитарную фазу гемостаза

В течение сосудисто-тромбоцитарной фазы гемостаза (см. выше) образуется тромбоцитарная гемостатическая пробка. Определение времени (длительности) кровотечения позволяет составить общее представление об этом процессе.

Чаще всего время кровотечения определяют прокалывая скарификатором (лабораторным инструментом для взятия крови) мочку уха на глубину 3,5 мм. Фильтровальной бумажкой каждые 20-30 сек снимают капли крови выступающие после прокола. У здоровых людей появление новых капель заканчивается через 2-4 мин после укола. Это и есть время (длительность) кровотечения.

Удлинение времени кровотечения в основном связано с уменьшением количества тромбоцитов или с их функциональной неполноценностью, с изменением проницаемости сосудистой стенки. Этот вид нарушений наблюдается при некоторых заболеваниях крови — наследственных и приобретенных тромбоцитопениях и тромбоцитопатиях (заболеваниях, при которых количество тромбоцитов уменьшено или нарушены их свойства). Некоторые лекарственные препараты (ацетилсалициловая кислота, гепарин, стрептокиназа) также могут увеличить продолжительность кровотечения.

Определение абсолютного количества тромбоцитов в единице объема крови проводится подсчетом клеток под микроскопом с помощью специального устройства — камеры Горяева. Нормальное содержание тромбоцитов в периферической крови составляет 200-400 х 10 9 /л.

Уменьшение количества тромбоцитов — тромбоцитопения — наблюдается при многих заболеваниях крови (тромбоцитопеническая пурпура, малокровие, связанное с дефицитом витамина В 12 , острые и хронические лейкозы), а также при циррозе печени, злокачественных новообразованиях, заболеваниях щитовидной железы, длительно протекающих воспалительных процессах.

Ряд вирусных инфекций (корь, краснуха, ветряная оспа, грипп) могут вызвать временное уменьшение числа тромбоцитов.

Тромбоцитопения может развиться при приеме ряда лекарственных веществ: левомицетина, сульфаниламидов, ацетилсалициловой кислоты, противоопухолевых препаратов. Длительный прием этих медикаментов должен осуществляться под контролем содержания тромбоцитов в крови. Незначительное снижение числа тромбоцитов отмечено у женщин в предменструальном периоде.

Некоторые заболевания могут сопровождаться повышением содержания тромбоцитов в периферической крови — тромбоцитозом .

К ним относятся лимфогранулематоз, злокачественные опухоли, в частности рак желудка, рак почки, некоторые лейкозы, состояние после массивных кровопотерь, удаления селезенки.

Как было указано выше, адгезия и агрегация тромбоцитов — важнейшие этапы в образовании первичной гемостатической пробки. В лабораторных условиях определяют индекс адгезивности (слипчивости) тромбоцитов, в норме равный 20-50%, и агрегацию тромбоцитов — спонтанную и индуцированную.

У здоровых людей спонтанная агрегация отсутствует или выражена незначительно. Спонтанная агрегация повышена при атеросклерозе, тромбозах, пред-тромботических состояниях, инфаркте миокарда, нарушениях жирового обмена, сахарном диабете.

Изучение индуцированной агрегации тромбоцитов может быть использовано для более тонкого дифференцирования ряда заболеваний крови.

Ацетилсалициловая кислота, пенициллин, индометацин, делагил, мочегонные препараты (в частности, фуросемид в больших дозах) способствуют снижению агрегации тромбоцитов, что нужно учитывать при лечении этими препаратами.

Кровь при свертывании образует сгусток, который, сокращаясь, выделяет сыворотку. О ретракции кровяного сгустка судят по количеству выделившейся сыворотки. Степень ретракции (сжатия) сгустка выражают индексом ретракции, в норме равном 0,3-0,5.

Уменьшение индекса ретракции наблюдается при уменьшении количества тромбоцитов и их функциональной неполноценности.

Свойства стенок мельчайших сосудов (капилляров) проверяются специальными тестами. Для суждения о резистентности (устойчивости) капилляров используется манжеточная проба Румпеля-Лееде-Кончаловского и ее упрощенные варианты — проба жгута, симптом щипка.

Для выполнения пробы на плечо больного накладывают манжету аппарата для измерения артериального давления. В течение 10 мин в манжете поддерживается давление, на 10-15 мм рт.ст. выше минимального артериального давления испытуемого. Появление мелких точечных кровоизлияний (петехий) расценивается как положительный результат пробы.

Положительная проба Румпеля—Лееде—Конча-ловского указывает на повышенную хрупкость капилляров и наблюдается при васкулитах (воспалительных заболеваниях сосудов), сепсисе (заражении крови), ревматизме, инфекционном эндокардите, скарлатине, сыпном тифе, авитаминозе С (цинге).

На плечо больного может быть наложен жгут (симптом жгута). Симптом щипка заключается в появлении на коже подключичной области петехий или кровоподтека после щипка. Отрицательной стороной этих проб является субъективность определения степени сдавливания кожи жгутом или пальцами исследователя.

3.5.2. Исследования, характеризующие плазменную фазу гемостаза

Исследование времени свертывания крови характеризует функциональное состояние свертываемости в целом. Активация XII фактора (см. табл. 3) запускает каскад превращений профермент — фермент, причем каждый фермент активирует следующий до тех пор, пока не будет достигнута конечная цель — образование фибрина.

Описано более 30 методов определения времени свертывания крови, поэтому нормы свертываемости колеблются от 2 до 30 мин. В качестве унифицированных используются два метода: метод Сухарева (норма от 2 до 5 мин), метод Ли-Уайта (норма от 5 до 10 мин).

Свертываемость крови понижается при ряде заболеваний печени, апластической анемии — малокровии, связанном с подавлением кроветворной функции костного мозга.

Резкое понижение свертываемости крови наблюдается при гемофилии — время свертывания крови может увеличиваться до 60-90 мин.

Гемофилия — врожденное заболевание, связанное с отсутствием VIII или IX факторов свертывания крови (гемофилия А или гемофилия В). Заболевание характеризуется повышенной кровоточивостью. Малейшая ранка может стоить больному жизни. Носителями гена болезни являются женщины, а болеют ею только мужчины. Гемофилия оказалась семейной болезнью королевских домов Европы (в том числе России). Из 69 сыновей, внуков и правнуков английской королевы Виктории 10 страдали гемофилией.

Время свертывания крови увеличивается при использовании антикоагулянтов (противосвертывающих веществ), в частности гепарина. Тест используется наряду с определением АЧТВ (см. ниже) в качестве экспресс-метода при лечении гепарином. Допускается удлинение времени свертывания крови в 1,5-2 раза.

Уменьшение времени свертывания крови указывает на гиперкоагуляцию и может наблюдаться после массивных кровотечений, в послеоперационном, послеродовом периоде. Контрацептивные средства (инфекундин, бисекурин, ричевидон и др.) усиливают процессы коагуляции, что проявляется ускорением свертывания крови.

Время рекальцификации плазмы — это время, необходимое для образования сгустка фибрина в плазме. Определение проводится в плазме, стабилизированной раствором цитрата натрия. Добавление к плазме хлорида кальция восстанавливает ее коагуляционную (свертывающую) способность. Время рекальцификации плазмы характеризует процесс свертывания в целом и у здорового человека колеблется в пределах 60-120 сек. Изменения времени рекальцификации плазмы наблюдается при тех же клинических состояниях, что и изменения времени свертывания крови.

Толерантность (устойчивость) плазмы к гепарину , характеризуя состояние свертывающей системы в целом, является в то же время косвенным показателем содержания тромбина. Исследование состоит в определении времени образования сгустка фибрина в плазме, к которой добавлены гепарин и раствор хлорида кальция. У здорового человека это время равно 7-15 мин. Если образование сгустка происходит за период, превышающий 15 мин, то говорят о пониженной толерантности (устойчивости) плазмы к гепарину.

Понижение толерантности плазмы к гепарину может зависеть от дефицита факторов V, VIII, X, XI, XII (см. табл. 3) и наблюдается при заболеваниях печени (гепатит, цирроз), а также при использовании антикоагулянтов (гепарин, фенилин, варфарин).

Образование сгустка за более короткий период (менее чем за 7 мин) свидетельствует о повышенной толерантности плазмы к гепарину и отмечается при наклонности к гиперкоагуляции (повышенной свертываемости крови).

Состояние гиперкоагуляции наблюдается при сердечной недостаточности, предтромботических состояниях, в последние месяцы беременности, в послеоперационном периоде, при злокачественных новообразованиях.

Активированное частичное (парциальное) тромбопластиновое время (АЧТВ или АПТВ) — чувствительный метод, выявляющий плазменные дефекты образования тромбопластина (см. табл. 3). АЧТВ — время, необходимое для образования сгустка фибрина в плазме, бедной тромбоцитами. Использование бестромбоцитной плазмы исключает влияние тромбоцитов.

Пределы колебания АЧТВ у здорового взрослого человека равны 38-55 сек.

Удлинение АЧТВ свидетельствует о гипокоагуляции — снижении свертывающих свойств крови. Чаще всего это зависит от дефицита факторов И, V, VIII, IX, XI, XII свертывания крови при врожденных коагулопатиях. Коагулопатиями обозначаются заболевания и состояния, связанные с нарушением свертывания крови.

На свойстве АЧТВ удлиняться при избытке в крови гепарина основано применение этого теста для контроля за состоянием свертывающей системы при терапии гепарином. При внутривенном капельном введении гепарина скорость вливания подбирают таким образом, чтобы поддерживать АЧТВ на уровне, в 1,5-2,5 раза превышающем исходный.

При подкожном введении гепарина его дозу также подбирают с учетом АЧТВ, которое определяют за 1 ч до очередного введения гепарина. И если АЧТВ окажется удлиненным более чем в 2,5 раза по сравнению с исходным, то снижают дозу препарата или увеличивают интервал между введениями.

Следует иметь в виду, что АЧТВ подвержено значительным суточным колебаниям. Максимальные значения АЧТВ наблюдаются в ранние утренние часы, минимальные — к концу дня.

Протромбиновое время — время образования сгустка фибрина в плазме при добавлении к ней хлорида кальция и тканевого стандартизированного тромбопластина. Протромбиновое время характеризует активность так называемого протромбинового комплекса (факторов V, VII, X и собственно протромбина — фактора II). Результат исследования выражают в секундах (протромбиновое время), которое в норме равно 11-15 сек. Чаще вычисляют протромбиновый индекс , сравнивая протромбиновое время здорового человека (стандартные серии тромбопластина) с протромбиновым временем обследуемого.

В норме пределы колебания протромбинового индекса равны 93-107% или в единицах системы СИ — 0,93-1,07.

Снижение протромбинового индекса говорит о снижении свертывающих свойств крови.

В связи с тем, что синтез факторов протромбинового комплекса происходит в клетках печени, при заболеваниях последней количество их снижается и протромбиновый индекс в определенной степени может служить показателем функционального состояния печени.

Для образования факторов протромбинового комплекса необходим витамин К. При его дефиците, нарушении всасывания витамина в кишечнике при энтероколитах, дисбактериозе протромбиновый индекс также может снижаться.

Антагонистами витамина К являются противосвертывающие вещества непрямого действия (фенилин, синкумар, варфарин). Терапия этими препаратами должна контролироваться исследованием протромбинового времени или протромбинового индекса.

Большие дозы ацетилсалициловой кислоты, диуретики типа гипотиазида вызывают снижение протромбинового индекса, что должно учитываться при применении этих препаратов одновременно с фенилином, синкумаром.

Увеличение протромбинового индекса говорит о повышении свертывающих свойств крови и наблюдается в предтромботическом состоянии, в последние месяцы беременности, а также при приеме противозачаточных препаратов типа инфекундина, бисекурина.

Нормальное значение протромбинового времени зависит от применяемых для исследования тканевых тромбопластинов. Более стандартизированным тестом является международное нормализационное отношение (MHO) . В большинстве случаев при лечении противосвертывающими препаратами (антикоагулянтами) непрямого действия достаточно добиться увеличения MHO в пределах от 2 до 3, что соответствует увеличению протромбинового времени в 1,3-1,5 раза по сравнению с исходным значением (или, соответственно, снижению протромбинового индекса).

Концентрация фибриногена . Фибриноген (плазменный фактор I) синтезируется главным образом клетками печени. В крови он находится в растворенном состоянии и под влиянием тромбина превращается в нерастворимый фибрин. В норме концентрация фибриногена в крови, определяемая унифицированным методом Рутберга, составляет 2-4 г/л (200-400 мг%).

Повышение концентрации фибриногена говорит о гиперкоагуляции (повышенной свертываемости крови) и наблюдается при инфаркте миокарда, предтромботических состояниях, при ожогах, в последние месяцы беременности, после родов, хирургических вмешательств.

Отмечено увеличение концентрации фибриногена при воспалительных процессах (в частности, при воспалении легких), злокачественных новообразованиях (рак легкого).

Тяжелые заболевания печени с выраженными нарушениями ее функции сопровождаются гипофибриногенемией — снижением концентрации фибриногена в крови.

3.5.3. Исследование фибринолитического звена гемостаза

Фибринолитическая активность . После того как сгусток фибрина (тромб) образовался, уплотнился и сократился, начинается сложный ферментативный процесс, ведущий к его растворению. Этот процесс (фибринолиз) происходит под воздействием плазмина, который находится в крови в виде неактивной формы — плазминогена. Переход плазминогена в плазмин стимулируют активаторы плазменного, тканевого и бактериального происхождения. Тканевые активаторы образуются в ткани предстательной железы, легких, матки, плаценты, печени.

Об активности фибринолиза судят по быстроте растворения сгустка фибрина. Естественный лизис, определенный методом Котовщиковой, равен 12-16% сгустка; определенный более сложным методом лизиса эуглобулинового сгустка — 3-5 ч.

Если растворение сгустка ускорено, это свидетельствует о склонности к кровоточивости, если удлинено — о предтромботическом состоянии.

Повышение фибринолитической активности отмечается при поражении органов, богатых активаторами плазминогена (легкие, предстательная железа, матка), и при хирургических вмешательствах на этих органах.

Снижение фибринолитической активности наблюдается при инфаркте миокарда, злокачественных опухолях, в частности раке желудка.