Чистые металлы. Чистые металлы и сплавы, применяемые в радиоэлектронике

Чистые металлы

металлы с низким содержанием примесей. В зависимости от степени чистоты различают металлы повышенной чистоты (99,90-99,99%), металлы высокой чистоты, или химически чистые (99,99-99,999%), металлы особой чистоты, или спектрально-чистые, Ультрачистые металлы (свыше 99,999%).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Чистые металлы" в других словарях:

    чистые металлы - Металлы с низким содержанием примесей (< 5 мас. %). Выделяют м. повыш. чистоты (от 99,90 до 99,99 %) и особой чистоты (от 9,999 до 99,9999 %). Тематики металлургия в целом EN pure metals … Справочник технического переводчика

    Металлы или сплавы с низким содержанием примесей. В зависимости от степени чистоты различают металлы ср. чистоты, или технически чистые (99,0 99.90%). повыш. чистоты (99,90 99,99%), высокой чистоты, или химически чистые (99,99 99,999%). особой… … Большой энциклопедический политехнический словарь

    чистые металлы - металлы с низким содержанием примесей (< 5 мас. %). Выделяют металлы повышенной чистоты (от 99,90 до 99,99 %) и особой чистоты (от 9,999 до 99,9999%); Смотри также: Металлы щелочные металлы ультрачистые металлы тяжелые металлы …

    ЧИСТЫЕ МЕТАЛЛЫ - смотри Степень чистоты металла или сплава … Металлургический словарь

    Простые вещества, обладающие в обычных условиях характерными свойствами: высокой электропроводностью и теплопроводностью, отрицательным температурным коэффициентом электропроводности, способностью хорошо отражать электромагнитные волны… …

    - (от греч. metallon, первоначально шахта, руда, копи), простые в ва, обладающие в обычных условиях характерными св вами: высокими электропроводностью и теплопроводностью, отрицательным температурным коэфф. электропроводности, способностью хорошо… … Физическая энциклопедия

    ультрачистые металлы - высокочистые, особочистые металлы, в которых массовая доля примесей не превышает 1 10 3%. Основные стадии технологии производства ультрачистых металлы: получение чистых химических соединений, восстановление их до… … Энциклопедический словарь по металлургии

    Высокочистые металлы, особо чистые металлы, металлы, суммарное содержание примесей в которых не превышает 1․10 3% (по массе). Основные стадии технологии производства У. м.: получение чистых химических соединений, восстановление их до… … Большая советская энциклопедия

    радиоактивные металлы - металлы, занимающие места в Периодической системе элементов с атомный номер больше 83 (Bi), испускающие радиоактивные частицы: нейтроны, протоны, альфа, бетачастицы или гамма кванты. В природе обнаружены: At, Ac, Np, Pa, Ро … Энциклопедический словарь по металлургии

    переходные металлы - элементы Iб и VIIIб подгруппы Периодической системы. У атомов переходных металлов внутренние оболочки заполнены только частично. Различают d металлы, у которых происходит постепенное заполнение 3d (от Se до Ni), 4d (от Y до… … Энциклопедический словарь по металлургии

Если в периодической таблице элементов Д.И.Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп, выделены синим цветом), а справа вверху – элементы-неметаллы (выделены желтым цветом). Элементы, расположенные вблизи диагонали – полуметаллы или металлоиды (B, Si, Ge, Sb и др.), обладают двойственным характером (выделены розовым цветом).

Как видно из рисунка, подавляющее большинство элементов являются металлами.

По своей химической природе металлы – это химические элементы, атомы которых отдают электроны с внешнего или предвнешнего энергетического уровней, образуя при этом положительно заряженные ионы.

Практически все металлы имеют сравнительно большие радиусы и малое число электронов (от 1 до 3) на внешнем энергетическом уровне. Для металлов характерны низкие значения электроотрицательности и восстановительные свойства.

Наиболее типичные металлы расположены в начале периодов (начиная со второго), далее слева направо металлические свойства ослабевают. В группе сверху вниз металлические свойства усиливаются, т.к увеличивается радиус атомов (за счет увеличения числа энергетических уровней). Это приводит к уменьшению электроотрицательности (способности притягивать электроны) элементов и усилению восстановительных свойств (способность отдавать электроны другим атомам в химических реакциях).

Типичными металлами являются s-элементы (элементы IА-группы от Li до Fr. элементы ПА-группы от Мg до Rа). Общая электронная формула их атомов ns 1-2 . Для них характерны степени окисления + I и +II соответственно.

Небольшое число электронов (1-2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами — это ионные кристаллы «катион металлаанион неметалла», например К + Вг — , Сa 2+ О 2-. Катионы типичных металлов входят также в состав соединений со сложными анионами — гидроксидов и солей, например Мg 2+ (OН —) 2 , (Li +)2СO 3 2-.

Металлы А-групп, образующие диагональ амфотерности в Периодической системе Ве-Аl-Gе-Sb-Ро, а также примыкающие к ним металлы (Gа, In, Тl, Sn, Рb, Вi) не проявляют типично металлических свойств. Общая электронная формула их атомов ns 2 np 0-4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры — соединения Тl III , Рb IV , Вi v). Подобное химическое поведение характерно и для большинства (d-элементов, т. е. элементов Б-групп Периодической системы (типичные примеры — амфотерные элементы Сr и Zn).

Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами). В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично). Например, металл галлий состоит из молекул Ga 2 , в твердом состоянии хлориды алюминия и ртути (II) АlСl 3 и НgСl 2 содержат сильно ковалентные связи, но в растворе АlСl 3 диссоциирует почти полностью, а НgСl 2 — в очень малой степени (да и то на ионы НgСl + и Сl —).


Общие физические свойства металлов

Благодаря наличию свободных электронов («электронного газа») в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1) Пластичность — способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3) Электропроводность . Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».

4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.

5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий — литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются «легкими металлами».

7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me 0 – nē → Me n +

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

I. Реакции металлов с неметаллами

1) С кислородом:
2Mg + O 2 → 2MgO

2) С серой:
Hg + S → HgS

3) С галогенами:
Ni + Cl 2 – t° → NiCl 2

4) С азотом:
3Ca + N 2 – t° → Ca 3 N 2

5) С фосфором:
3Ca + 2P – t° → Ca 3 P 2

6) С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H 2 → 2LiH

Ca + H 2 → CaH 2

II. Реакции металлов с кислотами

1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl → MgCl 2 + H 2

2Al+ 6HCl → 2AlCl 3 + 3H 2

6Na + 2H 3 PO 4 → 2Na 3 PO 4 + 3H 2 ­

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

Zn + 2H 2 SO 4(К) → ZnSO 4 + SO 2 + 2H 2 O

4Zn + 5H 2 SO 4(К) → 4ZnSO 4 + H 2 S + 4H 2 O

3Zn + 4H 2 SO 4(К) → 3ZnSO 4 + S + 4H 2 O

2H 2 SO 4(к) + Сu → Сu SO 4 + SO 2 + 2H 2 O

10HNO 3 + 4Mg → 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

4HNO 3 (к) + Сu → Сu (NO 3) 2 + 2NO 2 + 2H 2 O

III. Взаимодействие металлов с водой

1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2Na + 2H 2 O → 2NaOH + H 2

Ca+ 2H 2 O → Ca(OH) 2 + H 2

2) Металлы средней активности окисляются водой при нагревании до оксида:

Zn + H 2 O – t° → ZnO + H 2 ­

3) Неактивные (Au, Ag, Pt) — не реагируют.

IV. Вытеснение более активными металлами менее активных металлов из растворов их солей:

Cu + HgCl 2 → Hg+ CuCl 2

Fe+ CuSO 4 → Cu+ FeSO 4

В промышленности часто используют не чистые металлы, а их смеси - сплавы , в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь ) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем — дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) — это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой , в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина ), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией . Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте — металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+)

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg — только серной (концентрированной) и азотной кислотами, а Рt и Аи — «царской водкой».

Коррозия металлов

Нежелательным химическим свойством металлов является их , т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО 2 и SО 2 ; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н 2 (водородная коррозия ).

Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении ; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь ), имеют высокую коррозионную стойкость.

электрометаллургия , т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

пирометаллургия , т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

гидрометаллургия , т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора СuSO 4 действием цинка, железа или алюминия).

В природе иногда встречаются самородные металлы (характерные примеры — Аg, Аu, Рt, Нg), но чаще металлы находятся в виде соединений (металлические руды ). По распространенности в земной коре металлы различны: от наиболее распространенных — Аl, Nа, Са, Fе, Мg, К, Тi) до самых редких — Вi, In, Аg, Аu, Рt, Rе.

Очень долго считались хрупкими и некоторые другие металлы - хром, молибден, вольфрам, тантал, висмут, цирконий и т. д. Однако так было до тех пор, пока не научились их получать в достаточно чистом виде. Как только это удалось, оказалось, что эти металлы очень пластичны даже при низких температурах. Кроме того, они не ржавеют и обладают еще целым рядом ценных свойств. Теперь эти металлы широко применяются в различных отраслях промышленности.

Но что же такое - чистый металл? Оказывается, на это тоже нельзя дать однозначного ответа. Условно по чистоте металлы делятся на три группы - технически чистые, химически чистые и особо чистые. Если сплав содержит не менее 99,9 процента основного металла - это техническая чистота. От 99,9 до 99,99 процента - химическая чистота. Если же 99,999 и более - это особо чистый металл. В обиходе ученые применяют и другое определение чистоты - по количеству девяток после запятой. Говорят: «чистота три девятки», «чистота пять девяток» и т. д.

Поначалу промышленность вполне удовлетворяли химически, а часто даже и технически чистые металлы. Но научно-техническая революция предъявила гораздо более жесткие требования. Первые заказы на сверхчистые металлы поступили от атомной промышленности. Десятитысячные, а порой и миллионные доли процента некоторых примесей делали негодными уран, торий, бериллий, графит. Получение сверхчистого урана было, пожалуй, главной трудностью при создании атомной бомбы.

Затем предъявила свои требования реактивная техника. Сверхчистые металлы потребовались для получения особо жаропрочных и жаростойких сплавов, которые должны были работать в камерах сгорания реактивных самолетов и ракет. Не успели металлурги справиться с этим заданием, как поступила новая «заявка» - на полупроводники. Эта задача была потруднее - во многих полупроводниковых материалах количество примесей не должно превышать миллионной доли процента! Пусть эта мизерная величина не смущает вас. Даже и при такой чистоте, где один атом примеси приходится на 100 000 000 000 атомов основного вещества, в каждом его грамме все еще содержится более 100 000 000 000 «чужих» атомов. Так что это далеко не идеальная чистота. Впрочем, абсолютной чистоты и не бывает. Это идеал, к которому надо стремиться, но достичь которого на данном уровне развития техники невозможно. Даже если чудом и удастся получить абсолютно чистый металл, то в него тут же проникнут атомы других веществ, содержащихся в воздухе.

Показателен в этом отношении курьезный случай, происшедший со знаменитым немецким физиком Вернером Гейзенбергом. Он работал с масс-спектрографом в своей лаборатории. И вдруг прибор показал в подопытном веществе наличие атомов золота. Ученый изумился, поскольку этого никак не могло быть. Но прибор упорно «стоял на своем». Недоразумение разъяснилось лишь тогда, когда ученый снял и спрятал свои очки в золотой оправе. Отдельные атомы золота, «вырвавшиеся» из кристаллической решетки оправы, попали в исследуемое вещество и «смутили» исключительно чувствительный прибор.

А ведь это происходило в лаборатории, где воздух чист. Что же говорить о современных промышленных районах, воздух которых все больше и больше загрязняется отходами производства?

Мы начали эту главу с разговора о том, что в одном случае наличие посторонних примесей в металле - это хорошо, а в другом - плохо. Более того, сначала мы говорили, что сплавы имеют лучшую прочность и жаростойкость, чем чистые металлы, а теперь, оказывается, чистые металлы обладают самыми высокими свойствами. Противоречия никакого нет. Во многих случаях сплав более прочен, более жаростоек и т. д., чем любой из металлов, входящих в его состав. Но эти качества усиливаются многократно, когда все компоненты сплава выполняют определенную, необходимую для человека задачу. Когда в нем нет ничего «лишнего». А это значит, что сами компоненты должны быть как можно более чистыми, содержать в себе минимальное количество «посторонних» атомов. Поэтому сейчас вопрос о чистоте получаемых металлургических продуктов приобретает все большую и большую остроту. Как же решают эту проблему?

На металлургических заводах, где производят большое количество металла, идущего на обычные изделия, все шире применяется вакуум. В вакууме металл плавят и разливают, и это дает возможность предохранить его от попадания вредных газов и молекул других веществ из окружающего воздуха. А в некоторых случаях плавку ведут в атмосфере нейтрального газа, что еще больше предохраняет металл от нежелательного «проникновения».

В связи с развитием новых отраслей техники требуются металлы очень высокой чистоты. Например, в металле германии, используемом в качестве полу­проводника, допустимо содержание на десять миллионов атомов германия только одного атома фосфора, мышьяка или сурьмы. В жаропрочных спла­вах, применяемых в ракетостроении, совершенно недопустима даже ни­чтожная примесь свинца или серы.

Один из лучших конструкционных материалов для атомных реакторов – цирконий становится совершенно непригодным, если в нем содержится даже незначительная примесь гафния, кадмия или бора, поэтому содержа­ние этих элементов в материалах атомной энергетики не должно превышать 10 -6 . Электрическая проводимость меди снижается на 14 % при нали­чии примеси мышьяка лишь 0,03 %. Особенно большое значение имеет чис­тота металлов в электронной и вычислительной технике, а так же ядерной энергети­ке. Для металлических материалов термоядерных реакторов и полупроводниковых приборов содержание примесей не должно превышать 10 -10 %. Существует несколько методов очистки металлов.

1. Перегонка в вакууме. Этот метод основан на различии летучести ме­талла и имеющихся в нем примесей.

2. Термическое разложение летучих соединений металлов. В основе дан­ного способа лежат химические реакции, в которых металл с тем или иным реагентом образует газообразные продукты, разлагающиеся затем с выде­лением высокочистого металла. Рассмотрим принцип данного способа на примере карбонильного и йодидного методов.

А) Карбонильный метод. Этот метод применяется для получения высоко­чистых никеля и железа. Подлежащий очистке технический металл нагре­вают при данном методе в присутствии оксида углерода (II): Ni + 4CO = Ni(CO) 4 , Fe + 5CO = Fe(CO) 5

Полученные летучие карбонилы Ni(CO) 4 (температура кипения 43 °С) или Fe(CO) 5 (температура кипения 105 °С) перегоняют для очистки от при­месей. Затем карбонилы разлагают при температуре выше 180 °С, в резуль­тате образуются чистые металлы и газообразный оксид углерода (II): Ni(CO) 4 = Ni + 4CO, Fe(CO) 5 = Fe + 5CO

Б) Йодидный метод. При данном методе очищаемый металл, например титан, нагревают вместе с йодом до температуры 900 °С: Ti + 2I 2 = ТI 4

Образующийся летучий тетрайодид титана поступает в реактор, в ко­тором находится проволока из чистого титана, нагреваемая электриче­ским током до 1400 °С. При этой температуре тетрайодид титана термиче­ски диссоциирует: Til 4 = Ti + 2I 2

Чистый титан осаждается на проволоке, а йод снова возвращается в процесс очистки титана. Этим методом получают также чистый цирконий, хром и другие тугоплавкие металлы.

3. Зонная плавка. Замечательным методом очистки является так назы­ваемая зонная плавка. Зонная плавка заключается в медленном протяги­вании слитка очищаемого металла через кольцевую печь. Зонной плавке подвергаются металлы, прошедшие предварительную очистку до концен­трации примесей приблизительно 1 %. Метод основан на различном со­держании примесей в твердом и расплавленном металле . Процесс прово­дят путем медленного перемещения вдоль твердого удлиненного образца (слитка) узкой расплавленной зоны, создаваемой специальным нагревате­лем (кольцевая печь).

Участок (зона) слитка металла, который в данный момент находится в печи, переходит в расплавленное состояние.

Возникает две подвижные межфазные границы: на одной (вхождение металла в печь) происходит плавление, на другой (выход металла из печи) происходит кристаллизация.

В зависимости от растворимости примесей одни концентрируются в расплавленной зоне и перемещаются вместе с ней к концу слитка, примеси других металлов концентрируются в образующихся кристаллах и остаются за движущейся зоной, при неоднократном повторении процесса они пере­мещаются к началу слитка. Вследствие этого состав образующихся кри­сталлов отличается от состава расплава.

Для достижения высокой степени очистки обычно производят несколько проходов расплавленной зоны вдоль слитка металла. В результате средняя часть слитка получается наиболее чистой, ее вырезают и используют.

Метод зонной плавки позволяет получить особо чистые металлы с со­держанием примесей 10 -7 -10 -9 %. Данный метод применяется для получения сверхчистых германия, висмута, теллура и др.

Основное достоинство данного метода - высокая эффективность. Не­достатки метода - низкая производительность, высокая стоимость, большая продолжительность процесса.

4. электрохимический ме­тод очистки металлов (рафинирование металлов).

Позволяет сэкономить энергоресурсы (кокс, уголь), получить больший выход готовой продукции из сырья, сократить цикл производства с одновременным повышением качества и улучшением экологического состояния атмосферы. Это металлургия, а именно – восстановление металлов с помощью водорода.

Предыстория, или Вперед в прошлое за чистыми металлами

Металлургия сопровождает человечество со времен бронзового и железного веков. Еще за 14 столетий до н. э. древние люди выплавляли железо кричным методом. Принцип заключался в восстановлении железной руды углем при сравнительно невысокой температуре 1000 °C. В итоге получали крицу – железную губку, затем ее проковывали до получения болванки, из которой изготавливали предметы быта и оружие.

Уже в XIV веке стали появляться примитивные горны и домницы, положившие начало современным металлургическим процессам: доменному, мартеновскому и конвертерному. Обилие каменного угля и железных руд надолго закрепили эти методы как основные. Однако, повышающиеся требования к качеству продукции, экономия ресурсов и экологическая безопасность привели к тому, что уже в середине XIX века стали возвращаться к истокам: использовать прямое восстановление чистых металлов. Первая современная такая установка появилась в 1911 г. в Швеции, выпускавшая малые партии полученных с помощью водорода металлов чистотой 99,99%. Потребителями тогда были лишь исследовательские лаборатории. В 1969 г. в Портленде (США) заработала фабрика, выпускавшая до 400 тыс. тонн чистых металлов. А уже в 1975 г. в мире этим способом выпускалось 29 млн тонн стали.

Сейчас такую продукцию ждут не только авиационная, приборостроительная отрасль, предприятия по изготовлению медицинских инструментов и электроники, но и многие другие. Особое преимущество эта технология получила в цветной металлургии, но в недалекой перспективе и «водородная черная металлургия».